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Abstract 

This study delves into the design of promising Type II anti-diabetic agents acting as inhibitors of Dipeptidyl Peptidase-

IV (DPP-IV). Given the significance of Type 2 Diabetes Mellitus (T2DM) as a prevalent metabolic disorder, the pursuit 

of improved therapies is essential. Leveraging 3D QSAR and pharmacophore modeling techniques, this research 

identifies critical structural elements pivotal to the biological efficacy of cyanopyrrolidine derivatives. The objective is 

to provide invaluable insights fostering the development of potent Type II anti-diabetic agents. 
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Introduction 

Type 2 Diabetes Mellitus (T2DM) is a widely recognized chronic 

metabolic ailment associated with heightened morbidity and mortality. 

Notable trials such as the Diabetes Control and Complications Trial, the 

Stockholm Diabetes Intervention Study, and the United Kingdom 

Prospective Diabetes Study have substantiated the advantages of 

enhanced glucose control in reducing complications. Underlying T2DM 

are three core anomalies: insulin resistance, diminished insulin secretion, 

and excessive hepatic glucose production. Current therapeutic options 

encounter limitations encompassing safety concerns, efficacy 

sustainability, and dosing inconveniences. Adverse effects commonly 

linked to existing agents encompass hypoglycemia, weight gain, and 

gastrointestinal intolerance. Dipeptidyl peptidase-4 (DPP-4) inhibitors, 

exemplified by saxagliptin, offer distinctive mechanisms with potential 

for improved safety, tolerability, and effectiveness. Approved agents such 

as sitagliptin (Januvia®) and vildagliptin (Galvus®) exemplify this class. 

 

Methods 
 

This article presents a comprehensive exploration involving 3D QSAR 

and pharmacophore modeling applied to substituted cyanopyrrolidines as 

potential Type II anti-diabetic agents and DPP-IV inhibitors. 

Cyanopyrrolidines, a chemically significant class, have shown diverse 

medical relevance. Various researchers have reported the anti-diabetic 

potential of cyanopyrrolidine derivatives. The utilization of 3D QSAR 

aims to unravel the intricate three-dimensional structural attributes pivotal 

for their anti-diabetic activity. The obtained 3D QSAR model 

(characterized by a squared correlation coefficient, r2, of 0.9945 and a 

cross-validated squared correlation coefficient, q2, of 0.9866) attests to 

its statistical significance and predictive proficiency. The insights derived 

from this model shed light on the structural motifs driving the inhibitory 

potency of cyanopyrrolidines. Additionally, pharmacophore modeling 

has been employed to discern the structural prerequisites crucial for the 

biological efficacy of these compounds. 

This study underscores the critical role of pharmacophore modeling and 

3D QSAR analysis in elucidating the intricate structural attributes that 

underpin the efficacy of substituted cyanopyrrolidines as Type II anti-

diabetic agents and DPP-IV inhibitors. The outcomes have potential 

implications for advancing the development of potent therapies in the 

realm of Type II diabetes treatment 

Type II Diabetes Mellitus (T2DM) is a persistent metabolic ailment 

characterized by three primary anomalies: insulin resistance, diminished 

insulin secretion, and excessive hepatic glucose production. However, 

existing treatments exhibit limitations in terms of safety, effectiveness, 

and tolerability. To address this, there is potential in Dipeptidyl Peptidase-

IV (DPP-IV) inhibitors like saxagliptin, which operate through distinct 

mechanisms. This study delves into the creation, correlation of structure 

and activity, and modeling of pharmacophores for cyanopyrrolidine 

derivatives, aiming to establish them as potential DPP-IV inhibitors. 

Saxagliptin belongs to the category of oral antidiabetic agents referred to 

as DPP-IV inhibitors or "incretin enhancers." The phase III trial initiative 

for saxagliptin encompassed investigations involving both standalone 

administration and concurrent use with other established antidiabetic 
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medications such as metformin, sulphonylureas, and thiazolidinediones. 

Among the evolving classes of antidiabetic drugs for type 2 diabetes, 

DPP-IV inhibitors, including vildagliptin (Galvus®) and sitagliptin 

(Januvia®), are already endorsed and employed clinically. The appeal of 

these agents lies in their ability to sustainably lower HbA1c levels—a 

pivotal marker of blood glucose management—via an orally 

administered, well-tolerated approach, distinguishing them from many 

conventional oral antidiabetic drug The invention primarily revolves 

around DPP4 inhibitors, particularly in the context of a novel formulation 

involving cyano-pyrrolidine-based compounds. Saxagliptin, represented 

as (1S,3S,5S)-2-((2S)-2-amino-2-(3-hydroxyadamantan-1-yl) acetyl)-2-

azabicyclo[3.1.0]hexane-3-carbonitrile, falls within the scope of cyano-

pyrrolidine-based DPP4 inhibitors. Its chemical structure is as follows: 

[Chemical formula representation]. 

