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MCSP has connections to many sub-fields in TCS!
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To properly define the corresponding MCSP, 
one needs to handle “error probability” and 

“distance” between quantum objects.
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• Cryptography.

• Learning theory.

• Circuit lower bounds.

• Fine-grained complexity.

• Reductions:
✦ Among different objects.
✦ Self-reduction.
✦ Search-to-decision reduction.

• Pseudorandom state, wormhole’s 
volume, succinct state tomography…

Mostly quantize 
classical results!
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✦ This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem.
✦ The classical “fixing random string” trick does not work in quantum.

• The introduction of ancilla qubits.
✦ Different number of ancilla qubits gives different circuit complexity!
✦ When the number of ancilla qubits is super-linear, a direct classical simulation becomes 

super-polynomial!

• Various universal quantum gate sets.
✦ For some results we only know how to start with a certain gate set.
✦ Although we can use Solovay-Kitaev theorem to generalize other gate sets, this causes 

overhead in circuit complexity.
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SMCSP qOWFPRS

The volume of a 
wormhole ≈

Volume=Complexity
Conjecture 

[Susskind’16]
The complexity of 

“thermalfield 
double state”

SMCSP

CFT-SMCSP

Assuming a dictionary 
map in AdS/CFT is 

efficiently computable
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Minimum quantum 
circuits for quantum 

objects

• Formulate SMCSP and 
UMCSP.


• Search-to-decision and 
self reductions.


• Quantum-related 
applications (e.g., 
pseudorandom state, 
quantum gravity).

Quantum 
algorithms and 
reductions for 

(quantum) MCSPs

• Implications of quantum 
algorithms for 
(quantum) MCSPs.


• A quantum search-to-
decision reduction for 
SMCSP.
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• Is MQCSP, SMCSP, UMCSP in NP?

• It seems to be challenging to handle 

super-linear number of ancilla qubits.

Are there search-to-decision 
or self reduction for MQCSP?
• Due to the boolean structure, the 

straightforward idea doesn’t work.

Applications of the 
quantum-unique reductions?

Can we base the security of 
crypto primitives on quantum 

MCSPs?

Thanks for your attention 🙂

More connections of 
quantum MCSPs to other 

problems?


