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Abstract. Many-objective optimization is a hot issue in the EMO (evolutionary 
multiobjective optimization) community. Since almost all solutions in the cur-
rent population are non-dominated with each other in many-objective EMO al-
gorithms, we may need a different fitness evaluation scheme from the case of 
two and three objectives. One difficulty in the design of many-objective EMO 
algorithms is that we cannot visually observe the behavior of multiobjective 
evolution in the objective space with four or more objectives. In this paper, we 
propose the use of many-objective test problems in a two- or three-dimensional 
decision space to visually examine the behavior of multiobjective evolution. 
Such a visual examination helps us to understand the characteristic features of 
EMO algorithms for many-objective optimization. Good understanding of ex-
isting EMO algorithms may facilitates their modification and the development 
of new EMO algorithms for many-objective optimization. 

Keywords: Evolutionary multiobjective optimization (EMO), many-objective 
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1   Introduction 

Evolutionary multiobjective optimization (EMO) has been a very active research area 
in the field of evolutionary computations [3], [5], [26]. A number of EMO algorithms 
have been proposed and successfully applied to various application tasks [1], [17], 
[18], [20]. Whereas well-known and frequently-used Pareto dominance-based EMO 
algorithms such as NSGA-II [6] and SPEA2 [30] work well on two-objective prob-
lems, their search ability is often severely degraded by the increase in the number of 
objectives as pointed out in the literature [4], [9]-[12], [19], [21], [23]-[25], [27], [32]. 

In the case of many-objective optimization, it is not easy to understand the beha-
vior of multiobjective evolution by EMO algorithms. This is because we cannot vi-
sually monitor how a population of solutions is evolved in a high-dimensional objec-
tive space. This contrasts to the case of two objectives where we can visually show all 
solutions at each generation in a two-dimensional objective space in order to examine 
the move of a population from the initial generation to the final one. Such a visual 
examination helps us to understand the characteristic features of EMO algorithms 
such as the convergence-diversity balance and the uniformity of solutions along the 



 

  

Pareto front. Better understanding of existing EMO algorithms may facilitates their 
modification and the development of new algorithms for many-objective optimization.  

In this paper, we propose the use of many-objective test problems in a two- or 
three-dimensional decision space to visually examine the behavior of multiobjective 
evolution. A class of our test problems can be written in the following generic form: 

Minimize ))(...,),(),(()( 21 xxxxf kfff= , (1) 

where x is a two- or three-dimensional decision vector (i.e., a point on a two- or 
three-dimensional decision space) and fi(x) is defined by the minimum distance from 
x to m points ai1, ai2, ..., aim in the decision space: 

)},(dis...,),,(dis),,(dismin{)( 21 imiiif axaxaxx = , i = 1, 2, ..., k. (2) 

In this formulation, dis(x, a) is a distance between the two points x and a. We assume 
the use of the Euclidean distance throughout this paper.  

Since m points (ai1, ai2, ..., aim) are used to define each objective fi(x), we need km 
points to define a k-objective test problem. As shown in this paper, we can generate 
various types of test problems in a two- or three-dimensional decision space using 
different combinations of those km points. For example, some test problems have 
small Pareto optimal regions while others have large ones. Some test problems have 
multiple equivalent Pareto optimal regions while others have disconnected ones. Two 
examples of our test problems are shown in Fig. 1. Fig. 1 (a) is a four-objective prob-
lem with a single rectangular Pareto optimal region (shaded area) while Fig. 1 (b) is a 
four-objective problem with four equivalent square Pareto optimal regions.  

In this paper, first we briefly review related studies on many-objective test prob-
lems in Section 2. Next we show some interesting experimental results on our test 
problems with m = 1 (i.e., with a single Pareto optimal region) in Section 3. Then we 
discuss our test problems with m > 1 (i.e., with multiple Pareto optimal regions) and 
explain their usefulness in Section 4. Finally we conclude this paper in Section 5. 
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(a) Four-objective problem (m = 1 and k = 4).      (b) Four-objective problem (m = 4 and k = 4). 

Fig. 1. Two examples of our test problems in Eq. (1) and Eq. (2). 



 

  

2   Related Studies on Many-Objective Test Problems 

One of the most frequently-used test problems in the EMO community is ZDT [29]. 
This is a set of six two-objective problems (ZDT1 to ZDT6). For many-objective 
optimization, seven test problems were proposed by Deb et al. [7], which are called 
DTLZ (DTLZ1 to DTLZ7). The main feature of the DTLZ problems is its scalability: 
The number of objectives can be arbitrarily specified. Two problems were added by 
Deb et al. [8]. Nine DTLZ problems have been frequently used in the literature [16]. 

Multiobjective 0/1 knapsack problems have also been used in many studies since 
Zitzler & Thiele [31]. They used nine problems with 250, 500 and 750 items and two, 
three and four objectives. In some studies [15], [16], [23], knapsack problems with 
more than four objectives have been generated to examine the performance of EMO 
algorithms for many-objective optimization. Other combinatorial optimization prob-
lems with many objectives (e.g., TSP [4], nurse scheduling [25], and job-shop sche-
duling [4]) have been also used as test problems in the literature [16]. 

