
ESampler: Boosting Sampling of Satisfying
Assignments for Boolean Formulas via Derivation

Yongjie Xua, Fu Songa, Taolue Chenb

aSchool of Information Science and Technology, ShanghaiTech University, Shanghai, China
bDepartment of Computer Science, Birkbeck, University of London, London, UK

Abstract

Boolean satisfiability (SAT) plays a key role in diverse areas such as spanning
planning, inference, data mining, testing and optimization. Apart from the
classical problem of checking Boolean satisfiability, generating random satisfy-
ing assignments has attracted significant theoretical and practical interests over
the past years. In practical applications, usually a large number of satisfying
assignments for a given Boolean formula are needed, the generation of which
turns out to be a computational hard problem in both theory and practice. In
this work, we propose a novel approach to derive a large set of satisfying as-
signments from a given one in an efficient way. Our approach is based on an
insight that flipping the truth values of properly chosen variables of a satisfying
assignment could result in satisfying assignments without invoking computa-
tionally expensive SAT solving. We propose a derivation algorithm to discover
such variables for each given satisfying assignment. Our approach is orthogonal
to the previous techniques for generating satisfying assignments and could be
integrated into the existing SAT samplers. We implement our approach as an
open-source tool ESampler using two representative state-of-the-art samplers
(QuickSampler and UniGen3) as the underlying satisfying assignment gen-
eration engine. We conduct extensive experiments on various publicly available
benchmarks and apply ESampler to solve Bayesian inference. The results show
that ESampler can efficiently boost the sampling of satisfying assignments of
both QuickSampler and UniGen3 on a large portion of the benchmarks and
is at least comparable on the others. ESampler performs considerably better
than QuickSampler and UniGen3, as well as another state-of-the-art sampler
SearchTreeSampler.

Keywords: Boolean satisfiability, Constraint-based sampling, SAT solving

∗Corresponding author
Email address: songfu@shanghaitech.edu.cn (Fu Song)

Preprint submitted to Journal of Systems Architecture April 28, 2022

1. Introduction1

Boolean satisfiability, also known as SAT, concerns determining whether2

a given Boolean formula is satisfiable. There have been strong theoretical and3

practical interests in the SAT problem, which has played a key role in diverse ar-4

eas spanning planning, inferencing, data mining, testing and optimization [1, 2].5

Apart from the classical problem of checking Boolean satisfiability, generating6

random satisfying assignments has attracted significant theoretical and prac-7

tical interests over the years [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In8

several practical applications, a large number of satisfying assignments for a9

given Boolean formula are needed. For instance, simulation-based verification10

is a commonly adopted technique to test hardware design. In this scenario, the11

simulated behavior is compared with the expected behavior where any mismatch12

is flagged as an indication of a bug [12, 13]. It is a common practice to generate13

a large number of stimuli satisfying a given set of constraints in the form of14

Boolean formulas. These constraints typically arise from various sources such15

as application-specific knowledge and environmental requirements. Another ap-16

plication scenario is the generation of adversarial examples for adversarial train-17

ing [16, 17]. Adversarial training is a widely adopted technique to improve the18

robustness of neural networks against adversarial attacks where a large number19

of adversarial inputs (e.g., images) would be generated explicitly or implicitly.20

For instance, to adversarially train a binarized neural network [18, 19], adver-21

sarial images could be generated by encoding a binarized neural network as a22

Boolean formula based on which satisfying assignments are sampled [20, 21].23

Sampling satisfying assignments for a given Boolean formula is, however,24

challenging. Cook has shown in 1971 that the SAT problem isNP-complete [22].25

In recent years, we have seen a tremendous progress in SAT solving, supported26

by techniques such as conflict-driven clause learning (CDCL [23, 24, 25]), yield-27

ing powerful solvers such as CryptoMiniSAT [26]. However, generating a large28

number of satisfying assignments is still computationally prohibitive and often29

infeasible in practical settings [27, 28].30

In this work, we develop ESampler, aiming for boosting the generation of31

a large number of satisfying assignments efficiently for a given Boolean formula.32

The general strategy is to use an existing sampler to produce a seed sample as33

a satisfying assignment, from which we derive more satisfying assignments by34

flipping some variables of the given Boolean formula. Clearly, naively flipping35

variables may yield unsatisfying assignments. To tackle this problem, we pro-36

pose a novel derivation procedure which explores the semantics of the Boolean37

formula under the seed sample, so that the resulting assignments can be guaran-38

teed to satisfy the Boolean formula. The advantage of our approach lies in that39

it can be integrated with the existing SAT samplers, so would enjoy considerably40

wider applicability.41

To demonstrate our approach, we implement a sampler ESampler based42

on the two types of state-of-the-art sampler QuickSampler [28] and Uni-43

Gen3 [29]. We carry out extensive experiments on the publicly available bench-44

marks from UniGen [30] which include hundreds of Boolean formulas from45

2

real-world testing and verification applications, and apply ESampler to solve46

Bayesian inference of the plan recognition problems [31]. Our experimental re-47

sults show that ESampler is able to effectively boost the sampling of satisfying48

assignments of both QuickSampler and UniGen3 on a large portion of the49

benchmarks and is at least comparable on the others. Consequently, ESampler50

considerably performs better than QuickSampler and UniGen3, as well as51

the another state-of-the-art sampler SearchTreeSampler (STS in short) [32].52

The experimental results confirm the efficacy of our derivation approach.53

Our main contributions can be summarized as follows.54

• We introduce a novel approach for deriving a large set of satisfying as-55

signments from a given seed. It is generic and could be integrated with56

the existing samplers. To the best of our knowledge, it is the first work to57

generate satisfying assignments from a given seed.58

• We implement an integrated sampler ESampler based on two state-of-59

the-art samplers. Our tool is available at https://github.com/ESampler/60

Esampler.61

• We conduct extensive experiments on hundreds of real-world benchmarks.62

The results show that our derivation approach is effective and consequently63

ESampler performs considerably better than the three state-of-the-art64

samplers QuickSampler, STS and UniGen3.65

Related Work. Various techniques have been proposed to tackle the problem66

of the satisfying assignment generation for Boolean formulas [33]. Binary de-67

cision diagrams (BDD) and Markov Chain Monte Carlo (MCMC) algorithms68

such as simulated annealing and Metropolis-Hastings are widely used for gen-69

erating satisfying assignments [9, 34, 35]. These techniques usually provide70

theoretical guarantees of uniformity but are limited in scalability and efficiency.71

Therefore, heuristics are proposed to speed up at the cost of theoretical guar-72

antees of uniformity [36, 37, 34]. Another class of satisfying assignment gen-73

eration techniques with theoretical guarantees of uniformity is based on hash-74

ing [38, 39, 40, 41, 42, 30, 43, 29]. Hashing-based techniques add hash functions75

(e.g., XOR of a random subset of variables) to the Boolean formula in order76

to partition the search space uniformly and then randomly pick a satisfying77

assignment from a randomly chosen cell. These algorithms are also limited in78

scalability and efficiency. In comparison, our approach primarily aims for effi-79

ciency, using fewer solver calls to generate a large number of solutions. We also80

provide a parameter to balance the uniformity of the generated samples and the81

efficiency of the procedure. Although we do not provide a theoretical guarantee82

of uniformity, the experimental results demonstrate that our approach is able83

to produce solutions nearly uniformly when the maximal number of solutions84

per seed is set in a reasonable range.85

SAT samplers aiming to quickly generate a large number of assignments86

have recently been proposed. Both QuickSampler [28] and STS [32] share87

3

https://github.com/ESampler/Esampler
https://github.com/ESampler/Esampler
https://github.com/ESampler/Esampler

the same goal as our work, namely, fast generation of a larger number of as-88

signments. QuickSampler works as follows. Given a Boolean formula Φ, it89

first constructs a random assignment v and then uses the MaxSAT solver [44]90

to solve the MaxSAT problem with the hard constraint Φ and soft constraint91

Ψ, where Ψ is the conjunction of literals x if v(x) = 1 or ¬x if v(x) = 0. Solving92

the MaxSAT problem yields a satisfying assignment v′ of Φ that is close to the93

random assignment v. After that, QuickSampler iteratively flips the value94

of each variable x in the satisfying assignment v′ to find another close satisfy-95

ing assignment v′x using the MaxSAT solver, where the soft constraint asserts96

the satisfying assignment v′ except for the flipped variable x, and the original97

Boolean formula together with the flipped variable is used as hard constraint.98

For each flipped variable x, the difference δx between two satisfying assignments99

v′ and v′x is computed. All such differences are combined and applied to mu-100

tate the satisfying assignment v′ to generate a large number of assignments.101

However, the assignments generated by QuickSampler may not satisfy the102

Boolean formula, hence follow-up checkings are needed. In contrast, our ap-103

proach only mutates proper variables by which the formula is guaranteed to104

be satisfied. STS explores the tree of variable assignments in a breadth-first105

way with the MiniSat SAT solver [45] as an oracle. During this procedure, it106

generates pseudosolutions, which are partial assignments to the variables that107

can be completed to full satisfying assignments. However, it has to invoke SAT108

solvers multiple times during the breadth-first exploration. In contrast, ESam-109

pler does not require SAT solving when generating satisfying assignments from110

a seed.111

Technically, our derivation procedure aims to generate a large set of sat-112

isfying assignments from a given seed, and is orthogonal to the existing SAT113

samplers. It can be integrated into the existing samplers to improve their effi-114

ciency as we demonstrated using QuickSampler and UniGen3.115

Sampling satisfying assignments is also closely related to the model-counting116

problem which counts the number of satisfying assignments for a Boolean for-117

mula. Model-counting techniques have been used for sampling satisfying as-118

signments (e.g., SPUR [46]) while satisfying assignment sampling techniques119

can also be used for model-counting (e.g., STS [32] and ApproxCount [35]).120

This article is an extended version of [47], but with substantial new material.121

