Verifying Infinitely Many Programs at Once

Loris D’Antoni*

University of Wisconsin
Madison WI 53706-1685, USA
loris@cs.wisc.edu

Abstract. In traditional program verification, the goal is to automati-
cally prove whether a program meets a given property. However, in some
cases one might need to prove that a (potentially infinite) set of programs
meets a given property. For example, to establish that no program in a set
of possible programs (i.e., a search space) is a valid solution to a synthesis
problem specification, e.g., a property ¢, one needs to verify that all
programs in the search space are incorrect, e.g., satisfy the property —¢.
The need to verify multiple programs at once also arises in other domains
such as reasoning about partially specified code (e.g., in the presence
of library functions) and self-modifying code. This paper discusses our
recent work in designing systems for verifying properties of infinitely
many programs at once.

1 Introduction

In traditional program verification, the goal is to automatically prove whether
a program meets a given property. However, in some cases we might need to
prove that a potentially infinite set of programs meets a given property.

For example, consider the problem of establishing that a program-synthesis
problem is unrealizable (i.e., has no solution in a given search space of pro-
grams) [B49]. To establish unrealizability, i.e., that no program in a set of
possible programs (i.e., a search space) is a valid solution to a synthesis problem
specification, e.g., a property ¢, one needs to verify that all programs in the
search space are incorrect, e.g., satisfy the property —.

Ezample 1 (Proving Unrealizability). Consider the synthesis problem syg,, where
the goal is to synthesize a function f that takes as input a state (z,y), and
returns a state where y = 10. Assume, however, that the search space of possible
programs in sy, is defined using the following grammar Giirst:

Start >y = F E—-z|E+1

* Work done in collaboration with Qinheping Hu, Jinwoo Kim, and Thomas W. Reps.
Supported by NSF under grants CCF-{1750965, 1918211, 2023222}; by a Facebook
Research Faculty Fellowship, by a Microsoft Research Faculty Fellowship. Any
opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors, and do not necessarily reflect the views of the sponsoring
entities.

2 Loris D’Antoni

Clearly y := 10 € L(Start); moreover, all programs in L(Start) are incorrect
on at least one input. For example, on the input z = 15 every program in the
grammar sets y to a value greater than 15. Consequently, syy,; is unrealizable.

While it is trivial for a human to establish that syg., is indeed unrealizable,
it is definitely not trivial to automatically verify that all the infinitely many
programs accepted by the grammar Gy are incorrect on at least one input.

Another setting where one may want to prove a property about multiple pro-
grams is when verifying partial programs—i.e., programs where some components
are unknown [10].

Ezample 2 (Symbolically Ezxecuting Partial Programs). Consider the following
program foo that outputs the difference between the number of elements of
an array for which applying a function f results in a positive number and the
number of elements for which the result of applying f is a negative number.

def foo(f, array):
count = 0
for i in range(len(array)):
if f(array[i]) > O:
count += 1
else:
count -= 1
return count

Now assume that we know this program will always receive a function £ drawn
from the following grammar:

F = .G
G — abs(H) | -abs(H)
H—x|H+H | H*H | H-H | abs(H)

We might be interested in symbolically executing the program foo to identify
feasible paths and understand if the program can be pruned or whether perhaps it
is equivalent to a simpler program. One can do so using an uninterpreted function
to model the behavior of £, but this approach would be imprecise because the
grammar under consideration is such that all the infinitely many programs in
L(F) either always return a positive number (i.e., £ is of the form Ax.abs(H))
or always return a negative number (i.e., f is of the form Ax.-abs(H)). Using
an uninterpreted function one would detect that the path that follows the line
numbers [1,2,3,4,5,3,6,7]—i.e., the path that reaches line 5 in the first iteration
of the loop and line 7 in the second iteration—is feasible, which is a false positive
since the witness for f for this path is a function that does not have a counterpart
in L(F). We would like to devise a verification technique that can symbolically
execute foo and avoid this source of imprecision.