The use of many-objective test problems in a two-dimensional decision space was 
proposed by Köppen & Yoshida [21]. They used a single regular polygon for prob-
lem definition. Thus their test problems can be viewed as a special case of our formu-
lation with m = 1 (i.e., with a single Pareto optimal region). Singh et al. [24] used the 
same test problems as [21] to examine the performance of many-objective EMO algo-
rithms. Some of our experiments in this paper have been motivated by [21] and [24]. 

On the other hand, Rudolph et al. [22] used two-objective test problems with mul-
tiple equivalent Pareto optimal subsets in a two-dimensional decision space. Each 
Pareto optimal subset was defined by two points as a line (or a curve) in the decision 
space. Thus their problems can be viewed as a special case of our formulation with 
k = 2 (i.e., our formulation is a general form of their test problems). 

3   Results on Test Problems with a Single Pareto Region (m = 1)  

As in Köppen & Yoshida [21], our test problems with a single Pareto optimal region 
(i.e., our test problems with m = 1) can be used to examine the distribution of solu-
tions in a decision space for many-objective optimization. In our computational expe-
riments, we used the following four EMO algorithms: NSGA-II [6], SPEA2 [30], 
MOEA/D [28] with the Tchebycheff (Chebyshev) function, and SMS-EMOA [27]. 
The first two are well-known and frequently-used Pareto dominance-based EMO 
algorithms. The other are recently-developed high-performance EMO algorithms with 
different fitness evaluation schemes: Scalarizing functions are used in MOEA/D for 
fitness evaluation while the hypervolume measure is used in SMS-EMOA. 

First we applied these EMO algorithms to a five-objective problem with five 
points at the vertices of a regular pentagon using the following setting:  

Population size: 200 (NSGA-II, SPEA2) and 210 (MOEA/D),  
Total number of examined solutions (Termination conditions): 100,000, 
Crossover probability: 1.0 (SBX with ηc = 15),  
Mutation probability: 0.5 (Polynomial mutation with ηm = 20),  



 

  

Reference point: Minimum value of each objective (MOEA/D)  
      Maximum value of each objective × 1.1 (SMS-EMOA). 

In MOEA/D, the population size is the same as the number of weight vectors. Due 
to the combinatorial nature of uniformly distributed weight vectors, the population 
size cannot be arbitrarily specified (for details, see [28]). We used the closest integer 
to 200 among the possible values as the population size. The neighborhood size in 
MOEA/D was specified as 10% of the population size. The same termination condi-
tion (i.e., the examination of 100,000 solutions) was used for all algorithms whereas 
the computation time of SMS-EMOA was much longer than the other algorithms. 

In Fig. 2, we show the final population in a single run of each algorithm. All points 
in the regular pentagon are Pareto optimal solutions. We can observe different cha-
racteristic features of each EMO algorithm in Fig. 2.  

We can also generate test problems for examining both the convergence and the 
distribution of solutions. We show an example of such a test problem in Fig. 3 where 
a four-objective test problem was defined by four vertices of a long and thin rectangle.  
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      (a) NSGA-II.           (b) SPEA2. 
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     (c) MOEA/D.        (d) SMS-EMOA. 

Fig. 2. The final population of a single run of each algorithm on the five-objective problem. 

In the same manner as in Fig. 2, we applied the EMO algorithms to the four-
objective test problem in Fig. 3. Each plot of Fig. 3 shows the final population in a 



 

  

single run of each algorithm. The Pareto optimal region is the inside of the slender 
rectangle. It looks difficult for NSGA-II and SPEA2 to converge all solutions into the 
Pareto optimal region (i.e., inside the slender rectangle including the boundary). On 
the other hand, good distributions of solutions were not obtained by MOEA/D. 
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      (a) NSGA-II.              (b) SPEA2. 
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      (c) MOEA/D.         (d) SMS-EMOA. 

Fig. 3. The final population of a single run of each algorithm on the four-objective problem. 

Our test problems can be also used to examine the effect of the location of a refer-
ence point on the hypervolume calculation. This effect has already been pointed out 
in some studies [2], [13], [14]. Explanations on this effect were, however, usually 
based on illustrations for two-objective problems such as Fig. 4. As shown in Fig. 4, 
the hypervolume contribution of the two extreme non-dominated solutions (i.e., non-
dominated solutions with the best value for either objective: Points A and B in Fig. 4) 
strongly depends on the location of the reference point. The two plots in Fig. 4 show 
the same non-dominated solution set with different reference points. When the refer-
ence point is far from the Pareto front as in Fig. 4 (b), the two extreme solutions A 
and B have large hypervolume contributions as indicated by the two large shaded 
rectangles. On the other hand, if the reference point is close to the Pareto front as in 
Fig. 4 (a), the two extreme solutions A and B have small hypervolume contributions 
as indicated by the two small shaded rectangles. It should be noted that the hypervo-



 

  

lume contribution of each of the other solutions is independent of the location of a 
reference point. Since the two extreme non-dominated solutions of a two-objective 
problem usually have the highest fitness values in most EMO algorithms, the location 
of a reference point has not a large effect on hypervolume-based EMO algorithms. 
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    (a) Reference point close to the Pareto front.     (b) Reference point far from the Pareto front. 