In particular, we apply ESampler to boost another uniform sampler UniGen3122

and carry out more experiments (cf. Section 5.4), which show the generality and123

wide applicability of ESampler to diverse seed generation samplers. We also124

apply ESampler for inference of Bayesian networks and report experimental125

results on the real-world plan recognition problems (cf. Section 6), showing a126

significant improvement of our approach ESampler over the samplers Quick-127

Sampler, STS and UniGen3.128

Outline. The remainder of this paper is organized as follows. In Section 2, we129

briefly revisit related concepts of Boolean formulas. We present our derivation130

procedure in Section 3, and show how to integrate it into existing SAT samplers131

in Section 4. We report evaluation results in Section 5. We apply ESampler132

4

to Bayesian inference in Section 6 and conclude this work in Section 7.133

2. Preliminaries134

We first recap some basic notions and notations which are used in this work.135

Boolean formulas. Let us fix a set of Boolean variables V. A literal l is either136

a Boolean variable x ∈ V or its negation ¬x. We denote by var(l) the variable137

x used in the literal l, namely, var(x) = var(¬x) = x.138

A Boolean formula Φ is a Boolean combination of literals using logical-AND139

(∧) and logical-OR (∨) operators. As a convention, we assume that Boolean140

formulas are given in the conjunctive normal form (CNF)
∧m

j=1

∨nj

i=1 l
j
i , where141

for each 1 ≤ j ≤ m and 1 ≤ i ≤ nj , l
j
i is a literal, and

∨nj

i=1 l
j
i is referred to a142

clause for each 1 ≤ j ≤ m. Given a Boolean formula Φ and a literal l, let Φl143

denote the set of clauses that contain the literal l. For each clause ϕ =
∨nj

i=1 l
j
i ,144

we assume that all literals in ϕ are distinct, and denote by |ϕ| the number nj of145

literals in the clause ϕ.146

Assignments. An assignment is a function v:V → {0, 1} which assigns a147

Boolean value to each Boolean variable x ∈ V. Given a Boolean formula Φ and148

an assignment v, v is a satisfying assignment of Φ, denoted by v |= Φ, if the149

Boolean formula Φ evaluates to 1 under the assignment v. A partial assignment150

is a partial function v:V → {0, 1} such that for each x ∈ V, v(x) is a Boolean151

value if x is defined in v, otherwise x is undefined in v.152

For each assignment v, variable x ∈ V and value i ∈ {0, 1}, we denote by153

v[x 7→ i] the assignment that agrees with v except for the variable x, i.e., for154

each variable y ∈ V,155

v[x 7→ i](y) =

{
v(y), if y ̸= x;
i, otherwise.

Satisfiability and maximum satisfiability. Given a Boolean formula Φ, the156

satisfiability problem (SAT) is to determine whether a satisfying assignment of157

Φ exists or not. If Φ is satisfied, then a solution is produced as a witness. It is158

well-known that the SAT problem is NP-complete [22].159

Given a pair of Boolean formulas (Φ,Ψ), the maximum satisfiability problem160

(MaxSAT) is to find a satisfying assignment that satisfies the Boolean formula161

Φ and meanwhile maximizes the number of satisfied clauses in Ψ. The clauses162

in Φ are usually called hard constraints, while the clauses in Ψ are called soft163

constraints. It is easy to see that the MaxSAT problem is at least NP-hard and164

can be solved by the state-of-the-art solvers such as Z3 [44].165

In this work, by solvers we mean tools that are able to produce one satisfying166

assignment of the (Max)SAT problem whilst by samplers we mean those that167

are able to generate more than one satisfying assignments.168

Independent support. Given a Boolean formula Φ, an independent support169

Supp of Φ [30], is a set of variables such that for each pair of satisfying as-170

signments (v, v′) of Φ, if v(x) = v′(x) holds for all variables x ∈ Supp, then171

5

v(y) = v′(y) holds for all variables y ∈ V \ Supp. Intuitively, the truth values of172

the independent support SuppΦ uniquely determine the truth values of the other173

variables. In other words, flipping the truth value of any variable y ∈ V\Supp in174

the satisfying assignment v only will make the resulting assignment v[y 7→ ¬v(y)]175

fail to satisfy Φ.176

It is easy to see that any superset of an independent support of Φ is also an177

independent support. There are tools, such as MIS and SMIS [48], that are able178

to compute minimal and minimum independent supports for Boolean formulas,179

where minimal means removing any variable from the independent support X180

will lead to a non-independent support, and minimum means there does not181

exist any independent support whose size is smaller. Remark that the problem182

of deciding whether a set of variables is a minimal independent support of a183

Boolean formula Φ is DP-complete [49], where DP := {A−B | A,B ∈ NP}.184

3. Derivation Procedure185

In this section, we first present a motivating example which exemplifies the186

key insight behind our approach for efficiently generating a large number of187

satisfying assignments. We then provide a derivation procedure which is able188

to derive more satisfying assignments from a seed by flipping the truth values189

of properly chosen variables without invoking computationally expensive SAT190

solving. The derivation procedure is the basis for efficiently generating a large191

number of satisfying assignments, and can be integrated into other samplers.192

3.1. Motivating Example193

To exemplify the key insight behind our approach, let us consider the fol-194

lowing Boolean formula195

Φe ≡ (¬a ∨ b ∨ c) ∧ (a ∨ ¬c ∨ ¬d) ∧ (¬b ∨ c) ∧ (b ∨ d).

Suppose we have already obtained one satisfying assignment v (called seed) of196

Φe with v(a) = v(b) = v(c) = v(d) = 1. We can observe that the clause ¬a∨b∨c197

(resp. b ∨ d) contains two literals b and c (resp. b and d) whose values are 1198

under the assignment v. Moreover, the common literal b does not appear in the199

other clauses, namely, a ∨ ¬c ∨ ¬d and ¬b ∨ c. By flipping the value v(b) of the200

variable b in the assignment v, we can obtain a new assignment v[b 7→ ¬v(b)],201

which is also a satisfying assignment of Φe.202

However, by flipping the value v(c) of the variable c in the assignment v,203

the new assignment v[c 7→ ¬v(c)] is not a satisfying assignment of Φe. This is204

because the clause ¬b ∨ c contains only one literal c whose value is 1 under the205

assignment v. After flipping the value v(c) of the variable c in the assignment206

v, the clause ¬b ∨ c is no more satisfied.207

This simple observation suggests that, for a seed v, we may identify proper208

variables (such as b but not c in the above example) so that when the value of209

one such variable is flipped it is still a satisfying assignment. Furthermore, the210

6

Algorithm 1 Deriving satisfying assignments from a seed

1: procedure Derivation(Φ, v, MaxNum, Supp)
2: Derived = {v};
3: Queue = [v];
4: while Queue ̸= ∅ ∧ |Derived| ≤ MaxNum do
5: v = Queue.Dequeue();
6: L = {x | v(x) = 1} ∪ {¬x | v(x) = 0};
7: for all l ∈ L ∧ var(l) ∈ Supp do
8: if ∀

∨m
i=1 li ∈ Φl, ∃i. (1 ≤ i ≤ m ∧ l ̸= li ∧ li ∈ L) then

9: x = var(l);
10: v′ = v[x 7→ ¬v(x)];
11: if v′ ̸∈ Derived then
12: Derived = Derived ∪ {v′};
13: Queue.Enqueue(v′);
14: end if
15: end if
16: end for
17: end while
18: return Derived;
19: end procedure

new satisfying assignments can be used as seeds to derive more satisfying assign-211

ments. This often allows generation of a larger number of satisfying assignments212

without invoking computationally expensive SAT solving.213

3.2. Derivation Algorithm214

In this subsection, we present a derivation procedure for deriving new satis-215

fying assignments from a given seed. Given a Boolean formula Φ, a seed v, an216

independent support Supp of Φ, and the maximal number MaxNum of expected217

satisfying assignments, the procedure Derivation in Algorithm 1 iteratively218

derives new satisfying assignments from the seed v until no new satisfying as-219

signment can be found or the number of generated satisfying assignments hits220

the threshold MaxNum. It returns the set of generated satisfying assignments221

including the original seed v.222

To start, Algorithm 1 initializes the set Derived for recording all the gener-223

ated satisfying assignments (Line 2) and the queue Queue for storing the seeds224

(Line 3). It then repeats the following procedure until no new satisfying as-225

signments can be found or the number of the generated satisfying assignments226

exceeds the threshold MaxNum (While-loop).227

For each seed v in Queue (Line 5), it first identifies all the literals whose228

value is 1 under the assignment v (Line 6). After that, for each literal l ∈ L229

whose variable var(l) ∈ Supp (Line 7), it checks, for each clause
∨m

i=j lj that230

contains the literal l (i.e.,
∨m

i=j lj ∈ Φl), whether
∨m

i=j lj contains a distinct231

literal li whose value is also 1, i.e., li ∈ L (Line 8). If this is the case, we can232

7

deduce that the assignment v[x 7→ ¬v(x)] obtained from the assignment v by233

flipping the variable x = var(l) is also a satisfying assignment of Φ. Therefore,234

we extract the variable x from the literal l (Line 9) and construct the assignment235

v′ = v[x 7→ ¬v(x)] (Line 10). If the assignment v′ has not been generated before,236

it is inserted to Derived and Queue (Lines 12 and 13).237

One may notice that only variables in Supp are considered for flipping238

(Line 7). In general, we can take all the variables into account for flipping.239