Verifying Infinitely Many Programs at Once 3

The examples we showed illustrate how verification sometimes requires one
to reason about more than one program at once. In fact, our examples require
one to reason about infinitely many programs at once! Our work introduced
automated techniques to prove properties of infinite sets of programs. First, we
designed sound but incomplete automated verification techniques specialized
in proving unrealizability of synthesis problems [5419] (Section [2)). Second, we
designed unrealizability logic [8] a sound and relatively complete Hoare-style
logical framework for expressing proofs that infinitely many programs satisfy a
pre-post condition pair (Section . We conclude this extended abstract with
some reflections of the current limitations and directions of our work.

2 Proving Unrealizability of Synthesis Problems

Program synthesis refers to the task of discovering a program, within a given
search space, that satisfies a behavioral specification (e.g., a logical formula, or a
set of input-output examples) [2JTTI].

While tools are becoming better at synthesizing programs, one property that
remains difficult to reason about is the unrealizability of a synthesis problem, i.e.,
the non-existence of a solution that satisfies the behavioral specification within
the search space of possible programs. Unrealizability has many applications; for
example, one can show that a certain synthesized solution is optimal with respect
to some metric by proving that a better solution to the synthesis problem does
not exist—i.e., by proving that the synthesis problem where the search space
contains only programs of lower cost is unrealizable [6].

In our work, we built tools that can establish unrealizability for several types
of synthesis problems. Our tools NAY [5] and NOPE [4] can prove unrealizability
for syntax-guided synthesis (SYGUS) problems where the input grammar only
contains expressions, whereas our tool MESSY [9] can prove unrealizability for
semantics-guided synthesis (SEMGUS) problems.

NAY The key insight behind NAY is that one can, given a synthesis problem,
build a nondeterministic recursive program that always satisfies an assertion
if and only if the given problem is unrealizable. For example, for the problem
in Example [1} one would build a program like the following to check that no
program in the search space of the synthesis problem, when given an input that
sets x to 15, can produce an output where y is set to 10.

def genE(x, y):

if nondet(): # nondeterministic guard

return x # simulates E -> x

return genE(x, y) + 1 # simulates E -> E+1
def genStart(x, y):

return (x, genE(x, y)) # simulates Start -> y:=E
def main():

genStart (15, nondet()) # if we set x to 15

assert y != 10 # y is never 10

4 Loris D’Antoni

NoPE The key observation of NOPE is that for problems involving only expres-
sions, unrealizability can be checked by determining what set of values (i) a
certain set of programs can produce for a given input ¢, and making sure that
the output value we would like our program to produce for input ¢ does not lie
in that set 7(7). For example, for the problem in Example [I} one can define the
following equation that computes the possible values 1g¢q,+(15) of 2 and y, when
the input value of x is 15.

Nstart(15) = {(vz, vy) | vy € Np(15)}
ns(15) ={v|v=15V (v € ng(15) Av=v"+1)}

NOPE can solve this type of equations for a limited set of SYGUS problems using
fixed-point algorithms and can then check if 7g¢q,-+(15) contains a pair where the
second element is 10 (in this case it does not). NOPE can automatically prove
unrealizability for many problems involving linear integer (LIA) arithmetic and is
in fact sound and complete for conditional linear integer arithmetic (CLIA) when
the specification is given as a set of examples—i.e., NOPE provides a decision
procedure for this fragment of SYGUS (Theorem 6.2 in [4]). Some of the techniques
presented in NOPE have been extended to design specialized unrealizability-
checking algorithms for problems involving bit-vector arithmetic [7].

MESSY SEMGUS is a general framework for specifying synthesis problems, which
also allows one to define synthesis problems involving, for example, imperative
constructs. In SEMGUS, one can specify a synthesis problem by providing a
grammar of programs and constrained Horn clauses (CHCs) that describe the
semantics of programs in the grammar. For the problem in Example [the
following CHC can capture the semantics of the assignment y := e using two
relations: (7) The relation Semgiart(p, (z,9), (’,y")) holds when evaluating the
program p on state (x,y) results in the state (2’,y’), and (it) The relation
Sempg(e, (z,y),v) holds when evaluating expression p on state (x,y) results in
the value v.
Sempg(e, (z,y),v) 2'=x y' =v
Semsmﬁf(y =6, (l‘, y)’ (.13/, y/) (1)
Once a problem is modeled with CHCs (i.e., we have semantic rules for all the
possible constructs in the language), proving unrealizability can be phrased as
a proof search problem. In particular, if we add the following CHC to the set
of CHCs defining the semantics, the relation Solution(p) captures all programs
that on input x = 15 set the value of y to 10.

