
Workshop on Approaches and Applications of Inductive
Programming (AAIP)

to be held on August 7th 2005 in conjunction with the 22nd International
Conference on Machine Learning (ICML 2005) in Bonn, Germany.

Organized by Emanuel Kitzelmann, Roland Olsson, Ute Schmid

Contents

Foreword 5

Program Committee 7

Invited Talks 8
Stephen Muggleton:

Learning the Time Complexity of Logic Programs 9
Jürgen Schmidhuber:

How to Learn a Program: Optimal Universal Learners & Goedel Machines 11
Fritz Wysotzki:

Development of Inductive Synthesis of Functional Programs 13

Full Papers 15
Emanuel Kitzelmann, Ute Schmid:

An Explanation Based Generalization Approach to Inductive Synthesis of
Functional Programs . 15

Oleg Monakhov, Emilia Monakhova:
Synthesis of Scientific Algorithms based on Evolutionary Computation
and Templates . 29

A. Passerini, P. Frasconi, L. De Raedt:
Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting . . 37

M. R. K. Krishna Rao:
Learning Recursive Prolog Programs with Local Variables from Examples 51

Work in Progress 59
Ramiro Aguilar, Luis Alonso, Vivian López, Maŕıa N. Moreno:

Incremental discovery of sequential patterns for grammatical inference . . 59
Palem GopalaKrishna:

Data-dependencies and Learning in Artificial Systems 69

Author Index 81

3

Foreword

The ICML workshop AAIP 2005 – “Approaches and Applications of Inductive Program-
ming” – was held at the 22nd International Conference on Machine Learning (ICML
2005) in Bonn, Germany on 7th of August 2005. The main goal of AAIP was to bring
together researchers from different areas of machine learning who are especially inter-
ested in the inductive synthesis of programs from input/output examples.

Automatic induction of programs from input/output examples is an active area of re-
search since the sixties and of interest for machine learning research as well as for auto-
mated software engineering. In the early days of inductive programming research there
were proposed several approaches to the synthesis of Lisp programs from examples or
traces. Due to only limited progress, interest decreased in the mid-eighties and research
focused on inductive logic programming (ILP) instead. Although ILP proved to be a
powerful approach to learning relational concepts, applications to learning of recursive
clauses had only moderate success. Learning recursive programs from examples is also
investigated in genetic programming and other forms of evolutionary computation. Here
again, functional programs are learned from sets of positive examples together with an
output evaluation function which specify the desired input/output behavior of the pro-
gram to be learned. A fourth approach is learning recursive programs in the context of
grammar inference.

Currently, there is no single prominent approach to inductive program synthesis. Instead,
research is scattered over the different approaches. Nevertheless, inductive programming
is a research topic of crucial interest for machine learning and artificial intelligence in
general. The ability to generalize a program – containing control structures as recursion
or loops – from examples is a challenging problem which calls for approaches going
beyond the requirements of algorithms for concept learning. Pushing research forward
in this area can give important insights in the nature and complexity of learning as well
as enlarging the field of possible applications.

Typical areas of application where learning of programs or recursive rules are called
for, are first in the domain of software engineering where structural learning, software
assistants and software agents can help to relieve programmers from routine tasks, give
programming support for endusers, or support of novice programmers and programming
tutor systems. Further areas of application are language learning, learning recursive
control rules for AI-planning, learning recursive concepts in web-mining or for data-
format transformations.

Today research on program induction is scattered over different communities. The AAIP
2005 workshop brought together researchers from these different communities with the
common interest on induction of general programs regarding theory, methodology and
applications. The three invited speakers represent inductive program synthesis research
in the areas of classical functional synthesis (Fritz Wysotzki, TU Berlin, Germany),
inductive logic programming (Stephen Muggleton, Imperial College London, UK), and

5

optimal universal reinforcement learning (Jürgen Schmidhuber, IDSIA, Manno-Lugano,
Switzerland). The four full papers and two work in progress reports are distributed over
all areas mentioned above, that is, they address inductive functional synthesis, inductive
logic programming, evolutionary computation, and grammatical inference.

In our opinion, getting acquainted with other approaches to this problem, their rel-
ative merits and limits, will strengthen research in inductive programming by cross-
fertilization. We hope, that for the machine learning community at large the challenging
topic of program induction which is currently rather neglected, might come in the focus
of interest.

We want to thank the all members of the program committee for their support in promot-
ing the workshop and for reviewing submitted papers and we thank the ICML organizers,
especially the workshop chair Hendrik Blockeel for technical support.

We are proud to present you the proceedings of the first workshop ever striving to cover
all areas of program induction!

Emanuel Kitzelmann
(Dept. of Information Systems and Applied Computer Science, Otto-Friedrich-
University Bamberg, Germany)

Roland Olsson
(Faculty of Computer Science, Østfold College, Norway)

Ute Schmid
(Dept. of Information Systems and Applied Computer Science, Otto-Friedrich-
University Bamberg, Germany)

6

Program Committee

Pierre Flener
Computing Science Division, Department of Information Technology, Uppsala Uni-
versity, Sweden

Colin de la Higuera
EURISE, Université de Saint-Etienne, France

Emanuel Kitzelmann (co-organizer)
Dept. of Information Systems and Applied Computer Science, Bamberg University,
Germany

Steffen Lange
Dept. of Computer Science, University of Applied Sciences Darmstadt, Germany
++49-6151-16-8441, s.lange@fbi.fh-darmstadt.de
http://www.fbi.fh-darmstadt.de/s̃lange/

Stephen Muggleton
Computational Bioinformatics Laboratory, Department of Computing, Imperial
College,London, UK

Roland Olsson (co-organizer)
Faculty of Computer Science, Østfold college, Halden, Norway

M.Jose Ramı́rez
Departamento de Sistemas Informáticos y Computación (DSIC), Universidad Politécnica
de Valencia, Spain

Ute Schmid (co-organizer)
Dept. of Information Systems and Applied Computer Science, Bamberg University,
Germany

Fritz Wysotzki
Dept. of Electrical Engineering and Computer Science, Technical University Berlin,
Germany

7

Learning the Time Complexity of Logic
Programs

Stephen Muggleton shm@doc.ic.ac.uk

Computational Bioinformatics Laboratory
Department of Computing
Imperial College, London, UK

One of the key difficulties in machine learning recursive logic programs is as-
sociated with the testing of examples. Inefficient hypotheses, though usually
of least interest to the learner, take more time to test. Almost by definition,
efficient learners require a bias towards low-complexity hypotheses. However,
it is unclear how such a bias can be implemented. To these ends, in this pre-
sentation we address the problem of recognising inefficient logic programs. To
the author’s knowledge, this problem has not been considered previously in the
literature. A successful approach to recognition of inefficient logic programs
should bring the prospects of effective machine learning of recursive logic pro-
grams closer. In general the problem of recognising the time complexity of
an arbitrary program is incomputable since halting is undecidable. However,
partial solutions cannot be ruled out. In this presentation we provide an ini-
tial investigation of the problem based on developing a framework for machine
learning higher-order patterns associated with various complexity orders.

9

How to Learn a Program:
Optimal Universal Learners & Goedel Machines

Jürgen Schmidhuber juergen@idsia.ch

IDSIA
Manno-Lugano, Switzerland

Rational embedded agents should try to maximize future expected reward. In
general, this requires learning an algorithm that uses internal states to remem-
ber relevant past sensory inputs. Most machine learning algorithms, however,
just learn reactive behaviors, where output depends only on the current input.
Is there an optimal way of learning non-reactive behaviors in general, unknown
environments? Our new insights affirm that the answer is yes. I will discuss
both theoretical results on optimal universal reinforcement learning & Goedel
Machines, and mention applications of the recent Optimal Ordered Problem
Solver.

Links related to this talk:

Cogbotlab:
http://www.idsia.ch/~juergen/cogbotlab.html

Universal learning machines / Goedel Machines:
http://www.idsia.ch/~juergen/unilearn.html
http://www.idsia.ch/~juergen/goedelmachine.html

Optimal Ordered Problem Solver:
http://www.idsia.ch/~juergen/oops.html

11

Development of Inductive Synthesis of
Functional Programs

Fritz Wysotzki wysotzki@cs.tu-berlin.de

Technische Universität Berlin

Inductive program synthesis is yet in the state of fundamental research. The
task consists of inductive construction of a program from pairs of given input-
output examples or instantiated initial parts of the intended program using
specific methods of generalisation. Well known is the field of Inductive Logic
Programming (ILP) which is concerned with the induction of logical programs.
The pioneering work in synthesis of functional programs was done by Summers
1977 using the programming language LISP. Summers approach was restricted
to structural list problems i.e. his algorithms depend on the structure of a list
but not of its content. After Summers other work on synthesis of functional
programs was done using LISP, too. The main topic of this lecture will be the
synthesis of functional programs in an abstract formalism, i.e. without using a
special programming language. The basis are mainly theoretical investigations
and programmed realisations of the algorithms which have been performed
at the TU Berlin over many years. The lecture starts with some historical
remarks, after that the theoretical basis is introduced. It is a term algebra
including a special non-strict term (corresponding to the IF-THEN-ELSE) for
realizing tests. A functional program is represented by a system of equations
the left hand side of which are function variables (Ònames of subprogramsÓ)
with parameters (Òformal parametersÓ), the right hand sides are terms, which
may contain the function variables and there is a special term representing
the Ómain programÓ. This system is called Recursive Program Scheme (RPS,
Courcelle and Nivat 1978). It can be ÒsolvedÓ syntactically by an ordered
sequence of finite terms (KLEENE-sequence), approximating the fixpoint so-
lution which is an infinite term. This corresponds to unfolding the RPS.The
induction principle works as follows: If one has a finite example term (i.e. with
instantiated variables) one can try to Òexplain itÓ as being an element of a
KLEENE-sequence of an RPS. Extrapolation with introduction of variables as
generalisation principle and folding gives a hypothetical RPS which explains
the given example term. The reliability of the hypothesis depends on the po-
sition of the given term in the KLEENE-sequence. One of the main problems
which will be discussed is the detection and induction of subprograms in the
example term by finding an appropriate segmentation. Another problem is how
to get the example term. Two domain dependent approaches will be discussed:
the integration of (mutually excluding) production rules and planning. In the
latter case from a problem solving graph a shortest path tree (Universal Plan)
is constructed. In the second step by a generalisation procedure similar to
subsumption used in ILP a goal hierarchy is computed. This goal tree is then
transformed into an initial program (program tree) which can be used as a ba-
sis for inductive construction of a RPS mentioned above. The main principles
of our approach to the inductive construction of functional programs will be
demonstrated by examples.

13

An Explanation Based Generalization Approach to Inductive Synthesis of
Functional Programs

Emanuel Kitzelmann EMANUEL.KITZELMANN@WIAI.UNI-BAMBERG.DE

Ute Schmid UTE.SCHMID@WIAI.UNI-BAMBERG.DE

Department of Information Systems and Applied Computer Science, Otto-Friedrich-University, Bamberg

Abstract
We describe an approach to the inductive syn-
thesis of recursive equations from input/output-
examples which is based on the classical two-
step approach to induction of functional Lisp
programs of Summers (1977). In a first step, I/O-
examples are rewritten to traces which explain
the outputs given the respective inputs based on
a datatype theory. This traces can be integrated
into one conditional expression which represents
a non-recursive program. In a second step, this
initial program term is generalized into recursive
equations by searching for syntactical regulari-
ties in the term. Our approach extends the classi-
cal work in several aspects. The most important
extensions are that we are able to induce a set of
recursive equations in one synthesizing step, the
equations may contain more than one recursive
call, and additionally needed parameters are au-
tomatically introduced.

1. Introduction

Automatic induction of recursive programs from
input/output-examples (I/O-examples) is an active area of
research since the sixties and of interest for AI research
as well as for software engineering (Lowry & McCarthy,
1991; Flener & Partridge, 2001). In the seventies and
eighties, there were several approaches to the synthesis
of Lisp programs from examples or traces (see Biermann
et al., 1984 for an overview). The most influential approach
was developed by Summers (1977), who put inductive
synthesis on a firm theoretical foundation.

Summers’ early approach is an explanation based gener-
alization (EBG) approach, thus it widely relies on algo-
rithmic processes and only partially on search: In a first
step, traces—steps of computations executed from a pro-
gram to yield an output from a particular input—and predi-
cates for distinguishing the inputs are calculated for each
I/O-pair. Construction of traces, which are terms in the

classical functional approaches, relies on knowledge of the
inductive datatype of the inputs and outputs. That is, traces
explain the outputs based on a theory of the used datatype
given the respective inputs. The classical approaches for
synthesizing Lisp-programs used the general Lisp datatype
S-expression. By integrating traces and predicates into a
conditional expression a non-recursive program explaining
all I/O-examples is constructed as result of the first syn-
thesis step. In a second step, regularities are searched for
between the traces and predicates respectively. Found reg-
ularities are then inductively generalized and expressed in
form of the resulting recursive program.

The programs synthesized by Summers’ system contain ex-
actly one recursive function, possibly along with one con-
stant term calling the recursive function. Furthermore, all
synthesizable functions make use of a small fixed set of
Lisp-primitives, particularly of exactly one predicate func-
tion, atom, which tests whether its argument is an atom,
e.g., the empty list. The latter implies two things: First,
that Summers’ system is restricted to induce programs for
structural problems on S-expressions. That means, that ex-
ecution of induced programs depends only on the structure
of the input S-expression, but never on the semantics of the
atoms contained in it. E.g., reversing a list is a structural
problem, yet not sorting a list. The second implication is,
that calculation of the traces is a deterministic and algorith-
mic process, i.e. does not rely on search and heuristics.

Due to only limited progress regarding the class of pro-
grams which could be inferred by functional synthesis,
interest decreased in the mid-eighties. There was a re-
newed interest of inductive program synthesis in the field
of inductive logic programming (ILP) (Flener & Yilmaz,
1999; Muggleton & De Raedt, 1994), in genetic program-
ming and other forms of evolutionary computation (Olsson,
1995) which rely heavily on search.

We here present an EBG approach which is based on the
methodologies proposed by Summers (1977). We regard
the functional two-step approach as worthwhile for the fol-
lowing reasons: First, algebraic datatypes provide guid-

15

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

ance in expressing the outputs in terms of the inputs as first
synthesis step. Second, it enables a seperate and thereby
specialized handling of a knowledge dependent part and a
purely syntactic driven part of program synthesis. Third,
both using algebraic datatypes and seperating a knowledge-
dependent from a syntactic driven part enables a more ac-
curate utilization of search than in ILP or evolutionary pro-
gramming. Fourth, the two-step approach using algebraic
datatypes provides a systematic way to introduce auxiliary
recursive equations if necessary.

Our approach extends Summers in several important as-
pects, such that we overcome fundamental restrictions of
the classical approaches to induction of Lisp programs:
First, we are able to induce a set of recursive equations in
one synthesizing step, second, the equations may contain
more than one recursive call, and third, additionally needed
parameters are automatically introduced. Furthermore, our
generalization step is domain-independent, in particular in-
dependent from a certain programming language. It takes
as input a first-order term over an arbitrary signature and
generalizes it to a recursive program scheme, that is, a set
of recursive equations over that signature. Hence it can
be used as learning component in all domains which can
represent their objects as recursive program schemes and
provide a system for solving the first synthesis step. E.g.,
we use the generalization algorithm for learning recursive
control rules for AI planning problems (cp. Schmid &
Wysotzki, 2000; Wysotzki & Schmid, 2001).

2. Central Concepts and an Example

The three central objects dealt with by our system are
(1) sets of I/O-examples specifying the algorithm to be
induced, (2) initial (program) terms explaining the I/O-
examples, and (3) recursive program schemes (RPSs) rep-
resenting the induced algorithms. Their functional role in
our two-step synthesis approach is shown in Fig. 1.

An example for I/O-examples is given in Tab. 1. The exam-
ples specify the lasts function which takes a list of lists as
input and yields a list of the last elements of the lists as out-
put. In the first synthesis step, an initial term is constructed
from these examples. An initial term is a term respecting an
arbitrary first-order signature extended by the special con-
stant symbol Ω, meaning the undefined value and directing
generalization in the second synthesis step. Suitably in-
terpreted, an initial term evaluates to the specified output
when its variable is instantiated with a particular input of
the example set and to undefined for all other inputs.

Tab. 2 gives an example of an initial term. It shows the re-
sult of applying the first synthesis step to the I/O-examples
for the lasts function as shown in Tab. 1. if means the 3ary
non-strict function which returns the value of its second pa-

Table 1. I/O-examples for lasts

[] 7→ [],
[[a]] 7→ [a],

[[a,b]] 7→ [b],
[[a,b,c]] 7→ [c],

[[a,b,c,d]] 7→ [d],
[[a], [b]] 7→ [a,b],

[[a], [b,c]] 7→ [a,c],
[[a,b], [c], [d]] 7→ [b,c,d],

[[a,b], [c,d], [e, f]] 7→ [b,d, f],
[[a], [b], [c], [d]] 7→ [a,b,c,d]

rameter if its first parameter evaluates to true and otherwise
returns the value of its third parameter; empty is a predicate
which tests, whether its argument is the empty list; hd and
tl yield the first element and the rest of a list respectively;
cons constructs a list from one element and a list; and []
denotes the empty list.

Table 2. Initial term for lasts
if(empty(x), [],
cons(
hd(
if(empty(tl(hd(x))), hd(x),
if(empty(tl(tl(hd(x)))), tl(hd(x)),
if(empty(tl(tl(tl(hd(x))))), tl(tl(hd(x))),

Ω)))) ,
if(empty(tl(x)), [],
cons(
hd(
if(empty(tl(hd(tl(x)))), hd(tl(x)),

Ω)) ,
if(empty(tl(tl(x))), [],
cons(
hd(
if(empty(tl(hd(tl(tl(x))))), hd(tl(tl(x))),

Ω)) ,
if(empty(tl(tl(tl(x)))), [],

Ω)))))))

Calculation of initial terms relies on knowledge of the
datatypes of the example inputs and outputs. For our exem-
plary lasts program inputs and outputs are lists. Lists are
uniquely constructed by means of the empty list [] and the
constructor cons. Furthermore they are uniquely decom-
posed by the functions hd and tl. That allows to calculate
a unique term which expresses an example output in terms
of the input. For example, consider the third I/O-example
from Tab. 1: If x denotes the input [[a,b]], then the term
cons(hd(tl(hd(x))), []) expresses the specified output [b] in
terms of the input. Such traces are constructed for each
I/O-pair. The overall concept for integrating the resulting
traces into one initial term is to go through all traces in par-
allel position by position. If the same function symbol is
contained at the current position in all traces, then it is in-

16

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

I/O-examples

1. Step: Explanation,

based on knowledge of datatypes
−−−−−−−−−−−−−−−−−−−→ Initial Term

2. Step: Generalization,

purely syntactic driven
−−−−−−−−−−−−−−−→ Recursive Program Scheme

Figure 1. Two synthesis steps

troduced to the initial term at this position. If at least two
traces differ at the current position, then it is introduced an
if -expression. Therefore a predicate function is calculated
to discriminate the inputs according to the different traces.
Construction of the initial term proceeds from the discrim-
inated inputs and traces for the second and third branch of
the if -tree respectively. We describe the calculation of ini-
tial terms from I/O-examples, i.e. the first synthesis step,
in Sec. 4.

In the second synthesis step, initial ground terms are gener-
alized to a recursive program scheme. Initial terms are con-
sidered as (incomplete) unfoldings of an RPS which is to be
induced by generalization. An RPS is a set of recursive
equations whose left-hand-sides consist of the names of
the equations followed by their parameter lists and whose
right-hand-sides consist of terms over the signature from
the initial terms, the set of the equation names, and the pa-
rameters of the equations. One equation is distinguished
to be the main one. An example is given in Tab. 3. This
RPS, suitably interpreted, computes the lasts function as
described above and specified by the examples in Tab. 1. It

Table 3. Recursive Program Scheme for lasts

lasts(x) = if(empty(x), [],

cons(hd(last(hd(x))), lasts(tl(x))))

last(x) = if(empty(tl(x)),x, last(tl(x)))

results from applying the second synthesis step to the ini-
tial term shown in Tab. 2. Note that it is a generalization
from the initial term in that it not merely computes the lasts
function for the example inputs but for input-lists of arbi-
trary length containing lists of arbitrary length.

The second synthesis step does not depend on domain
knowledge. The meaning of the function symbols is irrel-
evant, because the generalization is completely driven by
detecting syntactical regularities in the initial terms. To
understand the link between initial terms and RPSs in-
duced from them, we consider the process of incremen-
tally unfolding an RPS. Unfolding of an RPS is a (non-
deterministic and possibly infinite) rewriting process which
starts with the instantiated head of the main equation of an
RPS and which repeatedly rewrites a term by substituting
any instantiated head of an equation in the term with ei-
ther the equally instantiated body or with the special sym-

bol Ω. Unfolding stops, when all heads of recursive equa-
tions in the term are rewritten to Ω, i.e., the term contains
no rewritable head any more. Consider the last equation
from the RPS shown in Tab. 3 and the initial instantia-
tion {x 7→ [a,b,c]}. We start with the instantiated head
last([a,b,c]) and rewrite it to the term:

if(empty(tl([a,b,c])), [a,b,c], last(tl([a,b,c])))

This term contains the head of the last equation instantiated
with {x 7→ tl([a,b,c])}. When we rewrite this head again
with the equally instantiated body we obtain:

if(empty(tl([a,b,c])), [a,b,c],

if(empty(tl(tl([a,b,c]))), tl([a,b,c]),

last(tl(tl([a,b,c]))))

This term now contains the head of the equation instanti-
ated with {x 7→ tl(tl([a,b,c]))}. We rewrite it once again
with the instantiated body and then replace the head in the
resulting term with Ω and obtain:

if(empty(tl([a,b,c])), [a,b,c],

if(empty(tl(tl([a,b,c]))), tl([a,b,c]),

if(empty(tl(tl(tl([a,b,c])))), tl(tl([a,b,c])),Ω)))

The resulting finite term of a finite unfolding process is also
called unfolding. Unfoldings of RPSs contain regularities
if the heads of the recursive equations are more than once
rewritten with its bodies before they are rewritten with Ωs.
The second synthesis step is based on detecting such regu-
larities in the initial terms.

We describe the generalization of initial terms to RPSs in
the following section. The reason why we first describe the
second synthesis step and only afterwards the first synthesis
step is, that the latter is governed by the goal of construct-
ing a term which can be generalized in the second step.
Therefore, for understanding the first step, it is necessary
to know the connection between initial terms and RPSs as
established in the second step.

3. Generalizing an Initial Term to an RPS

Since our generalization algorithm exploits the relation be-
tween an RPS and its unfoldings, in the following we will
first introduce the basic terminology for terms, substitu-
tions, and term rewriting as for example presented in Der-
showitz and Jouanaud (1990). Then we will present defi-
nitions for RPSs and the relation between RPSs and their

17

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

unfoldings. The set of all possible RPSs constitutes the
hypothesis language for our induction algorithm. Some
restrictions on this general hypothesis language are intro-
duced and finally, the componentes of the generalization
algorithm are described.

3.1. Preliminaries

We denote the set of natural numbers starting with 0 by N

and the natural numbers greater 0 by N+. A signature Σ
is a set of (function) symbols with α : Σ→ N giving the
arity of a symbol. We write TΣ for the set of ground terms,
i.e. terms without variables, over Σ and TΣ(X) for the set
of terms over Σ and a set of variables X . We write TΣ,Ω
for the set of ground terms—called partial ground terms—
constructed over Σ∪ {Ω}, where Ω is a special constant
symbol denoting the undefined value. Furthermore, we
write TΣ,Ω(X) for the set of partial terms constructed over
Σ∪{Ω} and variables X . With T ∞

Σ,Ω(X) we denote the set of
inifinite partial terms over Σ and variables X . Over the sets
TΣ,Ω, TΣ,Ω(X) and T ∞

Σ,Ω(X) a complete partial order (CPO)
≤ is defined by: a) Ω≤ t for all t ∈ TΣ,Ω,TΣ,Ω(X),T ∞

Σ,Ω(X)

and b) f (t1, . . . , tn)≤ f (t ′1, . . . , t
′
n) iff ti ≤ t ′i for all i ∈ [1;n].

Terms can uniquely be expressed as labeled trees: If a term
is a constant symbol or a variable, then the corresponding
tree consists of only one node labeled by the constant sym-
bol or variable. If a term has the form f (t1, . . . , tn), then
the root node of the corresponding tree is labeled with f
and contains from left to right the subtrees corresponding
to t1, . . . , tn. We use the terms tree and term as synonyms.
A position of a term/tree is a sequence of positive natural
numbers, i.e. an element from N

∗
+ . The set of positions

of a term t, denoted pos(t), contains the empty sequence ε
and the position iu, if the term has the form t = f (t1, . . . , tn)
and u is a position from pos(ti), i ∈ [1;n]. Each position
of a term uniquely denotes one subterm. We write t|u for
denoting that subterm which is determined as follows: (a)
t|ε = t, (b) if t = f (t1, . . . , tn) and u is a position in ti, then
t|iu = ti|u, i ∈ [1;n]. We say that position u is smaller than
position u′, u ≤ u′, if u is a prefix of u′. If u is a position
of term t and u′ ≤ u, then u′ is a position of t. For a term t
and a position u, node(t,u) denotes the fixed symbol f ∈ Σ,
if t|u = f (t1, . . . , tn) or t|u = f respectively. The set of all
positions at which a fixed symbol f appears in a term is de-
noted by pos(t, f). The replacement of a subterm t|u by a
term s in a term t at position u is written as t[u← s]. Let U
denote a set of positions in a term t. Then t[U← s] denotes
the replacement of all subterms t|u with u ∈U by s in t.

A substitution σ is a mapping from variables to terms. Sub-
stitutions are naturally continued to mappings from terms
to terms by σ(f (t1, . . . , tn)) = f (σ(t1), . . . ,σ(tn)). Substi-
tutions are written in postfix notation, i.e. we write tσ in-
stead of σ(t). Substitutions β : X → TΣ from variables to

ground terms are called (variable) instantiations. A term p
is called pattern of a term t, iff t = pσ for a substitution σ .
A pattern p of a term t is called trivial, iff p is a variable
and non-trivial otherwise. We write t ≤s p iff p is a pattern
of t and t <s p iff additionally holds, that p and t can not
be unified by variable renaming only.

A term rewriting system (TRS) over Σ and X is a set of
pairs of terms R ⊆ TΣ(X)×TΣ(X). The elements (l,r) of
R are called rewrite rules and are written l→ r. A term t ′

can be derived in one rewrite step from a term t using R

(t→R t ′), if there exists a position u in t, a rule l→ r ∈R,
and a substitution σ : X → TΣ(X), such that (a) t|u = lσ
and (b) t ′ = t[u← rσ]. R implies a rewrite relation→R⊆
TΣ(X)×TΣ(X) with (t, t ′) ∈→R if t→R t ′.

3.2. Recursive Program Schemes

Definition 1 (Recursive Program Scheme). Given a sig-
nature Σ, a set of function variables Φ = {G1, . . . ,Gn} for
a natural number n > 0 with Σ∩Φ = /0 and arity α(Gi) > 0
for all i ∈ [1;n], a natural number m ∈ [1;n], and a set of
equations

G =

{ G1(x1, . . . ,xα(G1)) = t1,

...

Gn(x1, . . . ,xα(Gn)) = tn }

where the ti are terms with respect to the signature Σ∪Φ
and the variables x1, . . . ,xα(Gi), S = (G ,m) is an RPS.
Gm(x1, . . . ,xα(Gm)) = tm is called the main equation of S .

The function variables in Φ are called names of the equa-
tions, the left-hand-sides are called heads, the right-hand-
sides bodies of the equations. For the lasts RPS shown in
Tab. 3 holds: Σ = {if ,empty,cons,hd, tl, []}, Φ = {G1,G2}
with G1 = lasts and G2 = last, and m = 1. G is the set of
the two equations.

We can identify a TRS with an RPS S = (G ,m):

Definition 2 (TRS implied by an RPS). Let be S =
(G ,m) an RPS over Σ, Φ and X , and Ω the bottom sym-
bol in TΣ,Ω(X). The equations in G constitute rules RS =
{Gi(x1, . . . ,xα(Gi)) → ti | i ∈ [1;n]} of a term rewriting
system. The system additionally contains rules RΩ =
{Gi(x1, . . . ,xα(Gi))→Ω | i ∈ [1;n], Gi is recursive}.

The standard interpretation of an RPS, called free interpre-
tation, is defined as the supremum in T ∞

Σ,Ω(X) of the set
of all terms in TΣ,Ω(X) which can be derived by the im-
plied TRS from the head of the main equation. Two RPSs
are called equivalent, iff they have the same free interpre-
tation, i.e. if they compute the same function for every in-
terpretation of the symbols in Σ. Terms in TΣ,Ω which can
be derived by the instantiated head of the main equation

18

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

regarding some instantiation β : X → TΣ are called unfold-
ings of an RPS relative to β . Note, that terms derived from
RPSs are partial and do not contain function variables, i.e.
all heads of the equations are eventually rewritten by Ωs.

The goal of the generalization step is to find an RPS which
explains a set of initial terms, i.e. to find an RPS such that
the initial terms are unfoldings of that RPS. We denote ini-
tial terms by t̄ and a set of initial terms by I . We liberalize
I such that it may include incomplete unfoldings. Incom-
plete unfoldings are unfoldings, where some subtrees con-
taining Ωs are replaced by Ωs.

We need to define four further concepts, namely recursion
positions which are positions in the equation bodies where
recursive calls appear, substitution terms which are the ar-
gument terms in recursive calls, unfolding positions which
are positions in unfoldings at which the heads of the equa-
tions are rewritten with their bodies, and finally parameter
instantiations in unfoldings which are subterms of unfold-
ings resulting from the initial parameter instantiation and
the substitution terms:

Definition 3 (Recursion Positions and Substitution
Terms). Let G(x1, . . . ,xα(G)) = t with parameters X =
{x1, . . . ,xα(G)} be a recursive equation. The set of recur-
sion positions of G is given by R = pos(t,G). Each recur-
sive call of G at position r ∈ R in t implies substitutions
σr : X → TΣ(X) : x j 7→ t|r j for all j ∈ [1;α(G)] for the pa-
rameters in X . We call the terms t|r j substitution terms of
G.

For equation lasts of the lasts RPS (Tab. 3) holds R = {32}
and xσ 32 = tl(x). For equation last holds R = {3} and
xσ 3 = tl(x).

Now consider an unfolding process of a recursive equation
and the positions at which rewrite steps are applied in the
intermediate terms. The first rewriting is applied at root-
position ε , since we start with the instantiated head of the
equation which is completely rewritten with the instanti-
ated body. In the instantiated body, rewrites occur at recur-
sion positions R. Assume that on recursion position r ∈ R
the instance of the head is rewritten with an instance of the
body. Then, relative to the resulting subtree at position r,
rewrites occur again at recursion positions, e.g. at position
r′ ∈ R. Relative to the entire term these latter rewrites occur
therefore at compositions of position r and recursion posi-
tions, e.g. at position rr′ and so on. We call the infinite set
of positions at which rewrites can occur in the intermediate
terms within an unfolding of a recursive equation unfolding
positions. They are determined by the recursion positions
as follows:

Definition 4 (Unfolding Positions). Let be R the recursion
positions of a recursive equation G. The set of unfolding
positions U of G is defined as the smallest set of positions

which contains the position ε and, if u ∈U and r ∈ R, the
position ur.

The unfolding positions of equation lasts of the lasts RPS
are {32,3232,323232, . . .}.

Now we look at the variable instantiations occuring during
unfolding a recursive equation. Recall the unfolding pro-
cess of the last equation (see Tab. 3) described at the end
of Sec. 2. The initial instantiation was βε = β = {x 7→
[a,b,c]}, thus in the body of the equation (replaced for the
instantiated head as result of the first rewrite step), its vari-
able is instantiated with this initial instantiation. Due to
the substitution term tl(x), the variable of the head in this
body is instantiated with β3 = σ 3 βε = {x 7→ tl([a,b,c])},
i.e. the variable in the body replaced for this instantiated
head is instantiated with σ 3 βε . A further rewriting step
implies the instantiation β33 = σ 3 σ 3 βε = σ 3 β3 = {x 7→
tl(tl([a,b,c]))} and so on. We index the instantiations oc-
curing during unfolding with the unfolding positions at
which the particular instantiated heads were placed. They
are determined by the substitutions implied by recursive
calls and an initial instantiation as follows:

Definition 5 (Instantiations in Unfoldings). Let be
G(x1, . . . ,xα(G)) = t a recursive equation with parameters
X = {x1, . . . ,xα(G)}, R and U the recursion positions and
unfolding positions of G resp., σ r the substitutions implied
by the recursive call of G at position r ∈ R, and β : X → TΣ
an initial instantiation. Then a family of instantiations in-
dexed over U is defined as βε = β and βur = σ r βu for
u ∈U,r ∈ R.

3.3. Restrictions and the Generalization Problem

An RPS which can be induced from initial terms is re-
stricted in the following way: First, it contains no mu-
tual recursive equations, second, there are no calls of re-
cursive equations within calls of recursive equations (no
nested recursive calls). The first restriction is not a seman-
tical restriction, since each mutual recursive program can
be transformed to an equivalent (regarding a particular al-
gebra) non-mutual recursive program. Yet it is a syntac-
tical restriction, since unfoldings of mutual RPSs can not
be generalized using our approach. A restriction similar to
the second one was stated by Rao (2004). He names TRSs
complying with such a restriction flat TRSs.