However, as mentioned before (cf. Section 2), flipping variables outside of Supp240

will definitely lead to unsatisfying assignments. Therefore, it suffices to consider241

variables from Supp for flipping. Due to this, the values of each variable outside242

of Supp are the same in all the generated satisfying assignments from a given243

seed.244

We remark that the derivation procedure Derivation could alternatively245

be presented as a recursive procedure which invokes itself when a new satisfying246

assignment is generated, or equivalently, use a stack rather than a queue to store247

the generated seeds. Intuitively, using the queue Queue to store the seeds, our248

algorithm works in a breadth-first fashion, while the other two ways would follow249

a depth-first fashion. We adopt the current way because it is more efficient than250

the other two ways.251

Theorem 1. Given a Boolean formula Φ, a seed v and an independent support252

Supp of Φ, the set Derived returned by Algorithm 1 contains only satisfying253

assignments of Φ. Moreover, these assignments agree on the variables outside254

of Supp.255

Proof. We show that the set Derived returned by Algorithm 1 contains only256

satisfying assignments of Φ by applying induction on the sequence v0v1 · · · of257

the assignments added into Derived. The base case is trivial as the seed v0258

satisfies the Boolean formula Φ. We prove the inductive step below.259

Suppose v0, v1 · · · vk−1 have been added into the set Derived and the in-260

ductive step adds the assignment vk into the set Derived. Then, vk must be261

added due to one v of the previously added satisfying assignments v0, v1 · · · vk−1.262

There necessarily exists a literal l such that x = var(l) and vk = v[x 7→ ¬v(x)].263

To show that vk satisfies Φ, it is sufficient to prove that vk satisfies all the264

clauses of Φ. Let us consider a clause
∨m

i=j lj of Φ,265

• If
∨m

i=j lj does not contain the literal l, then by applying induction hy-266

pothesis, v satisfies the Boolean formula Φ and hence v satisfies the clause267 ∨m
i=j lj . Since vk = v[x 7→ ¬v(x)] and x = var(l), the truth of the clause268 ∨m
i=j lj does not change when the value of x in v is flipped. Therefore, we269

get that the assignment vk satisfies the clause
∨m

i=j lj .270

• If
∨m

i=1 li contains the literal l, then there exists another literal li ∈271

{l1, · · · , lm} such that li ̸= l and li ∈ L = {x | v(x) = 1}∪{¬x | v(x) = 0}.272

From li ∈ L = {x | v(x) = 1}∪{¬x | v(x) = 0}, we deduce that the literal273

li, hence the clause
∨m

i=1 li, holds under the assignment vk.274

8

Φe : (¬a ∨ b ∨ c) ∧ (a ∨ ¬c ∨ ¬d) ∧ (¬b ∨ c) ∧ (b ∨ d)

v1 : (0 ∨ 1 ∨ 1) ∧ (1 ∨ 0 ∨ 0) ∧ (0 ∨ 1) ∧ (1 ∨ 1)
flip b and d respectively ⇓

v2 : (0 ∨ 0 ∨ 1) ∧ (1 ∨ 0 ∨ 0) ∧ (1 ∨ 1) ∧ (0 ∨ 1)
v3 : (0 ∨ 1 ∨ 1) ∧ (1 ∨ 0 ∨ 1) ∧ (0 ∨ 1) ∧ (1 ∨ 0)

flip a ⇓
v4 : (1 ∨ 1 ∨ 1) ∧ (0 ∨ 0 ∨ 1) ∧ (0 ∨ 1) ∧ (1 ∨ 0)

Figure 1: Derivation steps of the motivating example

Example 1. Recall the motivating example Φe. Suppose the input seed is v1275

with v1(a) = v1(b) = v1(c) = v1(d) = 1 and the independent support Supp =276

{a, b, d}. The derivation steps are shown in Figure 1. At the beginning of the277

first iteration of the while-loop, v = v1 and L = {a, b, c, d}.278

1. Suppose the variable a is chosen for flipping (Line 7). Since the clause a∨279

¬c∨¬d does not have any literals other than a that occur in L, Algorithm 1280

will not flip the variable a.281

2. Next, the variable b is chosen for flipping (Line 7). Since the clause ¬a∨282

b∨ c contains the literal c, the clause b∨ d contains the literal d, and both283

literals c and d occur in L, Algorithm 1 will flip the variable b (Line 9)284

and produce a new satisfying assignment v2 = v1[b 7→ 0] (Line 10).285

3. Finally, the variable d is chosen for flipping (Line 7). Since the clause286

b ∨ d contains literal b that occurs in L, Algorithm 1 will flip the vari-287

able d (Line 9) and produce a new satisfying assignment v3 = v1[d 7→ 0]288

(Line 10).289

At the end of the first iteration of the while-loop, Derived = {v1, v2, v3} and290

Queue = [v2, v3]. After entering the second iteration of the while-loop, v = v2,291

Queue (resp. L) becomes [v3] (resp. {a,¬b, c, d}). By applying similar steps292

as above, the satisfying assignment v2 is regenerated but will not be inserted to293

Derived or Queue.294

At the end of the second iteration of the while-loop, Derived = {v1, v2, v3}295

and Queue = [v3]. After entering the third iteration of the while-loop, v = v3,296

Queue (resp. L) becomes ∅ (resp. {a, b, c,¬d}). By applying similar steps as297

above, Algorithm 1 will flip the variable a and produce a new satisfying assign-298

ment v4 = v3[a 7→ 0]. In the end, no more new satisfying assignments can be299

generated and Algorithm 1 returns the set {v1, v2, v3, v4}.300

4. ESampler301

In this section, we show that our derivation procedure is of generic nature302

in the sense that it can be integrated with other samplers. The basic idea is to303

generate seeds by invoking an existing sampler as an iterator, which returns a304

9

Algorithm 2 Integrated our derivation procedure into an existing sampler

1: procedure IntegratedSampler(Sampler,Φ,T,MaxPerSeed,Supp,RT,DT)
2: Solutions = ∅;
3: Derivable = false;
4: Round = 0;
5: Iterator = Sampler(Φ, Supp);
6: repeat
7: v = Iterator.next();
8: if v == Null then
9: break;

10: end if
11: if v ∈ Solutions then
12: continue;
13: end if
14: if Derivable == true ∨ Round<RT then
15: Derived = Derivation(Φ, v, MaxPerSeed, Supp);
16: Solutions = Solutions ∪ Derived;
17: if |Derived| ≥ DT then
18: Derivable = true;
19: else
20: Round = Round+ 1;
21: end if
22: else
23: Solutions = Solutions ∪ {v};
24: end if
25: until T is satisfied
26: return Solutions;
27: end procedure

unique satisfying assignment each time. For each seed, we derive more satisfy-305

ing assignments by invoking our derivation procedure. However, our derivation306

procedure may not be effective on some Boolean formulas. Therefore, we pro-307

pose a heuristic to determine whether our derivation procedure is able to derive308

a large number of satisfying assignments or not. If it can derive a large number309

of satisfying assignments, we apply the derivation procedure for each satisfying310

assignment generated by the sampler, otherwise we disable it.311

Our idea is formalized as the procedure IntegratedSampler in Algo-312

rithm 2, which takes, as input, an off-the-shelf sampler Sampler, a Boolean313

formula Φ, a threshold T as the termination condition, the maximum number314

MaxPerSeed of satisfying assignments per seed, an independent support Supp315

of the Boolean formula Φ, two thresholds RT and DT to determine whether our316

derivation procedure is able to derive a large number of satisfying assignments,317

and returns a set Solutions of satisfying assignments of the formula Φ.318

The procedure IntegratedSampler first initializes the set Solutions, the319

10

Boolean flag Derivable, the counter Round and the iterator Iterator of the320

sampler using the independent support Supp and Boolean formula Φ (Lines 2–321

5), where the Boolean flag Derivable and counter Round are used to determine322

if our derivation procedure is able to derive a large number of satisfying as-323

signments. Then, it repeats the following procedure until the threshold T is324

hit.325

During each iteration, IntegratedSampler first invokes the iterator to get326

a satisfying assignment v, where v is Null if Φ is unsatisfiable or the iterator327

cannot find new satisfying assignments. If v is Null, it breaks the loop (Line 9).328