y=FK

SemStart(p7 (LC, y)7 (:I?/, y/) =15 y/ =10
Solution(p)

neE B
MESSY then uses a CHC solver to find whether there exists a program p such
that Solution(p) is provable using the given set of CHCs. If the answer is no, the
problem is unrealizable. MESSY is currently the only automated tool that can
(sometimes) prove unrealizability for problems involving imperative programs
and could, for example, prove that no imperative program that only uses bitwise
and and bitwise or can implement a bitwise zor.

Verifying Infinitely Many Programs at Once 5

3 Unrealizability Logic

The works we discussed in Section [3] provide automatic techniques to establish
that a problem is unrealizable; however, these techniques are all closed-boz,
meaning that they conceal the reasoning behind why a synthesis problem is
unrealizable. In particular, these techniques typically do not produce a proof
artifact that can be independently checked.

Our most recent work presents unrealizability logic [8], a Hoare-style proof
system for reasoning about the unrealizability of synthesis problems (In this
section, we include some excerpts from [§].). In addition to the main goal of
reasoning about unrealizability, unrealizability logic is designed with the following
goals in mind:

— to be a general logic, capable of dealing with various synthesis problems;
— to be amenable to machine reasoning, as to enable both automatic proof
checking and to open future opportunities for automation;
— to provide insight into why certain synthesis problems are unrealizable through
the process of completing a proof tree.
Via unrealizability logic, one is able to (i) reason about unrealizability in a
principled, explicit fashion, and (7) produce concrete proofs about unrealizability.

To prove whether the problem in Example [I] is unrealizble, one would use
unrealizability logic to derive the following triple, which states that if one starts
in a state where x = 15, executing any program in the set L(Start) will result in
a state where y is different than 10:

{x = 15[} L(Start) {y # 10}

Unrealizability logic shares much of the intuition behind Hoare logic and
its extension toward recursive programs. However, these concepts appearing in
Hoare logic alone are insufficient to model unrealizability, which motivated us to
develop the new ideas that form the basis of unrealizability logic.

Hoare logic is based on triples that overapproximate the set of states that
can be reached by a program s; i.e., the Hoare triple

{P}s{Q}

asserts that @ is an overapprozimation of all states that may be reached by
executing s, starting from a state in P. The intuition in Hoare logic is that one
will often attempt to prove a triple like {P} s {=X} for a set of bad states X,
which ensures that execution of s cannot reach X.

Unrealizability logic operates on the same overapproximation principle, but
differs in two main ways from standard Hoare logic. The differences are motivated
by how synthesis problems are typically defined, using two components: (i) a
search space S (i.e., a set of programs), and (ii) a (possibly infinite) set of related
input-output pairs {(i1,01), (i2,02), - -}.

To reason about sets of programs, in unrealizability logic, the central element
(i.e., the program s) is changed to a set of programs S. The unrealizability-logic
triple

1P} S Qb

6 Loris D’Antoni

thus asserts that @ is an overapproximation of all states that are reachable by
executing any possible combination of a pre-state p € P and a program s € S.

The second difference concerns input-output pairs: in unrealizability logic,
we wish to place the input states in the precondition, and overapproximate the
set of states reachable from the input states (through a set of programs) as
the postcondition. Unfortunately, the input-output pairs of a synthesis problem
cannot be tracked using standard pre- and postconditions; nor can they be tracked
using auxiliary variables, because of a complication arising from the fact that
unrealizability logic must reason about a set of programs—i.e., we want our
possible output states to be the results of executing the same program on the
given input (for all possible programs) and prevent output states where different
inputs are processed by different programs in the search space.

To keep the input-output relations in check, the predicates of unrealizability
logic talk instead about (potentially infinite) vector-states, which are sets of states
in which each individual state is associated with a unique index—e.g., variable x
of the state with index i is referred to as z;. We defer the reader to the original
unrealizability logic paper for these details [§].