Inferred RPSs conform to the following syntactical charac-
teristics: First, all equations, potentially except of the main
equation, are recursive. The main equation may be recur-
sive as well, but, as only equation, it is not required to be re-
cursive. Second, inferred RPSs are minimal, in that (i) each
equation is directly or indirectly (by means of other equa-
tions) called from the main equation, and (ii) no parameter
of any equation can be omitted without changing the free

19

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

interpretation. RPSs complying with the stated restrictions
and characteristics are called minimal, non-mutual, flat re-
cursive program schemes.

There might be several RPSs which explain an initial term
t̄, but have different free interpretations. For example, Ω is
an unfolding of every RPS with a recursive main equation.
Therefore, an important question is which RPS will be in-
duced. Summers (1977) required that recurrence relations
hold at least over three succeeding traces and predicates
to justify a generalization. A similar requirement would
be that induced RPSs explain the initial terms recurrently,
meaning that I contains at least one term t̄ which can be
derived from an unfolding process, in which each recursive
equation had to be rewritten at least three times with its
body. We use a slightly different requirement: One char-
acteristic of minimal RPSs is, that if at least one substitu-
tion term is replaced by another, then the resulting RPS has
a different free interpretation. We call this characteristic
substitution uniqueness. Thus, it is sensible to require that
induced RPSs are substitution unique regarding the initial
terms, i.e. that if some substitution term is changed, then
the resulting RPS no longer explains the initial terms. It
holds, that a minimal RPS explains a set of initial trees re-
currently, if it explains it substitution uniquely.

Thus the problem of generalizing a set of initial terms I

to an RPS is to find an RPS which explains I and which
is substitution unique regarding I .

3.4. Solving the Generalization Problem

We will not state the generalization algorithm in detail
in this section but we will describe the underlying con-
cepts and the algorithm in a more informal manner. For
this section and its subsections we use the term body of
an equation for terms which are strictly speaking incom-
plete bodies: They contain only the name of the equation
instead of complete recursive calls including substitution
terms at recursion positions. For example, we refer to
the term if (empty(x), [],cons(hd(last(hd(x))), lasts)) as the
body for equation lasts of the lasts RPS (see Tab. 3). The
reason is, that we infer the complete body in two steps:
First the term which we name body in this context, second
the substitution terms for the recursive calls.

Generalization of a set of initial terms to an RPS is done in
three successive steps, namely segmentation of the terms,
construction of equation bodies and calculation of substi-
tution terms. These three generalization steps are orga-
nized in a divide-and-conquer algorithm, where backtrack-
ing can occur to the divide-phase. Segmentation consti-
tutes the divide-phase which proceeds top-down through
the initial terms. Within this phase recursion positions (see
Def. 3) and positions indicating further recursive equations
are searched for each induced equation. The latter set of

positions is called subscheme positions (see Def. 6 below).
Found recursion positions imply unfolding positions (see
Def. 4). As result of the divide-phase the initial terms are
divided into several parts by the subscheme positions, such
that—roughly speaking—each particular part is assumed to
be an unfolding of one recursive equation. Furthermore, the
particular parts are segmented by the unfolding positions,
such that—roughly speaking—each segment is assumed to
be the result of one unfolding step of the respective recur-
sive equation.

Consider the initial tree in Fig. 2, it represents the initial
term for lasts, shown in Tab. 2. The curved lines on the
path to the rightmost Ω divide the tree into three segments
which correspond to unfolding steps of the main equation,
i.e. equation lasts. The short broad lines denote three sub-
trees which are—except of their root hd—unfoldings of the
last equation. The curved lines within these subtrees divide
each subtree into segments, such that each segment corre-
spond to one unfolding step of the last equation.

When the initial trees are segmented, calculation of
equation bodies and of substitution terms follows within
the conquer-phase. These two steps proceed bottom-up
through the divided initial trees and reduce the trees dur-
ing this process. The effect is, that bodies and substitution
terms for each equation are calculated from trees which
are unfoldings of only the currently induced equation and
hence, each segment in these trees is an instantiation of the
body of the currently induced equation. E.g., for the lasts
tree shown in Fig. 2, a body and substitution terms are first
calculated from the three subtrees, i.e. for the last equa-
tion. Since there are no further recursive equations called
by the last equation—i.e. the segments of the three sub-
trees contain themselves no subtrees which are unfoldings
of further equations—each segment is an instantiation of
the body of the last equation. When this equation is com-
pletely inferred, the three subtrees are replaced by suitable
instantiations of the head of the inferred last equation. The
resulting reduced tree is an unfolding of merely one recur-
sive equation, the lasts equation. The three segments in
this reduced tree—indicated by the curved lines on the path
to the rightmost Ω—are instantiations of the body of the
searched for lasts equation. From this reduced tree, body
and substitution terms for the lasts equation are induced
and the RPS is completely induced.

Segmentations are searched for, whereas calculation of
bodies and substitution terms are algorithmic. Construction
of bodies always succeeds, whereas calculation of substitu-
tion terms—such that the inferred RPS explains the initial
terms—may fail. Thus, an inferred RPS can be seen as the
result of a search through a hypothesis space where the hy-
potheses are segmentations (divide-phase), and a construc-
tive goal test, including construction of bodies and calcu-

20

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

hd

x

tl

tl

tl

x

tl

x

tl

hd

x

tl

hd

x

tl

x

hd

x

tl

x

hd

x

tl

x

tl

[]

[]empty

tl

x

hd

tl

empty

tl

empty

x

tl

tl

tl tl

empty

tl

hd

x

[]empty

[]empty

empty

x

empty

tl

hd

tl

empty

tl

hd

tl

hd

tl

cons

hd

if

if

Omega

Omega

if

if

cons

if

cons

if

if

Omega

hd

if

Omega

hd

if

Figure 2. Initial Tree for lasts

lation of substitution terms (conquer-phase), which tests,
whether the completely inferred RPS explains the initial
terms (and is substitution unique regarding them). In the
following we describe each step in more detail:

3.4.1. SEGMENTATION

When induction of an RPS from a set of initial trees I

starts, the hypothesis is, that there exists an RPS with a re-
cursive main equation which explains I . First, recursion
and subscheme positions for the hypothetical main equa-
tion Gm are searched for.

Definition 6 (Subscheme Positions). Subscheme posi-
tions are all smallest positions in the body of a recursive
equation G which denote subterms, in which calls of fur-
ther recursive equations from the RPS appear, but no re-
cursive call of equation G.

E.g., the only subscheme position of equation lasts of the
lasts RPS (Tab. 3) is u = 31. A priori, only particular posi-
tions from the initial trees come into question as recursion
and subscheme positions, namely those which belong to a
path leading from the root to an Ω. The reason is, that
eventually each head of a recursive equation at any unfold-
ing position in an intermediate term while unfolding this
equation is rewritten with an Ω:

Lemma 1 (Recursion and Subscheme Positions imply
Ωs). Let t̄ ∈ TΣ,Ω be an (incomplete) unfolding of an RPS
S = (G ,m) with a recursive main equation Gm. Let R, U
and S be the sets of recursion, unfolding and subscheme
positions of Gm respectively. Then for all u ∈ U ∩ pos(t̄)
holds:

1. pos(t̄|u,Ω) 6= /0

2. ∀s ∈ S : if us ∈ pos(t̄) then pos(t̄|us,Ω) 6= /0

It is not very difficult to see that this lemma holds. For
a lack of space we do not give the proof here. It can be
found in (Kitzelmann, 2003) where Lem. 1 and Lem. 2 are
proven as one lemma. Knowing Lem. 1, before search
starts, the initial trees can be reduced to their skeletons
which are terms resulting from replacing subtrees without
Ωs with variables.

Definition 7 (Skeleton). The skeleton of a term t ∈
TΣ,Ω(X), written skeleton(t) is the minimal pattern of t for
which holds pos(t,Ω) = pos(skeleton(t),Ω).

For example, consider the subtree indicated by the leftmost
short broad line of the tree in Fig. 2. Omitting the root
hd, it is an unfolding of the last equation of the lasts RPS
shown in Tab. 3. Its skeleton is the substantially reduced
term if (x1,x2, if (x3,x4, if (x5,x6,Ω))). Search for recursion
and subscheme positions is done on the skeletons of the
original initial trees. Thereby the hypothesis space is sub-
stantially narrowed without restricting the hypothesis lan-
guage, since only those hypotheses are ruled out which are
a priori known to fail the goal test.

Ωs are not only implied by recursion and subscheme posi-
tions, but also imply Ωs recursion and subscheme positions
since Ωs in unfoldings result only from rewriting an instan-
tiated head of a recursive equation in a term with an Ω:

Lemma 2 (Ωs imply recursion and subscheme posi-
tions). Let t̄ ∈ TΣ,Ω be an (incomplete) unfolding of an RPS
S = (G ,m) with a recursive main equation Gm. Let R, U

21

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

and S be the sets of recursion, unfolding and subscheme po-
sitions of Gm respectively. Then for all v ∈ pos(t̄,Ω) hold

• It exists an u ∈U ∩pos(t̄),r ∈ R with u≤ v < ur or

• it exists an u ∈U ∩pos(t̄),s ∈ S with us≤ v.

Proof: in (Kitzelmann, 2003).

From the definition of subscheme positions and the pre-
vious lemma follows, that subscheme positions are deter-
mined, if a set of recursion positions has been fixed. Lem. 1
restricts the set of positions which come into question as
recursion and subscheme positions. Lem. 2 together with
characteristics from subscheme positions suggests to or-
ganize the search as a search for recursion positions with
a depending parallel calculation of subscheme positions.
When hypothetical recursion, unfolding, and subscheme
positions are determined they are checked regarding the la-
bels in the initial trees on pathes leading to Ωs. The nodes
between one unfolding position and its successors in un-
foldings result from the same body (with different instanti-
ations). Since variable instantiations only occur in subtrees
at positions not belonging to pathes leading to Ωs, for each
unfolding position the nodes between it and its successors
are necessarily equal:

Lemma 3 (Valid Segmentation). Let t̄ ∈ TΣ,Ω be an un-
folding of an RPS S = (G ,m) with a recursive main
equation Gm. Then it exists a term ťG ∈ TΣ,Ω(X) with
pos(ťG,Ω) = R∪ S such that for all u ∈ U ∩ pos(t̄) hold:
ťG ≤Ω t̄|u where ≤Ω is defined as (a) Ω≤Ω t if pos(t,Ω) 6=
/0, (b) x ≤Ω t if x ∈ X and pos(t,Ω) = /0, and (c)
f (t1, . . . , tn)≤Ω f (t ′1, . . . , t

′
n) if ti ≤Ω t ′i for all i ∈ [1;n].

Proof: in (Kitzelmann, 2003).

This lemma has to be slightly extended, if one allows for
initial trees which are incomplete unfoldings. Lem. 3 states
the requirements to assumed recursion and subscheme po-
sitions which can be assured at segmentation time. They
are necessary for an RPS which explains the initial terms,
yet not sufficient to assure, that an RPS complying with
them exists which explains the initial trees. That is, later a
backtrack can occur to search for other sets of recursion and
subscheme positions. If found recursion and subscheme
positions R and S comply with the stated requirements, we
call the pair (R, S) a valid segmentation.

In our implemented system the search for recursion posi-
tions is organized as a greedy search through the space of
sets of positions in the skeletons of the initial trees. When
a valid segmentation has been found, compositions of un-
folding and subscheme positions denote subtrees in the
initial trees assumed to be unfoldings of further recursive
equations. Segmentation proceeds recursively on each set

of (sub)trees denoted by compositions of unfolding posi-
tions and one subscheme position s ∈ S. We denote such a
set of initial (sub)trees Is.

3.4.2. CONSTRUCTION OF EQUATION BODIES

Construction of each equation body starts with a set of ini-
tial trees I for which at segmentation time a valid segmen-
tation (R, S) has been found, and an already inferred RPS
for each subscheme position s ∈ S which explains the sub-
trees Is. These subtrees of the trees in I are replaced by
the suitably instantiated heads or respectively bodies of the
main equations of the already inferred RPSs. For example,
consider the initial tree for lasts shown in Fig. 2. When cal-
culation of a body for the main equation lasts starts from
this tree, an RPS containing only the last equation which
explains all three subtrees indicated by the short broad lines
has already been inferred. The initial tree is reduced by
replacing these three subtrees by suitable instantiations of
the head of the last equation. We denote the set of reduced
initial trees also with I and its elements also with t̄. By re-
ducing the initial trees based on already inferred recursive
equations, the problem of inducing a set of recursive equa-
tions is reduced to the problem of inducing merely one re-
cursive equation (where the recursion positions are already
known from segmentation).

An equation body is induced from the segments of an initial
tree which is assumed to be an unfolding of one recursive
equation.

Definition 8 (Segments). Let be t̄ an initial tree, R a set of
(hypothetical) recursion positions and U the corresponding
set of unfolding positions. The set of complete segments of
t̄ is defined as: {t̄|u[R← G] | u ∈U ∩pos(t̄),R⊂ t̄|u}

For example, consider the subtree indicated by the leftmost
short broad line of the initial tree in Fig. 2 without its root
hd. It is an unfolding of the last equation as stated in Tab. 3.
When the only recursion position 3 has been found it can be
splitted into three segments, indicated by the curved lines:

1. if(empty(tl(hd(x))),hd(x),G)

2. if(empty(tl(tl(hd(x)))), tl(hd(x)),G)

3. if(empty(tl(tl(tl(hd(x))))), tl(tl(hd(x))),G)

Expressed according to segments, the fact of a repetitive
pattern between unfolding positions (see Lem. 3) becomes
the fact, that the sequences of nodes between the root and
each G are equal for each segment. Each segment is an in-
stantiation of the body of the currently induced equation.
In general, the body of an equation contains other nodes
among those between its root and the recursive calls. These
further nodes are also equal in each segment. Differences
in segments of unfoldings of a recursive equation can only

22

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

result from different instantiations of the variables of the
body. Thus, for inducing the body of an equation from seg-
ments, we assume each position in the segments which is
equally labeled in all segments as belonging to the body of
the assumed equation, but each position which is variably
labeled in at least two segments as belonging to the instan-
tiation of a variable. This assumption can be seen as an in-
ductive bias since it might occur, that also positions which
are equal over all segments belong to a variable instanti-
ation. Nevertheless it holds, that if an RPS exists which
explains a set of initial trees, then it also exists an RPS
which explains the initial trees and is constructed based on
the stated assumption. Based on the stated assumption, the
body of the equation to be induced is determined by the
segments and defined as follows:

Definition 9 (Valid Body). Given a set of reduced initial
trees, the most specific maximal pattern of all segments of
all the trees is called valid body and denoted t̂G.

The maximal pattern of a set of terms can be calculated by
first order anti-unification (Plotkin, 1969).

Calculating a valid body regarding the three segments enu-
merated above results in the term if (empty(tl(x)),x,G).
The different subterms of the segments are assumed to
be instantiations of the parameters in the calculated valid
body. Since each segment corresponds to one unique un-
folding position, instantiations of parameters in unfoldings
as defined in Def. 5 are now given. E.g., from the three
segments enumerated above we obtain:

1. βε(x) = hd(x)

2. β3(x) = tl(hd(x))

3. β33(x) = tl(tl(hd(x)))

3.4.3. INDUCING SUBSTITUTION TERMS

Induction of substitution terms for a recursive equation
starts on a set of reduced initial trees which are assumed
to be unfoldings of one recursive equation, an already in-
ferred (incomplete) equation body which contains only a
G at recursion positions, and variable instantiations in un-
foldings according to Def. 5. The goal is to complete each
occurence of G to a recursive call including substitution
terms for the parameters of the recursive equation.

The following lemma follows from Def. 5 and states char-
acteristics of parameter instantiations in unfoldings more
detailed. It characterizes the instantiations in unfoldings
against the substitution terms of a recursive equation con-
sidering each single position in them.

Lemma 4 (Instantiations in Unfoldings). Let be
G(x1, . . . ,xα(G)) = t a recursive equation with parameters
X = {x1, . . . ,xα(G)}, recursion positions R and unfolding

positions U, β : X → TΣ an instantiation, σ r substitution
terms for each r ∈ R and βu instantiations as defined in
Def. 5 for each u ∈ U. Then for all i, j ∈ [1;α(G)] and
positions v hold:

1. If (xi σ r)|v = x j then for all u ∈U hold (xiβur)|v = x jβu.

2. If (xi σ r)|v = f ((xi σ r)|v1, . . . ,(xi σ r)|vn), f ∈ Σ,α(f) = n
then for all u ∈U hold node(xiβur,v) = f .

We can read the implications stated in the lemma in the
inverted direction and thus we get almost immediately an
algorithm to calculate the substitution terms of the searched
for equation from the known instantiations in unfoldings.

One interesting case is the following: Suppose a recursive
equation, in which at least one of its parameters only occurs
within a recursive call in its body, for example the equa-
tion G(x,y,z) = if (zerop(x),y,+(x,G(prev(x),z,succ(y))))
in which this is the case for parameter z1. For such a vari-
able no instantiations in unfoldings are given when induc-
tion of substitution terms starts. Also such variables are
not contained in the (incomplete) valid equation body. Our
generalizer introduces them each time, when none of the
both implications of Lem. 4 hold. Then it is assumed,
that the currently induced substitution term contains such
a “hidden” variable at the current position. Based on this
assumption the instantiations in unfoldings of the hidden
variable can be calculated and the inference of subtitution
terms for it proceeds as described for the other parameters.

When substitution terms have been found, it has to be
checked, whether they are substitution unique with regard
to the reduced initial terms. This can be done for each sub-
stitution term that was found separately.

3.4.4. INDUCING AN RPS

We have to consider two further points: The first point is
that segmentation presupposes the initial trees to be ex-
plainable by an RPS with a recursive main equation. Yet
in Sec. 3.3 we characterized the inferable RPSs as liberal
in this point, i.e. that also RPSs with a non-recursive main
equation are inferable. In such a case, the initial trees con-
tain a constant (not repetitive) part at the root such that no
recursion positions can be found for these trees (as for ex-
ample the three subtrees indicated by the short broad lines
in Fig. 2 which contain the constant root hd). In this case,
the root node of the trees is assumed to belong to the body
of a non-recursive main equation and induction of RPSs
recursively proceeds at each subtree of the root nodes.

The second point is that RPSs explaining the subtrees
which are assumed to be unfoldings of further recursive
equations at segmentation time are already inferred. Based

1A practical example is the Tower of Hanoi problem

23

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

on these already inferred RPSs, the initial trees are reduced
and then a body and substitution terms are induced. Cal-
culation of a body always succeeds, whereas calculation
of substitution terms may fail. One important question is,
whether success of calculating substitution terms depends
on the already inferred RPSs. Is the (problematic) case
possible, that two different sets of RPSs both explain the
subtrees which will be replaced, such that calculation of
substitution terms from the reduced initial trees succeeds
presupposed one particular set of RPSs, but fails for the
other set? Fortunately we could prove, that this is not pos-
sible. If a set of RPSs explaining the subtrees exists such
that substitution terms can be calculated, then substitution
terms can be calculated pressuposed any set of RPSs ex-
plaining the subtrees. Thus, inducing RPSs for the subtrees
can be dealt with as an independent problem as it is done
in our divide-and-conquer approach.

4. Generating an Initial Term

Our theory and prototypical implementation for the first
synthesis step uses the datatype List, defined as follows:
The empty list [] is an (α-)list and if a is in element of type
α and l is an α-list, then cons(a, l) is an α-list. Lists may
contain lists, i.e. α may be of type List α ′.

4.1. Characterization of the Approach

The constructed initial terms are composed from the list
constructor functions [],cons, the functions for decompos-
ing lists hd, tl, the predicate empty testing for the empty list,
one variable x, the 3ary (non-strict) conditional function if
as control structure, and the bottom constant Ω meaning
undefined. Similar to Summers (1977), the set of functions
used in our term construction approach implies the restric-
tion of induced programs to solve structural list programs.
An extension to Summers is that we allow the example in-
puts to be partially ordered instead of only totally ordered.
This is related to the extension of inducing sets of recur-
sive equations as described in Sec. 3 instead of only one
recursive equation.

We say that an initial term explains I/O-examples, if it eval-
uates to the specified output when applied to the respective
input or to undefined. The goal of the first synthesis step
is to construct an initial term which explains a set of I/O-
examples and which can be explained by an RPS.

4.2. Basic Concepts

Definition 10 (Subexpressions). The set of subexpres-
sions of a list l is defined to be the smallest set which in-
cludes l itself and, if l has the form cons(a, l ′), all subex-
pressions of a and of l′. If a is an atom, then a itself is its
only subexpression.

Since hd and tl—which are defined by hd(cons(a, l)) =
a and tl(cons(a, l)) = l—decompose lists uniquely, each
subexpression can be associated with the unique term
which computes the subexpression from the original list.
E.g., consider the following I/O-pair which is the third one
from Tab. 1: [[a,b]] 7→ [b]. The set of all subexpressions
of the input list [[a,b]] together with their associated terms
is: {x = [[a,b]], hd(x) = [a,b], tl(x) = [], hd(hd(x)) =
a, tl(hd(x)) = [b], hd(tl(hd(x))) = b, tl(tl(hd(x))) = []}.

Since lists are uniquely constructed by the constructor
functions [] and cons, traces which compute the specified
output can uniquely be constructed from the terms for the
subexpressions of the respective input:

Definition 11 (Construction of Traces). Let i 7→ o be an
I/O-pair (i is a list). If o is a subexpression of i, then the
trace is defined to be the term associated with o. Otherwise
o has the form cons(a, l). Let t and t ′ be the traces for the
I/O-pairs i 7→ a and i 7→ l respectively. The the trace for
i 7→ o is defined to be the term cons(t, t ′).

E.g., the trace for computing the output [b] from its input
[[a,b]] is the term cons(hd(tl(hd(x))), []).

Similar to Summers, we discriminate the inputs with re-
spect to their structure, more precisely wrt a partial order
over them implied by their structural complexity. As stated
above, we allow for arbitrarily nested lists as inputs. A par-
tial order over such lists is given by: []≤ l for all lists l and
cons(a, l)≤ cons(a′, l′), iff l ≤ l′ and, if a and a′ are again
lists, a≤ a′.

Consider any unfolding of an RPS. Generally it holds, that
greater positions on a path leading to an Ω result from more
rewritings of a head of a recursive equation with its body
compared to some smaller position. In other words, the
computation represented by a node at a greater position is
one on a deeper recursion level than a computation repre-
sented by a smaller position. Since we use only the com-
plexity of an input list as criterion whether the recursion
stops or whether another call appears with the input de-
composed in some way, deeper recursions result from more
complex inputs in the induced programs.

4.3. Solving the Term Construction Problem

The overall concept of constructing the initial tree is to in-
troduce the nodes from the traces position by position to
the initial tree as long as the traces are equal and to in-
troduce an if -expression as soon as at least two (sub)traces
differ. The predicate in the if -expression divides the in-
puts into two sets. The “then”-subtree is recursively con-
structed from the input/trace-pairs whose inputs evaluate
to true with the predicate and the “else”-subtree is recur-
sively constructed from the other input/trace-pairs. Even-
tually only one single input/trace-pair remains when an if -

24

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

expression is introduced. In this case an Ω indicating a re-
cursive call on this path is introduced as leaf at the current
position in the initial term and (this subtree of) the initial
tree is finished. The reason for introducing an Ω in this case
is, that we assume, that if the input/trace-set would contain
a pair with a more complex input, than the respective trace
would at some position differ from the remaining trace and
thus it would imply an if -expression, i.e. a recursive call
at some deeper position. Since we do not know the posi-
tion at which this difference would occur, we can not use
this single trace, but have to indicate a recursive call on this
path by an Ω. Thus, for principal reasons, the constructed
initial terms are undefined for the most complex inputs of
the example set.

We now consider the both cases that all roots of the traces
are equal and that they differ respectively more detailed.

4.3.1. EQUAL ROOTS

Suppose all generated traces have the same root symbol. In
this case, this symbol constitutes the root of the initial tree.
Subsequently the sub(initial)trees are calculated through a
recursive call to the algorithm. Suppose the initial tree has
to explain the I/O-examples {[a] 7→ a, [a,b] 7→ b, [a,b,c] 7→
c}. Calculating the traces and replacing them for the
outputs yields the input/trace-set {[a] 7→ hd(x), [a,b] 7→
hd(tl(x)), [a,b,c] 7→ hd(tl(tl(x)))}. All three traces have
the same root hd, thus we construct the root of the initial
tree with this symbol. The algorithm for constructing the
initial subterm of the constructed root hd now starts recu-
sively on the set of input/trace-pairs where the traces are
the subterms of the roots hd from the three original traces,
i.e. on the set {[a] 7→ x, [a,b] 7→ tl(x), [a,b,c] 7→ tl(tl(x))}.

The traces from these new input/trace-set have different
roots, that is, an if -expression is introduced as subtree of
the constructed initial tree.

4.3.2. INTRODUCING CONTROL STRUCTURE

Suppose the traces (at least two of them) have different
roots, as for example the traces of the second input/trace-
set in the previous subsection. That means that the initial
term has to apply different computations to the inputs cor-
responding to the different traces. This is done by intro-
ducing the conditional function if , i.e. the root of the ini-
tial term becomes the function symbol if and contains from
left to right three subtrees: First, a predicate term with the
predicate empty as root to distinguish between the inputs
which have to be computed differently wrt their complex-
ity; second, a tree explaining all I/O-pairs whose inputs are
evaluated to true from the predicate term; third, a tree ex-
plaining the remaining I/O-examples. It is presupposed,
that all traces corresponding to inputs evaluating to true
with the predicate are equal. These equal subtraces be-

come the second subtree of the if -expression, i.e. they are
evaluated, if an input evaluates to true with the predicate.
That means that never an Ω occurs in a “then”-subtree of
a constructed initial tree, i.e. that recursive calls in the in-
duced RPSs may only occur in the “else”-subtrees. For the
“else”-subtree the algorithm is recursively processed on all
remaining input/trace-pairs.

5. Experimental Results

We have implemented prototypes (without any thoughts
about efficiency) for both described steps, construction of
the initial tree and generalization to an RPS. The imple-
mentations are in Common-Lisp. In Tab. 4 we have listed
experimental results for a few sample problems. The first
column lists the names for the induced functions, the sec-
ond column lists the number of given I/O-pairs, the third
column lists the number of induced equations, and the
fourth column lists the times consumed by the first step,
the second step, and the total time respectively. The exper-
iments were performed on a Pentium 4 with Linux and the
program runs are interpreted with the clisp interpreter.

Table 4. Some inferred functions
function #expl #eqs times in sec
last 4 2 .003 / .001 / .004
init 4 1 .004 / .002 / .006
evenpos 7 2 .01 / .004 / .014
switch 6 1 .012 / .004 / .016
unpack 4 1 .003 / .002 / .005
lasts 10 2 .032 / .032 / .064
mult-lasts 11 3 .04 / .49 / .53
reverse 6 4 .031 / .036 / .067

All induced programs compute the intended function. The
number of given examples is in each case the minimal one.
When given one example less, the system does not produce
an unintended program, but produces no program. Indeed,
an initial term is produced in such a case which is correct on
the example set, but no RPS is generalized, because it exists
no RPS which explains the initial term and is substitution
unique wrt it (see Sec. 3.3).

last computes the last element of a list. The main equa-
tion is not recursive and only applies a hd to the result of
the induced recursive equation which computes a one ele-
ment list containing the last element of the input list. init
returns the input list without the last element. evenpos com-
putes a list containing each second element of the input list.
The main equation is not recursive and only deals with the
empty input list as special case. switch returns a list, in
which each two successive elements of the input list are on
switched positions, e.g., switch([a,b,c,d,e]) = [b,a,d,c,e].
unpack produces an output list, in which each element

25

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

from the input list is encapsulated in a one element list,
e.g., unpack([a,b,c]) = [[a], [b], [c]]. unpack is the clas-
sical example in (Summers, 1977). lasts is the program
described in Sec. 2. The given I/O-examples are those
from Tab. 1. mult-lasts takes a list of lists as input just
like lasts. It returns a list of the same structure as the input
list where each inner list contains repeatedly the last ele-
ment of the corresponding inner list from the input. For ex-
ample, mult-lasts([[a,b], [c,d,e], [f]]) = [[b,b], [e,e,e], [f]].
All three induced equations are recursive. The third equa-
tion computes a one element list containing the last element
of an input list. The second equation utilizes the third equa-
tion and returns a list of the same structure as a given input
list where the elements of the input list are replaced by the
last element. The first equation utilizes the second equation
to compute the inner lists. Finally reverse reverses a list.
The induced program has an unusual form, nevertheless it
is correct.

6. Conclusion and Further Research

We presented an EBG approach to inducing sets of re-
cursive equations representing functional programs from
I/O-examples. The underlying methodologies are inspired
by classical approaches to induction of functional Lisp-
programs, particularly by the approach of Summers (1977).
The presented approach goes in three main aspects beyond
Summers’ approach: Sets of recursive equations can be in-
duced at once instead of only one recursive equation, each
equation may contain more than one recursive call, and ad-
ditionally needed parameters are introduced systematically.
We have implemented prototypes for both steps. The gen-
eralizer works domain-independent and all problems which
comply to our general program scheme (Def. 1) with the
restrictions described in Sec. 3.3 can be solved, whereas
construction of initial terms as described in Sec. 4 relies on
knowledge of datatypes.

We are investigating several extensions for the first synthe-
sis step: First, we try to integrate knowledge about further
datatypes such as trees and natural numbers. For example,
we believe, that if we introduce zero and succ, denoting
the natural number 0 and the successor function resp. as
constructors for natural numbers, prev for “decomposing”
natural numbers and the predicate zerop as bottom test on
natural numbers, then it should be possible to induce a pro-
gram returning the length of a list for example. Another
extension will be to allow for more than one input parame-
ter in the I/O-examples, such that append becomes induca-
ble for example. A third extension should be the ability to
utilize user-defined or in a previous step induced functions
within an induction step.

Until now our approach suffers from the restriction to struc-
tural problems due to the principal approach to calculate

traces deterministically without search in the first synthe-
sis step. We work on overcoming this restriction, i.e. on
extending the first synthesis step to the ability of dealing
with problems which are not (only) structural, list sorting
for example. A strong extension to the second step would
be the ability to deal with nested recursive calls, yet this
would imply a much more complex structural analysis on
the initial terms.

References
Biermann, A. W., Guiho, G., & Kodratoff, Y. (Eds.). (1984). Au-

tomatic program construction techniques. Collier Macmillan.

Dershowitz, N., & Jouanaud, J.-P. (1990). Rewrite systems. In
J. Leeuwen (Ed.), Handbook of theoretical computer science,
vol. B. Elsevier.

Flener, P., & Partridge, D. (2001). Inductive programming. Au-
tom. Softw. Eng., 8, 131–137.

Flener, P., & Yilmaz, S. (1999). Inductive synthesis of recursive
logic programs: Achievements and prospects. Journal of Logic
Programming, 41, 141–195.

Kitzelmann, E. (2003). Inductive functional program synthesis – a
term-construction and folding approach. Master’s thesis, Dept.
of Computer Science, TU Berlin. http://www.cogsys.wiai.uni-
bamberg.de/kitzelmann/documents/thesis.ps.

Lowry, M. L., & McCarthy, R. D. (1991). Autmatic software de-
sign. Cambridge, Mass.: MIT Press.

Muggleton, S., & De Raedt, L. (1994). Inductive logic program-
ming: Theory and methods. Journal of Logic Programming,
Special Issue on 10 Years of Logic Programming, 19-20, 629–
679.

Olsson, R. (1995). Inductive functional programming using in-
cremental program transformation. Artificial Intelligence, 74,
55–8.

Plotkin, G. D. (1969). A note on inductive generalization. In
Machine intelligence, vol. 5, 153–163. Edinburgh University
Press.

Rao, M. R. K. K. (2004). Inductive inference of term rewriting
systems from positive data. ALT (pp. 69–82).

Schmid, U., & Wysotzki, F. (2000). Applying inductive pro-
gramm synthesis to macro learning. Proc. 5th International
Conference on Artificial Intelligence Planning and Scheduling
(AIPS 2000) (pp. 371–378). AAAI Press.

Summers, P. D. (1977). A methodology for LISP program con-
struction from examples. Journal ACM, 24, 162–175.

Wysotzki, F., & Schmid, U. (2001). Synthesis of recursive pro-
grams from finite examples by detection of macro-functions
(Technical Report 01-2). Dept. of Computer Science, TU
Berlin, Germany.