If v already exists in Solutions, it skips this loop (Line 12). Otherwise it checks329

if the Boolean flag Derivable is true or the number Round of iterations is less330

than the threshold RT.331

• If neither holds, the derivation procedure is considered to be not able to332

derive a large number of satisfying assignments and will be skipped;333

• Otherwise, the derivation procedure is invoked to generate more satisfying334

assignments which are added to the set Solutions (Lines 15–16). If the335

number of satisfying assignments generated by the derivation procedure336

exceeds the threshold DT, we consider that the derivation procedure is able337

to derive a large number of satisfying assignments and set the Boolean flag338

Derivable to true (Line 18). Otherwise, we increase the counter Round by339

one. In general, we probe the effectiveness of the derivation procedure by340

checking the number of satisfying assignments generated by the derivation341

procedure in the first RT iterations. In our experiments, we found few342

rounds are sufficient to detect for each benchmark whether a large number343

of satisfying assignments can be derived from a seed. In fact, on some344

benchmarks, the derivation algorithm can derive a few satisfying solutions345

from a seed in the beginning, but no solution could be derived afterwards.346

Thus, a small DT value can be used to avoid Derivable being set to true on347

these benchmarks, while it will not change on other benchmarks. Based348

on these observations, we set RT = 3 and DT = 16.349

By Theorem 1, we obtain that350

Theorem 2. The set Solutions returned by Algorithm 2 contains only satis-351

fying assignments of Φ.352

5. Implementation and Evaluation353

We implement Algorithms 1—2 as an open-source tool ESampler in C++,354

with QuickSampler as the underlying seed generator. QuickSampler takes355

a Boolean formula and its independent support as inputs, and outputs a set of356

assignments. However, as mentioned above, assignments produced by Quick-357

Sampler may be duplicated or not satisfy the formula. As we focus on satisfy-358

ing assignments of each Boolean formula in this work, we modify it so that du-359

plicated and unsatisfying assignments are omitted. To demonstrate the generic360

11

nature of Algorithm 1 for deriving satisfying assignments from a seed, we also361

implement Algorithm 2 with UniGen3 as the underlying seed generator in our362

tool ESampler. In contract toQuickSampler, UniGen3 only produces satis-363

fying assignments for each given Boolean formula and the satisfying assignments364

are sampled uniformly at random with theoretical guarantees.365

ESampler takes a Boolean formula in the DIMACS [50] format and other366

required options as inputs, and outputs a set of satisfying assignments for the367

given Boolean formula. To reduce the memory usage of storing the satisfy-368

ing assignments, we only store and output the satisfying assignments for the369

variables in the given independent support. Indeed, the truth values of the in-370

dependent support determine those of the other variables, thereby the satisfying371

assignments can be easily completed.372

In the rest of this work, we denote byESampler+QS (resp. ESampler+UG)373

our tool ESampler using QuickSampler (resp. UniGen3) as the underlying374

seed generator.375

Wemainly compareESampler+QS with three state-of-the-art toolsQuick-376

Sampler, STS and UniGen3 [29]. As done by [28], for a fair comparison, we377

modify STS so that the additional independent support information can be378

used by STS. To show the generic nature of Algorithm 1, we also compare379

ESampler+UG with UniGen3.380

Benchmarks. To evaluate the performance, we conducted extensive exper-381

iments. Industrial testing and verification instances are typically proprietary382

and unavailable for published research. Therefore, we conducted experiments383

on the publicly available benchmarks from UniGen [30], which consist of 370384

Boolean formulas in the DIMACS format and the independent supports thereof.385

Indeed, the independent supports of most Boolean formulas could be computed386

using MIS [48] in few seconds. These benchmarks come from four classes of387

problem instances:388

1. ISCAS89: constraints arising from ISCAS89 circuits with parity conditions389

on randomly chosen subsets of outputs and next-state variables;390

2. SMTLib: bit-blasted versions of SMTLib benchmarks;391

3. ProgSyn: constraints arising from automated program synthesis; and392

4. BMC: constraints arising in bounded model checking of circuits.393

Note that the accompanied independent supports of these benchmarks may con-394

tain variables that are not involved in the corresponding Boolean formulas; such395

variables are removed from the independent supports in our experiments. We396

remark that our approach also works without the given independent supports,397

in which case the independent support of a Boolean formula contains all the398

involved variables.399

Since it does not make any sense to compute solutions for unsatisfiable400

Boolean formulas or the satisfiability cannot be solved, we checked the satis-401

fiability of all these Boolean formulas with a timeout of one hour per Boolean402

formula using Z3 [51]. There are two unsatisfiable formulas (79.sk 4 40 and403

36.sk 3 77), and four unsolvable formulas (logcount.sk 16 86, log2.sk 72 391,404

12

10-2

10-1

100

101

102

103

104

105

106

10-2 10-1 100 101 102 103 104 105 106

E p
t(m

s)

Qpt (ms)

Figure 2: ESampler+QS vs. QuickSampler

xpose.sk 6 134, and listReverse.sk 11 43). These formulas are not considered405

here, leaving 364 Boolean formulas.406

Experiment setup. In our experiments, for each sampler and each Boolean407

formula, we run the sampler once on the Boolean formula. Though samplers408

are non-deterministic, results on a large number of Boolean formulas are suf-409

ficient to demonstrate the performance of ESampler. The maximal number410

MaxPerSeed of satisfying assignments per seed is 10,000 and the maximal num-411

ber T of satisfying assignments to compute is 1,000,000, unless the recent 10412

assignments/pseudosolutions already exist. As aforementioned, we set RT = 3413

and DT = 16 for ESampler. For STS andQuickSampler, we use their default414

parameter settings. All the experiments were conducted on Intel Xeon E5-2620415

v4 2.10GHz CPU with 256 RAM GB and the one-hour timeout.416

5.1. Comparison of ESampler+QS and QuickSampler417

Figure 2 shows the scatter plot comparing the average execution time per418

satisfying assignment between ESampler+QS and QuickSampler on all the419

364 formulas. Timeout occurred along the top or right border; the red color indi-420

cates that Derivable is set true by Algorithm 2, namely, it determines that our421

derivation procedure is able to derive a large number of satisfying assignments.422

Points below (resp. above) the diagonal line indicate that ESampler+QS per-423

forms better (resp. worse) than QuickSampler.424

The comparison of QuickSampler and ESampler+QS for a representa-425

tive subset of the benchmarks is reported in Table 1. Columns benchmark,426

#Vars and #Cls respectively show the name, numbers of variables and clauses427

in each Boolean formula. Columns Qt and Et (resp. Qpt and Ept) give the total428

execution time in thousand seconds (ks) (resp. execution time per satisfying as-429

signment in milliseconds (ms)) of QuickSampler and ESampler+QS, respec-430

13

Table 1: Comparison of QuickSampler and ESampler+QS

B
en

ch
m
ark

#
V
a
rs

#
C
ls

Q
t (k

s)
Q

n
Q

p
t (m

s)
E

t (k
s)

E
n

E
d
n

E
p
t (m

s)
Q

p
t

E
p
t

s27
n
ew

15
7

17
4
3

0.00
4
8

1.3
9

0.0
0

48
42

0.54
2
.56

b
lasted

case.54
2
03

725
0.20

6
91

,127
0
.30

0.2
0

6
64,548

0
0.3

0
0.99

20.sk
1
51

15,4
75

60,994
3.94

4
91

,074
8
.02

1.6
7

1,520,1
52

∼
1,520k

1.10
7
.31

s359
32

7
4

17,8
49

44,425
4.22

2
45

,506
17

.17
0.6

3
1,270,2

47
∼
1,270k

0.50
3
4

b
lasted

case.126
3
02

1
,129

0.34
1
,00

7,41
1

0.34
0.3

4
1,022,9

91
0

0.33
1.03

b
lasted

case.40
2
45

650
0.41

1
,14

9,01
7

0.35
0.4

1
1,149,0

17
0

0.36
0.99

s349
3
2

1
98

469
0.24

1
,00

8,38
6

0.24
0.0

7
1,142,7

57
∼
1,088k

0.06
3
.81

56.sk
6
38

4,8
42

1
7,828

1.97
1
,00

4,03
7

1.96
1.1

8
1,093,0

80
∼
1,092k

1.08
1
.81

b
lasted

case.107
6
18

1
,661

0.82
1
,14

9,01
7

0.72
0.8

4
1,149,0

17
0

0.73
0.98

s832
a
15

7
6
93

2
,017

0.53
1
,00

1,73
2

0.53
0.5

2
1,000,0

93
4

0.52
1
.01

s420
n
ew

7
4

3
12

770
0.35

1
,11

7,08
5

0.31
0.0

8
1,048,5

76
∼
1,043k

0.07
4
.18

b
lasted

case.124
1
33

386
0.23

1
,03

9,56
3

0.22
0.2

2
1,008,7

15
0

0.22
1
.02

s359
32

15
7

17,9
18

44,709
4.29

1
45

,499
29

.46
1.3

4
1,270,2

47
∼
1,270k

1.06
2
7

b
lasted

case.207
8
24

2
,128

1.02
1
,14

9,01
7

0.89
0.9

8
1,149,0

17
0

0.86
1
.04

b
lasted

case.120
2
84

851
0.41

1
,11

3,78
0

0.37
0.4

0
1,044,7

31
0

0.38
0.97

63.sk
3
64

7,2
42

2
4,379

4.04
9
17

,681
4
.41

0.3
0

1,200,1
20

∼
1,200k

0.25
1
7

s420
7
4

3
12

770
0.32

1
,05

8,10
0

0.31
0.1

0
1,366,7

84
∼
1,363k

0.07
4
.14

tively. Columns Qn and En show the total numbers of satisfying assignments431

generated by QuickSampler and ESampler+QS, respectively. Column Edn432

gives the numbers of satisfying assignments generated by our derivation proce-433

dure. The last column provides the ratio of execution time per satisfying as-434

14

signment between QuickSampler and ESampler+QS, depicting the speedup435

of ESampler+QS. We can observe when our derivation procedure works, it436

can produce more satisfying assignments (e.g., 20.sk 1 51 and s35932 7 4) than437