 

Saxagliptin, in the form of its hydrochloride salt, is marketed under the 

trade name ONGLYZA® by Bristol-Myers Squibb for the treatment of 

type 2 diabetes mellitus. Each film-coated tablet of ONGLYZA for oral 

use contains either 2.79 mg saxagliptin hydrochloride (anhydrous) 

equivalent to 2.5 mg saxagliptin, or 5.58 mg saxagliptin hydrochloride 

(anhydrous) equivalent to 5 mg saxagliptin and the following inactive 

ingredients: lactose monohydrate, microcrystalline cellulose, 

croscarmellose sodium, and magnesium stearate. In addition, the film 

coating contains the following inactive ingredients: polyvinyl alcohol, 

polyethylene glycol, titanium dioxide, talc, and iron oxides. 

Thermodynamic Degradation of Saxagliptin,  

cyclic amidine ("AMD") and oxamidine ("OXAMD") respectively. The 

hydrolysis of amidine to diketopiperazine occurs in the presence of water. 

 
The intramolecular cyclization reaction leading to the formation of a 

cyclic amidine can occur in both the solid state and the solution state. 

Furthermore, this reaction can be exacerbated by utilizing processing 

conditions like wet granulation, roller compaction, or tabletting. 

 

This chemical instability necessitates the provision of conditions and 

excipients that either minimize or prevent this undesired reaction during 

the manufacturing of saxagliptin formulations. 

 

The solid-state structures of (lS,3S,5S)-2-[(2S)-2-amino-2-(3-hydroxy-l-

adamantyl) acetyl]-2-azabicyclo [3.1.0] hexane-3-carbonitrile, referred to 

as Saxagliptin, can exist in the form of stable amorphous and crystalline 

solids. Crystalline solid exhibits long-range order, while amorphous 

solids lack this order, resembling a frozen liquid with solid-like 

rheological properties. 

 

When a compound like saxagliptin is transformed into an amorphous state 

but not fully dispersed within a polymer matrix, leading to amorphous 

clusters embedded in the polymer, it is termed a "glass suspension." This 

results in a glass suspension with two distinct glass transition 

temperatures, arising from the amorphous API and the polymer. 

 

Discussion: 
 
The discussion section delves into the methodology, results, and 

implications of the study. It outlines the synthesis of saxagliptin, a DPP-

IV inhibitor, using 3D QSAR and pharmacophore modeling to uncover 

structural features crucial for Type II anti-diabetic activity. A predictive 

model was created using a training set of molecules, with statistical 

analysis evaluating its forecasting accuracy. The study highlights 

molecular attributes impacting the inhibitory potency of cyanopyrrolidine 

derivatives, as identified through pharmacophore modeling for interaction 

with the DPP-IV receptor. 

 

Amorphous solids generally exhibit greater solubility compared to 

crystalline forms due to their lack of long-range order and higher surface 

area. To enhance the solubility of a crystalline solid, transforming the 

active pharmaceutical ingredient into an amorphous form is 

advantageous. 

 

When a crystalline material is heated to its melting point (Tm), it 

transitions from a solid to a liquid state, with reversible behavior upon 

cooling. Rapid cooling below Tm can prevent crystallization, resulting in 

a supercooled liquid. If this supercooled liquid is further cooled to its glass 

transition temperature (Tg), molecules kinetically solidify, forming a 

glass. While molecules in a supercooled liquid have higher mobility than 

in a glassy state, the latter still exhibits some mobility. 

 

Due to this mobility, it is beneficial for the glass transition temperature of 

the active pharmaceutical ingredient to be significantly higher (e.g., at 

least 20°C, preferably 30°C, or even 40°C) than the actual storage 

conditions. 

 

Amorphous Saxagliptin, with a relatively low Tg of about 54°C, tends to 

recrystallize under storage conditions. Stabilizing the amorphous form by 

increasing its Tg is crucial to prevent recrystallization. This can be 

achieved by mixing the API with a second component, typically polymers 

that decrease the mobility of Saxagliptin molecules and thwart 

recrystallization. 

 

Two approaches can be used to prepare glass solutions via the spray 

drying technique: using Saxagliptin as a salt or as a free base in situ with 

an acid. This yields Saxagliptin dispersed within a polymer-formed 

matrix. 

The intramolecular cyclization process that leads to the formation of a 

cyclic amidine can take place in both the solid and solution states. 

Moreover, this reaction can be intensified by employing various 

processing conditions such as wet granulation, roller compaction, or 

tabletting. 

 

This chemical instability necessitates the establishment of conditions and 

additives that can either reduce or prevent this undesirable reaction during 

the manufacturing of saxagliptin formulations. 