26

���������
	���
�����������
�	�����
������������� !
"���$#%�'&
()�*	�+,���.-0/����21���
����
() ��
34��#65$1���(7��
����,(8�
+:9;	�#65$��(7��	��

<>=@?BADCFEHG*IKJML*EBNOIPG*QSR7TVU@=@U@I�CFEHG*IKJML*EBNPI WYX7Z\[^]_*`\ZHacb dPX�egfhei]�jlk�mn]haco pqpqrnr*o mHs
tvuxwzy|{ y|}Ky|~c���n���l���P}Ky"�Yy|{ �lux���B���Yy|�P~2�>�Yy|{i�2w*��ux�8���Yy|�P~2�>�Yy|{i�2���K�7~2�l�P�B�Kw�{i�2w*�K�D���7�n�Y�!�q�*�\���B�|~2uhy|{ ~2�Y�P���P�Y���Y�l�hw�{ �P{ �"w��n�
�l�l l l¡l P�B�¢}xw|w�{i�

£¥¤7¦l§K¨P©�ªH§
«¬�P{iw®­c�l�|���K~qw|���|{ �H~qw®��uP~2­¯���P�P�|�h�l�"�$�°�l�®y|�P~
w��Buhy|�P~qw�{iw®���¢��� ±l�l�|{ y|�P�>w7�x�lw�~q�²�luD±l{ �l~2u²y|~2��³
�P�i�Yy|~qw8��ux�´�
w�~�y8���¬{ uP�P}Ky�³µ�l}Ky|�P}Ky��x��{ �"w7}xw�{ uP±
~2�l�l� }Ky|{ �lux���|�����l���P}Ky"�Yy|{ �luM��«¬�P~��P�|~qw�~2uhy|~q�>��� ³
±l�l�|{ y|�P�¶���¢~2�l�l� }Ky|{ �lux���|�²w��Buhy|�P~qw�{iw){ uhy|~2±l�"�Yy|~qw
y|�P~®�l�K�Y��uhy"��±l~qw����My|�P~�±l~2uP~�y|{i����� ±l�l�|{ y|�P�>w���ux�
±l~2uP~�y|{i�c�P�|�l±l�"������{ uP±®��ux��­¬�lw����P�P� { ~q���°�l�!��}K³
y|�l�>�Yy|{i�2��� � �>�|~q�K{iw|���Y�l~2�|����ux���K{iw|���Y�l~2�|������w�~2�h³
~2�"���H���l���P}Ky"�Yy|{ �lux���·�K���l���P{ ux�Yy|�l�|{i���x��ux�>±l�"���P�
��� ±l�l�|{ y|�P�>w2�

¸�¹®ºh» §K¨P¼¢½�¾�ªH§P¿z¼ »
tvu)y|�P{iwM­c�l�|��y|�P~��P�|�l�P� ~2�À���Pw��Buhy|�P~qw�{iwM���P��u8��� ±l�l�|{ y|�P��Á
{iwc���luxw�{i�K~2�|~q���lw��8�P�|�l�P� ~2�4���\w�~q���"�"�P{ uP±)�°�l��y|�P~��x���"����³
~�y|~2�"w!��ux���°}Pux��y|{ �luxw!���Hy|�P~�±l{ �l~2u�y|~2���P�i�Yy|~�ÂO���M��u>��� ±l��³
�|{ y|�P�Ã­¢{ y|��y|�P~¬��{ �Ã���x�l�Ky|{ ��{ Äq�Yy|{ �lu����H��±l{ �l~2u8�l�KÅz~q��y|{ �l~
�°}Pux��y|{ �lu
ÆF�"�x���"�l��y|~2�|{ Ä2~q�>�lwc��Çh}x��� { yz�>���My|�P~®��� ±l�l�|{ y|�P�
Á8�%«¬�P~;y|~2���P�i�Yy|~�È@w��l~2� ~�y|�luÉÈµ���l� ~l�
Êq¡lËl¡PÌ��${ �|~2uP�l�Y�
Í �${ �|~2uP�l�Y�Y�P��Êq¡l¡l�hÎ��c�K~qw�{ ±luO�x�Yy�y|~2�|uÃÈ·�®�����>�D~�y����·� �
Êq¡l¡�ÏBÎ�Î�{iw®���x���"����~�y|~2�|{ Ä2~q�����luhy|�|�l��wzy|�|}x��y|}P�|~�����y|�P~>��� ³
±l�l�|{ y|�P�
��«¬�P~�y|~2���P�i�Yy|~>�K~qw|���|{ �H~qw®�
w|�2��uPuP{ uP±��l�"�K~2�7���
�P�Yy"�>wzy|�|}x��y|}P�|~qw¬���*y|�P~8��� ±l�l�|{ y|�P�É��ux�
�K~�ÐxuP~qw¬y|�P~����l��³
�P}Ky"�Yy|{ �lux���B�K�Bux����{i�2w*���Ky|�P~¬��� ±l�l�|{ y|�P��{ u�w��x�l��~�³·y|{ ��~c����³
�l�"�K{ ux�Yy|~qw2�\«¬�P~�y|~2���P�i�Yy|~cÂV���Py|�P~¬��� ±l�l�|{ y|�P��ÁO���luhy"��{ uxw
�x���"����~�y|~2�"w�ÑÓÒ W|ÔnÕlj �MÖ´×Ã P�n­¢�P{i�"�´�K~qw|���|{ �H~�y|�P~��Y��� ³
}P~qw\���x{ uP�P}Ky���ux�)� �K�2���h�Y���|{i���P� ~qw2���x���"����~�y|~2�"w^���Py|�P~¬�P�Yy"�
wzy|�|}x��y|}P�|~qw2�l���luxwzy"��uhy"w!��ux��w��l��~¬�P�|{ ��{ y|{ �l~¢�l�H~2�"�Yy|{ �luxw����
y|�P~���� ±l�l�|{ y|�P�
�®«¬�P~�y|~2���P�i�Yy|~�ÂØ���iw������luhy"��{ uxw7��w�~�y®���
�°}Pux��y|{ �luxw�Èg�°�l�|��}P�i�lw"Î�Æ8Ù.Ò WYÚYÛHj �nÜ;×� P�n���!y|�P~���� ±l��³
�|{ y|�P��Á8�´ÝS�P~2u;±l{ �B{ uP±�y|�P~��Y��� }P~qw����¢y|�P~��x���"����~�y|~2�"w
ÑÓ��ux�²�K~�ÐxuP{ uP±�y|�P~��°}Pux��y|{ �luxw®Æ8Ù.{ u�y|�P~�y|~2���P�i�Yy|~�Â8�
y|�P~7��� ±l�l�|{ y|�P�¯Á�È°Â�Þ|Ñ¬Þ|Æ8ÙÃÎ�{iw!�l�Ky"��{ uP~q�^��«¬�P~��l�KÅz~q��y|{ �l~
�°}Pux��y|{ �lu
ÆF~qwzy|{ �>�Yy|~qwcy|�P~)�K{iw|���|~2�x��ux���>�H~�yz­c~2~2u�y|�P~)�l�K³
w�~2�|�l~q�)�l}Ky|�P}Ky��P�Yy"�����H��� ±l�l�|{ y|�P��ß�àá ÒâÁ�È°Â�Þ|Ñ¬Þ|Æ8ÙÀÞ�ã á Î��ux�²y|�P~�±l{ �l~2u´~�äK�H~q��y|~q�D�Y��� }P~qw8ß á �°�l�)y|�P~�±l{ �l~2u´{ uP�P}Ky
�Y��� }P~qw¢ã á �\Ê8å¥æcåSçè�c«¬�P~®�°}Pux��y|{ �lu�Æ¯���iw���w��P�l}P�i��~qwz³
y|{ �>�Yy|~®y|�P~8���l���P� ~�äK{ yz�����\y|�P~8��� ±l�l�|{ y|�P�ÉÁ�È°Â�Þ|Ñ¬Þ|Æ8ÙÃÎ��
«¬�B}xw2�\�°�l�®y|�P~�±l{ �l~2u´y|~2���P�i�Yy|~�Â4��ux�²y|�P~�±l{ �l~2uD{ uP�P}Ky�³

�l}Ky|�P}Ky��Y��� }P~qw W ã á Þ|ß á j �cÊ$å4æ�å4çè���
�P�|�l�P� ~2�¶������� ³
±l�l�|{ y|�P�é�K{iw|���Y�l~2�|��{iw�y|��Ðxux��y|�P~7�x���"����~�y|~2�"w�Ñ�ê���ux�>y|�
�K~�y|~2�|��{ uP~¬y|�P~¢�°}Pux��y|{ �luxw!Æ8ÙFêc{ u�y|�P~¬y|~2���P�i�Yy|~�Â¥�K~�ÐxuK³
{ uP±����*y|�P~8��� ±l�l�|{ y|�P�ÓÁ ê È°Â�Þ|Ñ ê Þ|Æ8Ù ê Î¬w�}x�"��y|�x�Yy
Æ>È@Á ê È°Â�Þ|Ñ ê Þ|Æ8Ù ê Þ�ã á Î�Î¬å¥Æ>È@Á�È°Â�Þ|Ñ¬Þ|Æ8ÙÀÞ�ã á Î�Î

�°�l����� ��Ê)åOæ!å¥çè�PÑØë$ì�í�îDÈ@Ñ8Î��xÆ8Ùïë
ì�í�îDÈ@Æ8ÙÃÎ��
��w��²w��l� }Ky|{ �luèy|�²y|�P~��P�|�l�P� ~2�
�!��uP~2­éy|~2���P�i�Yy|~�³µ�x�lw�~q�
~2�l�l� }Ky|{ �lux���|�D���P�P�|�h�l�"�V{iw��P�|�l�H�hw�~q�D�°�l�>���l���P}Ky|~2���K{iwz³
���Y�l~2�|�ØÈ@w��Buhy|�P~qw�{iw"Î$������� ±l�l�|{ y|�P�>w$�l�Ky|{ ��{ Ä2{ uP±0�S±l{ �l~2u
�l�KÅz~q��y|{ �l~7�°}Pux��y|{ �luM��«¬�P{iw����P�P�|�h�l�"��{ uhy|~2±l�"�Yy|~qwcy|�P~®y|~2��³
�P�i�Yy|~qw2�P±l~2uP~�y|{i�®��� ±l�l�|{ y|�P�>w®È·�®�7Î)È·�7�l�i�K�H~2�|±x�MÊq¡lËl¡hÎ��B±l~�³
uP~�y|{i�è�P�|�l±l�"������{ uP±ÃÈ·�®�cÎèÈ@ð®�lÄq�P�>Êq¡l¡hñlÎ
��ux���l�Ky"��{ uxw
w��l��~DuP~2­¶�P�|�l�H~2��y|{ ~qw2ò¥���l�|~D���l���P� ~�ä0� �B�l�Ãwzy|�|}x��y|}P�|~
��ux�¥�|~q��}P�"w�{ �luS���®y|�P~´���|~q�Yy|~q�S��� ±l�l�|{ y|�P�>w�y|�x��uâ{ uâ±l~�³
uP~�y|{i���P�|�l±l�"������{ uP±x�q��ux�)w��Buhy|�P~qw�{iw^���KuP~2­´�°}Pux��y|{ �luxw\��ux�
�P�|~q�K{i�2�Yy|~qw�y|�x�Yy$y|�P~V±l~2uP~�y|{i�è��� ±l�l�|{ y|�P�>w
�2��u�uP��y²���|~�³
�Yy|~l�¥«¬�P~qw�~
�P�|�l�H~2��y|{ ~qw�����y|�P~$���P�P�|�h�l�"�O���|~��x�lw�~q�V�lu
y|�P~
�x�l�"�B±l�|�l}Pux�è�BuP�Y­¢� ~q�K±l~
��ux�;±l~2uP~2�"��� { Äq�Yy|{ �luV����y|�P~
~�äK�H~q��y|~q�O��� ±l�l�|{ y|�P�ó��ux�O���P�P� {i�2�Yy|{ �luVÐx~2�i�;{ ux��� }x�K~q�;{ u
y|�P~�y|~2���P�i�Yy|~l�F«¬�P~$y|�"�l�K{ y|{ �lux����±l~2uP~�y|{i�$�P�|�l±l�"������{ uP±
È·�®�cÎ�w�}Kôn~2�"w��°�|�l�¯­c~q���h³µ�|~qwzy|�|{i��y|~q���P� { ux��w�~q���"�"��{ u��B}P±l~
w��x�l��~qw��°�l�7�|~q��� ³µ­c�l�|�i���P�|�l�P� ~2�>w7��ux�$�x�lw�y|�P~��P{ ±l��y|{ ��~
~�ôn�l��y"w2��«¬�P{iw¢­c�l�|�>{ uB�l~qwzy|{ ±h�Yy|~qw�y|�P~)}xw�~)���\y|~2���P�i�Yy|~qw¢���
��� ±l�l�|{ y|�P�>w)y|�´�|~qwzy|�|{i��y�y|�P~
w�~q���"�"�;w��x�l��~�y|�´�l�K��{iw|w�{ �P� ~
���K�K~2�iw¬��ux��wzy|�|}x��y|}P�|~qw�����w��l� }Ky|{ �luxw2� «¬�P{iwc���P�P�|�h�l�"���|~2�K³
�|~qw�~2uhy"w�y|�P~�õx~�äK{ �P� ~���ux�´�K{ �|~q��y®­¬����y|�
{ ux���l�|�H�l�"�Yy|~�~�äB³
�H~2��y��BuP�Y­¢� ~q�K±l~����H�l}Ky!�x���"����~�y|~2�"w2���Y���|{i���P� ~qw2���°}Pux��y|{ �luxw
��ux�;wzy|�|}x��y|}P�|~qw����¢y|�P~��P�|�l�P� ~2�>w�{ uhy|�´�H~2{ uP±D�K~2�l~2� �l�H~q�
���l���P}Ky"�Yy|{ �lu>���K�K~2�iw2��tvu�y|�P~�~�äBy|�|~2��~��2�lw�~qw2�l�lu�y|�P~��luP~
�x��ux�^�x{ �!­c~��K�>uP��y��BuP�Y­Ã��y|~2���P�i�Yy|~�����y|�P~���� ±l�l�|{ y|�P�
�
y|�P{iw����P�P�|�h�l�"�)±l{ �l~qw\}xw\y|�P~�y|�"�l�K{ y|{ �lux���h±l~2uP~�y|{i�!�P�|�l±l�"����³
��{ uP±x�®ö�u
y|�P~���y|�P~2���x��ux�^�H{ �!­c~8�BuP�Y­����°}P� ��wzy|�|}x��y|}P�|~
����y|�P~���� ±l�l�|{ y|�P����ux�´�K�
uP��y8�BuP�Y­F�luP� �´w��l��~��x���"����³
~�y|~2�"w2�¢y|�P{iw����P�P�|�h�l�"�¥±l{ �l~qw�}xw�y|�P~�y|�"�l�K{ y|{ �lux����±l~2uP~�y|{i�
��� ±l�l�|{ y|�P�4�°�l��w�~q���"�"�P{ uP±����*y|�P~)�l�Ky|{ �>���^�x���"����~�y|~2�"w2�
�S�P�"�l��y|{i�2���P���P�P�|�h�l�"��y|�8�)�B�B�P�|{i�>�®�®÷��®�èw�~q���"�"��­¢{ y|�K³
�l}Ky�y|~2���P�i�Yy|~qw���ux�$��}P� y|{ �P� ~)y|�|~2~qw�­¬�lw¢}xw�~q�
{ u;È@��ux�K�|~l�
Êq¡l¡�ÏxÌ���±l}P�l~2u Í�ø }x��uP±x�cÊq¡l¡�ÏxÌ��M~2~l� ø ��� �i��� Í �M}Pux�^�
Êq¡l¡l�hÎ��)«¬�P~��®�Ø�H~2���°�l�|�>w�y|�P~>w�~q���"�"�
y|��Ðxux��y|�P~��|{ ±l�hy

29

�����������
	���	�
�������� �
����� ������� ��
���� ����� 	"!$#�	%�
&'
(�')+*(
(��,����
(��#-�.�0/1
��32�,��%#-���
(�4#��$&456�-�32�� #-�%�
	
�Y��� }P~qw>�°�l��y|�P~²���luxwzy"��uhy"w2�¬­¢�P{ � ~�y|�P~´�®�Ów�~q���"�"�P~qw�y|�P~
w��x�l��~������x���"w�~)y|�|~2~qw2�)«¬�P~��"�P�|�l���hw��l��~8�|~2�P�|~qw�~2uhy"�Yy|{ �lu
���luhy"��{ uxw��H��y|��y|�P~��x���"w�~)y|�|~2~���ux�
y|�P~����luxwzy"��uhy��Y��� }P~qw2�
��ux��y|�P~2�|~����|~��K{ ôn~2�|~2uhy8±l~2uP~�y|{i���l�H~2�"�Yy|�l�"w��°�l�)�>��uP{ �P}K³
�i�Yy|{ uP±�y|�P~��x���"w�~)y|�|~2~qw7��ux�$y|�P~����luxwzy"��uhy"w2�®��uP��y|�P~2�7{ uK³
y|~2�|~qwzy|{ uP±$���P�P�|�h�l�"��{ uSÈµö��iw|w��luM�!Êq¡l¡lËhÎ¢y|��y|�P~�w��Buhy|�P~qw�{iw
����w|��{ ~2uhy|{ ÐH�®��� ±l�l�|{ y|�P�>w¬��ux���P�|�l±l�"���>w�{iw¢�x�lw�~q���lu�~2�l��³
� }Ky|{ �lux���|�����l���P}Ky"�Yy|{ �lu��P}Kyc­¢{ y|�P�l}Ky¬±l~2uP~�y|{i���l�H~2�"�Yy|{ �luxw
��ux��y|~2���P�i�Yy|~qw2�

7¬¹"8:9<;>=�? ©*§ 9$@ ¤�©�¦ 9 ½BA C�¼ ? ¾¢§P¿z¼ » ©�¨(D
£ ?FE ¼!¨x¿v§�G ;IH ¼!¨¥£S¾¢§K¼ ; ©*§P¿�ªKJâ¿�¦Bªn¼<C 9 ¨(D

«¬�P~8��}Ky|�l�>�Yy|{i�®�K{iw|���Y�l~2�|����� ±l�l�|{ y|�P�Ó{iw¬�x�lw�~q���lu�~2�l�l� }K³
y|{ �lux���|�S���l���P}Ky"�Yy|{ �lu0��ux�Sy|�P~Dw�{ ��}P�i�Yy|{ �luâ���8y|�P~Dw�}P��³
�B{ �Y�������
y|�P~0ÐPy�y|~qwzyO{ uÉ�F�H�l�P}P�i�Yy|{ �lué����{ ux�K{ �B{i�K}x���iw2�
~q�l�"�¥�H~2{ uP±è�P�|~qw�~2uhy|~q�O�B�O�D�H�l{ uhy�{ uOy|�P~²w��x�l��~$���)w���³
� }Ky|{ �luxw����)y|�P~´�l�Ky|{ ��{ Äq�Yy|{ �lu0�P�|�l�P� ~2�
�4«¬�P~´{ ux�K{ �B{i�K}K³
���iw����|~$�P�|~qw�~2uhy|~q�¥�B�¥�P�Yy"�èwzy|�|}x��y|}P�|~qwML"NqÜÀ³��"�P�|�l����³
w��l��~qw2�PO��l�"���"�P�|�l���hw��l��~¬���luhy"��{ uxw*}Pux�K~2�"�K~�y|~2�|��{ ux�Yy|~q�
�x���"����~�y|~2�"w ÔnÕ ��ux���°}Pux��y|{ �luxw�Èg�°�l�|��}P�i�lw"Î ÚYÛ ���ny|�P~¢y|~2��³
�P�i�Yy|~lò:L"NqÜâÒ W Ñ¬Þ|Æ8Ù j Ò W|Ô�Q Þ Ô�R Þ�S S S Þ ÔnÕ Ì Ú
Q Þ ÚTR Þ�S S S Þ ÚYÛxj �
ÖnÞ�Ü0×Ø P��«¬�P~qw�~>�x���"����~�y|~2�"w®��ux�²�°}Pux��y|{ �luxw8�K~�y|~2�|��{ uP~
y|�P~��|~qÇh}P{ �|~q����� ±l�l�|{ y|�P�'Á�È°Â�ÞUL"NqÜ\Î��x�lw�~q���lu�y|�P~�±l{ �l~2u
y|~2���P�i�Yy|~)Â���ux��y|�P~8�"�P�|�l���hw��l��~VL"NqÜ��
O��l�"�À�H�l�P}P�i�Yy|{ �luÃ{iw��Sw�~�y²�����"�P�|�l���hw��l��~qwWL"NqÜ4��ux�
�K~�y|~2�|��{ uP~qw��Vw�~�y�������� ±l�l�|{ y|�P�>w�Á�È°Â�ÞUL"NqÜ\Î>±l~2uP~2�"�Yy|~q�
�x�lw�~q���lu�y|�P~®y|~2���P�i�Yy|~)Â8�
«¬�P~>�>��{ uD{i�K~q�
���¬y|�P~��K{iw|���Y�l~2�|����� ±l�l�|{ y|�P�����luxw�{iwzy"w){ u
y|�P~�~2�l�l� }Ky|{ �lux���|�®y|�"��uxwz�°�l�|�>�Yy|{ �luxw��Y�l~2��w�~�y"w����ny|�P~��"�P�|��³
���hw��l��~qw�È°�x���"����~�y|~2�"w���ux�è�°�l�|��}P�i�lw8����y|�P~�y|~2���P�i�Yy|~�Î
�x�lw�~q�
�lu$�>ux�Yy|}P�"���\w�~2� ~q��y|{ �luMòYXYy|�P~�wzy|�|�luP±l~qwzy%X�w�}P�|�B{ �l~l�
tvu��l}P�c�2�lw�~¬y|�P~qw�~�{ ux�K{ �B{i�K}x���iw����|~���� ±l�l�|{ y|�P�>w�±l{ �B{ uP±)y|�P~
�H~qwzy7�H�hw|w�{ �P� ~��Y��� }P~8����y|�P~��l�KÅz~q��y|{ �l~�ÈgÐPy|uP~qw|w"Î¬�°}Pux��y|{ �luM�
tvuDy|�P~���� ±l�l�|{ y|�P� y|�P~�wzy"����y|{ uP±$�H�l{ uhy�{iw)y|�P~�±l~2uP~2�"�Yy|{ �lu
���¬y|�P~�{ uP{ y|{i�����H�l�P}P�i�Yy|{ �luM�$��� ��{ ux�K{ �B{i�K}x���iw8���¬y|�P~��H�l�K³
}P�i�Yy|{ �lu0���|~´���|~q�Yy|~q�â�Yy��"��ux�K�l�
�¢y|�P~´�H~qwzy
{ ux�K{ �B{i�K}x���iw
���|~7w�~2� ~q��y|~q����ux��w|���l~q�^��«\�����|~q�Yy|~�y|�P~7uP~�äByc±l~2uP~2�"�Yy|{ �luM�
uP~2­Ów��l� }Ky|{ �luxw����|~>�°�l�|��~q�´y|�P�|�l}P±l�è±l~2uP~�y|{i�>�l�H~2�"�Yy|{ �luxw
ux����~q�$w�~2� ~q��y|{ �luM�H��}Ky"�Yy|{ �luM�H���|�hw|w��Y�l~2�¢��ux�$�l�P�K{ uP±�uP~2­
~2� ~2��~2uhy"w2�
«¬�P~$�°}Pux��y|{ �lu0Æ ux����~q�S�lw>ÐPy|uP~qw|w>�°}Pux��y|{ �luâ~2�Y��� }x�Yy|~qw
y|�P~�w�}P�'���cÇh}x�l�K�"�Yy|{i�8�K~2�B{i�Yy|{ �luxw������l}Ky|�P}Ky)�P�Yy"�����c��� ³
±l�l�|{ y|�P�'ß�àá ÒFÁ�È°Â�ÞUL"NqÜ�Þ�ã á Î¢�°�|�l� y|�P~�±l{ �l~2u�~�äK�H~q��y|~q��Y��� }P~qw¢ß á �°�l�¬y|�P~)±l{ �l~2u�{ uP�P}Ky��Y��� }P~qw¬ã á �^Ê)åOæ!å¥çèò

ÆÃÒ[Z\
á] Q
È@Á�È°Â�ÞUL"NqÜ�Þ�ã á ÎP^Dß á Î R`_ba È@Á�È°Â�ÞUL"NqÜ\Î�Î�Þ

­¢�P~2�|~ a È@Á�È°Â�ÞUL"NqÜ\Î�Î¢{iw���u$~qwzy|{ �>�Yy|{ �lu$����y|�P~����l���P� ~�äB³
{ yz�����\y|�P~8��� ±l�l�|{ y|�P�ÓÁéÈ@��y|{ ��~®���*~�äK~q��}Ky|{ �luM�x��uB}P���H~2�

���¢{ y|~2�"�Yy|{ �luxw2�������l���P� ~�äK{ yz�´���¬�°�l�|��}P�i�lw"Î��
tvuV�P�"�l��y|{i��~l�
­c~¢}xw�~��)uB}P���H~2�!���^{ y|~2�"�Yy|{ �luxw��°�l��y|�P~�~qwzy|{ �>�Yy|{ �lu>���ny|�P~
���l���P� ~�äK{ yz�è{ uVy|�P~$�2�lw�~����7w��Buhy|�P~qw�{iw�����{ y|~2�"�Yy|{ �l~
��� ±l��³
�|{ y|�P�>w2�x��y|�P~2�|­¢{iw�~)­c~8}xw�~)y|�P~�w�}P� ����uB}P���H~2������uP�K�K~qw
È°� ~2uP±�y|�HÎc���M�°�l�|��}P�i�lw2��«¬�P~®�P}P�|�H�hw�~7���\y|�P~)�K{iw|���Y�l~2�|�>��� ³
±l�l�|{ y|�P�Ó{iwcy|��w�~q���"�"���°�l������{ uP{ ��}P�É����Æ��

c¬¹ JS©*§K©Ø¨ 9�= ¨ 9 ¦ 9\» §K©*§P¿z¼ »
�¬�lw�{i�c�P�Yy"�7wzy|�|}x��y|}P�|~qw\{ u��l}P���P�|�l±l�"���À�|~q��� { Ä2{ uP±�y|�P~c~2�l��³
� }Ky|{ �lux���|����� ±l�l�|{ y|�P�Ó���|~7y|�P~8�"�P�|�l���hw��l��~qw`L"NqÜ��
tvu�y|�P{iw�­c�l�|����uP~2­����P�P�|�h�l�"���°�l�¢�|~2�P�|~qw�~2uhy"�Yy|{ �lu����*y|�P~
�"�P�|�l���hw��l��~qw+L"NqÜ²{iwc�P�|�l�H�hw�~q�^��«¬�P~)�"�P�|�l���hw��l��~dL"NqÜ
{iw��x�lw�~q�
�lu���u�{ uhy|~2±l�"�Yy|{ �lu
������� { uP~q���7wzy|�|}x��y|}P�|~8����y|�P~
�"�P�|�l���hw��l��~��°�l�!�|~2�P�|~qw�~2uhy"�Yy|{ �lu����n�x���"����~�y|~2�"w ÔnÕ È@�lw�{ u
±l~2uP~�y|{i�7��� ±l�l�|{ y|�P�>w7È·�7�l�i�K�H~2�|±x�nÊq¡lËl¡hÎ�Î!��ux������}P� y|{ ³·y|�|~2~
wzy|�|}x��y|}P�|~����hy|�P~��"�P�|�l���hw��l��~*�°�l�M�|~2�P�|~qw�~2uhy"�Yy|{ �lu����B�°}Pux��³
y|{ �luxw�Èg�°�l�|��}P�i�lw"Î ÚYÛ È@�lw�{ u�±l~2uP~�y|{i�¬�P�|�l±l�"������{ uP±�È@ð®�lÄq�P�
Êq¡l¡hñlÎ�Î��¢«¬�P~�� { uP~q���7wzy|�|}x��y|}P�|~8���!���"�P�|�l���hw��l��~){iw�}xw�~q�
�°�l���|~2�P�|~qw�~2uhy"�Yy|{ �lu¥���)y|�P~��°�l� � �Y­¢{ uP±V�x���"����~�y|~2�"w ÔnÕ ���
y|�P~�±l{ �l~2u
y|~2���P�i�Yy|~�Â8òc�Y��� }P~qw����!{ uhy|~2±l~2�7��ux�
�|~q���\�Y���|{ ³
���P� ~qw¢��ux�
���luxwzy"��uhy"w2ÌB�Y��� }P~qw¢���*{ ux�K{i��~qw2�P{ ux���|~2��~2uhy"w¢��ux�
�K~q���|~2��~2uhy"w2Ìhw�{ ±luxw����n�Y���|{i���P� ~qw2��� �l±l{i�¬�l�H~2�"�Yy|{ �luxw���ux���|~�³
�i�Yy|{ �luxw2�Byz�B�H~qw¢���*�|�l}Pux�K{ uP±x�
«¬�P~���}P� y|{ ³·y|�|~2~�wzy|�|}x��y|}P�|~����c���"�P�|�l���hw��l��~8{iw®}xw�~q�$�°�l�
�|~2�P�|~qw�~2uhy"�Yy|{ �lu¥���)y|�P~��°}Pux��y|{ �luxwDÈg�°�l�|��}P�i�lw"Î ÚYÛ ���)y|�P~
±l{ �l~2u�y|~2���P�i�Yy|~�Â8��«¬�P~�y|�|~2~����l�|�|~qw��H�lux�Pw�y|��y|�P~��x���"w�~
y|�|~2~O����y|�P~O�°}Pux��y|{ �luM� «¬�P~¥�Y���|{i���P� ~qw´��ux�¯���luxwzy"��uhy"w
���¢y|�P~��°�l�|��}P�i� ÚYÛ ���|~��|~2�P�|~qw�~2uhy|~q�D�B�´y|~2�|��{ ux���cuP�K�K~qw
Â�eÃ����y|�P~
y|�|~2~l�¥«¬�P~$�l�H~2�"�Yy|{ �luxw���ux�;�P�|{ ��{ y|{ �l~��°}Pux��³
y|{ �luxw®}xw�~q�²{ u´y|�P~��°�l�|��}P�i� ÚYÛ ���|~��|~2�P�|~qw�~2uhy|~q�²�B��uP�luK³
y|~2�|��{ ux���HuP�K�K~qw�çfeD���^y|�P~�y|�|~2~l�gO��l�"���l�H~2�"�Yy|{ �lu�È°�P�|{ ��³
{ y|{ �l~
�°}Pux��y|{ �luHÎ>���7y|�P~$�°�l�|��}P�i�è��ux�O{ y"w��l�H~2�"��ux�Pw$Ègy|�P~
���|±l}P��~2uhy"w)���¢y|�P~��P�|{ ��{ y|{ �l~��°}Pux��y|{ �luHÎ����|~>�|~2�P�|~qw�~2uhy|~q�
�B�´�
uP�K�K~���ux�´{ y"w8�K~qw|��~2ux�P��uhy8uP�K�K~qw){ uDy|�P~�y|�|~2~l� hP�l�
~�äP�����P� ~l�P{ uih*{ ±x��Ê®y|�P~)y|�|~2~)�|~2�P�|~qw�~2uhy"�Yy|{ �lu��°�l�¬y|�P~)�°�l��³
��}P�i� ÚYÛ Ò4Èkj _ ñlÎUl
m n"opjM^rq��x�lw�y|�P~7�°�l� � �Y­¢{ uP±�uP�K�K~qw2ò
Â�eDÒ W j\ÞUnHÞ"ñKÞ%q j �KçfeèÒ W _ Þ�^)Þ�oBÞ�lBÞ m j �
s�w�{ uP±�y|�P~�y|~2���P�i�Yy|~cÂ;��ux�)±l~2uP~2�"�Yy|{ uP±�y|�P~c�"�P�|�l���hw��l��~qw
L"NqÜ��B­c~®���|~q�Yy|~7��u���ux��� �hy|{i�2���H~�äK�P�|~qw|w�{ �lu��°�l�¬~q�l�"�>�°}Pux��³
y|{ �lu ÚYÛ ��ux�´�K~�y|~2�|��{ uP~>���Y��� }P~��°�l�)~q�l�"�²�x���"����~�y|~2� ÔnÕ
��ux�^�h�Y�gy|~2��y|�x�Yyq�l­c~��2��u���� �|~q�l�K�)�P�|�K�K}x��~¢��� �P~2�Y��� }x�Yy|{ �luxw
��ux�$���K�K{ ÐH�2�Yy|{ �luxw7����y|�P~���� ±l�l�|{ y|�P��Á�È°Â�ÞUL"NqÜ\Î��)«¬�B}xw2�
�°�l�®y|�P~��BuP�Y­¢u´�Y��� }P~qw7����y|�P~��°}Pux��y|{ �luxw ÚYÛ ��ux���x���"����³
~�y|~2�"w ÔnÕ ­c~��2��u²�2���i��}P�i�Yy|~8y|�P~��l}Ky|�P}Ky®�Y��� }P~qw7ß�àá ���!y|�P~��� ±l�l�|{ y|�P�ØÁ�È°Â�ÞUL"NqÜ�Þ�ã á Î�±l~2uP~2�"�Yy|~q���B��~2�l�l� }Ky|{ �lu����ny|�P~�"�P�|�l���hw��l��~qw1L"NqÜè�x�lw�~q�$�lu�y|�P~�±l{ �l~2u$y|~2���P�i�Yy|~�ÂÃ�°�l�
y|�P~>±l{ �l~2u²{ uP�P}Ky8�Y��� }P~qw®ã á ��Ê�åFæ®åØçè���¢�gy|~2�8~2�Y��� }x�Y³
y|{ �luè���cy|�P~���� ±l�l�|{ y|�P�>w)Áé­c~��l�Ky"��{ u´y|�P~��Y��� }P~qw)���¬y|�P~
ÐPy|uP~qw|w*�°}Pux��y|{ �lu�Æâ��ux��w�~2� ~q��y*y|�P~¬�H~qwzy!��� ±l�l�|{ y|�P�>w\{ u�y|�P~
�H�l�P}P�i�Yy|{ �luM�

30

�����������
	���	�
�������� �
����� ������� ��
���� ����� 	"!$#�	%�
&'
(�')+*(
(��,����
(��#-�.�0/1
��32�,��%#-���
(�4#��$&456�-�32�� #-�%�
	