QuickSampler in the same time budget, while when it does not work well,438

it often does not produce any satisfying assignments (e.g., blasted case.54 and439

blasted case.40). Note that, since QuickSampler is a randomized approach,440

QuickSampler and ESampler+QS may produce different satisfying assign-441

ments when our derivation procedure does not work, although ESampler+QS442

is built on QuickSampler.443

Summary. ESampler+QS and QuickSampler respectively failed on 11 and444

7 benchmarks due to the failures of MaxSAT solving. The difference between the445

numbers of the failed benchmarks indicates that the soft constraints generated446

randomly slightly affect MaxSAT solving. When ESampler+QS determined447

that the derivation procedure can generate a large number of satisfying assign-448

ments, ESampler+QS performed better than QuickSampler on almost all449

the benchmarks. While ESampler+QS determined that our derivation proce-450

dure was not able to generate a large number of satisfying assignments, ESam-451

pler+QS was comparable to QuickSampler. Specifically, ESampler+QS452

was faster than QuickSampler on 227 benchmarks. It was 1.66× faster on av-453

erage and more than 5× faster on 41 benchmarks, while it was 1.2 times slower454

on 16 benchmarks.455

10-2

10-1

100

101

102

103

104

105

106

10-2 10-1 100 101 102 103 104 105 106

E p
t(m

s)

Spt (ms)

Figure 3: ESampler+QS vs. STS

5.2. Comparison of ESampler+QS and STS456

Figure 3 shows the scatter plot comparing the average execution time per457

satisfying assignment between ESampler+QS and STS on all the 364 formu-458

las. Recall that timeout occurred along the top or right border, the red color459

15

Table 2: Comparison of STS and ESampler+QS

B
en

ch
m
ark

#
V
a
rs

#
C
ls

S
t (k

s)
S
n

S
p
t (m

s)
E

t (k
s)

E
n

E
d
n

E
p
t (m

s)
S
p
t

E
p
t

s27
n
ew

15
7

17
4
3

0.00
48

0
.85

0
.00

48
42

0.5
4

1.57

b
lasted

case.54
2
03

725
1.45

9
61

,782
1.5

1
0
.20

664,5
48

0
0
.30

5.06

20.sk
1
51

15,4
75

60,994
3.60

1
51

,948
23.6

9
1
.67

1,520
,152

∼
1,520k

1.10
21

s359
32

7
4

17,8
49

44,425
3.49

80
0

4
,361

0
.63

1,27
0,247

∼
1,270k

0.50
8
,757

b
lasted

case.126
3
02

1
,129

0.92
1
,00

0,00
6

0
.92

0
.34

1,02
2,991

0
0.33

2.78

b
lasted

case.40
2
45

650
1.53

1
,00

0,00
0

1
.53

0
.41

1,14
9,017

0
0.36

4.30

s349
3
2

1
98

469
0.31

1
,00

0,02
8

0
.31

0
.07

1,14
2,757

∼
1,088k

0.06
4.94

56.sk
6
38

4,8
42

1
7,828

1.99
1
,00

0,04
8

1
.99

1
.18

1,09
3,080

∼
1,092k

1.08
1.84

b
lasted

case.107
6
18

1
,661

3.60
5
58

,950
6.4

4
0
.84

1,14
9,017

0
0.73

8.82

s832
a
15

7
6
93

2
,017

1.55
1
,00

0,01
8

1
.55

0
.52

1,00
0,093

4
0.52

2.97

s420
n
ew

7
4

3
12

770
0.72

1
,00

0,00
1

0
.72

0
.08

1,04
8,576

∼
1,043k

0.07
9.68

b
lasted

case.124
1
33

386
0.32

1
,00

0,01
3

0
.32

0
.22

1,00
8,715

0
0.22

1.47

s359
32

15
7

17,9
18

44,709
3.50

80
0

4
,380

1
.34

1,27
0,247

∼
1,270k

1.06
4
,140

b
lasted

case.207
8
24

2
,128

3.60
2
76

,250
13.0

3
0
.98

1,14
9,017

0
0.86

15

b
lasted

case.120
2
84

851
1.59

1
,00

0,00
0

1
.59

0
.40

1,04
4,731

0
0.38

4.13

63.sk
3
64

7,2
42

2
4,379

3.60
1
48

,050
24.3

1
0
.30

1,20
0,120

∼
1,200k

0.25
97

s420
7
4

3
12

770
0.74

1
,00

0,03
8

0
.74

0
.10

1,36
6,784

∼
1,363k

0.07
9.93

indicates that Derivable is set true by Algorithm 2, and points below the diag-460

onal line indicate that ESampler+QS performs better than QuickSampler,461

and vice versa.462

Table 2 reports the performance of STS and ESampler+QS for the same463

16

representative subset of the benchmarks. Column St (resp. Spt) gives the total464

execution time in thousand seconds (ks) (resp. execution time per satisfying465

assignment in milliseconds (ms)) of STS. Column Sn shows the total number466

of satisfying assignments generated by STS for each Boolean formula. The last467

column provides the ratio of execution time per satisfying assignment between468

STS and ESampler+QS, depicting the speedup of ESampler+QS.469

Summary. STS failed on 1 benchmark because the underlying SAT solver470

Minisat failed to solve the Boolean formula, while ESampler+QS failed on 11471

benchmarks. In general, ESampler+QS performed better than STS on most472

benchmarks. It was faster on 316 benchmarks (5.47× faster on average and473

more than 10× faster on 93 benchmarks), while it was 1.2 times slower on only474

45 benchmarks.475

10-2

10-1

100

101

102

103

104

105

106

10-2 10-1 100 101 102 103 104 105 106

E p
t(m

s)

Upt (ms)

Figure 4: ESampler+QS vs. UniGen3

5.3. Comparison of ESampler+QS and UniGen3476

Figure 4 shows the scatter plot comparing the average execution time per477

satisfying assignment between ESampler+QS and UniGen3 on all the 364478

formulas. Almost all the points are below the diagonal line, indicating ESam-479

pler+QS significantly outperforms UniGen3.480

Table 3 reports the performance of UniGen3 and ESampler+QS on the481

same representative subset of benchmarks. Column Ut (resp. Upt) gives the482

total execution time in thousand seconds (ks) (resp. execution time per sat-483

isfying assignment in milliseconds (ms)) of UniGen3. Column Un shows the484

total number of satisfying assignments generated by UniGen3 for each Boolean485

formula. The last column provides the ratio of execution time per satisfying486

assignment between UniGen3 and ESampler+QS, depicting the speedup of487

ESampler+QS.488

17

Table 3: Comparison of UniGen3 and ESampler+QS

B
en

ch
m
ark

#
V
a
rs

#
C
ls

U
t (k

s)
U
n

U
p
t (m

s)
E

t (k
s)

E
n

E
d
n

E
p
t (m

s)
U

p
t

E
p
t

s27
n
ew

15
7

17
4
3

0.00
4
8

2
0.83

0.0
0

4
8

42
0.54

38.57

b
lasted

case.54
2
03

725
3.60

1
58,1

68
2
2.76

0.2
0

664,54
8

0
0
.30

75.87

20.sk
1
51

15,4
75

60,994
3.60

70
,312

51.2
1

1.6
7

1,520
,152

∼
1,520

k
1.10

46.56

s359
32

7
4

17,8
49

44,425
3.60

0
-

0.6
3

1,270
,247

∼
1,270

k
0.50

-

b
lasted

case.126
3
02

1
,129

3.60
77

,185
46.6

7
0.3

4
1,022

,991
0

0.33
141.4

b
lasted

case.40
2
45

650
3.60

50
,380

71.4
6

0.4
1

1,149
,017

0
0.36

198.5

s349
3
2

1
98

469
3.60

1
44,2

79
2
4.95

0.0
7

1,142
,757

∼
1,088

k
0.06

415.8

56.sk
6
38

4,8
42

1
7,828

3.60
1
04,1

49
3
4.57

1.1
8

1,093
,080

∼
1,092

k
1.08

32.01

b
lasted

case.107
6
18

1
,661

3.60
0

-
0.8

4
1,149

,017
0

0.73
-

s832
a
15

7
6
93

2
,017

3.60
1
32,7

05
2
7.13

0.5
2

1,000
,093

4
0.52

52.17

s420
n
ew

7
4

3
12

770
3.60

98
,934

36.3
9

0.0
8

1,048
,576

∼
1,043

k
0.07

519.9

b
lasted

case.124
1
33

386
3.60

89
,376

40.2
8

0.2
2

1,008
,715

0
0.22

182.1

s359
32

15
7

17,9
18

44,709
3.60

0
-

1.3
4

1,270
,247

∼
1,270

k
1.06

-

b
lasted

case.207
8
24

2
,128

3.60
15

,026
2
39

.92
0.9

8
1,149

,017
0

0.86
2
79

b
lasted

case.120
2
84

851
3.60

51
,799

6
9.5

0.4
0

1,044
,731

0
0.38

182.9

63.sk
3
64

7,2
42

2
4,379

3.60
48

,004
75.0

1
0.3

0
1,200

,120
∼
1,200

k
0.25

3
00

s420
7
4

3
12

770
3.60

95
,260

37.7
9

0.1
0

1,366
,784

∼
1,363

k
0.07

539.9

Summary. UniGen3 failed on 40 benchmarks. Recall that ESampler+QS489

failed on 11 benchmarks. No matter whether or not ESampler+QS determined490

that the derivation procedure was able to generate a large number of satisfying491

assignments, ESampler+QS performed significantly better than UniGen3 on492

almost all the benchmarks. Specifically, ESampler+QS was faster than Uni-493

18

Gen3 on 348 benchmarks. It was 69.8× faster on average and more than 100×494

faster on 194 benchmarks, while it was 1.2 times slower on only 7 benchmarks.

