
Introduction
Specification

Design Rationale
Security and Performances

Conclusion

GIFT: A Small Present
Towards Reaching the Limit of Lightweight Encryption

Subhadeep Banik1,2 Sumit Kumar Pandey1

Thomas Peyrin1 Yu Sasaki3

Siang Meng Sim1 Yosuke Todo3

1. Nanyang Technological University, Singapore

2. École Polytechnique Fédérale de Lausanne, Switzerland

3. NTT Secure Platform Laboratories, Japan

CHES2017

1 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

2 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

3 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

10 Years Ago...

A decade ago, a lightweight block cipher, PRESENT, was presented
at CHES2007.

31-round SPN block cipher with 64-bit block size.
Very simple design of Sbox layer and bit permutation
(cost 0GE in hardware).

In 2012, selected as ISO standards, ISO/IEC 29192.

4 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Block Cipher PRESENT

Its resistance against differential cryptanalysis (DC) comes from its
Sbox which has differential branching number 3.

Differential branching number x (BNx): Total Hamming weight of
any nonzero input and output differences is at least x .

Figure: Hamming wt2 Example. Figure: Hamming wt3 Example.

5 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Block Cipher PRESENT

However, BN3 Sboxes are costly in general.
PRESENT Sbox (BN3) costs 21.33GE, while
SKINNY Sbox (BN2) costs 13.33GE.
This difference is multiplied in round based implementation.

Also, it is weaker against linear cryptanalysis (LC).

6 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Now...

In CHES2017, we present a new lightweight block cipher,
improving over PRESENT, we called it — GIFT.

By carefully crafting the bit permutation in conjunction with the
Sbox properties, we can remove the constraint of BN3.

Advantages of GIFT compared to PRESENT:

smaller area thanks to smaller Sbox and also lesser subkey
additions,

better resistance against LC thanks to good choice of Sbox
and bit permutation,

lesser rounds and higher throughput,

simpler and faster key schedule.

7 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

8 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

Block Cipher GIFT

There are 2 versions of GIFT:

GIFT-64, 28-round with 64-bit block size,

GIFT-128, 40-round with 128-bit block size.

Both versions have 128-bit key size.

9 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

Round Function

Each round of GIFT consists of 3 steps:

SubCells, PermBits and AddRoundKey.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS

Denote rightmost bit as LSB b0 and {b4i+j} as bit j .
E.g. b1, b5, b9, . . . are bit 1.

10 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

SubCells

Apply 16 4-bit Sboxes, GS , in parallel to every nibble of the state.

Table: GIFT Sbox GS

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS

11 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

PermBits

Pure bit permutation without any XOR gate.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS

Map bit j to bit j .

12 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

AddRoundKey

Add 32-bit round key RK to the state,
RK = U‖V = u15...u0‖v15...v0.

U and V are XORed to bit 1 and bit 0 respectively.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS

13 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

AddRoundKey

Add a single bit ‘1’ is to the most significant bit, and a 6-bit round
constant C = c5 c4 c3 c2 c1 c0 is XORed to bit 3 of the first 6
nibbles.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS

14 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

15 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

Round Key

The 128-bit key is split into 8 16-bit words.

K = k7‖k6‖ . . . ‖k1‖k0, where ki is 16-bit words.

k1 and k0 are extracted as the round key RK = U‖V .

Key state is updated after key extraction.

where � i is an i bits right rotation within a 16-bit word.

16 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Round Function
Key Schedule and Round Constants

Round Constants

Round constants are generated using a 6-bit affine LFSR with 1
XNOR gate (same as SKINNY’s).

Initialised to zero, and updated before using as round constants.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

17 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

18 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

PRESENT Bit Permutation

To understand why BN2 Sboxes do not work for PRESENT, we have
to look into the PRESENT bit permutation.

PRESENT bit permutation can be partitioned into 4 independent
16-bit permutations.

S15

S15

S14

S14

S13

S13

S12

S12

S11

S11

S10

S10

S9

S9

S8

S8

S7

S7

S6

S6

S5

S5

S4

S4

S3

S3

S2

S2

S1

S1

S0

S0

19 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

Group Mapping

S15

S15

S14

S14

S13

S13

S12

S12

S11

S11

S10

S10

S9

S9

S8

S8

S7

S7

S6

S6

S5

S5

S4

S4

S3

S3

S2

S2

S1

S1

S0

S0

A group mapping sends the 16 output bits of the Quotient group to the
input of the Remainder group.

Q0 = {S0,S1,S2,S3} → R0 = {S0,S4,S8,S12}.
Q1 = {S4,S5,S6,S7} → R1 = {S1,S5,S9,S13}.
Q2 = {S8,S9,S10,S11} → R2 = {S2,S6,S10,S14}.
Q3 = {S12,S13,S14,S15} → R3 = {S3,S7,S11,S15}.