The proof system for unrealizability logic has sound underpinnings, and
provides a way to build proofs of unrealizability similar to the way Hoare logic [3]
provides a way to build proofs that a given program cannot reach a set of bad
states. Furtheremore the systems is relatively complete in the same sense as
Hoare logic is.

4 Conclusions

This paper outlines recent advances in reasoning about infinite sets of programs
at once. We presented techniques for proving unrealizability of synthesis prob-
lems that draw inspiration from traditional program verification. However, such
techniques did not provide ways to produce proof artifact and to address this
limitation, we discussed unrealizability logic, the first proof system for overap-
proximating the execution of an infinite set of programs. This logic is also the
first approach that allows one to prove unrealizability for synthesis problems that
require infinitely many inputs to be proved unrealizable.

The name “unrealizability logic” is perhaps misleading as the logic allows one to
reason about many properties beyond unrealizability. The fact that unrealizability
logic is both sound and relatively complete means that this proof system can
prove (given powerful enough assertion languages) any property of a given set of
programs expressed as a grammar. For example, the problem given in Example [2]
of identifying whether a symbolic execution path is infeasible can be phrased as
proving whether an unrealizability triple holds.

It is thus natural to conclude with two open questions: (i) What applications
besides unrealizability can benefit from unrealizability logic as a proof system?
(i) Can unrealizability logic be automated in the same successful way Hoare
logic has been automated for traditional program verification?

Verifying Infinitely Many Programs at Once 7

References

10.

11.

. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations

from input-output examples. ACM SIGPLAN Notices 50(6), 229-239 (2015)
Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. ACM Sigplan Notices 46(1), 317-330 (2011)

Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of
the ACM 12(10), 576-580 (1969)

Hu, Q., Breck, J., Cyphert, J., D’Antoni, L., Reps, T.: Proving unrealizability
for syntax-guided synthesis. In: International Conference on Computer Aided
Verification. pp. 335-352. Springer (2019)

. Hu, Q., Cyphert, J., D’Antoni, L., Reps, T.: Exact and approximate methods

for proving unrealizability of syntax-guided synthesis problems. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 1128-1142 (2020)

Hu, Q., D’Antoni, L.: Syntax-guided synthesis with quantitative syntactic objectives.
In: International Conference on Computer Aided Verification. pp. 386-403. Springer
(2018)

Kamp, M., Philippsen, M.: Approximate bit dependency analysis to identify
program synthesis problems as infeasible. In: Henglein, F., Shoham, S., Vizel,
Y. (eds.) Verification, Model Checking, and Abstract Interpretation - 22nd In-
ternational Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19,
2021, Proceedings. Lecture Notes in Computer Science, vol. 12597, pp. 353-375.
Springer (2021). https://doi.org/10.1007/978-3-030-67067-2 16, https://doi.org/
10.1007/978-3-030-67067-2_16

Kim, J., D’Antoni, L., Reps, T.: Unrealizability logic. Proc. ACM Program. Lang.
7(POPL) (jan 2023). |https://doi.org/10.1145/3571216, https://doi.org/10.1145/
3571216

Kim, J., Hu, Q., D’Antoni, L., Reps, T.: Semantics-guided synthesis. Proceedings
of the ACM on Programming Languages 5(POPL), 1-32 (2021)

Mechtaev, S., Griggio, A., Cimatti, A., Roychoudhury, A.: Symbolic execution with
existential second-order constraints. In: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 389-399 (2018)

Phothilimthana, P.M., Elliott, A.S., Wang, A., Jangda, A., Hagedorn, B., Barthels,
H., Kaufman, S.J., Grover, V., Torlak, E., Bodik, R.: Swizzle inventor: data move-
ment synthesis for gpu kernels. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. pp. 65-78 (2019)

https://doi.org/10.1007/978-3-030-67067-2_16
https://doi.org/10.1007/978-3-030-67067-2_16
https://doi.org/10.1007/978-3-030-67067-2_16
https://doi.org/10.1145/3571216
https://doi.org/10.1145/3571216
https://doi.org/10.1145/3571216

	Verifying Infinitely Many Programs at Once