10-2 10-1 100 101 102 103 104 105 106
10-2

10-1

100

101

102

103

104

105

106

Eu
pt
(m

s)

Upt(ms)

Figure 5: ESampler+UG vs. UniGen3

495

5.4. Comparison of ESampler+UG and UniGen3496

Figure 5 shows the scatter plot comparing the average execution time per497

satisfying assignment between UniGen3 and ESampler+UG on all the 364498

formulas. Almost all the red points are below the diagonal line while almost all499

the blue points are close to the diagonal line. indicating that ESampler+UG500

significantly outperformsUniGen3 on the benchmarks on which Derivable was501

set to true by Algorithm 2, while it was still comparable on other benchmarks.502

Table 4 reports the performance of UniGen3 and ESampler+UG on the503

same representative subset of benchmarks. Column Eu
t gives the total execution504

time in thousand seconds (ks) of ESampler+UG, while column Eu
pt gives the505

execution time per satisfying assignment in milliseconds (ms) . Column Eu
n506

shows the total number of satisfying assignments generated by ESampler+UG507

for each Boolean formula, while column Eu
dn gives the numbers of satisfying508

assignments generated by the derivation procedure. The last column provides509

the ratio of execution time per satisfying assignment between UniGen3 and510

ESampler+UG, depicting the speedup of our algorithm.511

Summary. UniGen3 failed on 40 benchmarks while ESampler+UG failed512

on 25 benchmarks. Specifically, ESampler+UG was faster than UniGen3 on513

207 benchmarks. It was 2.19× faster on average and more than 10× faster on514

85 benchmarks, while there were only 12 benchmarks on which it was at least515

1.2× slower. The results demonstrate the generic nature of Algorithm 1 for516

deriving satisfying assignments from a seed using UniGen3 as the underlying517

seed generator in our tool ESampler.518

19

Table 4: Comparison of UniGen3 and ESampler+UG

B
en

ch
m
ark

#
V
a
rs

#
C
ls

U
t (k

s)
U
n

U
p
t (m

s)
E

ut
(k
s)

E
un

E
ud
n

E
up
t (m

s)
U

p
t

E
up
t

s27
n
ew

15
7

17
4
3

0.00
4
8

0.0
2

0
.00

48
42

0.0
1

2.20

b
lasted

case.54
2
03

725
3.60

1
58,1

68
2
2.8

3
.60

1
97,693

0
18.2

1
1.25

20.sk
1
51

15,4
75

60,994
3.60

70
,312

5
1.2

3
.87

1
,320,00

0
∼
1,3

19k
2.9

3
1
7.46

s359
32

7
4

17,8
49

44,425
3.60

0
-

4
.03

60,0
05

∼
5
9k

67.1
6

-

b
lasted

case.126
3
02

1
,129

3.60
77

,185
4
6.7

3
.60

74,1
11

0
56.0

1
0.96

b
lasted

case.40
2
45

650
3.60

50
,380

71.4
6

3
.60

46,3
27

0
48.5

9
0.92

s349
3
2

1
98

469
3.60

1
44,2

79
2
4.95

2
.42

1
,001,81

1
∼
974

k
2.41

1
0.35

56.sk
6
38

4,8
42

1
7,828

3.60
1
04,1

49
3
4.57

3
.82

1
,194,76

5
∼
1,1

94k
3.2

1
0.81

b
lasted

case.107
6
18

1
,661

3.60
0

-
3
.60

0
0

-
-

s832
a
15

7
6
93

2
,017

3.60
1
32,7

05
2
7.13

3
.60

1
30,075

3
33.4

0.98

s420
n
ew

7
4

3
12

770
3.60

9
893

4
36

.39
0
.26

1
,086,72

0
∼
1,0

83k
0.236

154
.47

b
lasted

case.124
1
33

386
3.60

89
,376

40.2
7

3
.60

94,0
80

0
38.2

7
1.05

s359
32

15
7

17,9
18

44,709
3.60

5
5

65
45

5
3
.66

2
30,032

∼
229

k
15

.92
4
109

b
lasted

case.207
8
24

2
,128

3.61
15

,026
239

.9
3
.61

15,0
54

0
239

.9
1.00

b
lasted

case.120
2
84

851
3.60

51
,799

6
9.5

3
.60

64,7
45

0
55.6

1.25

63.sk
3
64

7,2
42

2
4,379

3.60
48

,004
75.0

2
3
.70

3
,960,00

0
∼
3,9

59k
0.934

8
0.39

s420
7
4

3
12

770
3.60

95
,260

37.7
9

0
.32

1
,096,96

0
∼
1,0

93k
0.292

129
.95

5.5. Execution Time vs Number of Satisfying Assignments519

To see the relation between the execution time and the number of satisfying520

assignments, we evaluate ESampler on four randomly chosen benchmarks by521

varying the execution time and counting the number of satisfying assignments.522

Figure 6(a) and Figure 6(b) respectively show the plots of results on the523

20

0 500 1000 1500 2000 2500 3000 3500
Time(s)

0.0x106

0.2x106

0.4x106

0.6x106

0.8x106

1.0x106

#A
ss
ig
nm

en
ts

s9234a_7_4
sort.sk_8_52
reverse.sk_11_258
blasted_case41

(a) ESampler+QS

0 500 1000 1500 2000 2500 3000 3500 4000
Times(s)

0.0x106

0.2x106

0.4x106

0.6x106

0.8x106

#A
ss

ig
nm

en
ts

s9234a_7_4
sort.sk_8_52
reverse.sk_11_258
blasted_case41

(b) ESampler+UG

Figure 6: Time vs. #assignments of ESampler

four randomly chosen benchmarks using ESampler+QS and ESampler+UG,524

where the x-axis is the execution time (in seconds) and the y-axis is number525

of satisfying assignments (#assignments). We can observe that the number526

of satisfying assignments for each benchmark is almost linear in the execution527

time. These results demonstrate the effectiveness of our derivation procedure.528

5.6. Testing Uniformity529

Similar to QuickSampler, ESampler does not provide a guarantee of530

uniformity. Remark that UniGen3 provides a theoretical guarantee of unifor-531

mity based on hashing, at the cost of sampling efficiency. We empirically show532

21

that the uniformity of the solutions can be controlled by adjusting the maximal533

number of solutions per seed, i.e., the parameter MaxNumPerSeed. We run both534

ESampler+QS and ESampler+UG on a randomly selected benchmark (i.e.,535

27.sk 3 32) on which our derivation procedure works, where duplicated solutions536

are recorded to measure uniformity and the mutation phase of QuickSampler537

is disabled to be more precise.538

10 20 30 40 50
Solution Count

0

500

1000

1500

2000

O
cc

ur
an

ce
s

(a) ESampler+QS, MaxNumPerSeed=0

300 325 350 375 400 425 450
Solution Count

0

100

200

300

400

500

600

700

O
cc

ur
an

ce
s

(b) ESampler+QS, MaxNumPerSeed=10

500 1000 1500 2000 2500 3000
Solution Count

0

50

100

150

200

O
cc

ur
an

ce
s

(c) ESampler+QS, MaxNumPerSeed=100

10 15 20 25 30 35 40 45
Solution Count

0

500

1000

1500

2000

2500

O
cc

ur
an

ce

(d) ESampler+UG, MaxNumPerSeed=0

10 20 30 40
Solution Count

0

500

1000

1500

2000

2500

O
cc

ur
an

ce

(e) ESampler+UG, MaxNumPerSeed=10

25 50 75 100 125 150 175
Solution Count

0

200

400

600

800

1000

O
cc

ur
an

ce

(f) ESampler+UG, MaxNumPerSeed=100

Figure 7: Distributions of solutions

Figure 7 depicts the distributions of solutions ESampler+QS and ESam-539

pler+UG when MaxNumPerSeed is set to 0, 10 and 100, where (x, y) denotes540

that there are y unique solutions each of which occurs x times. We can observe541

that the smaller the parameter MaxNumPerSeed is, the closer the distribution542

22

is to the normal distribution, meaning that the solutions generated by our tool543

are actually close to uniform when MaxNumPerSeed is chosen properly.544

6. Application to Bayesian Inference545

In this section, to further show the effectiveness and efficiency of ESampler546

in real-world applications, we apply ESampler to Bayesian inference, namely,547

computing the posterior probability of a query given evidence in a Bayesian548

network [52, 53].549

Bayesian inference. A Bayesian network is a tuple (V,E, T), where V =550

{X1, · · · , Xn} is a finite set of nodes each of which represents a discrete random551

variable, E ⊆ V ×V is a finite set of edges each of which represents dependence552

between two random variables. (V,E) forms a directed acyclic graph (DAG),553

and T is a finite set of conditional probability tables (CPTs) each of which554

encodes the conditional probability distribution of a random variable. Given a555

random variable X, value a, and a partial assignment v of some other random556

variables, the Bayesian inference is to compute the posterior probability Pr(X =557

a | v).558

Bayesian inference is a well-known #P-complete problem [54]. Sang et559

al. [31] proposed an encoding from the Bayesian inference problem to the model-560

counting problem of Boolean formulas (#SAT), which we leverage to solve561

Bayesian inference.562

Bayesian inference to #SAT. Given a Bayesian network (V,E, T) and a563

Bayesian inference query Pr(X = a | v), Sang et al. [31] use chance variables to564

encode entries in CPTs and state variables to encode the values of the nodes,565

based on which two Boolean formulas Φ1 ∧ Φ2 ∧ Φ3 and Φ1 ∧ Φ2 can be con-566

structed, where Φ1 encodes the Bayesian network (V,E, T), Φ2 encodes the567

partial assignment v and Φ3 encodes X = a. With satisfying assignments of568

Φ1 ∧ Φ2 ∧ Φ3 and Φ1 ∧ Φ2, one can calculate (or approximate) the posterior569

probability in the Bayesian network. Suppose n1 (resp. n2) denotes the number570

of the discovered satisfying assignments of Φ1 ∧ Φ2 ∧ Φ3 (resp. Φ1 ∧ Φ2), the571

approximate posterior probability is n1

n2
. Furthermore, if n1 is exact, then n1

n2
572

gives an upper-bound of the posterior probability; on the other hand, if n2 is573

exact, then n1

n2
gives a lower-bound.574

Performance of Bayesian inference. To evaluate ESampler for Bayesian575

inference, we use the QuickSampler sampler as the seed generation engine576

to solve Bayesian inference of the plan recognition problems provided by [31].577

There are 11 plan recognition problems given as Bayesian networks on which we578

compute the posterior probability for each random variable, resulting in 11,326579

Bayesian inference queries. For each query, we sample satisfying assignments580

until the 10 recently generated assignments already exist. Solved by ESampler581

in 65,122 seconds, the calculated probabilities of variables are shown in Table 5,582

where the columns (Var ID) show the indices of the random variables, and the583

columns (Prob) show the calculated posterior probabilities of the random vari-584

able. For the sake of brevity, we show first hundred variables in problem tire-3,585

23

Table 5: Calculated probabilities of variables in problem tire-3.

