Quantum Meets the Minimum Circuit Size Problem

ITCS 2022

Nai-Hui Chia IUB

<u>Chi-Ning Chou</u> Harvard

Jiayu Zhang Caltech

Ruizhe Zhang UT Austin

arXiv:2108.03171

Study quantum computation and complexity through the lens of meta complexity!

Study quantum computation and complexity through the lens of meta complexity!

The complexity of complexity!

Meta Complexity In the classical setting

Study the complexity of computational problems about complexity.

Study the complexity of computational problems about complexity.

Complexity	
Circuit Complexity	Μ

Meta Complexity Problem

Study the complexity of computational problems about complexity.

Complexity	
Circuit Complexity	M
Kolmogorov Complexity	Minimum Kolmo

Meta Complexity Problem

linimum Circuit Size Problem (MCSP)

ogorov Time-Bounded Complexity Problem (MKTP)

Study the complexity of computational problems about complexity.

	Complexity
M	Circuit Complexity
Minimum Kolmo	Kolmogorov Complexity
$\neg z y z$	

Meta Complexity Problem

linimum Circuit Size Problem (MCSP)

ogorov Time-Bounded Complexity Problem (MKTP)

• Input: the truth table of an n-bit function f and a size parameter s.

- Input: the truth table of an *n*-bit function f and a size parameter s.
- Output: "Yes" if there's a circuit of size at most s for f; otherwise "No".

- Input: the truth table of an *n*-bit function f and a size parameter s.
- Output: "Yes" if there's a circuit of size at most s for f; otherwise "No".
- Note that the input length is $O(2^n)$.

- Input: the truth table of an *n*-bit function f and a size parameter s.
- Output: "Yes" if there's a circuit of size at most s for f; otherwise "No".
- Note that the input length is $O(2^n)$.
- MCSP \in NP.

- Input: the truth table of an *n*-bit function f and a size parameter s.
- Output: "Yes" if there's a circuit of size at most s for f; otherwise "No".
- Note that the input length is $O(2^n)$.
- MCSP \in NP.

- Input: the truth table of an *n*-bit function f and a size parameter s.
- Output: "Yes" if there's a circuit of size at most s for f; otherwise "No".
- Note that the input length is $O(2^n)$.
- MCSP \in NP.

Witness: a circuit of size at most s

- Input: the truth table of an *n*-bit function f and a size parameter s.
- **Output:** "Yes" if there's a circuit of size at most s for f; otherwise "No".
- Note that the input length is $O(2^n)$.
- MCSP \in NP.

- Verification: evaluate the witness circuit on all inputs
- Take $O(2^n \cdot s) = poly(2^n)$ time

Witness: a circuit of size at most s

- Input: the truth table of an *n*-bit function f and a size parameter s.
- Output: "Yes" if there's a circuit of size at most s for f; otherwise "No".
- Note that the input length is $O(2^n)$.
- MCSP \in NP.

- **Verification:** evaluate the witness circuit on all inputs
- Take $O(2^n \cdot s) = poly(2^n)$ time

Witness: a circuit of size at most s

• But proving MCSP \in P or MCSP being NP-hard require new techniques!

- Input: the truth table of an *n*-bit function f and a size parameter s.
- Output: "Yes" if there's a circuit of size at most s for f; otherwise "No".
- Note that the input length is $O(2^n)$.
- MCSP \in NP.

- But proving MCSP \in P or MCSP being NP-hard require new techniques! Perebor conjecture: brute-force search is the best algorithm!?

- **Verification:** evaluate the witness circuit on all inputs
- Take $O(2^n \cdot s) = poly(2^n)$ time

Witness: a circuit of size at most s

Circuit Complexity

- [Razborov-Rudich'00]: MCSP \in P \Rightarrow natural property against P/poly \Rightarrow no PRG.
- [Kabanets-Cai'00]: MCSP ∈ P ⇒ new circuit lower bound.
- [Arunachalam et al.'20]: MCSP ∈ BQP ⇒ new circuit lower bound.

Circuit Complexity

- [Razborov-Rudich'00]: MCSP \in P \Rightarrow natural property against P/poly \Rightarrow no PRG.
- [Kabanets-Cai'00]: MCSP ∈ P ⇒ new circuit lower bound.
- [Arunachalam et al.'20]: MCSP ∈ BQP ⇒ new circuit lower bound.