 

The solid-state structures of Saxagliptin, specifically (lS,3S,5S)-2-[(2S)-

2-amino-2-(3-hydroxy-l-adamantyl) acetyl]-2-azabicyclo[3.1.0]hexane-

3-carbonitrile, can exist in the form of both stable amorphous and 

crystalline solids. Crystalline solids exhibit a well-ordered structure over 

long distances, whereas amorphous solids lack this order, resembling a 

frozen liquid with solid-like rheological properties. 

 

When a compound like saxagliptin transitions into an amorphous state but 

isn't fully dispersed within a polymer matrix, resulting in amorphous 

clusters embedded in the polymer, it is referred to as a "glass suspension." 

This leads to a glass suspension that possesses two distinct glass transition 

temperatures, stemming from the amorphous active pharmaceutical 

ingredient (API) and the polymer. 

The discussion section delves into the study's methodology, outcomes, 

and implications. It outlines the synthesis of saxagliptin, a DPP-IV 

inhibitor, using 3D QSAR and pharmacophore modeling to identify 

critical structural features for Type II anti-diabetic activity. A predictive 

model was developed using a training set of molecules, and its forecasting 

accuracy was assessed through statistical analysis. The research 

underscores the molecular attributes that influence the inhibitory potency 
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of cyanopyrrolidine derivatives, as identified by pharmacophore 

modeling for interaction with the DPP-IV receptor. 

Amorphous solids generally exhibit higher solubility compared to 

crystalline forms due to their lack of long-range order and greater surface 

area. Converting a crystalline solid into an amorphous form can enhance 

its solubility. 

 

When a crystalline substance is heated to its melting point (Tm), it 

transforms from a solid to a liquid state and can revert upon cooling. Swift 

cooling below Tm can prevent crystallization, yielding a supercooled 

liquid. If this supercooled liquid is further cooled to its glass transition 

temperature (Tg), molecules solidify kinetically, forming a glass. 

Although molecules in a supercooled liquid have higher mobility 

compared to those in a glassy state, the latter still maintains some level of 

mobility. 

 

Because of this inherent mobility, it's advantageous for the glass transition 

temperature of the active pharmaceutical ingredient to be substantially 

higher (e.g., at least 20°C, preferably 30°C, or even 40°C) than the actual 

storage conditions. 

 

Amorphous Saxagliptin, with a relatively low Tg of approximately 54°C, 

tends to revert to a crystalline state under storage conditions. Elevating 

the Tg of the amorphous form is essential to prevent such 

recrystallization. This can be achieved by blending the API with a 

secondary component, usually polymers that reduce the mobility of 

Saxagliptin molecules and hinder recrystallization. 

 

The spray drying technique can be employed in two ways to create glass 

solutions: utilizing Saxagliptin as a salt or as a free base in situ with an 

acid. This results in Saxagliptin being dispersed within a polymer-formed 

matrix. Critical Quality Attributes (CQAs) of the drug substance were 

defined, and strategies to control their impact on product quality were 

presented. Through risk assessments of the manufacturing process, 

Critical Process Parameters (CPP) and Key Process Parameters (KPP) 

were identified. Uni- and multivariate experiments were conducted to 

define the design space within the studied ranges. Acceptable ranges for 

all process parameters were established to ensure consistent attainment of 

defined CQAs. A five-batch campaign within the defined design space at 

the commercial manufacturing site validated the approach. In essence, the 

Quality by Design (QbD) approach to saxagliptin drug substance 

manufacturing yielded enhanced process knowledge and a manufacturing 

design space that consistently produces high-quality drug substance. The 

process is considered to be well under control. 

a) Process Description - Stage 1: 

The reaction involves (1S, 3S, 5S)-2-(2-azabicyclo-[3.1.0]hexane-3-

carboxamide methane sulfonic acid reacting with (2S)-2-

{[(benzyloxy)carbonyl]amino}-2-(3-hydroxyadamantan-1-yl)acetic acid 

in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 

hydrochloride, 1-hydroxybenzotriazole hydrate, and 

diisopropylethylamine. This yields Benzyl-N-[(1S)-2-[(1S,3S,5S)-3-

carbamoyl-2-azabicyclo [3.1.0]hexan-2-yl]-1-(3-hydroxyadamantan-1-

yl)-2-oxoethyl]carbamate (Stage-I). 

 

b) Stage 2: 

Benzyl-N-[(1S)-2-[(1S,3S,5S)-3-carbamoyl-2-azabicyclo[3.1.0]hexan-2-

yl]-1-(3-hydroxyadamantan-1-yl)-2-oxoethyl]carbamate from Stage-I 

reacts with trifluoroacetic anhydride in the presence of ethyl nicotinate, 

leading to the pure Benzyl-N-[(1S)-2-[(1S,3S,5S)-3-cyano-2-

azabicyclo[3.1.0]hexan-2-yl]-1-(3-hydroxyadamantan-1-yl)-2-

oxoethyl)carbamate (Stage-II). 