��� �����	��
���
������������������������������ ��! #"�"$ #��%�&(' �*)

+�¹-,0="9 ¨P©*§K¼!¨x¦V¼ H §�G 9 £ ?FE ¼!¨x¿v§�G ;
«¬�P~/.1032�4�26587�9è�l�H~2�"�Yy|�l��{iw����P�P� { ~q�Oy|�èy|�P~�{ ux�K{ �B{i�K}x���iw
È@�"�P�|�l���hw��l��~qw"ÎH�"�P�hw�~2u)�"��ux�K�l��� ���°�|�l�0y|�P~c��}P�|�|~2uhyM�H�l�K³
}P�i�Yy|{ �lu²­¢{ y|�D���P�|�l�x���P{ � { yz� Ô;: ë=< PÞ2Ê�>µ�8�$}Ky"�Yy|{ �lu´�|~2�K³
�|~qw�~2uhy"w������K�K{ ÐH�2�Yy|{ �lu$���!��u
{ ux�K{ �B{i�K}x���\­¢�P�hw�~)uB}P���H~2�
{iw��"��ux�K�l��� �´w�~2� ~q��y|~q�^�´«¬�P~����K�K{ ÐH�2�Yy|{ �luV���¢y|�P~�� { uP~q���
wzy|�|}x��y|}P�|~����)y|�P~´�"�P�|�l���hw��l��~${iw�}Pux�K~2�"wzy|�B�K�â�lw��è�|~�³
�P�i�l��~2��~2uhy®���c���"��ux�K�l��� ���"�P�hw�~2u��x���"����~�y|~2� Ô á �B����uK³
��y|�P~2���Y��� }P~
w�~2� ~q��y|~q�V�Yy��"��ux�K�l�¶�°�|�l�ó�²w�~�y����7�l�K��{iwz³
w�{ �P� ~��Y��� }P~qw2��«¬�P~����K�K{ ÐH�2�Yy|{ �lu¥���®y|�P~$y|�|~2~²wzy|�|}x��y|}P�|~
���cy|�P~��"�P�|�l���hw��l��~�{iw)�H~2���°�l�|��~q�´�B�²�
�|~2�P�i�l��~2��~2uhy)���
y|�P~��Y��� }P~����¬���"��ux�K�l��� ���"�P�hw�~2u�uP�K�K~�{ u²y|�P~�y|�|~2~��|~2�K³
�|~qw�~2uhy"�Yy|{ �lu����M�°}Pux��y|{ �lu Ú á �B����uP��y|�P~2�c�Y��� }P~®w�~2� ~q��y|~q���Yy�"��ux�K�l�é�°�|�l�éy|�P~8w�~�y¢�����l�K��{iw|w�{ �P� ~®�Y��� }P~qw2�
«¬�P~@?�A	7CB�B#7�D�E�A7�l�H~2�"�Yy|�l��{iw®���P�P� { ~q��y|��y|�P~�yz­c��{ ux�K{ �B{i�B³
}x���iw®È°�x���|~2uhy"w"Î��"�P�hw�~2u��"��ux�K�l��� ���°�|�l�4y|�P~)��}P�|�|~2uhyc�H�l�K³
}P�i�Yy|{ �luV­¢{ y|�O�$�P�|�l�x���P{ � { yz� Ô�F ëG< PÞ2Ê�>µ�²«¬�P~����|�hw|w��Y�l~2�
���luxw�{iwzy"wM���Ky|�P~c±l~2uP~2�"�Yy|{ �lu®���Kyz­c��uP~2­è{ ux�K{ �B{i�K}x���iw\�B�®~�äB³
�"�x��uP±l{ uP±®y|�P~��x����y"w!���ny|�P~7�"�P�|�l���hw��l��~qw����ny|�P~��x���|~2uhy"w2�
hP�l�cy|�P~7� { uP~q���)È°�l�cy|�|~2~�Î�wzy|�|}x��y|}P�|~qw����\y|�P~®�"�P�|�l���hw��l��~qw
y|�P~D���|�hw|w��Y�l~2��{iw��H~2���°�l�|��~q�¥�B�¥�|~2�P�i�l��{ uP±;�V�"��ux�K�l��� �
�"�P�hw�~2u�� { uP~q���®w�}P�xwzy|�|}x��y|}P�|~�È@w�}P�Ky|�|~2~�Î����!�luP~��x���|~2uhy7�B�
��� { uP~q����w�}P�xwzy|�|}x��y|}P�|~>È@w�}P�Ky|�|~2~�Î��°�|�l�éy|�P~)��y|�P~2�¢�x���|~2uhyq�
«¬�P~D���|~q�Yy|{ �lu0�����H9�E�IJE�K E�.!E�9�2®{iw�y|�P~´±l~2uP~2�"�Yy|{ �luâ���
�"��ux�K�l� �x���"����~�y|~2�"w ÔnÕ ��ux�
�°}Pux��y|{ �luxw ÚYÛ �°�l��y|�P~��"�P�|��³
���hw��l��~qw2�¢tµy®��� � �Y­�w¬�°�l��y|�P~��l�P�K{ uP±����!���K{ �l~2�"w�{ ÐH�2�Yy|{ �lu
y|��y|�P~)~2� ~2��~2uhy"w¢�������H�l�P}P�i�Yy|{ �luM�
«¬�P~LB#E�K E�?�26587�9@7	M�E�A	4�2�7�A��|~q��� { Ä2~qw*y|�P~¢�P�|{ ux��{ �P� ~¢���Hy|�P~�w�}P��³
�B{ �Y���H���My|�P~�ÐPy�y|~qwzy¬{ ux�K{ �B{i�K}x���iw2��tµy¢w�~2� ~q��y"w!y|�P~7�H~qwzy¬{ ux�K{ ³
�B{i�K}x���iw¬­¢{ y|��y|�P~)��{ uP{ ��}P�ÓÐPy|uP~qw|w¬�°}Pux��y|{ �lu
{ u�y|�P~8��}P��³
�|~2uhy¢�H�l�P}P�i�Yy|{ �luM�
����y|~l�\�luP� �´w�{ ���P� ~>±l~2uP~�y|{i���l�H~2�"�Yy|�l�"w7­c~2�|~�}xw�~q�´{ u´y|�P~
��� ±l�l�|{ y|�P�
�c�P}Ky>y|�P{iw����P�P�|�h�l�"�O�2��uO}xw�~$���l�|~����l���P� ~�ä
�l�H~2�"�Yy|�l�"w¬�K~2�l~2� �l�H~q���°�l���®�¥��ux�$�®�8�

N¬¹ º § 9 ¨P©*§P¿z¼ »PO ¨P¼¢ª 9 ¦B¦
tvu²y|�P~>w�~q���"�"���°�l�7y|�P~��l�Ky|{ ��}P� ����y|�P~�ÐPy|uP~qw|w7�°}Pux��y|{ �lu
Æ4y|�P~�{ y|~2�"�Yy|{ �lu��P�|�K��~qw|w�{ u�y|�P~>���l���P}Ky|~2�®�K{iw|���Y�l~2�|�
��� ³
±l�l�|{ y|�P�Ó{iw¬�l�|±h��uP{ Ä2~q��{ u�y|�P~®�°�l� � �Y­¢{ uP±�­¬���l�
QR5SA�BT2�5S2�E�A	4�26587�9�U¬�>±l~2uP~2�"�Yy|{ �lu�����y|�P~8{ uP{ y|{i���\�H�l�P}P�i�Yy|{ �luM�
tµy¢{iw¬�|~q��� { Ä2~q���lw��°�l� � �Y­�w2����� �^{ ux�K{ �B{i�K}x���iw¬���\y|�P~)�H�l�P}P�i�Y³
y|{ �lu>���|~¢���|~q�Yy|~q���B����~q��uxw����Hy|�P~��l�H~2�"�Yy|�l��9�E�IVE�K E�.!E�9�2
È°­¢{ y|�À�Vy|~qwzy$��ux�S�|~zÅz~q��y|{ �luâ������� �VX�{ ���P�"�l��y|{i�2����Xè{ ux�K{ ³
�B{i�K}x���iw"Î����¢�gy|~2�)Ðx� � { uP±�y|�P~�­¢�P�l� ~��H�l�P}P�i�Yy|{ �luM�^y|�P~>�H~qwzy
{ ux�K{ �B{i�K}x���iw¢���|~)w�~2� ~q��y|~q�
��ux��w|���l~q��{ u$��u
���|�"���XW�N�Y#Z��
[9�E\5S2�E�A	4�26587�9�U¢�>wzy|~2�
�°�|�l�Éy|�P~���}P�|�|~2uhy��H�l�P}P�i�Yy|{ �lu
y|��³
­¬���"�Pw�y|�P~�uP~�äBy)�H�l�P}P�i�Yy|{ �luM��«¬�P~��x�lw�{i��wzy|~2�´����y|�P~���� ³
±l�l�|{ y|�P�����luxw�{iwzy"w®���¬���|~q�Yy|{ uP±$��uP~2­¯±l~2uP~2�"�Yy|{ �lu²�lu´y|�P~
�x�lw�{iw!���*w�~2� ~q��y|{ �luM�h��}Ky"�Yy|{ �luM�K���|�hw|w��Y�l~2����ux�����iw����l�P�K{ uP±
w��l��~®uP~2­À~2� ~2��~2uhy"w2�
�¢�gy|~2�¬~2�Y��� }x�Yy|{ �lu>���MÐPy|uP~qw|w!�°}Pux��y|{ �lu��°�l��~q�l�"��{ ux�K{ �B{i�K}x���
���7y|�P~$±l~2uP~2�"�Yy|{ �luM�c�D���l���x���|{iw��lu;���7y|�P~$�Y��� }P~$���7y|�P{iw
�°}Pux��y|{ �lu$y|�>�Y��� }P~qw�����ÐPy|uP~qw|w¢�°}Pux��y|{ �lu$����y|�P�hw�~8{ ux�K{ �B{i�B³
}x���iw¢­¢�P{i�"�����|~8w|���l~q��{ u$y|�P~����|�"���XW�N�Y#Zc{iw�~�äK~q��}Ky|~q�^�¬tvu
y|�P{iw��2�lw�~l��{ �n��u�~2� ~2��~2uhy��°�|�l��y|�P~¢uP~2­;±l~2uP~2�"�Yy|{ �lu�{iw��H~�y�³
y|~2�7y|�x��uD��u²~2� ~2��~2uhy]W�N�Y#Z�< æ6>µ�n�°�l�)w��l��~�æ"�^­c~�� �K�2�Yy|~�y|�P~
uP~2­É~2� ~2��~2uhy��lu;�P�i�l��~�æ���ux�;w��P{ �gy���� �¬�|~2�>��{ uP{ uP±´�luP~qw
�H~2���²}PuP{ y������K�Y­¢uB­¬���"�Pw2�²«¬�B}xw2��y|�P~��H~qwzy�~2� ~2��~2uhy�{iw
� �K�2�Yy|~q���Yy¢y|�P~®y|�l�����*y|�P~8���|�"���^W�N�Y#Z��
_`4CBT2�5S2�E�A	4�26587�9ïÈgy|�P~>y|~2�|��{ ux�Yy|{ �luD���|{ y|~2�|{ �luHÎ�ò)y|�P~>{ y|~2�"�Y³
y|{ �luxw����|~®ÐxuP{iw��P~q��~2{ y|�P~2�7�Y�gy|~2����±l{ �l~2u
uB}P���H~2������wzy|~2�xw
Â�ÒaZ��l�>�Y�gy|~2��Ðxux�K{ uP±è�l�Ky|{ �>������� ±l�l�|{ y|�P��Á�È°Â�ÞUL"NqÜ\Î
È°­¢{ y|��y|�P~)±l{ �l~2u��Y��� }P~)���\ÐPy|uP~qw|w¬�°}Pux��y|{ �luHÎ��
�c�S�P�|�K�K}x��{ uP±O�;±l{ �l~2u0�����l}Puhy����8y|�P~D�x�lw�{i�²wzy|~2�xw����
y|�P~®y|~2���P�i�Yy|~�³µ�x�lw�~q��~2�l�l� }Ky|{ �lux���|�>��� ±l�l�|{ y|�P�
�K­c~7�l�Ky"��{ u
�8w�~�y����M��� ±l�l�|{ y|�P�>w�Á�È°Â�ÞUL"NqÜ\Î����luhy"��{ uP{ uP±8��u���� ±l�l�|{ y|�P�
Á®ê�È°Â�ÞUL"NqÜ\Î�­¢{ y|�Oy|�P~
��{ uP{ ��}P��ÐPy|uP~qw|w��°}Pux��y|{ �luSÆ { u
y|�P~)~2� ~2��~2uhy�W�N�Y#Z�< �>µ�

b¬¹ Adc ="9 ¨x¿ ;>9\» §K© ?\e 9 ¦B¾ ? §P¦
«¬�P~;y|~2���P�i�Yy|~�³µ�x�lw�~q�F~2�l�l� }Ky|{ �lux���|�����P�P�|�h�l�"�Ã­¬�lw´���K³
�P� { ~q���°�l�c�|~q�K{iw|���Y�l~2�|�8���^y|�P~��°�l� � �Y­¢{ uP±���� ±l�l�|{ y|�P�>w2ò*���l��³
�P}Ky"�Yy|{ �lu
���*y|�P~8�H�Y­c~2����ux���@�l��y|�l�|{i���^������ux�Yy|}P�"���^uB}P��³
�H~2�q��Ðxux�K{ uP±;y|�P~D� ~q�lwzyDÈ°�i���|±l~qwzy�Î�~2� ~2��~2uhy
������uÀ���|�"���l�
���l���P}Ky"�Yy|{ �luÀ���8y|�P~Vw�}P�%����y|�P~èw|Çh}x���|~qw�����~2� ~2��~2uhy"w
���8��uS���|�"���l�c���l���P}Ky"�Yy|{ �lu¥���®y|�P~²�K��y��P�|�K�K}x��y����®yz­c�
�l~q��y|�l�"w2��Ðxux�K{ uP±Dy|�P~��°�l�|��}P�i�lw��°�l��y|�P~ h*{ �H�lux�l�2��{8È@«\�|{ ³
�H�lux�l�2��{gÎ7w�~qÇh}P~2ux��~l�M���l���P}Ky"�Yy|{ �lu²����y|�P~>w�}P� ���c�>�Yy|�|{ ³
��~qw2�K�P}P�P�P� ~l�x��~2�|±l~)��ux�
�B�P~2� �\w��l��yq�BÐxux�K{ uP±�y|�P~)�|�B��y"w¬���
��u>~qÇh}x�Yy|{ �luM�h� �h�l���x���i��ux��{ uP±){ u��x���"��� � ~2�xw��Kwzy|~2�
�lÐxux�K{ uP±
y|�P~�w�{ uP±l� ~�w��l}P�"��~�w��P�l��y|~qwzy!�x�Yy|�xw!��ux����{ uP{ �>���Hw��x��uPuP{ uP±
y|�|~2~¬{ u��7±l�"���P�M�*«¬�P~¢���P�P�|�h�l�"�8­¬�lw����iw��®���P�P� { ~q�8�°�l���K{iwz³
���Y�l~2�|��������ux��� �hy|{i�2���n�K~qw|���|{ �Ky|{ �luxwc���\uP~2­À�K~2uxw�~��@����{ � { ~qw
���P�l�Ky|{ �>���l�|~2±l}P�i���MuP~�yz­c�l�|�Kw!È@�$�lux���B�P�Y� Í �$�lux���B�P�Y�Y�P�
ñ� l l�hÎ���ux���8�K{iwzy"��ux��~¢�°}Pux��y|{ �lu����M��{ �"��}P�i��uhy�±l�"���P�xw!­¢{ y|�

31

�����������
	���	�
�������� �
����� ������� ��
���� ����� 	"!$#�	%�
&'
(�')+*(
(��,����
(��#-�.�0/1
��32�,��%#-���
(�4#��$&456�-�32�� #-�%�
	
�K~2±l�|~2~7�°�l}P�q�
«¬�P~7�|~q��� { Äq�Yy|{ �lu>���My|�P~�y|~2���P�i�Yy|~�³µ�x�lw�~q�>~2�l�l� }Ky|{ �lux���|����� ³
±l�l�|{ y|�P�¯�x�lw��H~2~2u�{ ���P� ~2��~2uhy|~q��{ u>y|�P~ a �P�|�l±l�"������{ uP±
�i��uP±l}x��±l~
��ux�;y|~2���P�i�Yy|~qw��x���l~��H~2~2uS�P�|~qw�~2uhy|~q�;{ u¥y|�P{iw
�i��uP±l}x��±l~l�S«¬�P~�uB}P���H~2�>���®{ y|~2�"�Yy|{ �luxw>��ux�O�H�l�P}P�i�Yy|{ �lu
w�{ Ä2~�­c~2�|~��"�P�hw�~2u>�B�>��u�~�äK�H~2�|{ ��~2uhy"���H­¬�����x�lw�~q�>�lu��x�Y³
�"����~�y|~2�"w��°�|�l��È·�7�l�i�K�H~2�|±x�MÊq¡lËl¡hÎ��iÈ@ð®�lÄq�P�HÊq¡l¡hñlÎ��

��������� U@G*Q*U@G*A	�qL*?�
YEME���
�E����qL*?�
q?��lEHG*Q��"E�
YQ*?�

?����*I��qU@EHG�

hP�l��y|�P~´Ðx�"wzy
~�äP�����P� ~l��y|�P~D�P�|�K��~qw|w������|~q�K{iw|���Y�l~2�|�O���
��� ±l�l�|{ y|�P�>w>�°�l��Ðxux�K{ uP±Vy|�P~²�|�B��y"w����)y|�P~´w�~q���lux�B³µ�l�"�K~2�
~qÇh}x�Yy|{ �luxw2ò Ú ÈkjnÎVÒ n-j R _ W%j _�� Ò O{iw
�P�|~qw�~2uhy|~q�^�
�M~�y®ñ� >����{ uP�P}Ky�³µ�l}Ky|�P}Ky7�x��{ �"w W ã á Þ|ß á j �H~�±l{ �l~2uM�x­¢�P~2�|~
ã á Ò È n á Þ�W á Þ � á Î����|~>y|�P~
���B~�����{ ~2uhy"w����¢y|�P~�~qÇh}x�Yy|{ �luxw2�
ß á Ò È��BÊ á Þ���ñ á Î����|~²�|�B��y"w�����y|�P~D~qÇh}x�Yy|{ �luxwDÈg�°�l�$w�{ ��³
�P� {i��{ yz�l�*­c~�­¢{ � �c���luxw�{i�K~2�)�luP� ���|~q�����|�B��y"w"Î���Ê
åØæ)å¯çè�
ç6ÒÉñ� P�$«¬�P~��°�l� � �Y­¢{ uP±
yz­c�
y|~2���P�i�Yy|~qw����|~�}xw�~q�^ò�y|�P~
Ðx�"wzy¬y|~2���P�i�Yy|~)Â Q {iw¬±l{ �l~2u
�lwcy|�P~®�°�l� � �Y­¢{ uP±��°�l�|��}P�i�Pò

� Q! R Ò Ú
Q È nHÞ�W�Þ � Î#" ÚTR È nHÞ�W�Þ � Î�S

����y|~®y|�x�Yy¢y|�P~)}PuP�BuP�Y­¢u��°}Pux��y|{ �luxw����|~®w��x�l�K~q�^�
«¬�P~�w�~q���lux��y|~2���P�i�Yy|~!Â R ���P��u)���P�P�|��äK{ �>�Yy|{ �lu®��� ±l�l�|{ y|�P�
{iw¬±l{ �l~2u
�lwcy|�P~®�°�l� � �Y­¢{ uP±�{ y|~2�"�Yy|{ �l~7� �B�l�Mò
Ê W Ö>ÒS PÌ j Õ Ò j%$'&'(KÌ
ñ Q*EDW j Õ*)PQ Ò Ú
Q Èkj Õ Þ Ú Èkj Õ Î�Þ Ú à·Èkj Õ Î�Î�ÌHÖ�Ò0Ö _ ÊlÌ j
� + L*U@=@? È�È Ú à·Èkj Õ Î!Ò-,/.0Êq �0%12Î Í È·Ö32 q� l hÎ�Î�Ì
Ï
Y?����4
YG j Õhj �
­¢{ y|�À�V� { ��{ y|~q�0uB}P���H~2������{ y|~2�"�Yy|{ �luxw�æ Z52 q� l P��­¢{ y|�
��±l{ �l~2uè�P�|~q��{iw�{ �luè�������P�P�|��äK{ �>�Yy|{ �lu5,62�Êq �0%1���ux�è��u
{ uP{ y|{i�����H�l{ uhy j%$'&'(K�M­¢{ y|�è���P�|�K��~q�K}P�|~��°�l�8�2���i��}P�i�Yy|{ �lu²���
�K~2�|{ �Y�Yy|{ �l~ Ú à·ÈkjnÎ��
«¬�P~´y|~2�|��{ ux���8uP�K�K~qw��°�l�$Â Q ���|~´Â�e Q Ò W nHÞ�W�Þ � Þ a � j �
��ux�è�°�l��Â R ���|~�Â�e R Ò W j Õ Þ Ú Èkj Õ Î�Þ Únà Èkj Õ Î�Þ a � j ��­¢�P~2�|~a �O{iw²�¥w�~�y²�����"��ux�K�l�%ux�Yy|}P�"�������luxwzy"��uhy"w2��«¬�P~Vw�~�y
�����l�H~2�"�Yy|{ �luxw²}xw�~q�Ã�°�l�èw��Buhy|�P~qw�{iw´����y|�P~O�°�l�|��}P�i�lw²{iw
çfeèÒ W _ Þ�^)Þ�oBÞ�lBÞ m Þ j R j �°�l�¬y|�P~)�H��y|��y|~2���P�i�Yy|~qw2�
tvu y|�P~��2�lw�~����Ày|�P~�Ðx�"wzyéy|~2���P�i�Yy|~'y|�P~�y|~2���P�i�Yy|~�³
�x�lw�~q�
~2�l�l� }Ky|{ �lux���|����� ±l�l�|{ y|�P� �|~q�K{iw|���Y�l~2�|~q��y|�P~8�°�l� � �Y­¬³
{ uP±��BuP�Y­¢u��°�l�|��}P�i�Pò7� Q! R Ò ^ W�l�ñ n8" m W R ^´Ï-n � l�ñ nH�ctvu
y|�P~D�2�lw�~����)y|�P~Dw�~q���lux�Oy|~2���P�i�Yy|~²y|�P~D�K{iw|���Y�l~2�|�O��� ±l��³
�|{ y|�P���°�l}Pux�Oy|�P~$�°�l� � �Y­¢{ uP±D~�äK�P�|~qw|w�{ �luMòWj Õ*)PQ Ò j Õ ^
Ú Èkj Õ ÎUl Ú à·Èkj Õ Î��V«¬�P{iw��|~qw�}P� y>���l�|�|~qw��H�lux�Pw®y|�²y|�P~��BuP�Y­¢u
�°�l�|��}P�i�O������~2­¬y|�lu�9 w$��~�y|�P�K�éÈ°��~�y|�P�K������y"��uP±l~2uhy"w"Î��
«¬�P~�Ðx�"wzy®�|~qw�}P� y7�x�lw��H~2~2u²�°�l}Pux�²�Y�gy|~2��Êq hñKÊq�>{ y|~2�"�Yy|{ �luxw
Èg�°�l��y|{ ��~;:Y �w�~q��� Î
­¢{ y|�²���H�l�P}P�i�Yy|{ �lu�����ñ� l P��«¬�P~�w�~q��³
�lux�8�|~qw�}P� y��x�lw\�H~2~2u��°�l}Pux���Y�gy|~2���l�l �{ y|~2�"�Yy|{ �luxwcÈg�°�l�*y|{ ��~
Êq �w�~q��� Î8­¢{ y|�����H�l�P}P�i�Yy|{ �lu����!ñ� l P�

���=<���� U@G*Q*U@G*A	�qL*?�
Y?��>�4
?
qU°NH?#�'�*G��@�qU@EHG�
;�µE�
A�qL*?
� U�B�EHG*IC�>�lU¬IPG*QED7
YU�B�EHG*IC�>�lU¢G��*TFB�?�
?

«¬�P~®w�~q���lux�>~�äP�����P� ~7w��P�Y­�w��P�Y­¥y|�P~7�|~q��}P�"w�{ �l~��°}Pux��y|{ �lu
�°�l�¢y|�P~:h*{ �H�lux�l�2��{MuB}P���H~2�"w��2��u
�H~8±l~2uP~2�"�Yy|~q���°�|�l�Éy|�P~
±l{ �l~2u>y|~2���P�i�Yy|~®��ux�>y|�P~�Ðx�"wzy¬~2{ ±l�hycuB}P���H~2�"wc­¢{ y|��{ ux�K~�ä
Ê)å;æ�å¥ËP��Ý´~)}xw�~7y|�P~®�°�l� � �Y­¢{ uP±�y|~2���P�i�Yy|~lò

Æ>È°æzÎ!Ò Ú?G È@Æ>È Ú
Q È°æzÎ�Î�Þ|Æ>È ÚTR È°æzÎ�Î�Î�S
ÝS{ y|��y|�P~�w�~�y7���!�l�H~2�"�Yy|{ �luxw�çfe¥Ò W _ Þ�^)Þ�oBÞ�l j ��ux��w�~�y
���cy|~2�|��{ ux���iw)Â�eÀÒ W æ"Þ a � j y|�P~>y|~2���P�i�Yy|~�³µ�x�lw�~q�²~2�l�l� }K³
y|{ �lux���|�
��� ±l�l�|{ y|�P�'�K~�ÐxuP~q� Ú
Q È°æzÎ�Ò�æ6^SÊl� ÚTR È°æzÎ�ÒÃæ6^Vñ
��ux� Ú?G Èkj Q Þ j R Î!Ò j Q _ j R �Y�gy|~2�¢ÏxÊlÊ�{ y|~2�"�Yy|{ �luxw®Èg�°�l�¬y|{ ��~
Ê�ñ�w�~q��� Î8­¢{ y|�����H�l�P}P�i�Yy|{ �lu������l l l P�
«\�|{ �H�lux�l�2��{xuB}P���H~2�"wc�2��u>�H~�±l~2uP~2�"�Yy|~q���°�|�l�¯y|�P~��°�l� � �Y­¬³
{ uP±�y|~2���P�i�Yy|~lò

Æ>È°æzÎ�Ò ÚIH È@Æ>È Ú
Q È°æzÎ�Î�Þ|Æ>È ÚTR È°æzÎ�Î�Þ|Æ>È Ú?G È°æzÎ�Î�Î�S
«¬�P~ây|~2���P�i�Yy|~�³µ�x�lw�~q�4~2�l�l� }Ky|{ �lux���|�Ø��� ±l�l�|{ y|�P�.�K~�ÐxuP~q�
Ú
Q È°æzÎ0Òïæ"^éÊl� ÚTR È°æzÎ0ÒïæV^¯ñK� Ú?G È°æzÎÀÒ æ"^F�À��ux�
ÚIH Èkj Q Þ j R Þ j G ÎØÒ j Q _ j R _ j G �Y�gy|~2�;Ïh�PÊS{ y|~2�"�Yy|{ �luxw
Èg�°�l�)y|{ ��~�ñ� l¡
w�~q��� ÎO­¢{ y|�è�
�H�l�P}P�i�Yy|{ �luD���¢�l l l l P�^­¢{ y|�
y|�P~�w�~�y����¢�l�H~2�"�Yy|{ �luxw�çfeFÒ W _ Þ�^ j �*w�~�y����¢y|~2�|��{ ux���iw
Â�eÉÒ W æ"Þ a � j ��ux�O­¢{ y|�¥y|�P~$±l{ �l~2uOÐx�"wzy>y|~2uSuB}P���H~2�"w
­¢{ y|�
{ ux�K~�ä´Ê®åOæ�å0Êq P�

���KJ���� U@G*Q*U@G*A	�qL*?�Q*U�
L�qIPG��l?#�'�*G��@�qU@EHGSE����lU�
?�>�*=@IPG%�
A�
YI�M�L�
 + U��qLSQ*?BA�
Y?B?��µE��4

hP�l��y|�P{iw�~�äP�����P� ~l�¢y|�P~´�K{iwzy"��ux��~��°}Pux��y|{ �luâ������{ �"��}P�i��uhy
±l�"���P�xw�­¢{ y|�¥�K~2±l�|~2~�Ï´{iw����|~q�Yy|~q�^�V«¬�P~
���i�lw|w����7��{ �"��}K³
�i��uhy!uP~�yz­c�l�|�Kw¬È@�c~2�|���lux�^�B���l��~2� �i�lw ÍÀø w�}M�xÊq¡l¡-qKÌl�$�luK³
���B�P�Y� Í �$�lux���B�P�Y�Y�P�7ñ� l l PÌ ø ­¬��uP±x�7ñ� l l�hÎ��P�i���Kw���u
{ ���H�l��y"��uhy��|�l� ~${ uSy|�P~²�K~qw�{ ±luâ��ux�¥{ ���P� ~2��~2uhy"�Yy|{ �luS���
{ uhy|~2�"���luPuP~q��y|{ �luèuP~�yz­c�l�|�Kw2���É��{ �"��}P�i��uhy�±l�"���P�M�*�x���B{ uP±
y|�P~��x���"����~�y|�|{i�
�K~qw|���|{ �Ky|{ �luM�¬{iw��K~�ÐxuP~q�S�lw��°�l� � �Y­�w2�ON
?�5SA	?�03K 4�9�27{iw���uâ}Pux�K{ �|~q��y|~q�S±l�"���P�KL>È@çèÌ�Y Q Þ�Y R Þ�S�S�S2Þ�Y Û Î
­¢{ y|�Ã�¥w�~�y�����uP�K�K~qw#PïÒ% PÞ2ÊlÞ"ñKÞ�S�S�S�Þ|ç ^¯Êl�®�x���B{ uP±
æQ" Y Q Þ�æQ" Y R Þ�S�S�S2Þ�æ�"=Y Û È°���K�Àç²Î7uP�K�K~qw2�*�l��Å��l��~2uhy®y|�
~q�l�"��uP�K�K~®æ"�
«¬�P~�uB}P���H~2�"w e4Ò È6Y á Î�È@ R2JY Q 2 S�S�SS2JY Û 2ÉçMl�ñlÎ
���|~è±l~2uP~2�"�Yy|�l�"w
����y|�P~èÐxuP{ y|~O���H~2� {i��uÃ±l�|�l}P��������}Ky|��³
���l�|�P�P{iw��>w7���luPuP~q��y|~q�
y|��y|�P~�±l�"���P�M�)��{ �"��}P�i��uhy�±l�"���P�xw
L>È@çèÌ2ÊlÞ�Y R Þ�S�S�S�Þ�Y Û Î���­¢{ y|�Ãy|�P~V{i�K~2uhy|{ yz��±l~2uP~2�"�Yy|�l�q�)���|~
�BuP�Y­¢u´�lw7� �B�l�²uP~�yz­c�l�|�Kw�È@�c~2�|���lux�^�*���l��~2� �i�lw ÍÓø w�}M�
Êq¡l¡-qlÎ��\«¬�P~¬�K~2±l�|~2~����H��uP�K�K~c{ u���{ �"��}P�i��uhy*±l�"���P� Lâ{iw�ñYÜ��
­¢�P~2�|~�ÜV{iw�y|�P~��K{ ��~2uxw�{ �luM�®Ý´~�­¢{ � �����luxw�{i�K~2�7� �B�l��uP~�y�³
­c�l�|�Kw^­¢{ y|�8�K~2±l�|~2~!Ïx�q{·� ~l�*��{ �"��}P�i��uhy\uP~�yz­c�l�|�Kw^���By|�P~��°�l�|�
L>È@çèÌ2ÊlÞ�Y�Î��1hP�l��~�äP�����P� ~l�H����{ �"��}P�i��uhy�±l�"���P� a ÈzÊ2ÏxÌ2ÊlÞ|�hÎ
­¢{ y|���K~2±l�|~2~®Ïx�Pç�ÒFÊ2ÏxÞ�Y Q ÒÃÊlÞ�Y R Ò0��{iw�w��P�Y­¢u�{ u h*{ ±x�
ñK�
«¬�P~ �K{i����~�y|~2� ��� L {iw �K~�ÐxuP~q�:�lwUTHÈ@çèÌ%e!Î Ò
�>�YäCV W�X�Y ì�È�Z*Þ�[KÎ��¢­¢�P~2�|~²ì�È�Z*Þ�[KÎ�Ègy|�P~]\�5$BT2�4�9�?�E_^�039�?�`

32

�����������
	���	�
�������� �
����� ������� ��
���� ����� 	"!$#�	%�
&'
(�')+*(
(��,����
(��#-�.�0/1
��32�,��%#-���
(�4#��$&456�-�32�� #-�%�
	

��� �����	���*��� � ����&(' �#�������
	���
�	�������)

26587�9BÎc{iw�y|�P~)� ~2uP±�y|��������w��P�l��y|~qwzy¢�x�Yy|���H~�yz­c~2~2u�uP�K�K~qw Z
��ux� [�{ ufL����c~q�2��}xw�~8����y|�P~�w��B����~�y|�|��{ u²��{ �"��}P�i��uhy"w�{ y
{iw7~2uP�l}P±l��y|�$���luxw�{i�K~2�7y|�P~��P�|�l�P� ~2�'���!Ðxux�K{ uP±$��w��P�l��y�³
~qwzy��x�Yy|�$�°�|�l�� �y|����u����|�P{ y|�"���|��uP�K�K~ [H��«¬�P~��K{iwzy"��ux��~
�°}Pux��y|{ �lu¥�°�l��uP�K�K~qw� è��ux� [;{ uâ��{ �"��}P�i��uhy a È·ñ� l PÌ2ÊlÞ�Y�Î��
ç¶ÒÀñ� l P�K�°�l�� ;2HY 2SçMl�ñ���ux�
 A2 [62âçMl�ñ�{iw�w��P�Y­¢u
{ u h*{ ±x�!�P�

��� �����	��������� � ���#������"$&(���	��� �� #"���� ����&(' �#�������������
�	��"!#��)

hP�l��Ðxux�K{ uP±�y|�P~��K{iwzy"��ux��~)�°}Pux��y|{ �lu´ì�È@ PÞ�[KÎ¢­c~8­¢{ � �����luK³
w�{i�K~2��y|�P~8�°�l� � �Y­¢{ uP±����luxw�{i�K~2�"�Yy|{ �luM�dhP�l�®��uB��uP�K�K~%$Ø­c~
�K~�ÐxuP~ _ Y´��ux� ^ Y´� { uP�Kw��°�|�l� uP�K�K~&$¶�K~2�H~2ux�K{ uP±O�lu
­¢�P~�y|�P~2��y|�P~2�è���|~�}xw�~q�Dy|�²±l�$y|��uP�K�K~´È'$ _ Y�Îvî
í?T´ç

È°{ u$��� �K�"�B­¢{iw�~®�K{ �|~q��y|{ �luHÎ��l�8È'$ ^ Y�Îvî
í?T�ç È°{ u$���l}Puhy|~2��³
��� �K�"�B­¢{iw�~��K{ �|~q��y|{ �luHÎ����B{ ��{ �i���|� �l�\­c~>�K~�ÐxuP~ _ Ê>��ux�b^)Ê
� { uP�Kw2�è����y|~�y|�x�Yy�{ uO��{ �"��}P�i��uhy�±l�"���P�xw��²w��P�l��y|~qwzy��x�Yy|�
�°�|�l�Ó 8y|�_[>­c�l}P�i���H~®}xw�{ uP±��Yy¬���hwzy¬~2{ y|�P~2�)È _ YlÞ _ Ê�Î!�l�
È _ YlÞ�^)Ê�Î!�l�®ÈF^ YlÞ _ Ê�Î!�l�)ÈF^ YlÞ�^)Ê�Î!� { uP�Kw2��«¬�P~2�|~��°�l�|~��°}P��³
y|�P~2�7­c~8­¢{ � �����luxw�{i�K~2�7w�}x�"�����l���P{ ux�Yy|{ �luxw����!� { uP�Kw��luP� �l�
�M~�yèÈ _ YlÞ _ Ê�Îµ³µ�x�Yy|�â�H~è�V�x�Yy|�â�°�|�l�% Vy|�][¥}xw�{ uP± _ Y
��ux� _ Ê$� { uP�Kw��luP� �l� hP�l����y|�P~2�����l���P{ ux�Yy|{ �luxw>���)� { uP�Kw
­c~²�K~�ÐxuP~�y|�P~´��ux��� �l±l�l}xw�uP��y"�Yy|{ �luxw2�FtvuS­¢�x�Yy��°�l� � �Y­�w
j�l*Y7Ò)(j�l*Y#*h�(j,+1Y®Ò j$î
í?TXYl�
tvu��l�"�K~2�cy|��±l��y|��uP�K�K~8[��°�|�l�É ��B����~q��uxwc���\�°�l}P�¢�H�hwz³
w�{ �P� ~)­¬���Kwc­c~®�x���l~�y|�>}xw�~

Ê�Î²È _ YlÞ _ Ê�Îµ³µ�x�Yy|�Mò*}xw�{ uP±_[�l*Y7uB}P���H~2�¢��� _ Y7� { uP�Kw¬��ux�
[-+1Y)uB}P���H~2�¢��� _ Ê®� { uP�Kw2Ì

ñlÎ²È _ YlÞ�^)Ê�Îµ³µ�x�Yy|�Mò!}xw�{ uP±A[�l*Y _ Ê)uB}P���H~2����� _ Y)� { uP�Kw
��ux� Y1^	[-+1Y)uB}P���H~2�¢���Y^)Ê®� { uP�Kw2Ì

�hÎ²ÈF^ YlÞ�^)Ê�Îµ³µ�x�Yy|�MòO}xw�{ uP±ÃÈ@ç ^ [KÎUl*YDuB}P���H~2�$���W^ Y
� { uP�Kw���ux�´È@çB^	[KÎ"+1Y8uB}P���H~2�¢���Y^)Ê7� { uP�Kw2Ì

ÏBÎ²ÈF^ YlÞ _ Ê�Îµ³µ�x�Yy|�Mò\}xw�{ uP±�È@ç>^6[KÎUl*Y _ Ê¢uB}P���H~2�c���p^ Y
� { uP�Kw���ux� Y�^¥È@ç ^	[KÎ"+1Y)uB}P���H~2�¢��� _ Ê®� { uP�Kw2�

«¬�P{iw����l�|�|~qw��H�lux�Pw�y|�8�luP~�� �B�l��y|�"���l~2� � ~q��{ u���� �K�"�B­¢{iw�~��K{ ³
�|~q��y|{ �lu���ux�
�luP~8� �B�l��y|�"���l~2� � ~q��{ u²���l}Puhy|~2�"��� �K�"�B­¢{iw�~)�K{ ³
�|~q��y|{ �lu�È Z!Òâ hÎ����7~2uP~2�"��� { Ä2{ uP±)y|�P{iw!�P�|�K��~qw|w��°�l� Zc×¥ P�l­c~
�l�Ky"��{ u��°�l�¢uP�K�K~ [�ò

Ê�Î���� �)È _ YlÞ _ Ê�Îµ³µ�x�Yy|�xw2ò>}xw�{ uP±¥È�[_ Zzç²ÎUl*Y�uB}P���H~2�����_ Y®� { uP�Kw���ux�´È�[_ Zzç²Î"+1Y)uB}P���H~2�¢��� _ Ê®� { uP�Kw2Ì
ñlÎ���� �^È _ YlÞ�^)Ê�Îµ³µ�x�Yy|�xw2ò^}xw�{ uP±�È�[_ Zzç²ÎUl*Y _ ÊcuB}P���H~2�����_ Y7� { uP�Kw¬��ux�dY`^;È�[_ Zzç²Î"+1Y7uB}P���H~2�¬���`^)Ê�� { uP�Kw2Ì
�hÎ���� �\ÈF^ YlÞ�^)Ê�Îµ³µ�x�Yy|�xw2òM}xw�{ uP±�È�È Z _ Ê�Îzç ^;[KÎUl*Y¬uB}P���H~2�
����^ Y�� { uP�Kw®��ux�OÈ�È Z _ Ê�Îzç ^ [KÎ"+1Y�uB}P���H~2�®����^)Ê
� { uP�Kw2Ì

ÏBÎ���� �nÈF^ YlÞ _ Ê�Îµ³µ�x�Yy|�xw2òM}xw�{ uP±�È�È Z _ Ê�Îzç ^ [KÎUl*Y _ Ê�uB}P��³
�H~2�¢���+^ Y7� { uP�Kw¢��ux�dY`^;È�È Z _ Ê�Îzç ^#[KÎ"+1Y®uB}P���H~2�
��� _ Ê7� { uP�Kw2�

����y|~>y|�x�Yy��H~q�2��}xw�~����cy|�P~�w��B����~�y|�|�²������{ �"��}P�i��uhy"w®y|�P~
ÈF^ YlÞ _ Ê�Îc��ux�DÈF^ YlÞ�^)Ê�Îµ³µ�x�Yy|�xw��°�|�l�É �y|�;[_ Zzç¶�2��u
�H~
�"�x��uP±l~q�´y|�$y|�P~´È _ YlÞ�^)Ê�Î)��ux�âÈ _ YlÞ _ Ê�Îµ³µ�x�Yy|�xw2�*�|~qw��H~q��³
y|{ �l~2� �l�B�°�|�l� �y|��uP�K�K~�È Z _ Ê�ÎzçB^	[H� Zc×O P�
tµy�{iw!uP~q��~qw|w|���|�)y|�)Ðxux��y|�P~�w��P�l��y|~qwzy!�x�Yy|�xw!���M��� �Ky|�P~¢�°�l}P�
yz�B�H~qw¬��ux��y|�P~)w��P�l��y|~qwzyc���^y|�P~7�°�l}P�c­¢{ � �n±l{ �l~�}xw¬�8±l� �l�x���
w��P�l��y|~qwzy7�x�Yy|���H~�yz­c~2~2u´ ���ux��[H�)«¬�P~�uB}P���H~2�7����� �B�l�xw
Z 2 Y®�H~q�2��}xw�~8[-+1Y 2 Y®�°�l����uB�� �åR[A2¥çè�
�¬�lw�~q�´�luè�x�l�"�B±l�|�l}Pux�²�BuP�Y­¢� ~q�K±l~�������{ �"��}P�i��uhy8�P�|�l�H~2��³
y|{ ~qw!y|�P~��°�l� � �Y­¢{ uP±)y|~2���P�i�Yy|~7Â¥�°�l�!y|�P~®�K{iwzy"��ux��~��°}Pux��y|{ �lu

33

�����������
	���	�
�������� �
����� ������� ��
���� ����� 	"!$#�	%�
&'
(�')+*(
(��,����
(��#-�.�0/1
��32�,��%#-���
(�4#��$&456�-�32�� #-�%�
	
Tlæ�Y#Z!ÒSì�È@ PÞ�[KÎc������{ �"��}P�i��uhy a È@çèÌ2ÊlÞ�Y�Î�{iw¢}xw�~q�^ò
Ê U@G%� Z�Þ"ÖnÞ"ÖPñKÞ��YÞ���ñKÞ TxÞ TxÊlÞ TBñKÞ Tlæ�Y#Z�ÒâçèÌ
ñ �µE�
 È Z�Òâ PÌ�Z72 YlÌ�Z!Ò Z _ Ê�Î
� W Ö>ÒÃÈ�[_ Z<ocç²ÎUl*YlÌ��)ÒFÈ�[_ Z�ocç²Î"+1YlÌ
Ï ÖPñ8ÒÃÈ�È Z _ Ê�Î(o\ç>^3[KÎUl*YlÌ���ñ8ÒÃÈ�È Z _ Ê�Î(o\ç>^3[KÎ"+1YlÌ
q TxÊ7Ò Ú
Q È·ÖnÞ��YÞ�Y�Î¢Ì�TBñ8Ò Ú
Q È·ÖPñKÞ���ñKÞ�Y�Î¢Ì
� T�Ò TVU@G È�TxÊlÞ TBñlÎ�Ì U�� È�Tlæ�Y#Z . TBÎSTlæ�Y#Z!ÒETxÌ j
:
Y?����4
YG Tlæ�Y#Z
tvu�y|�P~�� { uP~8Ê¢���ny|�P~¢y|~2���P�i�Yy|~¢y|�P~�uP~2~q�K~q��� �K�2���P�Y���|{i���P� ~qw
���|~��K~�ÐxuP~q�^�*tvu)y|�P~c� { uP~¬ñ¢­c~��x���l~�y|�P~c�l�H~2�"�Yy|�l� �µE�
 ­¢{ y|�
y|�P~�� { ��{ y|~q�>uB}P���H~2�����^� �B�l�xwRZ 2 Yl��tvu>y|�P~�� { uP~qw��8��ux��Ï
y|�P~¢�Y���|{i���P� ~qw!Ö���ux�_�®�K~�ÐxuP~¬y|�P~¢uB}P���H~2�"w���� _ Y¢��ux� _ Ê
� { uP�Kw2���|~qw��H~q��y|{ �l~2� �l�*�°�l���x�Yy|�è�°�|�l�ó
y|�F[D{ u;��� �K�"�B­¢{iw�~
�K{ �|~q��y|{ �luM����ux�^��w�{ ��{ �i���|� �l�\y|�P~��Y���|{i���P� ~qw8ÖPñ$��ux� ��ñ$�K~�³
ÐxuP~¬y|�P~¬uB}P���H~2�"w����6^ Y¢��ux� _ Êc� { uP�Kw��°�l���x�Yy|���°�|�l�Ø �y|�
[
{ u´���l}Puhy|~2�"��� �K�"�B­¢{iw�~8�K{ �|~q��y|{ �luM�7tvu�y|�P~�� { uP~�qK�H�°�l��y|�P~
��}P�|�|~2uhy�� �B�l�VZ��!y|�P~
}Pux�K~�ÐxuP~q�;�°}Pux��y|{ �lu Ú
Q È·ÖnÞ��YÞ�Y�Î��x�lw
y|���2���i��}P�i�Yy|~®y|�P~8� ~2uP±�y|�#TxÊ)����y|�P~�w��P�l��y|~qwzy��x�Yy|���°�|�l�
y|� [�{ u���� �K�"�B­¢{iw�~��K{ �|~q��y|{ �luM�K��ux�^�Bw�{ ��{ �i���|� �l� Ú
Q È·ÖPñKÞ���ñKÞ�Y�Î
�2���i��}P�i�Yy|~qw¢y|�P~�� ~2uP±�y|�FTBñ>����y|�P~�w��P�l��y|~qwzy��x�Yy|��{ u´���l}PuK³
y|~2�"��� �K�"�B­¢{iw�~¢�K{ �|~q��y|{ �luM�*tvu�y|�P~¢� { uP~��7y|�P~¢� ~2uP±�y|�;T�È�Tlæ�Y#Z�Î
���\y|�P~8w��P�l��y|~qwzy¬�x�Yy|���°�|�l�É �y|� [>�°�l�cy|�P~8��}P�|�|~2uhy¬� �B�l�dZ
Èg�°�l�®��� �*� �B�l�xw Zzà 2HZ�Î�{iw7�K~�ÐxuP~q�^�®tvu�y|�P~�� { uP~;:�­c~��x���l~
y|�P~)�|~qw�}P� yqò Tlæ�Y#Z�Òâì�È@ PÞ�[KÎ��
«¬�P~ y|~2�|��{ ux���éuP�K�K~qw¶�°�l� y|�P~ }Pux�K~�ÐxuP~q� �°}Pux��y|{ �lu
Ú
Q Èkj Q Þ j R Þ j G Îc���|~�� �K�2���n�Y���|{i���P� ~qw W ÖnÞ"ÖPñKÞ��YÞ���ñ j �B��±l� �l�x���
W Y j ��ux� W a � j È@��w�~�y\���K�"��ux�K�l�0ux�Yy|}P�"���l���luxwzy"��uhy"w"Î��\«¬�P~
w�~�y®�����l�H~2�"�Yy|{ �luxw�}xw�~q���°�l�®w��Buhy|�P~qw�{iw7���!y|�P~��°�l�|��}P�i� Ú
Q
{iw¢çfeèÒ W _ Þ�^)Þ���{ unÞ (j-* j �
hP�l��y|�P{iw y|~2���P�i�Yy|~ y|�P~ y|~2���P�i�Yy|~�³µ�x�lw�~q� ~2�l�l� }Ky|{ �luK³
���|� ��� ±l�l�|{ y|�P� �°�l}Pux� y|�P~ �°�l� � �Y­¢{ uP± ~�äK�P�|~qw|w�{ �luMò
Ú
Q Èkj Q Þ j R Þ j G Î²Òó��{ u\È�Èkj Q _ j R Î�ÞqÈkj Q _ Ê _ j G ^ j R Î�Î��
«¬�P~D�°}Pux��y|{ �lu Ú
Q È·ÖnÞ��YÞ�Y�Î
�2���i��}P�i�Yy|~qw�y|�P~è� ~2uP±�y|������y|�P~
w��P�l��y|~qwzyc�x�Yy|���°�|�l�é)y|�_[�{ u���� �K�"�B­¢{iw�~��K{ �|~q��y|{ �lu��lw!y|�P~
��{ uP{ ��}P�é���^y|�P~7� ~2uP±�y|�xw7È·Ö _ ��Î���ux��È�È·Ö _ Ê�Î _ È6Yp^ ��Î�Î
���;y|�P~ È _ YlÞ _ Ê�Îµ³â��ux� È _ YlÞ�^)Ê�Îµ³µ�x�Yy|�xw2�V�|~qw��H~q��y|{ �l~2� �l�
��ux�^�Pw�{ ��{ �i���|� �l�hy|�P~7�°}Pux��y|{ �lu Ú
Q È·ÖPñKÞ���ñKÞ�Y�Îc�2���i��}P�i�Yy|~qw�y|�P~
� ~2uP±�y|�S���)y|�P~´w��P�l��y|~qwzy��x�Yy|�S�°�|�l� Dy|� [O{ uâ���l}Puhy|~2��³
��� �K�"�B­¢{iw�~)�K{ �|~q��y|{ �luèÈ°�H��y|�
�°�l�¢y|�P~8��}P�|�|~2uhy�� �B�l� Z�Î��c«¬�P~
�|~qw�}P� y>�x�lw��H~2~2uO�°�l}Pux�V�°�l��y|�P~$±l{ �l~2u¥¡l¡²{ uP�P}Ky�³µ�l}Ky|�P}Ky
�x��{ �"w W [HÞ|ì�È@ PÞ�[KÎ j ��Ê�å [VåØ¡l¡P�^�°�l�8±l�"���P� a È·ñ� l PÌ2ÊlÞ�Y�Î
�Y�gy|~2�$Ê�ñ�:�{ y|~2�"�Yy|{ �luxw
Èg�°�l�>y|{ ��~²ñ�:Y ´w�~q��� ÎÉ­¢{ y|�S�´�H�l�K³
}P�i�Yy|{ �luâ���:q� l P�¯«¬�P~D���l�|�|~q��y|uP~qw|w��°�l�
���l���P}Ky"�Yy|{ �luâ���
y|�P~;�K{iwzy"��ux��~D�°}Pux��y|{ �luFì�È�Z*Þ�[KÎ
���>��{ �"��}P�i��uhy��x�lw�~q�0�lu
y|~2���P�i�Yy|~�Ââ��ux���°�l�|��}P�i� Ú
Q ­¬�lw!�P�|�Y�l~q��~�äK�H~2�|{ ��~2uhy"��� � �
��ux��y|�P~2�l�|~�y|{i�2��� � �l�
«¬�P~�}P�P�H~2�c~qwzy|{ �>�Yy|~���� Z¢È°~qÇh}x���xy|�1Y�{ u>y|�P~�� { uP~®ñ®���^y|�P~
���H�Y�l~�y|~2���P�i�Yy|~�Î¬�2��u
�H~8�K~q���|~q�lw�~q�^�

� ?BTVTVI ����� E 9�03.���E�A 7 ^GK 7�7	M;B 5S9 2 � E 4�K �(7�AT5S2 � .
\�E
	R9�5S9��d2 � E \�5$BT2�4�9�?�ES^�039�?�26587�9
� 2 � E]K 5S9�E�� 7 ^\2 � E!4���7�D�E
2�E�. M�K 4�2�E�� .!4�� 9�7�2�E���?�E�E!\12 � E ^�7�KSK 7�I 5S9��XD�4�K 0�E�U (zÈ6YTl�ñ _

Ê�ÎUl�(°çMl*Y#*�*��
��w����|~qw�}P� y¢­c~®�x���l~

� ?BTVTVI <���� E ?�7�. M�032�4�26587�9 7 ^!2 � E6\�5$BT2�4�9�?�E ^�039�?�26587�9
ì�È@ PÞ�[KÎ��* �å][32¥ç���^�7�A\K 7�7	M 9�E�26I 7�A�� a È@çèÌ2ÊlÞ�Y�Î���4CB#E!\
7�9 2�E�. M�K 4�2�E
Â�� ^�7�AT.103K 4 Ú
Q 4�9%\ I 5S2 � 2 � E 9�03.���E�A 7 ^
K 7�7	M;B_\�E
	R9�E!\ �!�1_`E�.1.!4 "!5$B]?�7�ATA	E�?�2��

«¬�P{iwc��� ±l�l�|{ y|�P�é�2��u��H~�}xw�~q�>y|��w��l� �l~���y|�P~2�c�P�|�l�P� ~2�>w�{ u
� �B�l�DuP~�yz­c�l�|�Kw®�����K~2±l�|~2~>Ïx��w�}x�"�è�lw®y|�P~��|�l}Ky|{ uP±$�P�|�l�K³
� ~2� ���!Ðxux�K{ uP±$��w��P�l��y|~qwzy®�x�Yy|�²�H~�yz­c~2~2u²yz­c��uP�K�K~qw2�^�l�
Ðxux�K{ uP±�y|�P~>�K{i����~�y|~2�7���c��±l�"���P�M�"hP�l�®w��l� �B{ uP±�y|�P~�Ðx�"wzy
�P�|�l�P� ~2�'{ y){iw®w�}�����{ ~2uhy®y|�
wzy|�l�|~�uB}P���H~2�"w����¬wzy|~2�xw®��ux�
w�{ ±luxw�����yz­c�´±l~2uP~2�"�Yy|�l�"w8±l{ �B{ uP±´�´w��P�l��y|~qwzy��x�Yy|�;{ ��y|�P~
�l�H~2�"�Yy|{ �lu]Tlæ�Y#Z�Ò TD­¬�lw��|~q��� { Ä2~q�V{ u;y|�P~$� { uP~$�´����y|�P~
���H�Y�l~�y|~2���P�i�Yy|~)Â8�
tvu È@�$}P�B�P�l�x�l�K�B�h���h� Í �B{ uP�x�P�²Êq¡l¡-qKÌ²�����"���h��ux��u Í
ö��x�Yy|�|uB�l��Êq¡l¡�:BÌ��¢�l�P{i� Í$# ~2�|�Y�BuP{ �n�®ñ� l l hÎ���y|�P~V��� ±l��³
�|{ y|�P�>w�����Ðxux�K{ uP±���w��P�l��y|~qwzy��x�Yy|���H~�yz­c~2~2u²��uB�
�x��{ �����
uP�K�K~qw�{ uâ� �B�l�SuP~�yz­c�l�|�Kw������K~2±l�|~2~$ÏO���|~�±l{ �l~2uM�Ø«¬�P~
���H�Y�l~¢��� ±l�l�|{ y|�P�F±l~2uP~2�"�Yy|~q���B�8y|�P~¢y|~2���P�i�Yy|~�³µ�x�lw�~q��~2�l��³
� }Ky|{ �lux���|����� ±l�l�|{ y|�P� �K{ ôn~2�"w¢�°�|�l� ��� �\�BuP�Y­¢u$��� ±l�l�|{ y|�P�>w
��ux��{ y"w¢~qwzy|{ �>�Yy|~){iw¬uP��y�­c�l�"w�~l�

% ¹�& ¼ » ª ? ¾�¦B¿z¼ » ¦
«¬�P~ �|~2�P�|~qw�~2uhy|~q�6y|~2���P�i�Yy|~�³µ�x�lw�~q� ~2�l�l� }Ky|{ �lux���|� ���K³
�P�|�h�l�"�Ã�x�lw��H~2~2uØ}xw�~q�Fw�}x�2��~qw|wz�°}P� � �0y|�À��}Ky|�l�>�Yy|{i�2��� � �
{ uB�l~2uhy)���l���P}Ky"�Yy|{ �lux������� ±l�l�|{ y|�P�>w®��ux�$�°�l�)�K{iw|���Y�l~2�|�
���
�>�Yy|�P~2�>�Yy|{i�2���H�°�l�|��}P�i�lw��°�l�cy|�P~®±l{ �l~2u��P�Yy"��w�~�y"w¬��ux���°�l�
y|�P~�±l{ �l~2u���� ±l�l�|{ y|�P� 9 w*y|~2���P�i�Yy|~qw�È°~l� ±x�*{ y|~2�"�Yy|{ �luxw2���|~q��}P��³
w�{ �luxw2��� �B�l�xw\��ux�8���K��� ~qw"Î��Y­¢�P{i�"���K~qw|���|{ �H~�y|�P~¬w|�2��uPuP{ uP±����
y|�P~����l���P� ~�ä��P�Yy"�®wzy|�|}x��y|}P�|~qw¢È°�>�Yy|�|{ äK~qw2�l���|�"���Kw2��±l�"���P�xw2�
y|�|~2~qw"Î���ux��­¢�P{i�"�����luhy"��{ u>y|�P~7�°�l�|��}P�i�)y|~2���P�i�Yy|~qwc{ u�y|�P~
�H�K�K�l�!«¬�P{iw¢���P�P�|�h�l�"���2��u��H~)}xw�~q���°�l�¢w��Buhy|�P~qw�{iw¬���*uP~2­
��� ±l�l�|{ y|�P�>w2�l�°}Pux��y|{ �luxw2�K���K�K~2�iw¬��ux��w��l� }Ky|{ �luxw2�h­¢�P{i�"���Y�g³
y|~2�|­¬���"�Pw��2��uO�H~
y|�P~2�l�|~�y|{i�2��� � �è{ uB�l~qwzy|{ ±h�Yy|~q�;��ux�²Åz}xwzy|{ ³
Ðx~q�^�

e 9�H%9 ¨ 9\» ª 9 ¦
���l� ~l���è�®ÈzÊq¡lËl¡hÎ�� N K �(7�AT5S2 � .158?(')��E�K E�2�7�9 B#U
';26AT0�?�2603A	E!\
* 4�9�4+�(E�.!E�9�2 7 ^-, 4�A	4�KSK E�K/.R7�. M�032�4�26587�9���«¬�P~V�$tz«
�!�|~qw|w2�

�${ �|~2uP�l�Y�n���8� � Í �${ �|~2uP�l�Y�Y�P��«®��ÈzÊq¡l¡l�hÎ��¥�$}P� y|{ ��~q�K{i�
�B�l~2� ~�y|�luxw���ux�Kh*{ � ��{ ÐH�2�Yy|{ �luâ�����$~�y|�P�K�Pw2�0, A	7�?1�]7 ^
��� E QR5SA�BT232T9�2�E�AT9�4�26587�9�4�K�.R7�9�^�E�A	E�9�?�E/7�9�4`5$BT0�4�K52T9�`
^�7�AT.!4�26587�96'7�CBT2�E�.]B¢È°�P�M�(q�Ë98K��:�Î��;:�{i��y|�l�|{i� s�uP{ �l~2�"w�{ yz�l�
�$~2� �H�l}P�|uP~l�P��}xwzy|�"��� {i�P�

�®�����>�P�YO�� � ø ~2� �
�¢�)� �5<l�l�Puxw��luM�c�)� � Í :�� {iw|w�{i�K~qw2�=<x�
ÈzÊq¡l¡�ÏBÎ��?>1ETBT5 �*90, 4�262�E�AT9 B#UA@ K E�.!E�9�28B=7 ^CB E�0�B#4���K E

34

�����������
	���	�
�������� �
����� ������� ��
���� ����� 	"!$#�	%�
&'
(�')+*(
(��,����
(��#-�.�0/1
��32�,��%#-���
(�4#��$&456�-�32�� #-�%�
	
[���#E�?�2 ` [AT58E�9�2�E!\�' 7 ^�26I 4�A	E1�¯���P�K{iw��luK³µÝ´~qw�� ~2�l���¢~q�l�B³
{ uP±x�P���8�

�7�l�i�K�H~2�|±x����� O��ÉÈzÊq¡lËl¡hÎ�� � E�9�E�2658? N K �(7�AT5S2 � .]B��
5S9 ' E�4�A	? � � [M�265S.15 ��4�26587�9 4�9%\0* 4�? � 5S9�EG_`E�4�AT9�5S9����
���P�K{iw��luK³µÝ´~qw�� ~2�l�P�¢~q�l�K{ uP±x�P���8�

ð®�lÄq�P� <x�cÈzÊq¡l¡hñlÎ���� E�9�E�2658?�, A	7��*A	4�.1.15S9����D�c�����P�|{i�K±l~l�
«¬�P~8�$tz«0�!�|~qw|w2�

��ux�K�|~l�����KÈzÊq¡l¡�ÏBÎ�����}Ky|�l�>�Yy|{i�2��� � �)�K~�ÐxuP~q�®�°~q�Yy|}P�|~qw2òM«¬�P~
w�{ ��}P� y"��uP~2�l}xw¬~2�l�l� }Ky|{ �lu����!ñ�³v�K{ ��~2uxw�{ �lux���H�°~q�Yy|}P�|~)�K~�³
y|~q��y|�l�"w\��ux�8��� ±l�l�|{ y|�P�0�°�l�*}xw�{ uP±�y|�P~2�
�htvu�ð��¬ð®{ uPuP~q���
È O��^� Î��4N \�D�4�9�?�ETB]5S9�� E�9�E�2658?3, A	7��*A	4�.1.15S9���È°�P�M�nÏ�:>:q³
Ïh¡�ÏBÎ��P�$tz«0�!�|~qw|w�÷Y�c�"�l�B�°�l�"�>�c�B�l�Kw2�

��±l}P�l~2uM�B«®� Í�ø }x��uP±x�B«®�nÈzÊq¡l¡�ÏBÎ��$O!�l�l� �Y���P� ~��	�â���K�K~2� ³
{ uP±��°�l�7���K�K~2� ³µ�x�lw�~q�$�l�KÅz~q��y®�|~q���l±luP{ y|{ �lu²w��Kwzy|~2�>w2�®tvu
ð��Ãð®{ uPuP~q���
È O��^� Î��SN \�D�4�9�?�ETBd5S9
� E�9�E�2658? , A	7��*A	4�._`
.15S9��>È°�P�M�PÏ�q�¡Y³µÏ�: qlÎ��B�$tz«À�!�|~qw|w�÷Y�c�"�l�B�°�l�"�>�c�B�l�Kw2�

�M~2~l��ÝÃ� ��� � ø ��� �i���
��<x� Í �M}Pux�^� ø � ø �PÈzÊq¡l¡l�hÎ��K� ø �B�P�|{i�
�®�¬÷��®�'���P�P�|�h�l�"�O�°�l�
���l~2�l�l� �B{ uP±;���luhy|�|�l� � ~2�"w���ux�
�¢�l�H��y®�c�K�K{ ~qw�y|�����"�P{ ~2�l~:h*{ y|uP~qw|w�³��B�H~q��{ Ðx~q�²«*�lw��Kw2�
, A	7�?1� 7 ^ 2�@ @ @ 2T9�2�E�AT9�4�26587�9�4�K .R7�9�^!� 7�9 @ D�7�K 0326587�9�4�A �
.R7�. M�032�4�26587�9x�!tFO+O+OO�!�|~qw|w2�

ö��iw|w��luM�9<x�q�)�hÈzÊq¡l¡lËhÎ������l�P}P�i�Yy|{ �lu7�>��ux��±l~2��~2uhy^�°�l�*��}Ky|��³
�>�Yy|{i���K~qw�{ ±lu>���\��� ±l�l�|{ y|�P�>w�y|�P�|�l}P±l�>~2�l�l� }Ky|{ �luM� , A	7�?1�
7 ^32�@ @ @ 2T9�2�E�AT9�4�26587�9�4�K .R7�9�^�E�A	E�9�?�Ed7�9�@ D�7�K 0326587�9�4�A �
.R7�. M�032�4�26587�9x�!tFO+O+OO�!�|~qw|w2�

�$�lux���B�P�Y�n��ö�� Í �$�lux���B�P�Y�Y�P��O��®È·ñ� l l�hÎ��F��uÀ��� ±l��³
�|{ y|�P�À�°�l����{iw|���Y�l~2�|�����P��~2­0hx����{ � { ~qw\���Hö��Ky|{ �>���B�¢~2±�³
}P�i���¢��~�yz­c�l�|�Kw2� , A	7�?1� 7 ^
�C2 � 2T9�2�E�A+� .R7�9�^!� 7�9 >\5$B#?�7�D�`
E�A � ' ?�58E�9�?�E/� >�'-���	��� �9�¥ö7��yq�MÊ?:q³zñ� P�Kñ� l l�P�P�K���P�H�l�|�x�
<h���x��uM�M�M~q��y|}P�|~>����y|~qw7{ uD����y|{ ÐH��{i����tvuhy|~2� � { ±l~2ux��~l�M�l�l�·�
ñ�Ë�Ïh�P�¢È°�P�M�!ñYÏlÏ�³zñ
qYÏBÎ��²�B�P�|{ uP±l~2��³ :�~2�|�i��±x���c~2�|� { u ø ~2{ ³
�K~2� �H~2�|±x�

�c~2�|���lux�^��<x� ³���� �h���l��~2� �i�lw2�Thc� ÍSø w�}M����� hc�KÈzÊq¡l¡-qlÎ�����{iwz³
y|�|{ �P}Ky|~q��� �B�l�����l���P}Ky|~2�¢uP~�yz­c�l�|�Kw2ò*��w�}P�|�l~2�l����� , 4�A*`
4�KSK E�K�>\5$BT26AT5
��032�E!\ .R7�. M�032�� � ���P�nñ18nÊq P�

�$�lux���B�P�Y�n�Pö�� Í �$�lux���B�P�Y�Y�P��O��^È·ñ� l l hÎ�� , 4�A	4�KSK E�K '7�CB*`
2�E�.]B\I 5S2 � >\5$BT26AT5
��032�E!\�* E�.!7�A ��U�';26AT0�?�2603A	ETB\4�9%\ [A*`
�(4�9�5 ��4�26587�9 7 ^ 2T9�2�E�A	4�?�26587�9 B������Y�l�hw�{ �P{ �"w��n�®�K�'���7�
�!}P�P�·�\È°{ u$�¢}xw|w�{i��uHÎ��

ø ­¬��uP±x� hc� ð��KÈ·ñ� l l�hÎ��K�¥w�}P�|�l~2�®�lu���}P� y|{ ³µ� �B�l��uP~�yz­c�l�|�Kw2�
��� E�7�A	E�2658?�4�K .R7�. M�032�E�A ' ?�58E�9�?�E��Hñ� l l�P�����	���\Êq �:+8nÊ�ñKÊl�

�$}P�B�P�l�x�l�K�B�h���h�P�8ð�� Í �B{ uP�x�P���7� ����ÈzÊq¡l¡-qlÎ�� hx��}P� y�³
y|�l� ~2�"��uhy!�|�l}Ky|{ uP±8{ u��K{iwzy|�|{ �P}Ky|~q��� �B�l�>uP~�yz­c�l�|�Kw2� 2�@ @ @
� A	4�9 B+� .R7�. M�032�� ���	� � "��!�Y�\Ê2Ï�qlñ18nÊ2Ï�q��P�

�����"���h��ux��uM�Y�!� Í ö��x�Yy|�|uB�l� <x�PÈzÊq¡l¡�:�Î��H���l���x�l��y��|�l}Ky|{ uP±
�lu´�"�P�l�"�P���\�|{ uP±hw����c�K~2±l�|~2~)�°�l}P�q�®tvu����Mð®�|{ Äq��ux�8��ux�

���hÝS{i�K�>���l~2�q�nÈ O��^� Î��7';5SA	7�?�?�7����2�!�c���|� ~�y|�lu��K��{ ~2uhy|{ ÐH���
Ê�ñ
q18nÊq��:B�

�¢�l�P{i���K�7� Í # ~2�|�Y�BuP{ �n� <x�^È·ñ� l l hÎ��M�${ uP{ ��}P�Éñ�³·y|~2�|��{ ux���
�|�l}Ky|{ uP±�{ u$ñ�³ Åz}P���$��{ �"��}P�i��uhy¬±l�"���P�xw2� .R7�. M�032�E�A�B]4�9%\
N AT265 	 ?�584�K72T9�2�E�KSK 5 �(E�9�?�E�� "��)� "��Y�H��:+8BÏh�P�

35

Kernels on Prolog Proof Trees: Statistical Learning in the ILP
Setting

A. Passerini passerini a©dsi·unifi·it

P. Frasconi p-f a©dsi·unifi·it

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze

L. De Raedt deraedt a©informatik·uni-freiburg·de

Institute for Computer Science, Albert-Ludwigs Universität, Freiburg

Abstract

We develop kernels for measuring the similar-
ity between relational instances using back-
ground knowledge expressed in first-order
logic. The method allows us to bridge the
gap between traditional inductive logic pro-
gramming representations and statistical ap-
proaches to supervised learning. Logic pro-
grams will be used to generate proofs of given
visitor programs which exploit the avail-
able background knowledge, while kernel ma-
chines will be employed to learn from such
proofs. We report positive empirical results
on Bongard-like and M -of-N problems that
are difficult or impossible to solve with tra-
ditional ILP techniques, as well as on a real
data set.