Learning Theory

 [Carmosino et al.'16]: MCSP ∈ P ⇒ efficient PAC learning for P/poly.

Circuit Complexity

- [Razborov-Rudich'00]: MCSP ∈ P ⇒ natural property against P/poly⇒ no PRG.
- [Kabanets-Cai'00]: MCSP ∈ P ⇒ new circuit lower bound.
- [Arunachalam et al.'20]: MCSP ∈ BQP ⇒ new circuit lower bound.

Learning Theory

 [Carmosino et al.'16]: MCSP ∈ P ⇒ efficient PAC learning for P/poly.

Average-Case Complexity

[Hirahara'18]: an approximate version of MCSP
being NP-hard ⇒ average-case and worst-case
hardness in NP are the same, i.e., no Heuristica.

Circuit Complexity

- [Razborov-Rudich'00]: MCSP ∈ P ⇒ natural property against P/poly⇒ no PRG.
- [Kabanets-Cai'00]: MCSP ∈ P ⇒ new circuit lower bound.
- [Arunachalam et al.'20]: MCSP ∈ BQP ⇒ new circuit lower bound.

Learning Theory

 [Carmosino et al.'16]: MCSP ∈ P ⇒ efficient PAC learning for P/poly.

Average-Case Complexity

[Hirahara'18]: an approximate version of MCSP
being NP-hard ⇒ average-case and worst-case
hardness in NP are the same, i.e., no Heuristica.

Cryptography

- [Kabanets-Cai'00]: MCSP ∈ BPP ⇒ no one-way function.
- [Allender-Das'14]: SZK \leq MCSP.
- [Impagliazzo et al.'18]: iO \Rightarrow SAT \leq_R MCSP.

Circuit Complexity

- [Razborov-Rudich'00]: MCSP ∈ P ⇒ natural property against P/poly⇒ no PRG.
- [Kabanets-Cai'00]: MCSP ∈ P ⇒ new circuit lower bound.
- [Arunachalam et al.'20]: MCSP ∈ BQP ⇒ new circuit lower bound.

Learning Theory

 [Carmosino et al.'16]: MCSP ∈ P ⇒ efficient PAC learning for P/poly.

MCSP has connections to many sub-fields in TCS!

Average-Case Complexity

[Hirahara'18]: an approximate version of MCSP
being NP-hard ⇒ average-case and worst-case
hardness in NP are the same, i.e., no Heuristica.

Cryptography

- [Kabanets-Cai'00]: MCSP ∈ BPP ⇒ no one-way function.
- [Allender-Das'14]: SZK \leq MCSP.
- [Impagliazzo et al.'18]: iO \Rightarrow SAT \leq_R MCSP.

Quantum Meets MCSP

Roadmap

Roadmap

A Bird-Eye View on Our Results

A Bird-Eye View on Our Results

Special perties in the antum Setting

Roadmap

Summary 8 Future Direction

A Bird-Eye View on Our Results

Special perties in the antum Setting

Computational Problems in the Quantum World are Different!

Computational Problems in the Quantum World are Different!

A quantum circuit corresponds to a unitary transformation!

A quantum circuit corresponds to a unitary transformation!

• Three natural types of computation:

- Three natural types of computation:
 - Boolean function.

- Three natural types of computation:
 - Boolean function.
 - Quantum state. ◆

- Three natural types of computation:
 - Boolean function.
 - Quantum state. •
 - Unitary transformation.

A quantum circuit corresponds to a unitary transformation!

- Three natural types of computation:
 - **Boolean function.**
 - Quantum state. ◆
 - Unitary transformation.

To properly define the corresponding MCSP, one needs to handle "error probability" and "distance" between quantum objects.