 

c) Stage 3: 

In this step, Benzyl-N-[(1S)-2-[(1S,3S,5S)-3-cyano-2-

azabicyclo[3.1.0]hexan-2-yl]-1-(3-hydroxyadamantan-1-yl)-2-

oxoethyl)carbamate (Stage-II) reacts with hydrogen gas in the presence 

of palladium catalyst and is treated with HCl, resulting in saxagliptin HCl 

dihydrate tech material. 

 

d) Stage 4: 

The product from Stage-III (Saxagliptin HCl dihydrate tech) is purified 

and dried to obtain pure saxagliptin HCl dihydrate product. 

 
 

 
 

3D QSAR and Pharmacophore Modeling of Substituted 

Cyanopyrrolidines as Potential Type II Anti-Diabetic Agents 

 

In the realm of medicinal chemistry, 3D QSAR and pharmacophore 

modeling have been employed to explore the promising potential of 

substituted cyanopyrrolidines as Type II anti-diabetic agents, particularly 

as Dipeptidyl Peptidase-IV (DPP-IV) inhibitors. These 

cyanopyrrolidines, possessing diverse medical functions, have garnered 

attention for their significant therapeutic applications. Several studies 

have been conducted to investigate their viability as Type II anti-diabetic 

agents. 

 

The application of 3D QSAR techniques aimed to unveil the intricate 

three-dimensional structural elements pivotal for eliciting Type II anti-

diabetic activity. The outcomes of the 3D QSAR analysis, characterized 

by a squared correlation coefficient (r²) of 0.9945 and a cross-validated 

squared correlation coefficient (q²) of 0.9866, underscore the statistical 

significance and exceptional predictive capacity of the model. These 

findings yield critical insights into the structural attributes governing the 

inhibitory potential of cyanopyrrolidines. 

 

Additionally, pharmacophore modeling was harnessed to discern the 

essential structural features contributing to the biological efficacy of 

cyanopyrrolidines. The knowledge garnered from this investigation holds 

paramount importance for shaping the development of potent Type II anti-

diabetic agents, particularly as DPP-IV inhibitors. 

 

Type II diabetes, a prominent metabolic disorder with global prevalence, 

underscores the significance of this research. This ailment stems from 
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impaired insulin effects on the liver and skeletal muscles, coupled with 

diminished insulin secretion. Glucagon-like peptide-1 (GLP-1) emerges 

as an insulinotropic hormone with anti-diabetic potential, marked by 

glucose-dependent insulin stimulation and glucagon secretion inhibition. 

However, the rapid inactivation of GLP-1 by Dipeptidyl Peptidase-IV 

(DPP-IV) curtails its clinical utility. To address this, orally active DPP-

IV inhibitors have been pursued to extend GLP-1 activity, resulting in 

reduced blood glucose levels. 

 

Previous studies involving GLP-1 analogs and DPP-IV inhibitors have 

shown promise in improving cardiovascular disease outcomes associated 

with diabetes. However, challenges such as side effects and potency 

limitations persist. This underscores the potential of computer-aided drug 

design, as exemplified by quantitative structure-activity relationship 

(QSAR) studies and pharmacophore modeling. These methodologies 

shed light on the structural attributes underpinning biological activity. 

 

In the current study, a series of cyanopyrrolidine derivatives were 

subjected to QSAR studies and pharmacophore modeling using VLife-

MDS 4.3 software. The computational analyses were executed on 

standard hardware and software configurations. The dataset, comprising 

compounds with reported DPP-IV inhibitory activities, was utilized for 

model development. 

 

Ligand preparation, molecular alignment, and descriptor generation were 

integral to the QSAR analysis. A meticulous selection process led to the 

identification of a robust QSAR model, marked by high correlation 

coefficients and statistically significant F and p values. Noteworthy 

descriptors like E-550, S-1165, and E-1204 emerged, revealing steric and 

electrostatic interactions crucial for anti-diabetic activity. Further, 

pharmacophore modeling delineated key interaction features between 

ligands and receptors, offering a blueprint for rational drug design. 

 

In conclusion, this study's integration of 3D QSAR and pharmacophore 

modeling techniques presents a holistic approach to designing effective 

Type II anti-diabetic agents. The insights gained from these analyses hold 

promise for guiding future drug development endeavors, yielding 

compounds with enhanced potency and improved pharmacological 

profiles. Ultimately, this work contributes to the pool of knowledge 

driving the discovery of novel DPP-IV inhibitors with potential 

therapeutic applications in diabetes management 
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