The group mappings are identical.
20 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

PRESENT Group Mapping

Q0 = {S0, S1,S2, S3} → R0 = {S0, S4,S8,S12}.

Table: PRESENT group mapping.
H

HHH
HHQ0
R0

S0 S4 S8 S12

S0 (0, 0) (1, 0) (2, 0) (3, 0)

S1 (0, 1) (1, 1) (2, 1) (3, 1)

S2 (0, 2) (1, 2) (2, 2) (3, 2)

S3 (0, 3) (1, 3) (2, 3) (3, 3)
(i , j) means output bit i goes to input bit j

0

0

1

1

2

2

3

3

4

16

5

17

6

18

7

19

8

32

9

33

10

34

11

35

12

48

13

49

14

50

15

51

S3

S12

S2

S8

S1

S4

S0

S0

E.g. The b1 is bit 1 of S0, it is mapped to bit 0 of S4, b16. Hence
P(1) = 16.

21 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

1− 1 bit DDT

1− 1 bit DDT as a sub-table of the DDT containing Hamming
weight 1 differences.

Table: 1− 1 bit DDT Example

H
HHH

HH∆x
∆y

1000 0100 0010 0001

bit 3 = 1000 0 2 4 0

bit 2 = 0100 0 0 0 0

bit 1 = 0010 0 0 0 0

bit 0 = 0001 0 2 2 0

An Sbox has BN3 if and only if its 1− 1 bit DDT is all zeroes.

22 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

BN2 Sbox in PRESENT

HH
HHHHQ0

R0
S0 S4 S8 S12

S0 (0, 0) (1, 0) (2, 0) (3, 0)

S1 (0, 1) (1, 1) (2, 1) (3, 1)

S2 (0, 2) (1, 2) (2, 2) (3, 2)

S3 (0, 3) (1, 3) (2, 3) (3, 3)

HH
HHHH∆x

∆y
bit 3 bit 2 bit 1 bit 0

bit 3 0 2 4 0

bit 2 0 0 0 0

bit 1 0 0 0 0

bit 0 0 2 2 0

23 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

BN2 Sbox in PRESENT

5 active Sboxes in 5 rounds (BN2 Sbox) vs
10 active Sboxes in 5 rounds (original).

PRESENT bit permutation is not compatible with
Sboxes with BN2.

24 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

25 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

Bad Output must go to Good Input (BOGI)

Table: 1− 1 bit DDT Example

H
HHH

HH∆x
∆y

bit 3 bit 2 bit 1 bit 0

bit 3 0 2 4 0

bit 2 0 0 0 0

bit 1 0 0 0 0

bit 0 0 2 2 0

Let GI ,GO,BI ,BO denote the set of good inputs, good outputs,
bad inputs and bad outputs respectively.

GI = {bit 2,bit 1}, GO = {bit 3, bit 0},
BI = {bit 3,bit 0}, BO = {bit 2, bit 1}.

26 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

Core Idea

Observation:
If a single active bit transition occurs, the input
and output active bit must be in BI and BO.

Core idea:
We send the bit from BO to GI so that single
bit transition does not happen continuously.
Same for backward direction.

Both ∆I and ∆O have at least 2 active bits.

≥ 7 active Sboxes in 5 rounds!

27 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

BOGI Permutation

Let π1 : BO → GI and π2 : GO → (π1(BO))c .
BOGI permutation π is the union of π1 and π2.

GI = {bit 2,bit 1}, GO = {bit 3, bit 0},
BI = {bit 3,bit 0}, BO = {bit 2, bit 1}.

For this example, π can be an identity mapping.
I.e. π : bit j 7→ bit j .

Necessary and sufficient condition:
|BO| ≤ |GI | =⇒ |GI |+ |GO| ≥ 4

Denote |GI |+ |GO| the score of an Sbox.

This can be extended to the 1− 1 bit LAT and linear cryptanalysis,
which is the Achilles’ heel of PRESENT.

28 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

GIFT-64 Group Mapping

New bit permutation based on BOGI group mapping.

Table: GIFT-64 group mapping
HHH

HHHQ0
R0

GS0 GS4 GS8 GS12

GS0 (0, 0) (1, 1) (2, 2) (3, 3)

GS1 (1, 1) (2, 2) (3, 3) (0, 0)

GS2 (2, 2) (3, 3) (0, 0) (1, 1)

GS3 (3, 3) (0, 0) (1, 1) (2, 2)

0

0

1

1

2

2

3

3

4

16

5

17

6

18

7

19

8

32

9

33

10

34

11

35

12

48

13

49

14

50

15

51

GS3

GS12

GS2

GS8

GS1

GS4

GS0

GS0

Select an Sbox with score 4 and has BOGI identity permutation.