Parameters: \bullet

• Parameters:

Input qubits

• Number of ancilla qubits: *t*

Ancilla qubits

• Parameters:

Input qubits

- Number of ancilla qubits: *t*
- + Completeness: α

Ancilla qubits

• Parameters:

Input qubits

- Number of ancilla qubits: *t*
- Completeness: α

Ancilla qubits

+ Soundsness: β

Minimum Quantum Circuit Size Problem (MQCSP) **Parameters:** \bullet $|x_2\rangle$ Input qubits • Number of ancilla qubits: t U_{C} Completeness: *a* Ancilla qubits $\begin{cases} |0\rangle \\ \vdots \end{cases}$ + Soundsness: β

- **Input:** The truth table of an n-bit boolean function f and a size parameter s. \bullet

Parameters: \bullet

Input qubits

- + Number of ancilla qubits: *t*
- Completeness: α

- + Soundsness: β
- **Input:** The truth table of an *n*-bit boolean function f and a size parameter s.
- **Goal:** Distinguish the following two cases.

Minimum Quantum Circuit Size Problem (MQCSP) Input qubits $\begin{cases} |x_1\rangle - \\ |x_2\rangle - \\ | \end{cases}$: **Parameters:** • Number of ancilla qubits: t U_{C} Ancilla qubits $\begin{cases} |0\rangle - - - - \\ |0\rangle - - - \\ \vdots \end{cases}$ + Completeness: α + Soundsness: β

- **Input:** The truth table of an *n*-bit boolean function f and a size parameter s.
- **Goal:** Distinguish the following two cases.

+ Yes: \exists circuit \mathscr{C} of size $\leq s$, s.t. $\forall x \in \{0,1\}^n$, $\|\langle (f(x) \mid \bigotimes I_{n+t-1})\mathscr{C} \mid x, 0^t \rangle \| \geq \alpha$.

Minimum Quantum Circuit Size Problem (MQCSP) Input qubits **Parameters:** • Number of ancilla qubits: t U_{C} Ancilla qubits $\begin{cases} |0\rangle - ---- \\ |0\rangle - ---- \\ \vdots \end{cases}$ Completeness: α + Soundsness: *B*

- **Goal:** Distinguish the following two cases. \bullet

Input: The truth table of an n-bit boolean function f and a size parameter s.

+ Yes: \exists circuit \mathscr{C} of size $\leq s$, s.t. $\forall x \in \{0,1\}^n$, $\|\langle (f(x) \mid \bigotimes I_{n+t-1})\mathscr{C} \mid x, 0^t \rangle \| \geq \alpha$. + No: \forall circuit \mathscr{C} of size $\leq s$, $\exists x \in \{0,1\}^n$ s.t. $\|\langle (f(x) \mid \bigotimes I_{n+t-1})\mathscr{C} \mid x, 0^t \rangle \| \leq \beta$.

Minimum Quantum Circuit Size Problem (MQCSP) Input qubits **Parameters:** • Number of ancilla qubits: t U_{C} Ancilla qubits $\begin{cases} |0\rangle - ---- \\ |0\rangle - ---- \\ \vdots \end{cases}$ Completeness: α + Soundsness: *B*

- **Goal:** Distinguish the following two cases. \bullet
 - + Yes: \exists circuit \mathscr{C} of size $\leq s$, s.t. $\forall x \in \{0,1\}^n$, $\|\langle (f(x) \mid \bigotimes I_{n+t-1})\mathscr{C} \mid x, 0^t \rangle \| \geq \alpha$.
 - + No: \forall circuit \mathscr{C} of size $\leq s$, $\exists x \in \{0,1\}^n$ s.t. $\|\langle (f(x) \mid \bigotimes I_{n+t-1})\mathscr{C} \mid x, 0^t \rangle \| \leq \beta$.

Input: The truth table of an n-bit boolean function f and a size parameter s.

Note that MQCSP is a promise problem!

• Upper bound: MQCSP \in QCMA.

• Upper bound: MQCSP \in QCMA.

Quantum verifier

Witness: the classical description of a quantum circuit

Upper bound: MQCSP \in QCMA.

Quantum verifier

reduction. Quantize a classical result by [llango-Loff-Oliveria'20].

Witness: the classical description of a quantum circuit

Upper bound: MQCSP \in QCMA.

Quantum verifier

- reduction. Quantize a classical result by [llango-Loff-Oliveria'20].
- **Condition lower bound:**

Witness: the classical description of a quantum circuit

Upper bound: MQCSP \in QCMA.

Quantum verifier

- \bullet reduction. Quantize a classical result by [llango-Loff-Oliveria'20].
- **Condition lower bound:**
 - \exists One-way function \Rightarrow MQCSP \notin BQP.