1. Introduction

Within the field of automated program synthesis, in-
ductive logic programming and machine learning, sev-
eral approaches exist that learn from example-traces.
An example-trace is a sequence of steps taken by
a program on a particular example input. For in-
stance, Alan Bierman (Biermann & Krishnaswamy,
1976) has sketched how to induce Turing machines
from example-traces; Mitchell et al. have developed
the LEX system (Mitchell et al., 1983) that learned
how to solve symbolic integration problems by an-
alyzing traces (or search trees) for particular exam-
ple problems; Ehud Shapiro’s Model Inference System
(Shapiro, 1983) inductively infers logic programs by
reconstructing the proof-trees and traces correspond-
ing to particular facts; and Zelle and Mooney (Zelle
& Mooney, 1993) show how to speed-up the execution
of logic programs by analyzing example-traces of the
underlying logic program. The diversity of these ap-
plications as well as the difficulty of the learning tasks

considered clearly illustrate the power of learning from
example-traces for a wide range of applications.

In the present paper, we generalize the idea of learning
from example-traces. Rather than explicitly learning
a target program from positive and negative example
traces, we assume that a particular – so-called visitor
program – is given and that our task consists of learn-
ing from the associated traces. The advantage is that
in principle any programming language can be used to
model the visitor program and that any machine learn-
ing system able use traces as an intermediate represen-
tation can be employed. In particular, this allows us to
combine two frequently employed frameworks within
the field of machine learning: inductive logic program-
ming and kernel methods. Logic programs will be used
to generate traces corresponding to specific examples
and kernels will be employed for quantifying the sim-
ilarity between traces. The combination yields an ap-
pealing and expressive framework for tackling complex
learning tasks involving structured data in a natural
manner. We call trace kernels the resulting broad fam-
ily of kernel functions obtainable as a result of this
combination. The visitor program is a set of clauses
that can be seen as the interface between the avail-
able background knowledge and the kernel itself. In-
tuitively, visitors are employed to specify a set of useful
features and in this sense play a role similar to rmodes
in ILP.

Starting from the seminal work of Haussler (Haus-
sler, 1999), several researchers have already proposed
kernels on discrete data structures such as sequences
(Lodhi et al., 2000; Jaakkola & Haussler, 1998; Leslie
et al., 2002; Cortes et al., 2004), trees (Collins &
Duffy, 2002; Vishwanathan & Smola, 2002), annotated
graphs (Gärtner, 2003; Schölkopf & Warmuth, 2003),
and complex individuals defined using higher order
logic abstractions (Gärtner et al., 2004). Construct-
ing kernels on structured data types, however, is not
the only aim of the proposed framework. In many

37

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

symbolic approaches to learning, logic programs allow
us to define background knowledge in a very natural
way. Similarly, in the case of kernel methods, the no-
tion of similarity between two instances expressed by
the kernel function is the main tool for exploiting the
available domain knowledge. It seems therefore nat-
ural to seek a link between logic programs and ker-
nels, also as a mean for embedding knowledge into
statistical learning algorithms in a principled and flex-
ible way. This aspect is an important contribution
of this paper as few alternatives exist to achieve this
goal. Propositionalization, for example, transforms
a relational problem into one that can be solved by
an attribute-value learner by mapping data structures
into a finite set of features (Kramer et al., 2000). Al-
though it is known that in many practical applications
propositionalization works well, its flexibility is gener-
ally limited. A remarkable exception is the method
proposed in (Cumby & Roth, 2002) that uses descrip-
tion logic to specify features and that has been subse-
quently extended to specify kernels (Cumby & Roth,
2003).

The guiding philosophy of trace kernels is very dif-
ferent from the above approaches. Intuitively, rather
than defining a kernel function that compares two
given instances, we define a kernel function that com-
pares the execution traces of a program (that ex-
presses background knowledge) run over the two given
instances. Similar instances should produce similar
traces when probed with programs examining char-
acteristics they have in common. Clearly these char-
acteristics can be more general than parts. Hence,
trace kernels can be introduced with the aim of achiev-
ing a greater generality and flexibility with respect to
convolution and decomposition kernels. In particular,
any program to be executed on data can be exploited
within the present framework to form a valid kernel
function, provided one can give a suitable definition of
the visitor program to specify how to obtain relevant
traces and proofs to compare examples. In addition,
although in this paper we only study trace kernels for
logic programs, similar ideas could be used in the con-
text of different programming paradigms and in con-
junction with alternative models of computation such
as finite state automata or Turing machines.

In this paper, we focus on a specific learning framework
for Prolog programs. Prolog execution traces consist
of sets of search trees (see e.g. (Sterling & Shapiro,
1994)) associated with goals in the visitor program;
these traces can be conveniently represented as Pro-
log ground terms. Thus, in this case, kernels over
traces reduce to Prolog ground terms kernels (PGTKs)
(Passerini & Frasconi, 2005). These kernels (which are

briefly reviewed in Section 3.3) can be seen as a special-
ization to Prolog of the kernels between higher order
logic individuals earlier introduced in (Gärtner et al.,
2004).

The paper is organized as follows. In Section 2 we re-
vise the classic ILP framework and describe the struc-
ture of visitor programs. In Section 3 we describe the
general form of the kernel on logical objects and, in
particular, Prolog proof trees, in Section 4 we give
some implementation details, and finally in Section 5
we report an empirical evaluation of the methodology
on some classic ILP benchmarks including Bongard
problems, M of N problems on sequences, and muta-
genesis.

2. Visitors and proof trees in First
Order Logic

In traditional inductive logic programming ap-
proaches, the learner is given a set of positive and
negative examples P and N (in the form of definite
clauses that are (resp. are not) entailed by the
target theory), and a background theory BK (a set
of definite clauses), and has to induce a hypothesis
H (a set of definite clauses) such that BK ∪ H
covers all positive examples and none of the negative
ones. More formally, ∀p ∈ P : BK ∪ H |= p and
∀n ∈ N : BK ∪H 6|= n. In practice, rather than work-
ing with ground clauses of the form e ← f1, ..., fn as
examples, inductive logic programming systems often
employ e as the example and add the facts fi to the
background theory BK. As an illustration, consider
the famous mutagenicity benchmark by (Srinivasan
et al., 1996). There the examples are of the form
mutagenic(id) where id is a unique identifier of the
molecule and the background knowledge contains
information about the atoms, bonds and functional
groups in the molecule. A hypothesis in this case
could be

mutagenic(ID)← nitro(ID,R), lumo(ID,L), L< -1.5.

It entails, i.e., covers, the molecule listed in Fig. 1.
For the purposes of this paper, it will be convenient
to look at examples as objects and to consider
the clausal notation h(x) ← f1, ..., fn where x is a
unique identifier of the example. Furthermore, where
necessary, we will refer to the head of the example as
h(x) and the set of facts in the body as F (x).

We can now introduce the framework of learning from
trace kernels. The key difference with the traditional
inductive logic programming setting is that the learner
is given a set of so-called visitor clauses V , which de-

38

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

mutagenic(225).
molecule(225).
logmutag(225,0.64).
lumo(225,-1.785).
logp(225,1.01).
nitro(225,[f1_4,f1_8,f1_10,f1_9]).
atom(225,f1_1,c,21,0.187).
atom(225,f1_2,c,21,-0.143).
atom(225,f1_3,c,21,-0.143).
atom(225,f1_4,c,21,-0.013).
atom(225,f1_5,o,52,-0.043).
...

Figure 1. An example from the mutagenesis domain

fine visitor predicates and which replace the hypothe-
sis H. So rather than having to find a set of clauses H,
the learner is given a set of clauses V . The idea then
is that for each example x, the proofs of the visitor
predicates are computed. These proofs then consti-
tute the representation employed by the kernel, which
has to learn how to discriminate the set of proofs for
a positive example from those of a negative example.
The rationale behind the use of the program trace is
the idea that not only the success or failure of the goal
is of interest in order to characterize a given instance,
but also the full trace of steps passed in order to pro-
duce such a result. Different visitors can be conceived
in order to explore different aspects of the examples
and include multiple sources of information.

This idea can be formalized as follows: for each exam-
ple (h(x), F (x)), background theory BK and visitor
clauses V defining visitor predicates vi, we compute
the set of proofs Pi(x) = {p | p is a proof such that
BK ∪ F (x) ∪ V |= vi(x)}.

So far, we have not detailed which type of proof or
trace is employed. At this point, there are several
possibilities. One could employ the SLD-tree, which
would not only contain information about succeeding
proofs but also about failing ones. The SLD-tree is
however a very complex and rather unstructured rep-
resentation. It is much more convenient to work with
and-trees for the visitor facts.

An and-tree for a query v for an example (h(x), F (x)),
a background theory BK and visitor clauses V for
which F (x) ∪BK ∪ V |= v is a tree such that

• v is the root of the tree and

• if v is a fact in F (x) ∪BK ∪ V then v is a leaf

• otherwise there must be a clause w ← b1, ..., bn ∈
BK ∪ V and a substitution θ grounding it such
that wθ = v and BK ∪ V |= biθ∀i and there is

a subtree of v for each biθ that is an and-tree for
biθ

The simplest visitor we can imagine just ignores the
background knowledge and extracts the ground facts
concerning a given example (or a subset of them).
Note that visitors actually allow us to expand the ex-
ample representation as described in (Lloyd, 2003) by
naturally including information derived from the back-
ground knowledge.

As an example, consider again the mutagenicity bench-
mark. The following is the atom bond representation
of the simple molecule in Figure 2. By looking at the
molecule as a graph where atoms are nodes and bonds
are edges, we can introduce the common notions of
path and cycle:

1 : cycle(E,X):- 2 : path(E,X,Y,M):-
path(E,X,Y,[X]), atm(E,X,_,_,_),
bond(E,Y,X,_). bond(E,X,Y,_),

atm(E,Y,_,_,_),
\+ member(Y,M).

3 : path(E,X,Y,M):-
atm(E,X,_,_,_),
bond(E,X,Z,_),
\+ member(Z,M),
path(E,Z,Y,[Z|M]).

A possible visitor in such context would be the one
simply looking for a cycle in the molecule, which can
be written as:

4 : visit(E):
cycle(E,X).

Note that we numbered each clause in BK ∪ V (but
not in F (e)1) with a unique identifier. This will allow
us to take into account information about the clauses
that are used in a proof.

In many situations, the and-tree for a given goal will
be unnecessary complex in that it may contain several
uninteresting subtrees. To account for this situation,
we will often work with pruned and-trees, which are
trees where subtrees rooted at specific predicates (de-
clared as leaf predicates by the user) are turned into
leafs. This will allow the kernel to ignore the way
atoms involving these predicates are proved. For in-
stance, consider again the molecule in Figure 2, and
suppose we have the background knowledge of func-
tional groups as described in (Srinivasan et al., 1996).
A potential visitor could look for a benzene ring within
the molecule, and eventually find out the details of the

1These numbers would change from example to example
and hence, would not carry any useful information.

39

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

atm(d26,d26_1,c,22,-0.093).
atm(d26,d26_2,c,22,-0.093).
atm(d26,d26_3,c,22,-0.093).
atm(d26,d26_4,c,22,-0.093).
atm(d26,d26_5,c,22,-0.093).
atm(d26,d26_6,c,22,-0.093).
atm(d26,d26_7,h,3,0.167).
atm(d26,d26_8,h,3,0.167).
atm(d26,d26_9,h,3,0.167).
atm(d26,d26_10,cl,93,-0.163).
atm(d26,d26_11,n,38,0.836).
atm(d26,d26_12,n,38,0.836).
atm(d26,d26_13,o,40,-0.363).
atm(d26,d26_14,o,40,-0.363).
atm(d26,d26_15,o,40,-0.363).
atm(d26,d26_16,o,40,-0.363).

bond(d26,d26_1,d26_2,7).
bond(d26,d26_2,d26_3,7).
bond(d26,d26_3,d26_4,7).
bond(d26,d26_4,d26_5,7).
bond(d26,d26_5,d26_6,7).
bond(d26,d26_6,d26_1,7).
bond(d26,d26_1,d26_7,1).
bond(d26,d26_3,d26_8,1).
bond(d26,d26_6,d26_9,1).
bond(d26,d26_10,d26_5,1).
bond(d26,d26_4,d26_11,1).
bond(d26,d26_2,d26_12,1).
bond(d26,d26_13,d26_11,2).
bond(d26,d26_11,d26_14,2).
bond(d26,d26_15,d26_12,2).
bond(d26,d26_12,d26_16,2).

Figure 2. Simple molecule from the mutagenicity benchmark.

atoms involved. In this case it could be convenient to
ignore the details of the proof of the ring, provided
the atoms involved are extracted. This would be im-
plemented by the predicate visit_benzene as follows:

1 : atoms(E,[]). 2 : atoms(E,[H|T]):-
atm(E,H,_,_,_),
atoms(E,T).

3 : visit_benzene(E):-
benzene(E,Atoms),
atoms(E,Atoms).

leaf(benzene(_,_)).

It is important to note that in general a goal can be
satisfied in a number of alternative ways. Therefore, a
visitor predicate actually generates a (possibly empty)
set of proof trees. Furthermore, as we already under-
lined, different visitors can be conceived in order to
analyse different characteristics of the data. An ex-
ample is thus represented as a tuple of sets of proof
trees, obtained by running all the available visitors on
it. Given such a representation, we are now able to
develop kernels over pairs of examples.

3. Bridging the Gap: Kernels over
Logical Objects

Having defined the program traces generated by the
visitors, in this section we detail how traces are com-
pared by a kernel over tuples of sets of proof trees.

3.1. Kernels for Discrete Structures

A very general formulation of kernels on discrete struc-
tures is that of convolution kernels (Haussler, 1999).

Suppose x ∈ X is a composite structure made of
“parts” x1, . . . , xD such that xd ∈ Xd for all i ∈ [1, D].
This can be formally represented by a relation R on
X1 × · · · × XD × X such that R(x1, . . . , xD, x) is true
iff x1, . . . , xD are the parts of x. Given a set of kernels
Kd : Xd ×Xd → IR, one for each of the parts of x, the
R-convolution kernel is defined as

(K1 ? · · · ? KD)(x, z) =
∑
R

D∏
d=1

Kd(xd, zd), (1)

where the sum runs over all the possible decomposi-
tions of x and z. For finite relations R, this can be
shown to be a valid kernel (Haussler, 1999).

A special case of convolution kernel, which will prove
useful in defining kernels between proof trees, is the
set kernel (Shawe-Taylor & Cristianini, 2004). Pro-
vided an object can be represented as a set of simpler
objects, we define the part-of relation to be the set-
membership, and the kernel reduces to the sum of all
pairwise kernels between members:

Kset(x, z) =
∑

ξ∈x,ζ∈z

Kmember(ξ, ζ). (2)

In order to reduce the dependence on the dimension
of the objects, kernels over discrete structures are of-
ten normalized. A commmon choice is that of using
normalization in feature space, given by:

Knorm(x, z) =
K(x, z)√

K(x, x)
√

K(z, z)
. (3)

In the case of set kernels, an alternative is that of
dividing by the size of the two sets, thus computing

40

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

the mean value between pairwise comparisons:

Kmean(x, z) =
Kset(x, z)
|x||z|

. (4)

This formalism allows us to define a kernel over logi-
cal objects as the convolution kernel over the parts in
which the objects can be decomposed according to the
background knowledge available, provided we are able
to define appropriate kernels between individual parts.

3.2. Kernels over Visit Programs

Assume we have a visiting program V made of a num-
ber n ≥ 1 of visitor predicates v1, . . . , vn, each produc-
ing a (possibly empty) set of proof trees ti,j(x) when
tested over an example x. The proof tree representa-
tion of x can be written as:

P (x) = [P1(x), . . . , Pn(x)] (5)

where
Pi(x) = {ti,1(x), . . . , ti,hi(x)(x)} (6)

and mi(x) ≥ 0 is the number of alternative proofs of
visitor vi for example x. Assuming that we do not want
to compare proof trees derived from different visitors
(but it is straightforward to include such a case), we
can define the kernel between examples as:

K(x, z) = KP (P (x), P (z))

=
n∑

i=1

Ki(Pi(x), Pi(z)). (7)

By using the definition of set kernel introduced in Sec-
tion 3.1, we further obtain:

Ki(Pi(x), Pi(z)) =
mi(x)∑
j=1

mi(z)∑
`=1

K(ti,j(x), ti,`(z)) (8)

The problem boils down to defining the kernel between
individual proof trees. Note that we can define differ-
ent kernels for proof trees originating from different
visitors, thus allowing for the greatest flexibility.

At the highest level of kernel between visit programs,
we will employ a feature space normalization (eq. (3)).
However, it is still possible to normalize lower level ker-
nels, in order to rebalance contributions of individual
parts. We will employ a mean normalization (eq. (4))
for the kernel between visitors, and possibly further
normalize kernels between individual proof trees, thus
reducing the influence of the dimension of proofs.

3.3. Kernels over Proof Trees

Proof trees are discrete data structures and, in prin-
ciple, existing kernels on trees could be applied (e.g.

(Collins & Duffy, 2002; Vishwanathan & Smola,
2002)). However, we can gain more expressiveness
by representing individual proof trees as typed Pro-
log ground terms. In so doing we can exploit type in-
formation on constants and functors so that different
sub-kernels can be applied to different object types. In
addition, while traditional tree kernels would typically
compare all pairs of subtrees between two proofs, the
kernel on ground terms presented below results in a
more selective approach that compares certain parts
of two proofs only when reached by following similar
inference steps, (a distinction that would be difficult
to implement with traditional tree kernels).

We will use the following procedure to represent a
proof tree as a ground term:

• Nodes corresponding to facts are already ground
terms.

• Consider a node corresponding to a clause, with
n arguments in the head, and the conjunction of
m terms in the body, which correspond to the m
children of the node.

– Let the ground term be a compund term with
n + 1 arguments, and functor equal to the
head functor of the clause.

– Let the first n arguments be the arguments
of the clause head.

– Let the last argument be a compound term,
with functor equal to the clause number2,
and m arguments equal to the ground term
representations of the m children of the node.

We are now able to employ kernels on Prolog ground
terms as defined in (Passerini & Frasconi, 2005) to
compute kernels over individual proof trees. Let us
briefly recall the definition of the kernel for typed Pro-
log ground terms.

We denote by T the ranked set of type constructors,
which contains at least the nullary constructor ⊥. The
type signature of a function of arity n has the form
τ1×, . . . ,×τn 7→ τ ′ where n ≥ 0 is the number of ar-
guments, τ1, . . . , τk ∈ T their types, and τ ′ ∈ T the
type of the result. Functions of arity 0 have signature
⊥ 7→ τ ′ and can be therefore interpreted as constants
of type τ ′. The type of a function is the type of its
result. The type signature of a predicate of arity n
has the form τ1×, . . . ,×τn 7→ Ω where Ω ∈ T is the
type of booleans, and is thus a special case of type
signatures of functions. We write t : τ to assert that

2Actually the number will be prefixed by ’cbody’ be-
cause Prolog does not allow to use numbers as functors.

41

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

t is a term of type τ . We denote by B the set of all
typed ground terms, by C ⊂ B the set of all typed con-
stants, and by F the set of typed functors. Finally we
introduce a (possibly empty) set of distinguished type
signatures D ⊂ T that can be useful to specify ad-hoc
kernel functions on certain compound terms.

Definition 3.1 (Sum Kernels on typed terms)
The kernel between two typed terms t and s is defined
inductively as follows:

• if s ∈ C, t ∈ C, s : τ , t : τ then K(s, t) = κτ (s, t)
where κτ : C × C 7→ IR is a valid kernel on con-
stants of type τ ;

• else if s and t are compound terms that have the
same type but different arities, functors, or signa-
tures, i.e. s = f(s1, . . . , sn) and t = g(t1, . . . , tm),
f : σ1×, . . . ,×σn 7→ τ ′, g : τ1×, . . . ,×τm 7→ τ ′,
then

K(s, t) = ιτ ′(f, g) (9)

where ιτ ′ : F × F 7→ IR is a valid kernel on func-
tors that construct terms of type τ ′

• else if s and t are compound terms and have
the same type, arity, and functor, i.e. s =
f(s1, . . . , sn), t = f(t1, . . . , tn), and f :
τ1×, . . . ,×τn 7→ τ ′, then

K(s, t) =


κτ1×,...,×τn 7→τ ′(s, t)

if (τ1×, . . . ,×τn 7→ τ ′) ∈ D

ιτ ′(f, f) +
n∑

i=1

K(si, ti) otherwise

(10)

• in all other cases K(s, t) = 0.

By replacing Equation (10) with

K(s, t) =


κτ1×,...,×τn 7→τ ′(s, t)

if (τ1×, . . . ,×τn 7→ τ ′) ∈ D

ιτ ′(f, f)
n∏

i=1

K(si, ti) otherwise

(11)
we obtain the Product Kernel on typed ground terms.
In order to employ such kernels on proof trees, we need
a typed syntax for them. We will assume the follow-
ing default types for constants: num (numerical) and
cat (categorical). Types for compounds terms will be
either fact, corresponding to leaves in the proof tree,
clause in the case of internal nodes, and body when
containing the body of a clause. Note that regard-
less of the specific implementation of kernels between
types, such definitions imply that we actually compare

the common subpart of proofs starting from the goal
(the visitor clause), and stop whenever the two proofs
diverge.

A number of special cases of kernels can be imple-
mented with appropriate choices of the kernel for com-
pound and atomic terms. The equivalence kernel out-
puts one iff two proofs are equivalent, and zero other-
wise:

Kequiv(s, t) =
{

1 if s ≡ t
0 otherwise (12)

We say that two proof trees s and t are equivalent iff
they have the same number of nodes, and each node
is equivalent to its partner in the perfect matching
relation between the trees. This can be implemented
using the Product Kernel in combination with binary
valued kernels, such as the matching one, for kernels on
constants and functors , thus implementing the notion
of equivalence between individual nodes.

In many cases, we will be interested in ignoring some
of the arguments of a pair of ground terms when com-
puting the kernel between them. As an example, con-
sider the atom bond representation in the mutagenic-
ity benchmark, and the background knowledge in the
example at the end of Section 2: the argument denoted
by E indicates the unique identifier of a given molecule,
and we would like to ignore its value when comparing
two molecules together. This can be implemented us-
ing a special ignore type for arguments that should be
ignored in comparisons, and a corresponding constant
kernel which always outputs a constant value:

Kη(s, t) = η (13)

It is straightforward to see that Kη is a valid kernel
provided η ≥ 0. The constant η should be set equal
to the neutral value of the operation which is used to
combine results for the different arguments of the term
under consideration, that is η = 0 for the sum kernel
and η = 1 for the product one.

The extreme use for this kernel is that of implementing
the notion of functor equality for nodes, where two
nodes are the same iff they share the same functor (and
number of arguments), regardless the specific values
taken by their arguments. Given two ground terms
s = f(s1, . . . , sn) and t = g(t1, . . . , tn) the functor
equality kernel is given by:

Kf (s, t) =


0 if type(s) 6= type(t)
δ(f, g) if s, t : fact
δ(f, g) ? K(sn, tn) if s, t : clause
K(s, t) if s, t : body

(14)

42

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

where in the internal node case the comparison pro-
ceeds on the children, and the operator ? can be either
sum or product.

Moreover, it will often be useful to define custom ker-
nels for specific terms, being them clauses or facts, by
using distinguished type signatures.

4. Algorithmic Implementation

The algorithm we implemented allows for a high flex-
ibility in customizing the behaviour to match the re-
quirements of the specific task at hand. Four different
files should be filled in order to provide the following
information:

• The knowledge base describing the data.

• The background knowledge.

• The visit program to be run on the data.

• The specific implementation of kernel over proof
trees, as a combination of default behaviours and
possibly customized ones.

The first two files are standard in the ILP setting. The
visit program is represented as a collection of clauses
implementing one or more visitors, together with pos-
sible leaf statements aimed at pruning resulting proof
trees (see the example at the end of Section 2). Note
that it is not necessary to explicitly specify numeric
identifiers for clauses, as the program will use the ones
automatically provided by Prolog interpreters.

The kernel specification defines the way in which data
and knowledge should be treated. The default way of
treating compound terms can be declared to be either
sum or product, by writing compound_kernel(sum)or
compound_kernel(product)respectively.

The default atomic kernel is the matching one for sym-
bols, and the product for numbers. Such behaviour
can be modified by directly specifying the type signa-
ture of a given clause or fact. As an example, the fol-
lowing definition overrides the default kernel between
atm terms for the mutagenicity problem:

type(atm(ignore,ignore,cat,cat,num)).

allowing to ignore identifiers for molecule and atom,
and change the default behaviour for atom type (which
is a number) to categorical.

Default behaviours can also be overriden by defining
specific kernels for particular clauses or facts. This
corresponds to specifying distinguished types together

to appropriate kernels for them. Thus, the kernel be-
tween atoms could be equivalently specified by writ-
ing3:

term_kernel(atm(_,_,Xa,Xt,Xc),
atm(_,_,Ya,Yt,Yc),K):-

delta_kernel(Xa,Ya,Ka),
delta_kernel(Xt,Yt,Kt),
dot_kernel(Xc,Yc,Kc),
K is Ka + Kt + Kc.

A useful kernel which can be selected is the func-
tor equality kernel as defined in Equation (14). For
example, by writing

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

at the end of the configuration file it is possible to
force the default behaviour for all remaining terms to
functor equality, where the combination operator em-
ployed for internal nodes will be the one specified with
the compound kernel statement.

Finally, hyperparameters must be provided for the par-
ticular kernel machine to be run. We employed gist-
svm 4 as it permits to separate kernel calculation from
training by accepting the complete kernel matrix as
input. Note that in this phase it is possible to spec-
ify kernels other than the linear one (e.g. Gaussian)
on top of the visit program kernel, in order to further
enlarge the feature space.

In the next section, we will provide a number of exper-
iments showing how to customize the program to the
task at hand and providing evidence of the possibilities
and limitations of the proposed method.

5. Experiments

5.1. Bongard problems

In order to provide a full basic example of visit pro-
gram construction, algorithm configuration and ex-
ploitation of the proof tree information, we created
a very simple Bongard problem (Bongard, 1970). The
concept to be learned can be represented with the sim-
ple pattern triangle-Xn-triangle for a given n, mean-
ing that a positive example is a scene containing two
triangles nested into one another with exactly n ob-
jects (possibly triangles) in between. Figure 3 shows a
pair of examples of such scenes with their representa-

3Actually, this also allows to possibly override the ker-
nel combination operator specified by the compound kernel
statement.

4available at
http://microarray.genomecenter.columbia.edu/gist/

43

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

tion as Prolog facts and their classification according
to the pattern for n = 1.

A possible example of background knowledge intro-
duces the concepts of nesting in containment and poly-
gon as a generic object, and can be represented as fol-
lows:

inside(E,X,Y):-
in(E,X,Y).

inside(E,X,Y):-
in(E,X,Z),
inside(E,Z,Y).

polygon(E,X) :-
triangle(E,X).

polygon(E,X) :-
rectangle(E,X).

polygon(E,X) :-
circle(E,X).

A visitor exploiting such background knowledge, and
having hints on the target concept, could be looking
for two polygons contained one into the other. This
can be represented as:

visit(E):-
inside(E,X,Y),polygon(E,X),polygon(E,Y).

Figure 4 shows the proofs trees obtained running such
a visitor on the first Bongard problem in Figure 3.

A very simple kernel can be employed to solve such a
task, namely an equivalence kernel with functor equal-
ity for nodewise comparison. This can be implemented
with the following kernel configuration file:

compound_kernel(product).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

For any value of n, such a kernel maps the examples
into a feature space where there is a single feature dis-
criminating between positive and negative examples,
while the simple use of ground facts without back-
ground knowledge would not provide sufficient infor-
mation for the task.

The data set was generated by creating m scenes each
containing a series of n randomly chosen objects nested
one into the other, and repeating the procedure for n
varying from 1 to 19. Moreover, we generated two
different data sets by choosing m = 10 and m = 50
respectively. Finally, for each data set we obtained 15
experimental settings denoted by n ∈ [1, 15]. In each
setting, positive examples where scenes containing the
pattern triangle-Xn-triangle. We run an SVM with
the above mentioned proof trees kernel and a fixed
value C = 10 for the regulatization parameter, being
the data set noise free. We evaluated its performance
with a leave-one-out procedure, and compared it to

Tilde (Blockeel & Raedt, 1997) trained from the same
data and background knowledge (including the visi-
tor).

Results are plotted in Figure 5(a) and 5(b) for m = 10
and m = 50 respectively. Both methods obtained bet-
ter performance for bigger data sets, but SVM per-
formance was very stable when increasing the nest-
ing level corresponding to positive examples, whereas
Tilde was not able to learn the concept for n > 5 when
m = 10, and n > 9 when m = 50.

5.2. Strings

The possibility to plug background knowledge into the
kernel allows to address problems which are notori-
ously hard for ILP approaches. An example of such
concepts is the M of N one, which expects the model
to be able to count and make the decision according
to the result of such count.

We represented this kind of tasks with a toy problem.
Examples are strings of integers i ∈ [0, 9], and a string
is positive iff more than a half of its pairs of consecu-
tive elements is ordered, where we employ the partial
ordering relation ≤ between numbers. In this task,
M and N are example dependent, while their ratio is
fixed.

As background knowledge, we introduced the concepts
of length two substring and ordering between pairs of
elements:

substr([],_):-fail. comp(A,B):-
substr(_,[]):-fail. A @> B.
substr([A,B],[A,B|_T]). comp(A,B):-
substr([A,B],[_H|T]):- A @=< B.
substr([A,B],T).

while the visitor actually looks for a substring of length
two in the example, and compares its elements:

visit(E):-
string(E,S),substr([A,B],S),comp(A,B).

leaf(substr(_,_)).

Note that we state substr is a leaf, because we are not
interested in where the substring is located within the
example.

The kernel we employed for this task is a sum kernel
with functor equality for nodewise comparison. This
can be implemented with the following kernel config-
uration file:

compound_kernel(sum).

44

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

bongard(1, pos).

triangle(1,o1).

circle(1,o2).

triangle(1,o3).

in(1,o1,o2).

in(1,o2,o3).

bongard(4, neg).

triangle(4,o1).

rectangle(4,o2).

circle(4,o3).

triangle(4,o4).

in(4,o1,o2).

in(4,o2,o3).

in(4,o3,o4).