29 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

30 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

GIFT Sbox Criteria

GIFT Sbox criteria:

1 Significantly lighter than PRESENT Sbox.

2 At least score 4 for both differential and linear cases.

3 There exists BOGI identity permutation for both differential
and linear cases.

4 For ∆I ,∆O s.t. p(∆I → ∆O) > 2−2, wt(∆I) + wt(∆O) ≥ 4.

The last criterion ensures that when sub-optimal differential
transition occurs, there is at least a total of 4 active Sboxes in the
previous and next round.

31 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

GIFT Sbox

Our GIFT Sbox GS has:

cost of 16GE, lighter than PRESENT Sbox (21.33GE),

maximal differential probability of 2−1.415,

only 2 transitions with probability 2−1.415,
sum of Hamming weight of input and output differences is 4.

maximal absolute linear bias of 2−2,

algebraic degree 3,

no fixed point.

32 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Differential and Linear Cryptanalysis
Hardware and Software Performances

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

33 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Differential and Linear Cryptanalysis
Hardware and Software Performances

Differential and Linear Bounds

Table: Lower bounds for number of active Sboxes.

Cipher DC/LC
Rounds

1 2 3 4 5 6 7 8 9

GIFT-64
DC 1 2 3 5 7 10 13 16 18
LC 1 2 3 5 7 9 12 15 18

PRESENT
DC 1 2 4 6 10 12 14 16 18
LC 1 2 3 4 5 6 7 8 9

GIFT-128
DC 1 2 3 5 7 10 13 17 19
LC 1 2 3 5 7 9 12 14 18

GIFT matches the differential bound of PRESENT— an average of 2
active Sboxes per round.
In addition, GIFT achieved the same ratio for linear bound at
9-round where PRESENT could not.

34 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Differential and Linear Cryptanalysis
Hardware and Software Performances

Differential and Linear Probabilities

Table: 9-round Differential/Linear Probabilities

Cipher
No. of Differential Linear Est. Rounds
Rounds Probability Hull Effect Needed

GIFT-64 28 244.415 249.997 14

PRESENT 31 240.702 227.186 22

GIFT-128 40 246.99 245.99 27

35 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Differential and Linear Cryptanalysis
Hardware and Software Performances

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

36 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Differential and Linear Cryptanalysis
Hardware and Software Performances

Round-based Implementation

Comparison of performance metrics for round based
implementations synthesized with STM 90nm Standard cell library.

Cipher Area Delay Cycles TPMAX Power (µW) Energy
(GE) (ns) (MBit/s) (@10MHz) (pJ)

GIFT-64-128 1345 1.83 29 1249.0 74.8 216.9
SKINNY-64-128 1477 1.84 37 966.2 80.3 297.0
PRESENT 64/128 1560 1.63 33 1227.0 71.1 234.6
SIMON 64/128 1458 1.83 45 794.8 72.7 327.3

GIFT-128-128 1997 1.85 41 1729.7 116.6 478.1
SKINNY-128-128 2104 1.85 41 1729.7 132.5 543.3
SIMON 128/128 2064 1.87 69 1006.6 105.6 728.6
AES 128 7215 3.83 11 3038.2 730.3 803.3

37 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Differential and Linear Cryptanalysis
Hardware and Software Performances

Bit-slice Implementation

Bitslice software implementations of GIFT and other lightweight
block ciphers. Performances are given in cycles per byte, with
messages composed of 2000 64-bit blocks to obtain the results.

Cipher
Speed

Cipher
Speed

(c/B) (c/B)

GIFT-64-128 2.10 GIFT-128-128 2.57
SKINNY-64-128 2.88 SKINNY-128-128 4.70
SIMON-64-128 1.74 SIMON-128-128 2.55

38 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Table of Contents

1 Introduction

2 Specification
Round Function
Key Schedule and Round Constants

3 Design Rationale
Understanding PRESENT Bit Permutation
Designing the GIFT Permutation
Searching for the GIFT Sbox

4 Security and Performances
Differential and Linear Cryptanalysis
Hardware and Software Performances

5 Conclusion

39 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Conclusion

Propose new lightweight block cipher with 2 block sizes,
GIFT-64 and GIFT-128.

Improvement of PRESENT:

remove Sbox constraint of BN3,
use lighter Sbox than PRESENT Sbox,
prevent the LC weakness in PRESENT,
improve performances,
extend to 128-bit block size.

Strong against classical DC/LC and other cryptanalysis.

Better performances than existing lightweight block ciphers:
area, throughput, energy.

40 / 41

Introduction
Specification

Design Rationale
Security and Performances

Conclusion

Thank you. :)

41 / 41

	Introduction
	Specification
	Round Function
	Key Schedule and Round Constants

	Design Rationale
	Understanding PRESENT Bit Permutation
	Designing the GIFT Permutation
	Searching for the GIFT Sbox

	Security and Performances
	Differential and Linear Cryptanalysis
	Hardware and Software Performances

	Conclusion