Witness: the classical description of a quantum circuit

Upper bound: MQCSP \in QCMA.

Quantum verifier

- \bullet reduction. Quantize a classical result by [llango-Loff-Oliveria'20].
- **Condition lower bound:**
 - \exists One-way function \Rightarrow MQCSP \notin BQP.
 - MQCSP is not easier than SZK.

Witness: the classical description of a quantum circuit

Upper bound: MQCSP \in QCMA.

Quantum verifier

- \bullet reduction. Quantize a classical result by [llango-Loff-Oliveria'20].
- **Condition lower bound:**

. . .

- \exists One-way function \Rightarrow MQCSP \notin BQP.
- MQCSP is not easier than SZK.

Witness: the classical description of a quantum circuit

Upper bound: MQCSP \in QCMA.

Quantum verifier

- reduction. Quantize a classical result by [llango-Loff-Oliveria'20].
- **Condition lower bound:**

. . .

- \exists One-way function \Rightarrow MQCSP \notin BQP.
- MQCSP is not easier than SZK.

Witness: the classical description of a quantum circuit

Unconditional lower bound: Multi-output MQCSP is NP-hard under randomized

Quantize classical results!

A Bird-Eye View on Our Results

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 5.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with colorBlueis a direct extension from its classicalanalog. A result with colorYellowrequires additional techniques. A result with colorRedunique in the quantum setting.

14

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 7.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with colorBlueis a direct extension from its classicalanalog. A result with colorYellowrequires additional techniques. A result with colorRedunique in the quantum setting.

• Cryptography.

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 7.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with colorBlueis a direct extension from its classicalanalog. A result with colorYellowrequires additional techniques. A result with colorRedunique in the quantum setting.

- Cryptography.
- Learning theory.

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 7.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color **Blue** is a direct extension from its classical analog. A result with color **Yellow** requires additional techniques. A result with color **Red** is unique in the quantum setting.

- Cryptography.
- Learning theory.
- Circuit lower bounds.

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 7.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color **Blue** is a direct extension from its classical analog. A result with color **Yellow** requires additional techniques. A result with color **Red** is unique in the quantum setting.

- Cryptography.
- Learning theory.
- Circuit lower bounds.
- Fine-grained complexity.

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 7.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color **Blue** is a direct extension from its classical analog. A result with color Yellow requires additional techniques. A result with color Red is unique in the quantum setting.

- Cryptography.
- Learning theory.
- Circuit lower bounds.
- Fine-grained complexity.

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 5.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color **Blue** is a direct extension from its classical analog. A result with color Yellow requires additional techniques. A result with color Red is unique in the quantum setting.

- Cryptography.
- Learning theory.
- Circuit lower bounds. \bullet
- Fine-grained complexity.
- **Reductions:**

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 5.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color **Blue** is a direct extension from its classical analog. A result with color Yellow requires additional techniques. A result with color Red is unique in the quantum setting.

- Cryptography.
- Learning theory.
- Circuit lower bounds.
- Fine-grained complexity.
- **Reductions:**
 - Among different objects.

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 7.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color **Blue** is a direct extension from its classical analog. A result with color Yellow requires additional techniques. A result with color Red is unique in the quantum setting.

- Cryptography.
- Learning theory.
- Circuit lower bounds.
- Fine-grained complexity.
- **Reductions:**
 - Among different objects.
 - Self-reduction. **♦**

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.12 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no qOWF	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.19 (Theorem 5.91)
	$SMCSP \Rightarrow Estimating wormhole's volume$	1 neorem 1.13 (1 neorem 5.31)
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color **Blue** is a direct extension from its classical analog. A result with color Yellow requires additional techniques. A result with color Red is unique in the quantum setting.

- Cryptography.
- Learning theory.
- Circuit lower bounds.
- Fine-grained complexity.
- **Reductions:**
 - Among different objects.
 - Self-reduction. ◆
 - Search-to-decision reduction.