Figure 3. Graphical and Prolog facts representation of two Bongard scenes. The left and right examples are positive and
negative, respectively, according to the pattern triangle-X-triangle.

visit(1)

inside(1,o1,o2)

in(1,o1,o2)

polygon(1,o1)

triangle(1,o1)

polygon(1,o2)

circle(1,o2)

visit(1)

inside(1,o2,o3)

in(1,o2,o3)

polygon(1,o2)

circle(1,o2)

polygon(1,o3)

triangle(1,o3)

visit(1)

inside(1,o1,o3)

in(1,o2,o3)

polygon(1,o1)

triangle(1,o1)

polygon(1,o3)

triangle(1,o3)inside(1,o2,o3)in(1,o1,o2)

Figure 4. Proof trees obtained by running the visitor on the first Bongard problem in Figure 3.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

Ac
cu

ra
cy

Nesting Level

SVM LOO
Tilde train

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

Ac
cu

ra
cy

Nesting Level

SVM LOO
Tilde train

Figure 5. Comparison between SVM and Tilde in learning the triangle-Xn-triangle for different values of n, for data sets
corresponding to m = 10 (left) and m = 50 (right).

45

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

The data set was created in the following way: the
training set was made of 150 randomly generated lists
of length 4 and 150 lists of length 5; the test set was
made of 1455 randomly generated lists of length from
6 to 100. This allowed to verify the generalization per-
formances of the algorithm for lengths very different
from the ones it was trained on. The area under the
ROC curve (Bradley, 1997) on the test set was equal to
1, showing that the concept had been perfectly learned
by the algorithm.

5.3. Mutagenicity

The mutagenicity problem described in (Srinivasan
et al., 1996) is a standard benchmark for ILP ap-
proaches. Background theory is represented as number
of clauses looking for functional groups, such as ben-
zene or anthracene, within a molecule. As a baseline
we used a visitor looking for paths of different lenghts
within the molecule, thus ignoring the notion of func-
tional groups:

path(Drug,1,X,Y,M):-
atm(Drug,X,_,_,_),bond(Drug,X,Y,_),
atm(Drug,Y,_,_,_),\+ member(Y,M).

path(Drug,L,X,Y,M):-
atm(Drug,X,_,_,_),bond(Drug,X,Z,_),
\+ member(Z,M),L1 is L - 1,
path(Drug,L1,Z,Y,[Z|M]).

visit1(Drug):-
path(Drug,1,X,_,[X]).
.
.

visit5(Drug):-
path(Drug,5,X,_,[X]).

the kernel compared atoms and bonds in correspond-
ing positions for paths of same length:

compound_kernel(sum).

type(atm(ignore,ignore,cat,cat,num)).
type(bond(ignore,ignore,ignore,cat)).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

A more complex notion of similarity would be to com-
pare atoms belonging to the same type of functional

group, according to the background knowledge avail-
able. This was implemented with the following set of
visitors:

atoms(Drug,[]).

atoms(Drug,[H|T]):-
atm(Drug,H,_,_,_),atoms(Drug,T).

visit_benzene(Drug):-
benzene(Drug,Atoms),
atoms(Drug,Atoms).

visit_anthracene(Drug):-
anthracene(Drug,[Ring1,Ring2,Ring3]),
atoms(Drug,Ring1),atoms(Drug,Ring2),
atoms(Drug,Ring3).
.
.

visit_ring_size_5(Drug):-
ring_size_5(Drug,Atoms),
atoms(Drug,Atoms).

leaf(benzene(_,_)).
leaf(anthracene(_,_)).
.
.

leaf(ring_size_5(_,_)).

and corresponding kernel configuration:

compound_kernel(sum).

type(atm(ignore,ignore,cat,cat,num)).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

Note that we are not interested in the way the pres-
ence of a functional group is proved, but simply on the
characteristics of the atoms belonging to it. Finally,
an additional source of information is given by some
non structural attributes, which were included using a
visitor which simply reads them

visit_global(Drug):-
lumo(Drug,_Lumo),
logp(Drug,_Logp).

and a kernel configuration like

type(lumo(ignore,num)).
type(logp(ignore,num)).

to be added before the last statement for the default
functor equality kernel.

46

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 1 10 100

LO
O

 A
cc

ur
ac

y

Regularization parameter

path
theory

theory+global
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

LO
O

 A
re

a
Un

de
r r

oc
 C

ur
ve

Regularization parameter

path
theory

theory+global

Figure 6. LOO accuracy (left) and AUC (right) for the regression friendly mutagenesis data set using different types of
visitors/kernels.

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.01 0.1 1 10

LO
O

 A
cc

ur
ac

y

Gaussian gamma

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.01 0.1 1 10

LO
O

 A
re

a
Un

de
r r

oc
 C

ur
ve

Gaussian gamma

Figure 7. LOO accuracy (left) and AUC (right) for the regression friendly mutagenesis data set using the theory+global
visitor/kernel, a Gaussian kernel on top of it, C = 50 and different values for the Gaussian width.

We used the regression friendly data set of 188
molecules with a LOO procedure to evaluate the meth-
ods, and both accuracy and area under the ROC curve
(AUC) as performance measures. Figures 6(a) and
6(b) report LOO accuracy and AUC for different val-
ues of the regularization parameter C, for path, theory
and theory+global visitors and corresponding kernels.
Note that performances could be further improved by
composing additional kernels on top of the visit pro-
gram one. As an example, Figure 7(a) and 7(b) report
LOO accuracy and AUC when using a Gaussian kernel
on top of the theory+global kernel, with a fixed param-
eter C = 50 (tuned on the non composed kernel), and
different values for the Gaussian width.

6. Conclusions

We have introduced the general idea of kernels over
program traces and specialized it to the case of Pro-
log proof trees in the logic programming paradigm.
The theory and the experimental results that we have
obtained indicate that this method can be seen as a

successful attempt to bridge several important aspects
of symbolic and statistical learning, including the abil-
ity of working with relational data, the incorporation
of background knowledge in a flexible and principled
way, and the use of kernel methods. Besides the case
of classification that has been studied in this paper,
other learning tasks could benefit from the proposed
framework including regression, clustering, ranking,
and novelty detection. One advantage of ILP as com-
pared to the present work is the intrinsic ability of
inductive logic programming to generate transparent
explanations of the learned function. We are currently
investigating the possibility to use the kernel in guid-
ing program synthesis or refinement, for example by
learning to change the default order of Prolog resolu-
tion looking at the traces of successful and unsuccessful
proofs.

Acknowledgements

This research is supported by EU Grant APrIL II (con-
tract n◦ 508861). PF and AP are also partially sup-

47

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

ported by MIUR Grant 2003091149 002.

References

Biermann, A., & Krishnaswamy, R. (1976). Construct-
ing programs from example computations. IEEE
Transactions on Software Engineering, 2, 141–153.

Blockeel, H., & Raedt, L. D. (1997). Top-down induc-
tion of logical decision trees (Technical Report CW
247). Dept. of Computer Science, K.U.Leuven.

Bongard, M. (1970). Pattern recognition. Spartan
Books.

Bradley, A. (1997). The use of the area under the
roc curve in the evaluation of machine learning al-
gorithms. Pattern Recognition, 30, 1145–1159.

Collins, M., & Duffy, N. (2002). New ranking algo-
rithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. Proceedings of
ACL 2002 (pp. 263–270). Philadelphia, PA, USA.

Cortes, C., Haffner, P., & Mohri, M. (2004). Rational
kernels: Theory and algorithms. Journal of Machine
Learning Research, 5, 1035–1062.

Cumby, C. M., & Roth, D. (2002). Learning with
feature description logics. Proc. of ILP’02 (pp. 32–
47). Springer-Verlag.

Cumby, C. M., & Roth, D. (2003). On kernel methods
for relational learning. Proc. of ICML’03.

Gärtner, T. (2003). A survey of kernels for structured
data. SIGKDD Explor. Newsl., 5, 49–58.

Gärtner, T., Lloyd, J., & Flach, P. (2004). Kernels and
distances for structured data. Machine Learning, 57,
205–232.

Haussler, D. (1999). Convolution kernels on dis-
crete structures (Technical Report UCSC-CRL-99-
10). University of California, Santa Cruz.

Jaakkola, T., & Haussler, D. (1998). Exploiting gen-
erative models in discriminative classifiers. Proc. of
NIPS.

Kramer, S., Lavrac, N., & Flach, P. (2000). Proposi-
tionalization approaches to relational data mining.
In Relational data mining, 262–286. SV, NY.

Leslie, C., Eskin, E., & Noble, W. (2002). The spec-
trum kernel: a string kernel for svm protein classi-
fication. Proc. of the Pac. Symp. Biocomput. (pp.
564–575).

Lloyd, J. (2003). Logic for learning: learning com-
prehensible theories from structured data. Springer-
Verlag.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., &
Watkins, C. (2000). Text classification using string
kernels. NIPS 2000 (pp. 563–569).

Mitchell, T. M., Utgoff, P. E., & Banerj, R. (1983).
Learning by experimentation: Acquiring and refin-
ing problem-solving heuristics. In Machine learning:
An artificial intelligence approach, vol. 1. Morgan
Kaufmann.

Passerini, A., & Frasconi, P. (2005). Kernels on prolog
ground terms. Int. Joint Conf. on Artificial Intelli-
gence (IJCAI’05). Edinburgh.

Schölkopf, B., & Warmuth, M. (Eds.). (2003). Kernels
and regularization on graphs, vol. 2777 of Lecture
Notes in Computer Science. Springer.

Shapiro, E. (1983). Algorithmic program debugging.
MIT Press.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel
methods for pattern analysis. Cambridge University
Press.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E.,
& King, R. D. (1996). Theories for mutagenicity:
A study in first-order and feature-based induction.
Artificial Intelligence, 85, 277–299.

Sterling, L., & Shapiro, E. (1994). The art of prolog:
Advanced programming techniques. MIT Press. 2nd
edition.

Vishwanathan, S., & Smola, A. (2002). Fast kernels
on strings and trees. NIPS 2002.

Zelle, J. M., & Mooney, R. J. (1993). Combining
FOIL and EBG to speed-up logic programs. Proc.
of IJCAI-93 (pp. 1106–1111).

48

Learning Recursive Prolog Programs with Local Variables from

Examples

M. R. K. Krishna Rao krishna@ccse.kfupm.edu.sa

Information and Computer Science Department King Fahd University of Petroleum and Minerals, Dhahran
31261, Saudi Arabia.

Abstract

Logic programs with elegant and simple
declarative semantics have become very com-
mon in many areas of artificial intelligence
such as knowledge acquisition, knowledge
representation and common sense and le-
gal reasoning. For example, in Human
GENOME project, logic programs are used
in the analysis of amino acid sequences,
protein structure and drug design etc. In
this paper, we investigate the problem of
learning logic (Prolog) programs from ex-
amples and present an inference algorithm
for a class of programs. This class of
programs (called one-recursive programs) is
based on the divide-and-conquer approach
and mode/type annotations. Our class
is very rich and includes many programs
from Sterling and Shapiro’s book [33] in-
cluding append, merge, split, delete,

insert, insertion-sort, preorder and
inorder traversal of binary trees, polyno-
mial recognition, derivatives, sum of a list
of natural numbers etc., whereas earlier re-
sults can only deal with very simple pro-
grams without local variables and at most
two clauses and one predicate [4].

1. Introduction

The theory of inductive inference attempts to under-
stand the all pervasive phenomena of learning from
examples and counterexamples. Starting from the in-
fluential works of Gold [12] and Blum and Blum [5],
a lot of effort has gone into the development of a rich
theory about inductive inference and the classes of
concepts which can be learned from both positive (ex-
amples) and negative data (counterexamples) and the
classes of concepts which can be learned from positive
data alone. The study of inferability from positive

data alone is important because negative examples are
hard to obtain in practice.

Logic programs with simple and elegant declara-
tive semantics can be used as representations of
the concepts to be learned. In fact, the problem
of learning logic programs from examples has at-
tracted a lot of attention (a.o. [3,4,7,8,10,11,13-16,18-
20,22-25,28,29,35]) starting with the seminal work of
Shapiro [30, 31] and many techniques and systems
for learning logic programs are developed and used
in many applications. See [24] for a recent survey.

The existing literature mainly concerns with either
nonrecursive programs or recursive programs without
local variables, usually with a further restriction that
programs contain a unit clause and at most one re-
cursive clause with just one atom in the body. It is a
well-known fact that local variables in logic programs
play an important role in sideways information pas-

sage. However, presence of local variables pose a few
difficulties in analyzing and learning programs. Mod-
ing annotations and linear inequalities have been suc-
cessfully applied in the literature (cf. [34, 27, 17, 2])
to tame these difficulties in analyzing logic programs
with local variables (in particular, termination and
occur-check aspects). In this paper, we demonstrate
that moding/typing annotations and linear inequali-
ties are useful in learning logic programs as well.

As established by many authors in the literature,
learning recursive logic programs, even with the above
restrictions, is a very difficult problem. We approach
this problem from a programming methodology angle
and propose an algorithm to learn a class of Prolog
programs, that use divide-and-conquer methodology.
Our endeavour is to develop an inference algorithm
that learns a very natural class of programs so that it
will be quite useful in practice. We measure the natu-
rality of a class of programs in terms of the number of
programs it covers from a standard Prolog book such
as [33]. We use the inference criterion proposed by An-

51

Learning Recursive Prolog Programs with Local Variables from Examples

gluin [1]: consistent and conservative identification in
the limit from positive data with polynomial time in
updating conjectures. That is, the program guessed
by the algorithm is always consistent with the exam-
ples read so far and changes its guess only when the
most recently read example is not consistent with the
current guess and it updates its guess in polynomial
time in the size of the current sample of examples read
so far.

2. Preliminaries

We assume that the reader is familiar with the ba-
sic terminology of logic programming and inductive
inference and use the standard terminology from
[21, 24, 12]. We are primarily interested in programs
operating on the following recursive types used in
Sterling and Shapiro [33].1

Nat ::= 0 | s(Nat)
List ::= [] | [item | List]
ListNat ::= [] | [Nat | ListNat]
Btree ::= void | tree(Btree, item, Btree)

Definition 1 A term t is a generic expression for
type T if for every s ∈ T disjoint with t the following
property holds: if s unifies with t then s is an instance
of t.

For example, a variable is a generic expression for
every type T , and [], [X], [H|T], [X, Y|Z], · · · are generic
expressions for the type List. Note that a generic
expression for type T need not be a member of T —
e.g., term f(X) is a generic expression for the type
List.

Notation:

1. We call the terms 0, [] and void the constants of
their respective types, and call the subterms T1
and T2 recursive subterms of term (or generic-
expression) of the form tree(T1, X, T2) of type
Btree. Similarly, L is the recursive subterm of
term (or generic-expression) of the form [H|L] of
type List.

2. The generic-expression 0 (resp. [] and void)
is called the first generic-expression of type Nat

(resp. List and Btree). The generic-expression
s(X) (resp. [H|L] and tree(T1, X, T2)), which gen-
eralizes all the other terms of type Nat (resp.
List and Btree) is called the second generic-
expression of type Nat (resp. List and Btree).

1Though we only consider Nat, List, ListNat and
Btree in the following, any other recursive type can be
handled appropriately.

Remark: Note that the first and second generic-
expressions of a given recursive type are unique upto
variable renaming.

Definition 2 For a term t, the parametric size [t] of
t is defined recursively as follows:

• if t is a variable X then [t] is a linear expression
X,

• if t is the empty list [] or the natural number
0 or the empty tree void then [t] is zero,

• if t = f(t1, . . . , tn) and f ∈ Σ−{0, [], void} then
[t] is a linear expression 1 + [t1] + · · ·+ [tn].

The parametric size of a sequence t of terms t1, · · · , tn
is the sum [t1] + · · ·+ [tn].

The size of a term t, denoted by |t|, is defined as [t]θ,
where θ substitutes 1 for each variable. The size of
an atom p(t1, · · · , tn) is the sum of the sizes of terms
t1, · · · , tn.

Example 1 The parametric sizes of terms [], [X], [a]
and [a, b, c] are 0, X + 1, 2, and 6 respectively. Their
sizes are 0, 2, 2, and 6 respectively.

Remark: In general, the size of a list (or binary tree)
with n elements is 2n. This is similar to the measures
used in the termination analysis of logic programs by
Plümer [27] in the sense that size of a term is propor-
tional to its contents.

3. Linearly-moded programs

Using moding annotations and linear predicate in-
equalities, Krishna Rao [18] introduced the following
class of programs and proved a theoretical result that
this class is inferable from positive examples alone.

Definition 3 A mode m of an n-ary predicate p is
a function from {1, · · · , n} to the set {in, out}. The
sets in(p) = {j | m(j) = in} and out(p) = {j | m(j) =
out} are the sets of input and output positions of p

respectively.

A moded program is a logic program with each pred-
icate having a unique mode associated with it. In the
following, p(s; t) denotes an atom with input terms s

and output terms t.

Definition 4 Let P be a moded program and I be a
mapping from the set of predicates occurring in P to
sets of input positions satisfying I(p) ⊆ in(p) for each
predicate p in P . For an atom A = p(s; t), the linear
inequality ∑

i∈I(p)

[si] ≥
∑

j∈out(p)

[tj] (1)

is denoted by LI(A, I).

52

Learning Recursive Prolog Programs with Local Variables from Examples

Definition 5 A moded program P is linearly-moded
w.r.t. a mapping I such that I(p) ⊆ in(p) for each
predicate p in P , if each clause

p0(s0; t0)← p1(s1; t1), · · · , pk(sk; tk)

k ≥ 0, in P satisfies the following:

1. LI(A1, I), . . . , LI(Aj−1, I) together imply [s0] ≥
[sj] for each j ≥ 1, and

2. LI(A1, I), . . . , LI(Ak, I) together imply
LI(A0, I),

where Aj is the atom pj(sj; tj) for each j ≥ 0.
A program P is linearly-moded if it is linearly-moded
w.r.t. some mapping I.

Example 2 Consider the following reverse program.

moding: app(in,in, out) and rev(in, out).

app([], Ys, Ys)←
app([X|Xs], Ys, [X|Zs])← app(Xs, Ys, Zs)

rev([], [])←
rev([X|Xs], Zs)← rev(Xs, Ys), app(Ys, [X], Zs)

This program is linearly-moded w.r.t. the mapping
I(app) = in(app); I(rev) = in(rev). For lack of space,
we only prove this for the last clause. LI(rev(Xs, Ys), I)
is

Xs ≥ Y s, (2)

LI(app(Ys, [X], Zs), I) is

Y s + 1 + X ≥ Zs (3)

and LI(rev([X|Xs], Zs), I) is

1 + X + Xs ≥ Zs. (4)

It is easy to see that inequalities 2 and 3 together imply in-
equality 4 satisfying the requirement 2 of Definition 5. The
requirement 1 of Definition 5 holds for atoms rev(Xs, Ys)
and app(Ys, [X], Zs) as follows: 1 + X + Xs ≥ Xs triv-
ially holds for atom rev(Xs, Ys). For atom app(Ys, [X], Zs),
inequality 2 implies 1 + X + Xs ≥ Y s + 1 + X.

The class of linearly-moded programs is very
rich and contains many standard programs such
as split, merge, quick-sort, merge-sort,

insertion-sort and various tree traversal programs.

4. One-Recursive Programs

To facilitate efficient learning of programs, we restrict
our attention to a subclass of the class of linearly-
moded programs. In particular, we consider well-
typed programs [6]. The divide-and-conquer approach
and recursive subterms are the two central themes of
our class of programs. The predicates defined by these

programs are recursive on the leftmost argument. The
leftmost argument of each recursive call invoked by a
caller is a recursive subterm of the arguments of the
caller. In the following, builtins is a (possibly empty)
sequence of atoms with built-in predicates having no
output positions.

Definition 6 (One-recursive programs)
A linearly-moded well-typed Prolog program without
mutual recursion is one-recursive if each clause in it
is of the form

p(s0; t0)← builtins, p(s1; t1), · · · , p(sk; tk)

or

p(s0; t0)← builtins, p(s1; t1), · · · , p(sk; tk), q(s; t)

such that (a) si is same as s0 except that the leftmost
term in si is a recursive subterm of the leftmost term
in s0 for each 1 ≤ i ≤ k, (b) the terms in s0 are
variables or one of the first two generic-expressions of
the asserted types and |s0| ≥ |t0| and (c) the terms in
ti, i ≥ 1 are distinct variables not occuring in s0.

It is easy to see that all the above conditions can be
checked in linear time by scanning the program once.

Theorem 1 Whether a well-typed program P is one-
recursive or not can be checked in polynomial (over
the size of the program) time.

The following example illustrates the divide-and-
conquer nature of one-recursive programs.

Example 3 Consider the following program for preorder
traversal of binary trees.

mode/type: preorder(in:Btree,out:List) and
app (in:List, in:List, out:List)

app([], Ys, Ys)←
app([X|Xs], Ys, [X|Zs])← app(Xs, Ys, Zs)

preorder(void, [])←
preorder(tree(T1, X, T2), [X|L])←

preorder(T1, L1), preorder(T2, L2),
app(L1, L2, L)

It is easy to see that this program is well-typed, linearly-
moded and one-recursive.

A typical one-recursive clause
p(s0; t0)← builtins, p(s1; t1), · · · , p(sk; tk), q(s; t)
satisfies (1) |sσ| ≥ |tσ| for every substitution σ such
that p(s0; t0)σ, p(s1; t1)σ, · · · , p(sk; tk)σ, q(s; t)σ are
atoms in the minimal Herbrand model and (2) [t0] ≤
[s0, t1, · · · , tn, t]. These properties form the basis for
Step Aux in the inference algorithm given below.

53

Learning Recursive Prolog Programs with Local Variables from Examples

Remark: The class of one-recursive programs is dif-
ferent from the class of linear-recursive programs stud-
ied in Cohen [7, 8]. Linear-recursive programs allow
at most one recursive atom in the body of a clause,
whereas one-recursive programs allow more than one
recursive atoms in the body of a clause.

5. Algorithm for generating

one-recursive programs

In this section, we give an inference algorithm to
derive one-recursive programs from positive presen-
tations. We only consider programs satisfying the
following conditions: (1) programs are deterministic
such that the least Herbrand model of a program do
not contain two different atoms p(s; t1) and p(s; t2)
with the same input terms, (2) heads of no two clauses
are same (even after renaming) and (3) non-recursive
clauses have only builtin atoms in the body. These
conditions are obeyed by almost all the programs
given in Sterling and Shapiro [33].

We need the following concepts in describing our al-
gorithm. An atom A is a most specific generalization
(or msg) of a set S of atoms if (a) each atom is in S is
an instance of A and (b) A is an instance of any other
atom B satisfying condition (a). It is well known that
msg of S can be computed in polynomial time in the
total size of atoms in S [26]. In view of the restrictions
placed on the atoms in one-recursive programs, it is
some times desirable to have more than one atoms (in
a particular form) to cover a set S of atoms.

In the following, we assume that the type of the
leftmost argument of the target predicate p has n re-
cursive subterms and our recursive clauses are of the
form p(s, · · ·) ← builtins, p(s1, · · ·), · · · , p(sn, · · ·) or
p(s, · · ·) ← builtins, p(s1, · · ·), · · · , p(sn, · · ·), q(· · ·),
where s1, · · · , sn are the recursive subterms of s. Two
atoms Pat1 ≡ p(u1,u) and Pat2 ≡ p(u2,u) are called
the first two patterns of the target predicate p if (a)
u1 and u2 are the first two generic-expressions of the
asserted type of the leftmost argument of p and (b)
u is a sequence of distinct variables.

Procedure Infer-one-recursive;
begin P := φ; S := φ;
Read examples into S until it contains an atom whose leftmost ar-
gument has instances of the second generic-expression as recursive
subterms, and all the atoms with recursive subterms of this argu-
ment as leftmost arguments. That is, if the asserted type
of the leftmost position of the target predicate is List, read the
examples into S until S contains an atom with a list L of at least
two elements in the first argument and all the atoms which have
sublists of L as first argument.
If an example p(s; t) with |s| < |t| is encountered, exit with error
message no linearly-moded program.
repeat

Read example A ≡ p(s; t) into S;
if |s| < |t| then exit with error(no LM program);

if A is inconsistent with P then P := Generate(S);
if P = false then exit with error(no LM program)

forever

end;

We say a ground atom p(s; t) is incompatible with
a clause p(u;v) ← builtins if there is a substitution
σ such that (1) builtins hold for substitution σ, (2)
s ≡ uσ and (3) t 6≡ vσ.

Function Generate(S);

begin P := φ;

S1 := {B ∈ S | B is an instance of Pat1};

S2 := {B ∈ S | B is an instance of Pat2};

Step 1: P := P∪Non-rec(S1);

Step 2: P := P∪Non-rec(S2);

Step 3: % Recursive clauses. %

Let S3 be the set of atoms in S2 which are not covered by the

clauses added in Step 2;

if S3 6= φ then

begin

Let builtin3 be the sequence of builtin-atoms complementing

the builtin-atoms of the clauses added in Step 2;

Compute the msg p(s0; t0) of S3;

Consider the following one-recursive clause:

p(s0; t0)← builtin3, p(s1; t1), · · · , p(sn; tn);

Let T be the set of tuples {〈s0σ, t1σ, · · · , tnσ, t0σ〉 such that

p(s0; t0)σ ∈ S3 and p(si; ti)σ ∈ S for each 1 ≤ i ≤ n};

Get a set T2 of msg’s of the form 〈s0, t1, · · · , tn, t0θ〉 covering

all the tuples in T such that

(a) [t0θ] ≤ [s0, t1, · · · , tn] and

(b) |s0| ≥ |t0θ|;

if T2 is a singleton set then P := P ∪ {C} where C is

p(s0; t0θ)← builtin3, p(s1; t1), · · · , p(sn; tn)}

elsif |T2| = m > 1 then form m clauses with additional built-in

atoms and add them to P

elsif T2 = φ then

begin

Step Aux: % Add auxiliary predicate. %

Let T3 be the set of atoms of the form q(u;v) such that

(1) |uσ| ≥ |vσ| for each σ such that p(s0; t0)σ ∈ S3

and p(si; ti)σ ∈ S for each 1 ≤ i ≤ n,

(2) LI(A1, I), . . . , LI(An, I) together imply [s0] ≥ [u]

where Ai ≡ p(si; ti) and

(3) there is a θ such that [t0θ] ≤ [s0, t1, · · · , tn, v] and

|s0| ≥ |t0θ|;

Flag := false;

while not Flag and T3 6= φ do

begin

Pick an atom A ≡ q(u;v) ∈ T3;

T3 := T3− {q(u;v)};

Let T4 the set of atoms {Aσ such that p(s0; t0)σ ∈ S3 and

p(si; ti)σ ∈ S for each 1 ≤ i ≤ n};

AuxP := Generate(T4);

if AuxP 6= false then Flag := true

54

Learning Recursive Prolog Programs with Local Variables from Examples

end;

if Flag = false then Return(false)

else P := P ∪ AuxP ∪ {C1} where C1 is

p(s0; t0θ)← builtin3, p(s1; t1), · · · , p(sn; tn), q(u;v)

end;

end;

Return(P)

end Generate;

Function Non-rec(S);

begin P := φ;

Get a set of msg’s of the form p(s; t) for S such that [t] ≤ [s].

for each msg p(s; t) do

if no atom in S is incompatible with unit clause p(s; t)←

then P := P ∪ {p(s; t)←}

else try to get a clause p(s; t)← builtin atoms without any

incompatible atom in S (if possible) and add it to P ;

Return(P)

end Non-rec;

It may be noted that the clauses returned by Non-rec

for input S1 cover all the examples in S1 for the fol-
lowing reasons: (1) as the leftmost argument of Pat1
has no recursive arguments, no recursive clauses can
be considered, (2) all the atoms in S1 are covered by
the clauses of the form p(s; t)← builtins and (3) since
S1 is a part of the positive presentation of a linearly-
moded program, [t] ≤ [s] holds.
However, the clauses returned by Non-rec for input
S2 need not cover all the examples in S2 as shown
by the following example. In fact, this is expected, as
Non-rec only generates unit clauses or clauses with
just built-in atoms in the body, while most of the
problems need recursive clauses.

Example 4 Let us consider inference of a program del
for deleting all the occurrence of a given element from a
list. The relevant mode/type annotation is del(in:List,
in:Item; out:List). The patterns to consider are:
del([], Y; Zs) and del([X|Xs], Y; Zs).

Consider the invocation of Generate with exam-
ples: del([], 1; []), del([], 2; []),
del([1], 1; []), del([2], 1; [2]),
del([2,1], 1;, [2]), del([1,2], 1; [2]),
del([1,2,3], 1; [2,3]), del([1,2,1], 1; [2]).
From the first pattern and examples del([], 1;
[]), del([], 2; []), we get a unit clause

del([], Y; [])←.

Consider step 2 now. Only msg’s to be consid-
ered by Non-rec(S2) are del([X|Xs], X; Xs), del([X|Xs], X;
[X|Xs]), del([X|Xs], Y; Xs) and del([X|Xs], Y; [Y|Xs]).
There are incompatible examples with each of the unit
clauses suggested by these msg’s and no sequence of built-
in atoms help. Hence step 2 does not generate any clause
and S3 = S2.

Consider step 3 now. Unlike step 2, step 3 consid-
ers the unique msg of S3 without any restriction.

That msg is del([X|Xs], Y; Zs) and the considered re-
cursive clause is del([X|Xs], Y; Zs) ← del(Xs, Y; Z1s).
The set of tuples T is {〈[1], 1, [], []〉, 〈[2], 1, [], [2]〉,
〈[2, 1], 1, [], [2]〉, 〈[1, 2], 1, [2], [2])〉, 〈[1, 2, 3], 1, [2, 3], [2, 3]〉,
〈[1, 2, 1], 1, [2], [2]〉}. Now, T2 contains 2 msg’s
〈[X|Xs], X, Z1s, Z1s〉 and 〈[X|Xs], Y, Z1s, [X|Z1s]〉
and we get the following two recursive clauses after
adding apprpriate built-in atoms.

del([X|Xs], X; Z1s)← del(Xs, X; Z1s)
del([X|Xs], Y; [X|Z1s])← X 6= Y, del(Xs, Y; Z1s)

and inference algorithm does not invoke Generate
hereafter as this program is consistent with each example
in any positive presentation of del.

The following example illustrates the addition of an
auxiliary predicate by Generate.

Example 5 Let us consider inference of a program for
reverse with mode/type annotations rev(in : List; out :
List). The two patterns to consider are rev([]; Ys) and
rev([X|Xs]; Ys).

Consider the invocation of Generate with exam-
ples: rev([]; []), rev([a]; [a]), rev([b]; [b]), rev([a, a];
[a, a]), rev([a, b]; [b, a]). Step 1 generates the unit clause
rev([]; []) ← from the first example and step 2 does not
add any clauses as in the above Example.

Step 3 computes the msg, rev([X|Xs]; [Y|Ys]) of S3
and considers the following one-recursive clause:
rev([X|Xs]; [Y|Ys]) ← p(Xs; Zs). The set of tuples T is
{〈[a], [], [a]〉, 〈[b], [], [b]〉, 〈[a, a], [a], [a, a]〉, 〈[a, b], [b], [b, a]〉}.
There is no set T2 of msg’s covering all the tuples in T
to relate the output terms [Y|Ys] and Zs and hence Step
Aux is executed.

Conditions 1, 2 and 3 force us to consider q(Zs, [X]; [Y|Ys]).
In particular, condition 1 forces us to use [X] rather than
X. Now the examples for Auxiliary predicate q are T4 =
{q([], [a]; [a]), q([], [b]; [b]), q([a], [a]; [a, a]), q([b], [a]; [b, a])}.
From these examples, Generate(T4) generates the
clauses:

q([], Ys; Ys)←
q([X|Xs], Ys; [X|Zs])← q(Xs, Ys; Zs)

which are nothing but the clauses of append. The
recursive clause added for rev is

rev([X|Xs]; [Y|Ys])← rev(Xs; Zs), q(Zs, [X]; [Y|Ys]).
In the post processing, this clause will be rewritten to

rev([X|Xs]; Z)← rev(Xs; Zs), q(Zs, [X]; Z)
replacing the term [Y|Ys] by Z in both the head and body.

The following example is to illustrate that the algo-
rithm learns predicates without any output position
as well.

Example 6 The algorithm considers two patterns
list([]) and list([H|L]) and generates the following two
clauses

list([])←
list([H|L])← list(L)

in learning a predicate list which checks whether a given
term is a list or not.

The following theorem establishes correctness of our
algorithm.

55

Learning Recursive Prolog Programs with Local Variables from Examples

Theorem 2 The above procedure Infer-one-

recursive

1. only generates one-recursive programs which are
consistent with the examples read so far (consis-
tent),

2. changes its guess only when the most recently read
example is not consistent with the current guess
(conservative) and

3. updates its guess in polynomial time in the size of
the current sample of examples read so far (poly-
nomial time updates).