Var ID Prob Var Prob Var ID Prob Var ID Prob
5 0.9391 43 0.0335 64 0.4827 83 0.0000
12 0.0000 44 0.2407 66 0.0000 85 0.5720
19 0.0000 45 0.0000 67 0.0000 86 0.0000
20 0.6307 50 0.6962 68 0.2452 87 0.0000
21 0.0000 51 0.0000 69 0.0000 88 0.9085
25 0.8177 52 0.5173 71 0.0000 89 0.0000
26 0.4827 53 0.9645 72 0.2470 90 0.2159
27 0.9997 54 0.2358 74 0.1287 91 0.5366
31 0.9997 55 0.7548 75 0.5021 92 0.1862
33 0.5172 56 0.1253 76 0.2502 94 0.2452
35 0.0000 58 0.9837 77 0.0000 95 0.9342
36 0.0000 59 0.9977 78 0.0499 96 0.9903
38 0.5028 61 0.2670 79 0.1691 98 0.2981
40 0.3693 62 0.0000 80 0.0253 · · · · · ·
41 0.4972 63 0.0000 82 0.0000

and the results are omitted if the posterior probability is 1. We notice that586

the reported probabilities in Table 5 are approximation of the exact posterior587

probabilities when the sampler fails to generate all the possible satisfying assign-588

ments of a Bayesian inference query. Remark that computing exact posterior589

probabilities are computational hard (#P-completeness).590

Comparison of samplers on Bayesian inference. To compare the efficiency591

of ESampler (i.e., ESampler+QuickSampler), STS, QuickSampler and592

UniGen3 in solving Bayesian inference problems, we test them on 11 randomly593

chosen formulas from the plan recognition problems, each of which is aimed to594

compute 100,000 satisfying assignments within 10 minutes. The other settings595

are the same as in Section 5.596

The results are reported in Table 6, where the last three columns provide the597

ratio of the execution time per satisfying assignment for QuickSampler, STS,598

UniGen3 to ESampler respectively, measuring the speedup of ESampler. All599

the samplers are able to generate satisfying assignments except that UniGen3600

failed on 4 benchmarks (log-1, log-4, log-5 and tire-1). For the sake of brevity, we601

only report the number of satisfying assignments generated by ESampler. We602

can observe that ESampler outperforms the other three samples on Bayesian603

inference. On average, ESampler is 13.8, 18.7 and 556.3 times faster than604

QuickSampler, STS and UniGen3, respectively.605

7. Conclusion606

We have proposed a novel approach to derive a large set of satisfying as-607

signments from a seed assignment without invoking computationally expensive608

SAT solving. Our approach is orthogonal to the previous techniques and could609

be integrated into the existing SAT samplers. We have also developed a new610

tool ESampler, based on the recent samplers QuickSampler and UniGen3611

24

Table 6: Comparison of ESampler, QuickSampler, STS and UniGen3 on benchmarks de-
rived from Bayesian inferences of plan recognition problems

Benchmark #Vars #Cls Et(s) En Edn Epn(ms)
Qpt

Ept

Spt

Ept

Upt

Ept

4step 165 418 17.8 66,935 0 0.27 1.01 1.78 36.47

5step 177 475 3.01 80,033 ∼80k 0.04 7.69 11.52 273.8

log-1 939 3,785 10.4 160,016 160k 0.07 16.31 72.99 -

log-2 1,377 24,777 53.9 110,011 110k 0.49 12.67 50.01 251.8

log-3 1,413 29,487 166 170,017 170k 0.98 4.78 24.14 511.3

log-4 2,303 20,963 18.2 120,012 120k 0.15 32.74 423.8 -

log-5 2,701 29,534 958 10,001 100k 95.81 4,355 2.99 -

tire-1 352 1,038 9.4 130,347 ∼130k 0.07 6.81 17.01 -

tire-2 550 2,001 15.8 160,016 160k 0.10 6.63 10.72 731.7

tire-3 578 2,004 13.7 140,014 140k 0.10 11.31 16.65 3,496

tire-4 812 3,222 20.1 120,012 120k 0.17 5.92 13.64 5,009

as the seed generator. The extensive experiments on publicly available bench-612

marks and application on Bayesian inference confirmed the effectiveness and613

efficiency of our approach.614

In future, we plan to further improve the performance of the tool ESampler615

and extend our derivation approach to SMT formulas, as well as their practical616

applications.617

Acknowledgement618

This work is supported by the National Natural Science Foundation of China619

(NSFC) under Grants No. 62072309 and No. 61872340, an oversea grant from620

the State Key Laboratory of Novel Software Technology, Nanjing University621

(KFKT2018A16), and Birkbeck BEI School Project (EFFECT).622

References623

[1] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfi-624

ability, Vol. 185 of Frontiers in Artificial Intelligence and Applications, IOS625

Press, 2009.626

[2] S. Abed, A. A. Abdelaal, M. H. Alshayeji, I. Ahmad, SAT-based and CP-627

based declarative approaches for top-rank-k closed frequent itemset mining,628

Int. J. Intell. Syst. 36 (1) (2021) 112–151.629

[3] F. Bacchus, S. Dalmao, T. Pitassi, Algorithms and complexity results for630

#SAT and bayesian inference, Proceedings of the 44th Symposium on631

Foundations of Computer Science, 11-14 October 2003, Cambridge, MA,632

USA, 2003, pp. 340–351.633

25

[4] D. Roth, On the hardness of approximate reasoning, Artificial Intelligence634

82 (1-2) (1996) 273–302.635

[5] L. G. Valiant, The complexity of enumeration and reliability problems,636

SIAM Journal on Computing 8 (3) (1979) 410–421.637

[6] D. Angluin, On counting problems and the polynomial-time hierarchy, The-638

oretical Computer Science 12 (1980) 161–173.639

[7] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, G. Shurek,640

Constraint-based random stimuli generation for hardware verification, AI641

magazine 28 (3) (2007) 13–13.642

[8] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, G. Shurek,643

Constraint-based random stimuli generation for hardware verification, Pro-644

ceedings of the 21st National Conference on Artificial Intelligence and the645

18th Innovative Applications of Artificial Intelligence Conference, 2006, pp.646

1720–1727.647

[9] J. Yuan, A. Aziz, C. Pixley, K. Albin, Simplifying boolean constraint648

solving for random simulation-vector generation, IEEE Transactions on649

Computer-Aided Design of Integrated Circuits and Systems 23 (3) (2004)650

412–420.651

[10] E. Guralnik, M. Aharoni, A. J. Birnbaum, A. Koyfman, Simulation-based652

verification of floating-point division, IEEE Transations on Computers653

60 (2) (2011) 176–188.654

[11] K. Vorobyov, P. Krishnan, Combining static analysis and constraint solving655

for automatic test case generation, Proceedings of the 5th IEEE Interna-656

tional Conference on Software Testing, Verification and Validation, 2012,657

pp. 915–920.658

[12] R. Naveh, A. Metodi, Beyond feasibility: CP usage in constrained-659

random functional hardware verification, Proceedings of the 19th Interna-660

tional Conference on Principles and Practice of Constraint Programming,661

Springer, 2013, pp. 823–831.662

[13] Y. Zhao, J. Bian, S. Deng, Z. Kong, Random stimulus generation with self-663

tuning, Proceedings of the 13th International Conference on Computers664

Supported Cooperative Work in Design, IEEE, 2009, pp. 62–65.665

[14] Y. Zhang, M. Zhang, G. Pu, F. Song, J. Li, Towards backbone computing:666

A greedy-whitening based approach, AI Communications 31 (3) (2018)667

267–280.668

[15] Y. Zhang, J. Li, M. Zhang, G. Pu, F. Song, Optimizing backbone filter-669

ing, in: Proceedings of the 11th International Symposium on Theoretical670

Aspects of Software Engineering, 2017, pp. 1–8.671

26

[16] Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, J. Sun, Attack as defense:672