A Bird-Eye View

	Results	Informal Theorem Index (Formal Theorem Index)
	$MQCSP \in QCMA$	Theorem 1.4 (Theorem 3.9)
	$MQCSP \in BQP \Rightarrow \operatorname{No} qOWF$	Theorem 1.4 (Theorem 4.8)
	$SZK \le MQCSP$	Theorem 1.4 (Theorem 3.13)
	multiMQCSP is NP-hard under a natural gate set	Theorem 1.4 (Theorem 3.14)
	$i\mathcal{O} + MQCSP \in BQP \Rightarrow NP \subseteq coRQP$	Theorem 1.4 (Theorem 4.10)
MQCSP	PAC learning for BQP/poly \Leftrightarrow MQCSP \in BPP	Theorem 1.5 (Theorem 4.12)
(Def. 3.2)	$BQP \text{ learning} \Leftrightarrow MQCSP \in BQP$	Theorem 1.6 (Theorem 4.14)
	$MQCSP \in BQP \Rightarrow BQE ot \subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.19)
	$MQCSP \in BQP \Rightarrow BQP^{QCMA} \not\subset BQC[n^k], \ \forall k \in \mathbb{N}_+$	Theorem 1.7 (Theorem 4.22)
	$MQCSP \in BQP \Rightarrow Hardness amplification$	Theorem 1.8 (Theorem 4.20)
	Hardness magnification for MQCSP	Theorem 1.9 (Theorem 4.22)
	$QETH \Rightarrow$ quantum hardness of MQCSP*	Theorem 1.10 (Theorem 4.27)
	$UMCSP \in QCMA$	Theorem 1.11 (Theorem 5.5)
	Search-to-decision reduction for UMCSP	Theorem 1.12 (Theorem 5.16)
	$gap-MQCSP \leq UMCSP$	Theorem 1.12 (Theorem 5.23)
UMCSP	$UMCSP \in BQP$	(Theorem 5.94 Corollary 5.95)
(Def. 5.1)	\Rightarrow No pseudorandom unitaries and no qOWF	(1 neorem 3.24, Coronary 3.25)
	$i\mathcal{O} + UMCSP \in BQP \Rightarrow NP \subseteq coRQP$	(Corollary 5.26)
	$UMCSP \in BQP \Rightarrow Hardness \text{ amplification for } BQP$	(Corollary 5.27)
	$UMCSP\inBQP\RightarrowBQE ot\subsetBQP[n^k],\ orall k\in\mathbb{N}$	(Corollary 5.28)
	SMCSP can be verified via QCMA	Theorem 1.11 (Theorem 5.9)
	Search-to-decision reduction for SMCSP	Theorem 1.12 (Theorem 5.18)
	Self-reduction for SMCSP	Theorem 1.12 (Theorem 5.20)
SMCSP	$SMCSP \in BQP$	Theorem 1.13 (Theorem 5.20)
(Def. 5.2)	\Rightarrow No pseudorandom states and no $qOWF$	r neorem 1.15 (Theorem 5.50)
	Assume conjectures from physics	Theorem 1.13 (Theorem 5.31)
	$SMCSP \Rightarrow Estimating wormhole's volume$	
	Succinct state tomography \leq SMCSP	Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color **Blue** is a direct extension from its classical analog. A result with color Yellow requires additional techniques. A result with color Red is unique in the quantum setting.

- Cryptography.
- Learning theory.
- Circuit lower bounds.
- Fine-grained complexity.
- **Reductions:**
 - Among different objects.
 - Self-reduction. ◆
 - Search-to-decision reduction. +
- Pseudorandom state, wormhole's volume, succinct state tomography...

Mostly quantize classical results!

Quantum computation is generally erroneous and random.

- Quantum computation is generally erroneous and random.

+ This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem.

- Quantum computation is generally erroneous and random.
 - This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem. The classical "fixing random string" trick does not work in quantum.
 - + ◆

- Quantum computation is generally erroneous and random.
 - This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem. The classical "fixing random string" trick does not work in quantum.
 - + +
- The introduction of ancilla qubits.

- Quantum computation is generally erroneous and random.
 - +
 - The classical "fixing random string" trick does not work in quantum. ◆
- The introduction of ancilla qubits.
 - Different number of ancilla qubits gives different circuit complexity! +

This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem.

- Quantum computation is generally erroneous and random.

 - The classical "fixing random string" trick does not work in quantum. ◆
- The introduction of ancilla qubits.
 - Different number of ancilla qubits gives different circuit complexity!
 - super-polynomial!

This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem.