Fig. 4. Illustration of the hypervolume contribution of each non-dominated solution. 

On the contrarily, in the case of multiobjective problems with more than two ob-
jectives, the location of a reference point has a dominant effect as shown in our expe-
rimental results on a four-objective problem in Fig. 5 using the hypervolume-based 
EMO algorithm: SMS-EMOA [27]. In our computational experiments, we specified 
the reference point using the maximum value of each objective over all solutions in 
the current population as follows: “The i-th element of the reference point = The max-
imum value of the i-th objective ×  α ” where α is a pre-specified positive constant. 

We performed computational experiments using various specifications of the value 
of α in order to examine the effect of the location of the reference point on the beha-
vior of SMS-EMOA. In Fig. 5, we show the final population of a single run of SMS-
EMOA using each of the following specifications of α : 

(a) The maximum value of each objective × 1.1 (i.e., α = 1.1), 
(b) The maximum value of each objective × 1.0 (i.e., α = 1.0), 
(c) The maximum value of each objective × 10 (i.e., α = 10), 
(d) f1(x) and f2(x): The maximum value of each objective × 1.1 (i.e., α = 1.1), 
      f3(x) and f4(x): The maximum value of each objective × 10 (i.e., α = 10).  

When a reference point is too close to the Pareto front, good solution sets were not 
obtained as shown in Fig. 5 (b). Good result was obtained in Fig. 5 (a) with α = 1.1. 
By increasing the value of α (i.e., by increasing the distance of a reference point to 
the Pareto front), solutions moved to the lines between two points as shown in Fig. 5 
(c). In Fig. 5 (d), f3(x) and f4(x) are distances from a solution x to the right and bottom 
points, respectively (while f1(x) and f2(x) are distances from a solution x to the left 
and top points, respectively). Many solutions are along the line between the left and 
top points (i.e., a11 and a21) for which the smaller value of α was used in our compu-
tational experiment in Fig 5 (d). 
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          (a) Maximum value× 1.1.  (b) Maximum value× 1.0. 
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Fig. 5. Experimental results of SMS-EMOA with different specifications of a reference point. 

4   Results on Test Problems with Multiple Pareto Regions (m > 1) 

Using multiple polygons with the same shape, we can generate multiobjective prob-
lems with multiple equivalent Pareto optimal regions as shown in Fig. 1 (b) in Section 
1. In Fig. 6, we show experimental results of a single run of NSGA-II on the four-
objective problem in Fig. 1 (b). Fig. 6 shows a randomly generated initial population 
(a) and two intermediate populations (b) and (c). From the three plots in Fig. 6, we 
can see that every solution quickly moved to one of the four squares within the first 
10 generations. Then they continued to move in the four squares. We performed 
computational experiments many times. In some runs, solutions converged to one or 
two squares. In other runs, all the four squares had at least one solution even after 500 
generations. That is, final results were totally different in each run. 

We can also generate test problems with disconnected Pareto regions by using 
multiple polygons with different shapes. In Fig. 7, we show experimental results on 
such a test problem. Each plot of Fig. 7 is the final population in a single run of each 
algorithm on the four-objective test problem with two rectangles. Since the two rec-
tangles in Fig. 7 are not equivalent, solutions did not converge into one rectangle. 
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         (a) Initial population.                  (b) 10th generation.                      (c) 20th generation. 

Fig. 6. Experimental results of a single run of NSGA-II on the four-objective problem. 
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     (a) NSGA-II.              (b) SPEA2. 
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    (c) MOEA/D.        (d) SMS-EMOA. 

Fig. 7. Results of a single run on a four-objective problem with disconnected Pareto regions. 
 

Since the distribution in the decision space has not been taken into account in the 
design of almost all EMO algorithms, our intention is not to say which EMO algo-
rithm is the best using our test problems but to visually examine the behavior of each 
EMO algorithm for many-objective optimization problems. However, performance 
measures for solution sets in the decision space may be an interesting research issue. 



 

  

5   Conclusions 

We proposed the use of many-objective test problems in a two- or three-dimensional 
decision space in order to visually examine multiobjective evolution for many-
objective problems. Our test problems can be viewed as a generalized version of 
single polygon problems of Köppen & Yoshida [21] and multi-line (or multi-curve) 
problems of Rudolph et al. [22]. It is the main advantage of our test problems (and 
test problems in [21], [22]) that we can visually examine multiobjective evolution in 
the decision space. Whereas we generated test problems in a two-dimensional deci-
sion space for visual examination, it is also easy to generate test problems in a high-
dimensional space by specifying multiple points with the required dimensionality. 
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