characterizing adversarial examples using robustness, in: Proceedings of673

the 30th ACM SIGSOFT International Symposium on Software Testing674

and Analysis, 2021, pp. 42–55.675

[17] G. Chen, Z. Zhao, F. Song, S. Chen, L. Fan, Y. Liu, SEC4SR: A security676

analysis platform for speaker recognition, CoRR abs/2109.01766.677

[18] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized678

neural networks, Proceedings of the Annual Conference on Neural Infor-679

mation Processing Systems, 2016, pp. 4107–4115.680

[19] Y. Zhang, Z. Zhao, G. Chen, F. Song, T. Chen, BDD4BNN: A BDD-based681

quantitative analysis framework for binarized neural networks, in: Proceed-682

ings of the 33rd International Conference on Computer Aided Verification,683

2021, pp. 175–200.684

[20] S. Korneev, N. Narodytska, L. Pulina, A. Tacchella, N. Bjørner, M. Sa-685

giv, Constrained image generation using binarized neural networks with686

decision procedures, Proceedings of the 21st International Conference on687

Theory and Applications of Satisfiability Testing, 2018, pp. 438–449.688

[21] N. Narodytska, Formal analysis of deep binarized neural networks, Proceed-689

ings of the 27th International Joint Conference on Artificial Intelligence,690

2018, pp. 5692–5696.691

[22] S. A. Cook, The complexity of theorem-proving procedures, Proceedings692

of the 3rd Annual ACM Symposium on Theory of Computing, 1971, pp.693

151–158.694

[23] J. P. M. Silva, K. A. Sakallah, Grasp-a new search algorithm for satisfia-695

bility, The Best of ICCAD, Springer, 2003, pp. 73–89.696

[24] J. P. M. Silva, K. A. Sakallah, Grasp: A search algorithm for propositional697

satisfiability, IEEE Transactions on Computers 48 (5) (1999) 506–521.698

[25] R. J. B. Jr., R. C. Schrag, Using CSP look-back techniques to solve real-699

world SAT instances, in: Proceedings of the Fourteenth National Confer-700

ence on Artificial Intelligence and Ninth Innovative Applications of Artifi-701

cial Intelligence Conference, 1997, pp. 203–208.702

[26] M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to cryptographic703

problems, Proceedings of the 12th International Conference on Theory and704

Applications of Satisfiability Testing, 2009, pp. 244–257.705

[27] N. Kitchen, A. Kuehlmann, Stimulus generation for constrained random706

simulation, Proceedings of the 2007 International Conference on Computer-707

Aided Design, 2007, pp. 258–265.708

27

[28] R. Dutra, K. Laeufer, J. Bachrach, K. Sen, Efficient sampling of SAT so-709

lutions for testing, Proceedings of the 40th International Conference on710

Software Engineering, 2018, pp. 549–559.711

[29] M. Soos, S. Gocht, K. S. Meel, Tinted, detached, and lazy CNF-XOR712

solving and its applications to counting and sampling, Proceedings of the713

32nd International Conference on Computer Aided Verification, 2020, pp.714

463–484.715

[30] S. Chakraborty, K. S. Meel, M. Y. Vardi, Balancing scalability and uni-716

formity in SAT witness generator, Proceedings of the 51st Annual Design717

Automation Conference, 2014, pp. 60:1–60:6.718

[31] T. Sang, P. Beame, H. A. Kautz, Performing bayesian inference by weighted719

model counting, in: Proceedings, The Twentieth National Conference on720

Artificial Intelligence and the Seventeenth Innovative Applications of Arti-721

ficial Intelligence Conference, 2005, pp. 475–482.722

[32] S. Ermon, C. P. Gomes, B. Selman, Uniform solution sampling using a con-723

straint solver as an oracle, Proceedings of the Twenty-Eighth Conference724

on Uncertainty in Artificial Intelligence, 2012, pp. 255–264.725

[33] K. S. Meel, Constrained counting and sampling: Bridging the gap between726

theory and practice, CoRR abs/1806.02239.727

[34] N. Kitchen, Markov chain monte carlo stimulus generation for constrained728

random simulation, Ph.D. thesis, University of California, Berkeley, USA729

(2010).730

[35] W. Wei, B. Selman, A new approach to model counting, Proceedings of the731

8th International Conference on Theory and Applications of Satisfiability732

Testing, 2005, pp. 324–339.733

[36] J. H. Kukula, T. R. Shiple, Building circuits from relations, Proceedings of734

the 12th International Conference on Computer Aided Verification, 2000,735

pp. 113–123.736

[37] W. Wei, J. Erenrich, B. Selman, Towards efficient sampling: Exploiting737

random walk strategies, Proceedings of the 19th National Conference on738

Artificial Intelligence, 16th Conference on Innovative Applications of Arti-739

ficial Intelligence, 2004, pp. 670–676.740

[38] M. Sipser, A complexity theoretic approach to randomness, Proceedings741

of the 15th Annual ACM Symposium on Theory of Computing, 1983, pp.742

330–335.743

[39] M. Bellare, O. Goldreich, E. Petrank, Uniform generation of np-witnesses744

using an np-oracle, Inf. Comput. 163 (2) (2000) 510–526.745

28

[40] C. P. Gomes, A. Sabharwal, B. Selman, Near-uniform sampling of com-746

binatorial spaces using XOR constraints, Proceedings of the 2th Annual747

Conference on Neural Information Processing Systems, 2006, pp. 481–488.748

[41] S. Chakraborty, K. S. Meel, M. Y. Vardi, A scalable and nearly uniform749

generator of SAT witnesses, Proceedings of the 25th International Confer-750

ence on Computer Aided Verification, 2013, pp. 608–623.751

[42] S. Ermon, C. P. Gomes, A. Sabharwal, B. Selman, Embed and project:752

Discrete sampling with universal hashing, Proceedings of the 27th Annual753

Conference on Neural Information Processing Systems, 2013, pp. 2085–754

2093.755

[43] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, M. Y. Vardi, On756

parallel scalable uniform SAT witness generation, Proceedings of the 21st757

International Conference on Tools and Algorithms for the Construction and758

Analysis of Systems, Held as Part of the European Joint Conferences on759

Theory and Practice of Software, Springer, 2015, pp. 304–319.760

[44] N. Bjørner, A. Phan, νz - maximal satisfaction with Z3, Proceedings of761

the 6th International Symposium on Symbolic Computation in Software762

Science, 2014, pp. 1–9.763

[45] N. Sörensson, N. Eén, MiniSat: A SAT solver with conflict-clause mini-764

mization, Solver Description.765

[46] D. Achlioptas, Z. S. Hammoudeh, P. Theodoropoulos, Fast sampling of per-766

fectly uniform satisfying assignments, Proceedings of the 21st International767

Conference on Theory and Applications of Satisfiability Testing, Springer,768

2018, pp. 135–147.769

[47] Y. Xu, F. Song, T. Chen, Esampler: Efficient sampling of satisfying assign-770

ments for boolean formulas, in: International Symposium on Dependable771

Software Engineering: Theories, Tools, and Applications, Springer, 2021,772

pp. 279–298.773

[48] A. Ivrii, S. Malik, K. S. Meel, M. Y. Vardi, On computing minimal inde-774

pendent support and its applications to sampling and counting, Constraints775

21 (1) (2016) 41–58.776

[49] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.777

[50] DIMACS, Clique and coloring problems graph format, http://archive.778

dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex Ac-779

cessed September 16, 2021 (1993).780

[51] L. M. de Moura, N. Bjørner, Z3: an efficient SMT solver, Proceedings of781

the 14th International Conference on Tools and Algorithms for the Con-782

struction and Analysis of Systems, 2008, pp. 337–340.783

29

http://archive.dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex
http://archive.dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex
http://archive.dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex

[52] F. Y. Bois, Bayesian inference, Computational toxicology (2013) 597–636.784

[53] D. Heckerman, A tutorial on learning with bayesian networks, in: Learning785

in Graphical Models, 1998, pp. 301–354.786

[54] D. Roth, On the hardness of approximate reasoning, Artificial Intelligence787

82 (1-2) (1996) 273–302.788

789

790

791

Yongjie Xu is a M.S. student in ShanghaiTech Uni-792

versity, supervised by Prof. Fu Song. He received793

the B.S. degree in Computer Science from Shang-794

haiTech University in 2019. His research interests795

are in SAT solving, program analysis and AI secu-796

rity.797

798

799

800

801

Fu Song received the B.S. degree from Ningbo Uni-802

versity, Ningbo, China, in 2006, the M.S. degree from803

East China Normal University, Shanghai, China, in804

2009, and the Ph.D. degree in computer science from805

University Paris-Diderot, Paris, France, in 2013. From806

2013 to 2016, he was a Lecturer and Associate Re-807

search Professor at East China Normal University.808

From August 2016 to July 2021, he is an Assistant Pro-809

fessor with ShanghaiTech University, Shanghai, China.810

Since July 2021, he is an Associate Professor with811

ShanghaiTech University. His research interests in-812

clude formal methods and computer/AI security.813

814

815

Taolue Chen received the B.S. and M.S. degrees816

from the Nanjing University, China, both in Com-817

puter Science. He was a junior researcher at the Cen-818

trum Wiskunde & Informatica (CWI) and acquired819

the Ph.D. degree from the Vrije Universiteit Ams-820

terdam, The Netherlands. He is currently a lecturer821

at the Department of Computer Science and Informa-822

tion Systems, Birkbeck, University of London, United823

Kingdom. His research interests include formal veri-824

fication and synthesis, program analysis, software se-825

curity, software engineering and machine learning.826

30

	Introduction
	Preliminaries
	Derivation Procedure
	Motivating Example
	Derivation Algorithm

	ESampler
	Implementation and Evaluation
	Comparison of ESampler+QS and QuickSampler
	Comparison of ESampler+QS and STS
	Comparison of ESampler+QS and UniGen3
	Comparison of ESampler+UG and UniGen3
	Execution Time vs Number of Satisfying Assignments
	Testing Uniformity

	Application to Bayesian Inference
	Conclusion