When the number of ancilla qubits is super-linear, a direct classical simulation becomes

- Quantum computation is generally erroneous and random.

 - The classical "fixing random string" trick does not work in quantum. ◆
- The introduction of ancilla qubits.
 - Different number of ancilla qubits gives different circuit complexity!
 - super-polynomial!
- Various universal quantum gate sets.

This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem.

When the number of ancilla qubits is super-linear, a direct classical simulation becomes

- Quantum computation is generally erroneous and random.

 - The classical "fixing random string" trick does not work in quantum.
- The introduction of ancilla qubits.
 - Different number of ancilla qubits gives different circuit complexity!
 - super-polynomial!
- Various universal quantum gate sets.
 - For some results we only know how to start with a certain gate set.

This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem.

When the number of ancilla qubits is super-linear, a direct classical simulation becomes

- Quantum computation is generally erroneous and random.

 - The classical "fixing random string" trick does not work in quantum. +
- The introduction of ancilla qubits.
 - Different number of ancilla qubits gives different circuit complexity! +
 - + super-polynomial!
- Various universal quantum gate sets.
 - For some results we only know how to start with a certain gate set.
 - overhead in circuit complexity.

This makes the definition of MCSP in the quantum setting subtle, e.g., promise problem.

When the number of ancilla qubits is super-linear, a direct classical simulation becomes

Although we can use Solovay-Kitaev theorem to generalize other gate sets, this causes

Special Properties in the Quantum Setting

Special Properties in the Quantum Setting With a focus on quantum states

• Input:

Input: \bullet

+ Arbitrarily many copies of an *n*-qubit state $|\psi\rangle$.

- Input: \bullet
 - + Arbitrarily many copies of an *n*-qubit state $|\psi\rangle$.
 - + Size parameter: *s*.

- Input:
 - + Arbitrarily many copies of an *n*-qubit state $|\psi\rangle$.
 - + Size parameter: *s*.
- Goal: Determine if \exists circuit \mathscr{C} of size $\leq s$, s.t. $\|(\langle \psi | \otimes I) \mathscr{C} | 0^{n+t} \| \approx 1$.

- Input:
 - + Arbitrarily many copies of an *n*-qubit state $|\psi\rangle$.
 - + Size parameter: s.
- Goal: Determine if \exists circuit \mathscr{C} of size

$$\leq s$$
, s.t. $\|(\langle \psi | \otimes I) \mathscr{C} | 0^{n+t} \rangle \| \approx 1$.

- Input:
 - + Arbitrarily many copies of an *n*-qubit state $|\psi\rangle$.
 - Size parameter: *s*.
- **Goal:** Determine if \exists circuit \mathscr{C} of size $\leq s$, s.t. $\|(\langle \psi | \otimes I) \mathscr{C} | 0^{n+t} \| \approx 1$.

• Remark 1: Can define a version with "classical description" of $|\psi\rangle$ as the input.

- Input:
 - + Arbitrarily many copies of an *n*-qubit state $|\psi\rangle$.
 - + Size parameter: *s*.
- Goal: Determine if \exists circuit \mathscr{C} of size $\leq s$, s.t. $\|(\langle \psi | \otimes I) \mathscr{C} | 0^{n+t} \| \approx 1$.

- Remark 1: Can define a version with "classical description" of $|\psi\rangle$ as the input. • **Remark 2:** Can define a version for unitary transformation analogously.

Search-to-decision reduction for SMCSP and UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.
- **Key ideas:** Leveraging the "reversibility" of quantum circuits!

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.
- Key ideas: Leveraging the "reversibility" of quantum circuits!

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.
- Key ideas: Leveraging the "reversibility" of quantum circuits!

Input: $|\psi\rangle$

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.
- **Key ideas:** Leveraging the "reversibility" of quantum circuits!

Input: $|\psi\rangle$

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Search-to-decision reduction for SMCSP and UMCSP.
- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

- Self reduction for SMCSP.
- Gap-MQCSP reduces to UMCSP.

Open problems: Any application of these quantum-unique reductions?

common assumptions/conjectures.

Solving SMCSP is "equivalent" to estimating the wormhole volume under

common assumptions/conjectures.

The volume of a wormhole

Solving SMCSP is "equivalent" to estimating the wormhole volume under

common assumptions/conjectures.

The volume of a wormhole

Volume=Complexity Conjecture [Susskind'16] \approx

Solving SMCSP is "equivalent" to estimating the wormhole volume under

The complexity of "thermalfield double state"

common assumptions/conjectures.

The volume of a wormhole

Volume=Complexity Conjecture [Susskind'16] \approx

The complexity of "thermalfield double state"

Solving SMCSP is "equivalent" to estimating the wormhole volume under

Assuming a dictionary map in AdS/CFT is efficiently computable

common assumptions/conjectures.

The volume of a wormhole

Volume=Complexity Conjecture [Susskind'16] \approx

The complexity of "thermalfield double state"

Solving SMCSP is "equivalent" to estimating the wormhole volume under

Assuming a dictionary map in AdS/CFT is efficiently computable

common assumptions/conjectures.

The volume of a wormhole

Volume=Complexity Conjecture [Susskind'16] \approx

The complexity of "thermalfield double state"

Solving SMCSP is "equivalent" to estimating the wormhole volume under

SMCSP Assuming a dictionary map in AdS/CFT is efficiently computable **CFT-SMCSP**

Summary & Future Directions

Summary

Minimum quantum circuits for Boolean functions

- Formulate MQCSP.
- Basic complexity properties of MQCSP.
- Connections to other areas such as circuit lower bounds, learning theory, cryptography, etc.

Summary

Minimum quantum circuits for Boolean functions

- Formulate MQCSP.
- Basic complexity properties of MQCSP.
- Connections to other areas such as circuit lower bounds, learning theory, cryptography, etc.

Minimum quantum circuits for quantum objects

- Formulate SMCSP and UMCSP.
- Search-to-decision and self reductions.
- Quantum-related applications (e.g., pseudorandom state, quantum gravity).

Summary

Minimum quantum circuits for Boolean functions

- Formulate MQCSP.
- Basic complexity properties of MQCSP.
- Connections to other areas such as circuit lower bounds, learning theory, cryptography, etc.

Minimum quantum circuits for quantum objects

- Formulate SMCSP and UMCSP.
- Search-to-decision and self reductions.
- Quantum-related applications (e.g., pseudorandom state, quantum gravity).

Quantum algorithms and reductions for (quantum) MCSPs

- Implications of quantum algorithms for (quantum) MCSPs.
- A quantum search-todecision reduction for SMCSP.

Classical upper bounds

- Is MQCSP, SMCSP, UMCSP in NP?
- It seems to be challenging to handle super-linear number of ancilla qubits.

Classical upper bounds

- Is MQCSP, SMCSP, UMCSP in NP?
- It seems to be challenging to handle super-linear number of ancilla qubits.

Applications of the quantum-unique reductions?

Classical upper bounds

- Is MQCSP, SMCSP, UMCSP in NP?
- It seems to be challenging to handle super-linear number of ancilla qubits.

Are there search-to-decision or self reduction for MQCSP?

• Due to the boolean structure, the straightforward idea doesn't work.

Applications of the quantum-unique reductions?

Classical upper bounds

- Is MQCSP, SMCSP, UMCSP in NP?
- It seems to be challenging to handle super-linear number of ancilla qubits.

Are there search-to-decision or self reduction for MQCSP?

• Due to the boolean structure, the straightforward idea doesn't work.

Applications of the quantum-unique reductions?

Can we base the security of crypto primitives on quantum MCSPs?

Classical upper bounds

- Is MQCSP, SMCSP, UMCSP in NP?
- It seems to be challenging to handle super-linear number of ancilla qubits.

Are there search-to-decision or self reduction for MQCSP?

• Due to the boolean structure, the straightforward idea doesn't work.

Applications of the quantum-unique reductions?

Can we base the security of crypto primitives on quantum MCSPs?

More connections of quantum MCSPs to other problems?

Classical upper bounds

- Is MQCSP, SMCSP, UMCSP in NP?
- It seems to be challenging to handle super-linear number of ancilla qubits.

Are there search-to-decision or self reduction for MQCSP?

• Due to the boolean structure, the straightforward idea doesn't work.

Applications of the quantum-unique reductions?

Can we base the security of crypto primitives on quantum MCSPs?

More connections of quantum MCSPs to other problems?

Thanks for your attention 🙂