In view of the notorious difficulty in learning recursive
clauses mentioned often in the literature, we explain
the main reasons for polynomial time complexity of
our algorithm. After reading each example, the algo-
rithm checks whether this new example is consistent
with the current program. This consistency check can
be done in polynomial time as (1) the leftmost argu-
ment of a recursive call is a proper subterm of the
leftmost argument of the caller, (2) the sum of the
sizes of the leftmost arguments of all the recursive
calls (in the body of the clause) is at most the size
of the leftmost argument of the caller (head of the
clause) and (3) the sum of the sizes of input terms of
the auxiliary predicate is bounded by the sum of the
sizes of input terms of the head. In fact, the sum of the
sizes of input terms of atoms in any SLD-derivation
of a linear-moded program-query pair is bounded by
the sum of the sizes of input terms of the query. Fur-
ther, by enforcing the discipline that the leftmost ar-
guments of all the recursive atoms in the body are re-
cursive subterms of the leftmost argument of the body
and the terms in the clauses are either variables, con-
stants or the first two generic-expressions of the an-
notated types, we drastically reduce the search space
for recursive clauses. This is in sharp contrast to the
fact that most of the learning algorithms in the liter-
ature spend a lot of time in searching for a suitable
recursive clause. The above discipline is encouraged
in the programming methodologies advocated by Dev-
ille [9] and Sterling and Shapiro [33]. Only notable
exception is the even program for checking whether
a given natural number is even or not, which has a
clause even(s(s(X)) ← even(X) with a term s(s(X))
that is not among the first two generic-expressions of
the type Nat. We can relax our restriction to cover
this program by allowing terms of depth more than 2,
but then the algorithm will become a bit inefficient.
These decisions should be postponed to the implemen-
tation time.

6. Conclusion

In this paper, we approach the problem of learn-
ing logic programs from a programming methodology
point of view and propose an algorithm to learn a
class of Prolog programs, that use divide-and-conquer
methodology. This class of programs is very natural
and rich and contains many programs from chapter
3 (on recursive programs) of Sterling and Shapiro’s
standard book on Prolog [33]. This indicates that our
algorithm will be successful in practical situations as
the underlying class of programs is very natural.

We believe that our results can be extended in the
following two directions: (1) to consider predicates
that have more than one recursive arguments (we call
such programs, k-recursive programs) and (2) to cover
the programs which uses divide-and-conquer approach
but splits the input using a specific (to that data type)
splitting algorithm rather than the splitting suggested
by the recursive structure of the data type. For ex-
ample, splitting a list into two lists of almost equal
length. This can be done when we are looking for
learning algorithms that work on a particular (fixed)
data type. Further investigations are needed in these
directions.

References

[1] D. Angluin (1980), Inductive inference of formal lan-
guages from positive data, Information and Control
45, pp. 117-135.

[2] K.R. Apt and A. Pellegrini (1992), Why the occur-
check is not a problem, Proc. of PLILP’92, LNCS
681, pp. 69-86.

[3] H. Arimura and T. Shinohara (1994), Inductive infer-
ence of Prolog programs with linear data dependency
from positive data, Proc. Information Modelling and
Knowledge Bases V, pp. 365-375, IOS press.

[4] H. Arimura, H. Ishizaka and T. Shinohara (1992),
Polynomial time inference of a subclass of context-
free transformations, Proc. Computational Learning
Theory, COLT’92, pp. 136-143.

[5] L. Blum and M. Blum (1975), Towards a mathemat-
ical theory of inductive inference, Information and
Control 28, pp. 125-155.

[6] F. Bronsard, T.K. Lakshman and U.S. Reddy
(1992), A framework of directionality for proving ter-
mination of logic programs, Proc. Joint Intl. Conf.
and Symp. on Logic Prog., JICSLP’92, pp. 321-335

[7] W.W. Cohen (1995a), Pac-learning recursive logic
programs: efficient algorithms, Journal of Artificial
Intelligence Research 2, pp. 501-539.

[8] W.W. Cohen (1995b), Pac-learning recursive logic
programs: negative results, Journal of Artificial In-
telligence Research 2, pp. 541-573.

56

Learning Recursive Prolog Programs with Local Variables from Examples

[9] Y. Deville (1990), Logic Programming: Systematic
Program Development, Addison Wesley.

[10] S. Dzeroski, S. Muggleton and S. Russel (1992), PAC-
learnability of determinate logic programs, Proc. of
COLT’92, pp. 128-135.

[11] M. Frazier and C.D. Page (1993), Learnability in in-
ductive logic programming: some results and tech-
niques, Proc. of AAAI’93, pp. 93-98.

[12] E.M. Gold (1967), Language identification in the
limit, Information and Control 10, pp. 447-474.

[13] P. Idestam-Almquist (1993), Generalization under
Implication by Recursive Anti-unification, Proc. of
ICML’93.

[14] P. Idestam-Almquist (1996), Efficient induction of re-
cursive definitions by structural analysis of satura-
tions, pp. 192-205 in L. De Raedt (ed.), Advances
in inductive logic programming, IOS Press.

[15] J.-U. Kietz (1993), A Comparative Study of Struc-
tural Most Specific Generalizations Used in Machine
Learning, Proc. Workshop on Inductive Logic Pro-
gramming, ILP’93, pp. 149-164.

[16] J.-U. Kietz and S Dzeroski (1994), Inductive logic pro-
gramming and learnability, SIGART Bull. 5, pp. 22-
32.

[17] M.R.K. Krishna Rao, D. Kapur and R.K. Shyama-
sundar (1997), A Transformational methodology for
proving termination of logic programs, The Journal
of Logic Programming 34, pp. 1-41.

[18] M.R.K. Krishna Rao (2001), Some classes of Pro-
log programs inferable from positive data, Theoretical
Computer Science 241, pp. 211-234.

[19] S. Lapointe and S. Matwin (1992), Sub-unification:
a tool for efficient induction of recursive programs,
Proc. of ICML’92, pp. 273-281.

[20] N. Lavrac, S. Dzeroski and M. Grobelnik (1991),
Learning nonrecursive definitions of relations with LI-
NUS, Proc. European working session on learning,
pp. 265-81, Springer-Verlag.

[21] J. W. Lloyd (1987), Foundations of Logic Program-
ming, Springer-Verlag.

[22] S. Miyano, A. Shinohara and T. Shinohara (1991),
Which classes of elementary formal systems are
polynomial-time learnable?, Proc. of ALT’91, pp. 139-
150.

[23] S. Miyano, A. Shinohara and T. Shinohara (1993),
Learning elementary formal systems and an appli-
cation to discovering motifs in proteins, Tech. Rep.
RIFIS-TR-CS-37, Kyushu University.

[24] S. Muggleton and L. De Raedt (1994), Inductive logic
programming: theory and methods, J. Logic Prog.
19/20, pp. 629-679.

[25] S. Muggleton (1995), Inverting entailment and Pro-
gol, in Machine Intelligence 14, pp. 133-188.

[26] G. Plotkin (1970), A note on inductive generalization,
in Meltzer and Mitchie, Machine Intelligence 5, pp.
153-163.

[27] L. Plümer (1990), Termination proofs for logic pro-
grams, Ph. D. thesis, University of Dortmund, Also
appears as Lecture Notes in Computer Science 446,
Springer-Verlag.

[28] J.R. Quinlan and R.M. Cameron-Jones (1995), In-
duction of logic programs: foil and related systems,
New Generation Computing 13, pp. 287-312.

[29] Y. Sakakibara (1990), Inductive inference of logic pro-
grams based on algebraic semantics, New Generation
Computing 7, pp. 365-380.

[30] E. Shapiro (1981), Inductive inference of theories
from facts, Tech. Rep., Yale Univ.

[31] E. Shapiro (1983), Algorithmic Program Debugging,
MIT Press.

[32] T. Shinohara (1991), Inductive inference of mono-
tonic formal systems from positive data, New Gen-
eration Computing 8, pp. 371-384.

[33] L. Sterling and E. Shapiro (1994), The Art of Prolog,
MIT Press.

[34] J.D. Ullman and A. van Gelder (1988), Efficient tests
for top-Down termination of logical rules, JACM 35,
pp. 345-373.

[35] A. Yamamoto (1993), Generalized unification as back-
ground knowledge in learning logic programs, Proc. of
ALT’93, LNCS 744, pp. 111-122.

57

Incremental discovery of sequential patterns for grammatical
inference

Ramiro Aguilar ramiro@tejo.usal.es

Instituto de Investigaciones en Informática, Universidad Mayor de San Andrés
Av. Villazón 1995, Monoblock Central. La Paz, Bolivia

Luis Alonso, Vivian López, Maŕıa N. Moreno {lalonso, vivian, mmg}@usal.es

Departmento de Informática y Automática, Universidad de Salamanca,
Plaza de la Merced S/N, 37008 Salamanca, Spain

Abstract

In this work a methodology is described to
generate a grammar from textual data. A
technique of incremental discovery of sequen-
tial patterns is presented to obtain produc-
tion rules simplified production rules, and
compacted with bioinformatics criteria that
make up a grammar that recognizes not only
the initial data set but also extended data.

1. Introduction

The growing quantity of documentary information
makes its analysis complex and tedious, so that au-
tomatic and intelligent methods for their processing
are needed. To understand, “what say the data” is
necessary to know the structure of the data language.
In order to this, in (López & Aguilar, 2002) a general
plan is defined that proposes a data mining method
on text, to discover the syntactic-semantic knowledge
of it. As part of all the proposed process a method is
presented to obtain the grammar from the sequential
patterns obtained in the text. This is the grammatical
inference (GI) of the language of the text.

In this work a novel data mining process is described
that combines hybrid techniques of association analy-
sis and classical sequentiation algorithms of genomics
to generate grammatical structures from a specific lan-
guage. Subsequently, these structures are converted to
context-free grammars. Initially the method applies to
context-free languages with the possibility of being ap-
plied to other languages: structured programming, the
language of the book of life expressed in the genome
and proteome and even the natural languages.

1.1. Problem of grammatical inference

Grammatical inference (GI) is transversal to a number
of fields including machine learning, formal languages
theory, syntactic and structured pattern recognition,
computational biology, speech recognition, etc. (de la
Higuera, 2004).

Problem of GI is the learning of a language descrip-
tion from language data. The problem of context-
free languages inference involves practical and theo-
retical questions. Practical aspects includes pattern
and speech recognition; an approach of pattern recog-
nition is the context-free grammatical (CFG) inference
that built a set of patterns (Fu, 1974); another ap-
proach search the ability to infer CFGs from natural
that would enable a speech recognizer to modify its
internal grammar on the fly, thus allowing it to adjust
to individual speakers (Horning, 1969). Theoretical
aspects have importance as for the serious limitations
of context-free languages (Lee, 1996) and, actually, to
construct feasible algorithms of learning that imitate
the model of the human language (this last point, can
be problematic, but was one of the principal motiva-
tions for the early work in grammar inference (Horn-
ing, 1969)).

1.2. Language learning

The learning of a language also has to do with its iden-
tification. In the literature of the grammar inference,
the attention focuses on the identification in the limit,
this way, in each time t the machine that learns re-
ceives a information unit it on a language and output
a hypothesis H(i1, ..., it); the learning algorithm is suc-
cessful if after a finite amount of time, all its guesses
are the same and are all a correct description in the
language of the question. Another learning criteria

59

Incremental discovery of sequential patterns for grammatical inference

is the exact identification using queries in polynomial
time, in this framework, the learning machine have ac-
cess to the oracles that can answer questions, and must
halt in polynomial time with a correct description of
the language (Lee, 1996).

In the last 20 years, the inherent complexity present
in the problem of grammatical inference, made unsuc-
cesfull all the approaches (Miclet, 1986). The paper
detailed in (de la Higuera, 2002) states that actually
the algorithms with mathematical properties obtain
better results than the algorithms with heuristic prop-
erties, but is when finite automata are used or, on
the other hand, when algorithms of GIC learning are
constructed, also it emphasizes that for the heuristic
approach common “benchmark” does not exist and is
then more difficult to compare and to evaluate the
effectiveness of these methods. With the mentioned
thing previously, our proposal has a data set available
with which it is validated and we are open to other
comparisons to improve or to ratify our work.

2. Techniques for the association
analysis

Association analysis involves techniques that are dif-
ferent in its operations but all of them search relations
among the attributes of a data set. Some techniques
are:

• Association rules

• Discovery of sequential patterns, and

• Discovery of associations

2.1. Association rules

The association rules (AR) describe the relations of
certain attributes with regard to others attributes in a
database (DB). These rules identify cause-effect impli-
cations between the different attributes of the DB. For
example, in the registers of products purchases, what
article of purchase is identified as related to another;
for instance: “the 80% of the people that buys diapers
for baby, also buys talcum”.

A rule have the form “if X then Y ” or X ⇒ Y . X
is called antecedent of the rule (in the example, “buys
diapers”); Y is called consequent of the rule (in the
example, “buys talcum”).

The generation of the rule is supported by statistical
and probabilistic aspects such as the support factor
(fs), confidence factor (fc) and the expected confi-
dence factor (fe) defined as: fs = nr times rule

nr total registers ,
fc = nr times rule

nr times X and fe = nr times Y
nro total registers .

Table 1. Data set for association rules.

A B C D E F

2 2 6 0 1 0.2
2 2 5 0 1 0.2
2 2 6 1 1 0.2
3 2 7 1 0 0.8
2 3 8 1 0 0.8
3 3 8 1 0 0.8
3 3 7 1 0 0.8

The minimum value of the support factor for the rules
should be greater than a given threshold. If the confi-
dence factor is greater than 0.5, then the rule appears,
at least, in half the number of instances that means
that the rule has certain sense. The difference between
the support factor and the expected confidence factor
should be minimum to assure the effectiveness of the
rule.

For example, we consider the data of the table 1, a
rule obtained is: A = 2 ⇒ B = 2 with fs = 0.43,
fc = 0.75 and fe = 0.57, means that the 75% of items
whit A = 2 imply B = 2, besides in the 43% of all
items complies that rule and B = 2 complies in the
57% of all items.

2.2. Discovery of associations

Similarly to the AR, the discovery of associations (DA)
tries to find implications between different couples
attribute-value so that the appearance of these deter-
mine a present association in a good quantity of the
registers of the DB. To discover associations the fol-
lowing steps are carried out:

1. Associate an identifier to each transaction

2. Order sequentially the transactions according to
its identifier

3. Count the occurrences of the articles creating a
vector where each article is counted. The elements
where the account is below of a “threshold”, are
eliminated

4. Combine in a matrix the transactions attribute-
value and carry out the count of occurrences elim-
inating those elements that do not surpass the
threshold

5. Repeat successively the steps 3 and 4 until no
more transaction combinations are possible

60

Incremental discovery of sequential patterns for grammatical inference

Whit the data of the table 1, whit threshold = 2, the
technique is applied as is observed in the figure 1 and
the following associations are generated:

1. A2 ⇒ B2 ⇒ E1 ⇒ F0.2

2. A3 ⇒ D1 ⇒ E0 ⇒ F0.8

3. B3 ⇒ D1 ⇒ E0 ⇒ F0.8

The association 1 means: if the value of A and B is
2 and the value of E is 1 and the value of F is 0.2,
then the registers with those characteristics can belong
to a class. The other associations show the possible
characteristics of the registers to belong to another
class or behavior.

A2
B2
C6

D0
E1
F0.2
A3
B3
C5

D1
E0
F0.8
C7
C8

ID
A2 B2

A2 E1

A2 F0.2
B2 E1

B2 F0.2
E1 F0.2

A3 D1
A3 E0

A3 F0.8
B3 D1

B3 F0.8
D1 E0

D1 F0.8

E0 F0.8
. . .

Combin

4
4
2

2
3
3
3
3
1

5
4
4
2
2

3

3

3
3

3
3

3
3

3
3

3
4

4

4
...

A2 B2 E1
A2 B2 F0.2
A2 E1 F0.2
B2 E1 F0.2
A3 D1 E0
A3 D1 F0.8
A3 B3 D1
A3 E0 F0.8
A3 B3 F0.8
B3 D1 E0
B3 D1 F0.8
D1 E0 F0.8

3
3
3
3
3
3
2
3
2
3
3
4

Combination

Combination

A2 B2 E1 F0.2
A3 B3 D1 E0

A3 D1 E0 F0.8
A3 B3 E0 F0.8

B3 D1 E0 F0.8

3
2

3
2

3

Cuples attribute-value

Steps 1, 2

Associations

Steps 3, 4

Steps 3, 4

Steps 3, 4

Nº
Nº

Nº

Nº

Figure 1. Discovery of associations in data of the table 1.

2.3. Discovery of sequential patterns

Discovery of sequential patterns (DSP) is very similar
to the AR but search for patterns between transac-
tions so that the presence of a set of items precede
another set of items in a DB during a period of time.
For example, if the data correspond to registers of arti-
cles purchased by clients, a description of what articles
buys frequently a client can be obtained, and above all,
which is the sequence of its purchase. Thus, the next
time, the profile of the client would be known, and it
will be able to predict the sequence of its purchase.
This criteria can apply to another data control, for ex-
ample, in the Bioinformatics context, when the data
to treat correspond to the chain of nucleotides of the
genome and sequences are discovered as the patterns
that codify genes conform some protein (Fayyad et al.,
1996) (Aguilar, 2003).

DSP have the following operation:

1. Identify the time related attribute

2. Considering the period of time when the sequen-

tial patterns are to be discovered, create an array
ordered by the identifier of the transtaction

3. Create another array linking the articles of pur-
chase of each client

4. According to the “support percent”, infer the se-
quential patterns

The discovered patterns show instances of articles that
appear in consecutive form in the data as is appreci-
ated in the example of the figure 2.

3. Grammars, languages and
bioinformatics

3.1. Context-free grammar

A grammar G is defined like G = (N , T ,P,S), where
N is the set of non terminals symbols, T is the set of
terminals symbols or syntactic categories, P is the set
of production rules and S is the initial symbol. The
language of a grammar L(G) is the set of all terminal
strings w that have derivations from the initial symbol.
This is: L(G) = {w is in T ∗ | S ⇒∗ w}
A Context-Free Grammar (CFG) has production rules
like A → α where A ∈ N and α ∈ (N ∪T)∗. The sub-
stitution of A by α is carried out independently of the
place in which appear A (Louden, 1997). The ma-
jority of the programming languages are generated by
grammars of this type (enlarged with some contextual
elements necessary for the language semantics)

3.2. Grammars and bioinformatics

Bioinformatics employs computational and data
processing technologies to develop methods, strategies
and programs that permit to handle, order and study
the immense quantity of biological data that have been
generated and are currently generated. For example,
for the human genome (HG), the bioinformatics seeks
to find meaning to the language of the more than
37.000 million peers A, C, T and G that have been
compiled and stored in the “book of life”.

They offer us the opportunity to understand the gigan-
tic DB that contain the details of the circumstances of
time and place in which the genes are activated, the
conformation of the proteins that specify, the form
in which they influence some proteins on others and
the role that such influences can play in the diseases.
Besides, what are the relations of the HG with the
genomes of the model organisms, like the fly of the
fruit, the mice and the bacteria? Will it be able to
discover sequential patterns that show how are related

61

Incremental discovery of sequential patterns for grammatical inference

Martín

Martín
Ramos

Martín

López
López

Ramos
Ramos

Client

20/01/2000

20/01/2000
20/01/2000

21/01/2000

21/01/2000
21/01/2000

21/01/2000
22/01/2000

Purchase registers

10:13

11:47
14:32

9:22

10:34
17:27

18:17
17:03

juice, cake

beer
beer

wine, water, cider

beer
brandy

wine, cider
brandy

López
López

Martín
Martín

Martín
Ramos

Ramos

Ramos

Client

21/01/2000
21/01/2000

20/01/2000
20/01/2000

21/01/2000
20/01/2000

21/01/2000

22/01/2000

Transactions shorted by client

10:34
17:27

10:13
11:47

9:22
14:32

18:17

17:03

beer
brandy

juice, cake
beer

wine, water, cider
beer

wine, cider

brandy

López
Martín
Ramos

Client Products

Combination of transactions
according to affinity of buys

(beer) (brandy)
(juice, cake) (beer) (wine, water, cider)

(beer) (wine, cider) (brandy)

López, Ramos

Martín, Ramos

Clients Sequential patterns with support >40%

According to the number of the purchases
of articles, we can detect the sequence of

purchase of the clients

(beer) (brandy)

(beer) (wine, cider)

Date Hour Product Date, hour Product

Figure 2. Discovery of sequential patterns in registers of products purchases (elaborated according to (Cabena et al.,
1998)).

between itself the fragments of information? and will
it be able to conform a grammatical structure that
show the interpretation of the resultant set? If we are
able to infer that structure for this type of language we
will contribute to understand the real function of the
structure of the DNA and we will understand slightly
more than the questions presented.

One of the applications of the bioinformatics is the far-
macology, offering reviving solutions to the old model
for the creation of new medicines. It is worth to
note that, one of the more elementary bioinformatics
operations consists of the search of resemblances be-
tween a fragment of DNA recently arranged and the
already available segments of diverse organisms (re-
member and associate this with the DSP). The find-
ing of approximate alignments permits to predict the
type of protein that will specify such sequence. This
not only provides trails on pharmacological designs in
the initial phases of the development of medicines, but
suppresses some that will constitute un resolving “puz-
zles”. A popular series of programs to compare se-
quences of DNA is BLAST (Basic Local Alignment
Search Tool) (Altschul et al., 1990) (Altschul et al.,
1997) whose mechanism of comparison applied in the
development of the new medicine is shown in the plan
of the figure 3.

4. Data mining procedure for the
grammatical inference

The idea considers the experiences acquired (Aguilar,
2003), the literature and the existing theories (Mitra &
Acharya, 2003) (Louden, 1997) (Moreno, 1998), carry-
ing out the prosecution on data that are not structured
in relations or tables with differentiated attributes but
those are codified as a finite succession of sentences.

The data mining procedure has the following phases:

• Language generation by means of an context-free
grammar. This language will be the source of data

• Codification of the strings of the language regard-
ing its syntactic categories

• Dispensing with the initial grammar, discovery of
sequential patterns on the codified language. This
discovery, called “incremental”, is a combination
of the operation of the DSP and of the operation
of the search of identical sequences. With this,
patterns of sequences will be found that then will
be replaced by an identifier symbol

• Replace the discovered sequences by their iden-
tifiers. With the previous thing the identifier is
stored and the sequence as a production rule

62

Incremental discovery of sequential patterns for grammatical inference

Q (large arm) p (short arm)

1 To separate some human DNA sequence

. . . G A G A A C T G T T T A G A T G C A A A A T C C A C A A G T . . .

2 To translate the sequence in amino acid sequences

. . . E N C L D A K S T S . . .

3 To search the similar sequences in the protein DB of model

organisms (the ellipses areas represent significant differences; the
rectangular areas, small differences)

GEN MLH1
(in the band 21.3)

Human

Fly of the fruit

Nematode

Yeast

Bacteria

4 Human model protein based on other

organism model proteins
(the sequence is in dark area)

Human chromosome 3

5 The discovery

of a substance
that could join to

the protein
(POSSIBLE
MEDICINE)

. . . E N S L D A G A T R . . .

. . . E N S I D A N A T M . . .

. . . E N S L D A G A T E . . .

. . . E N S L D A Q S T H . . .

. . . E N C L D A K S T S . . .

Figure 3. Utilization of the bioinformatics in the farmacology (elaborated according to (Howard, 2004)).

• Repeat the two previous steps until all the sen-
tences of the language are replaced by identifiers

4.1. Language generation

We consider the CFG Gæ proposed in (Louden, 1997)
about the generation of arithmetic expressions
Gæ = (N , T ,P,S) where N = {Exp, Num, Dig, Op},
T = {0, 1,+, ∗},
P : Exp → Exp Op Exp | (Exp) | Num

Num → Dig+

Dig → 0 | 1

Op → + | *

and S =Exp.

We can modify the formalism of this CFG of the fol-
lowing form:

Gæ = (N , T ,P,S) where N = {E, d, b, o, a, c}, T =
{0, 1,+, ∗, (,)},
P : E → E o E | a E c | n

d → b+

b → 0 | 1

o → + | *

a → (

c →)

and S =E, what does not change in essence the char-
acter of the original grammar.

With the previous criteria, a sample of the language
generated by Gæ can be seen in the figure 4, point (i).
It is noted that each line corresponds to a sentence
accepted by the grammar.

4.2. Language codification

Considering the language that is generated with Gæ,
all the symbols of T can be codified with the symbols
of N , only for this particular case the symbols to be
used are {b, o , a, c} as syntactic categories. See the
figure 4, point (ii).

63

Incremental discovery of sequential patterns for grammatical inference

1 + 1
0 1 + 1 1
1 + 1 1 * 1 0 * 1 0 1 + 0
. . .
(1 + 0)
. . .
(1 + 1 0) * 0 1
. . .
1 0 1 + 0 0 1 * (1 + 0)
. . .

i) Sentences of the language

b o b
b b o b b
b o b b o b b o b b b o b
. . .
a b o b c
. . .
a b o b b c o b b
. . .
b b b o b b b o a b o b c
. . .

ii) Code of the sentences

Each row of the
language is a sentence

Figure 4. Language of arithmetic expressions on which its
grammar is inferred.

4.3. Incremental discovery of sequential
patterns and associations

The hybrid discovery of sequential patterns applied
to codified languages seeks key subsequences in the
sentences of the language. Each subsequence q has a
length wq that indicates the number of symbols that
possesses. In this particular case 1 ≤ wq ≤ 5 and Q is
defined as a string of length wQ. By convention, in the
codified language many sentences exist that conform
the population of the language. The idea consists of
finding subsequences, to identify them with a symbol
and to replace with that symbol the appearances of
the subsequences in the sentences of the population,
all the previous procedure of repetitive form until each
sentence is identify by a single symbol.

The detailed steps are:

1. For all the sentences, While wQ > 1 do:

1.1. For wq = 1..5 do:
1.1.1. For all the sentences:

(a) Make q from then wq first symbols
of Q

(b) Compute the global scoring gq of q
defined as gq =

∑cant
i=1 pi

q,
where pq = wq∗nr apparitions of q in Q

wQ

is the scoring of q in Q
1.1.2. End For

1.2. End For
1.3. Selecting the subsequence q∗ of greater

global scoring
1.4. If q∗ has one symbol, then replacing all the

consecutive appearances of that symbol by
itself. Thus the production rule is created
α → α+ (in this particular case, this are re-
placed all the bb by d, to see figure 5)

1.5. If q∗ has more than one symbol, then re-
place all the appearances of q∗ in the sen-
tences Q creating the production rule A →
contained of(q∗). The symbol A is gener-
ated consecutively so that the following time
that another rule production is created, is
utilized B,C, ... and so on (to see figure 5)

2. Returning to step 1 noting that with 1.4 and 1.5
changes the size of the sentences of the population
of the language

With the previous procedure production rules are gen-
erated that recognize the sentences of the language.
The production rules number can be considerable so
that we apply a particular method of simplification of
grammar.

b o b
b b o b b
b o b b o b b o b b b o b
. . .
a b o b c
. . .
a b o b b c o b b
. . .
b b b o b b b o a b o b c
. . .

Language codification

d b+

d o d
d o d
d o d o d o d o d
. . .
a d o d c
. . .
a d o d c o d
. . .
d o d o a d o d c
. . .

To replace of sequences

A d o d

A
A
A o A o d
. . .
a A c
. . .
a A c o d
. . .
A o a A c
. . .

To rep. of seqs.

...

B a A c

Figure 5. Hybrid discovery of sequential patterns for the
context-free languages.

5. Experiments

5.1. Rules similarity

Considering the language Læ of arithmetic expres-
sions1, we apply the hybrid algorithm of DSP and the
production rules of the figure 6 were obtained. With
the right hand of rules, that conform the sequential
patterns of the language, a substitution matrix is com-
puted that it is observed in figure 7, this matrix shows
the similarity values between terminal symbols. Sim-
ilarity among a pair of consecutive symbols is related
with the apparition frequency of the symbols in the
language (is a matrix like BLOSUM matrix (Henikoff
& Henikoff, 1992)). Subsequently, is possible to make
alignments among those sequences by compact them.

In the substitution matrix m(i, j) each row i and each
column j correspond with a non terminal symbol of
the production rules generated. The symbols are put

1The corpus can be observed in
http://www.geocities.com/ramirohp/corpusae.html

64

Incremental discovery of sequential patterns for grammatical inference

 S C G
 R F o F o A
 Q C F
 P a a N c c
 O C D
 N a a F c c
 M C A
 L F o D
 K C I
 J d o F
 I C E
 H F o E
 G C B
 F a d c
 E C d
 D B o B
 C A o
 B a A c
 A d o d

Rules generated Iteration 1

In the
rules,

replace
J by A

S C G
R F o F o A
Q C F
P a a N c c
O C D
N a a F c c
M C A
L F o D
K C I
I C E
H F o E
G C B
F a d c
E C d
D B o B
C A o
B a A c
A d o d | d o F

S C G
R B o B o A
Q C B
P a a N c c
O C D
N a a B c c
M C A
L B o D
K C I
I C E
H B o E
G C B
E C d
D B o B
C A o
B a A c | a d c
A d o d | d o B

In the
rules,

replace
F by B

Iteration 2

Figure 6. Production rules generated and some iterations
in its simplification.

according its apparition frequency, this is, first d, af-
ter A,C, o and so on. For Læ themselves it gener-
ated 19 symbols A, B,..., S that join with the sym-
bols of the codification d, o, c and a they conform 23
non terminal symbols (in the bioinformatics context,
the symbols would correspond to the amino acids).
The values of the matrix denote the importance of the
alignment among the not terminal symbols; for exam-
ple, m(d, d) = 23 denotes a degree of high similarity
between both symbols; m(d,A) denotes a degree of
similarity of -1.

5.2. Rules simplification and compaction

With the right parts of the productions rules (where
the first rules generated have greater importance) we
search similar sequences to compact them.

The steps are:

• The sequence β that can be compacted with the
sequence α is activated with the similarity func-

tion f ; f(α, β) =




1 si

∑n

i=1
m(αi,βi)∑n

i=1
m(αi,αi)

> θ;

0 si e.o.c.
where n is the minimal length between the se-
quences α and β, θ is a threshold or similarity
factor with value 0.4 in this particular case

• The similar sequences are compacted and will be
derived by a single non terminal symbol. The re-
maining non terminal symbol should be replaced
for the previous one in all the right parts of the
rules

 23 -1 -2 -3 -4 -5 -6 -7 . . . -21 -22

 -1 22 -1 -2 -3 -4 -5 -6 . . . -20 -21

 -2 -1 21 -1 -2 -3 -4 -5 . . . -19 -20

 -3 -2 -1 20 -1 -2 -3 -4 . . . -18 -19

 -4 -3 -2 -1 19 -1 -2 -3 . . . -17 -18
 -5 -4 -3 -2 -1 18 -1 -2 . . . -16 -17

 -6 -5 -4 -3 -2 -1 17 -1 . . . -15 -16

 -7 -6 -5 -4 -3 -2 -1 16 . . . -14 -15

-21 -20 -19 -18 -17 -16 -15 -14 . . . 2 -1

-22 -21 -20 -19 -18 -17 -16 -15 . . . -1 1

Substitution matrix
 d A C o E B F D . . . P R

 d
 A

 C
 o

 E
 B

 F
 D

 .
 .

 .

 P
 R

Figure 7. Substitution matrix for the rules generated.

• Repeat the previous steps until there are no sim-
ilar sequences

For example, for the language Læ the rules dod and
aAc are not similar since f(dod,aAc) = 0 since∑

m(dod,aAc)∑
m(dod,dod)

= −10−2−11
23+20+23 = −23

66 = −0.35 is not

greater than 0.40. Nevertheless, the rules dod and

doF are similar since,
∑

m(dod,doF)∑
m(dod,dod)

= 23+20−6
23+20+23 =

37
66 = 0.56. This way, the generated rules are simplify-
ing and compacting iteratively (figures 6 and 8) until
a grammar is built G′æ = (N ′, T ′,P ′,S ′) where N ′ =
{S, R, E, D, B, A, d, b, o, a, c}, T ′ = {0, 1,+, ∗, (,)},
P ′ : S → R | E | D | B | A | d

R → DoA

E → Cd | CB | CE | CA | CD

D → BoB | BoE | BoD

C → Ao

B → aAc | adc

A → dod | doB

d → b+

b → 0 | 1

o → + | *

a → (

c →)

and S ′ =S.

65

Incremental discovery of sequential patterns for grammatical inference

S C G
R D o A
P a a N c c
O C D
N a a B c c
M C A
K C I
I C E
G C B
E C d
D B o B | B o E | B o D
C A o
B a A c | a d c
A d o d | d o B

Iteration 3 and 4

R D o A
N a a B c c | a a N c c
E C d | C A | C B | C E | C D
D B o B | B o E | B o D
C A o
B a A c | a d c
A d o d | d o B

Iteration 9

S C G
R D o A
P a a N c c
O C D
N a a B c c
K C I
I C E
G C B
E C d | C A
D B o B | B o E | B o D
C A o
B a A c | a d c
A d o d | d o B

Iteration 5

R D o A
P a a N c c
O C D
N a a B c c
K C G
G C B | C E
E C d | C A
D B o B | B o E | B o D
C A o
B a A c | a d c
A d o d | d o B

Iteration 6

Replace

M by E

R D o A
P a a N c c
N a a B c c
K C G | C D
G C B | C E
E C d | C A
D B o B | B o E | B o D
C A o
B a A c | a d c
A d o d | d o B

Iteration 7 and 8

Replace
I by G

P and N are

similar to B

Figure 8. Simplification and compaction of the production rules generated.

6. Conclusions

In the experiments, a language Læ has been considered
generated by predetermined context-free grammar Gæ

and the syntactic categories b, o, a and c were known
beforehand; but later none of the properties of that
grammar were utilized to generate the set of produc-
tion rules that then conformed the grammar G′æ. The
approach extends to processing of data that are be-
lieved to have a grammatical structure that could be
generated automatically. We could imagine to find
somewhat similar for the genome, for the proteome or
for the natural languages, the doubt is served.

References

Aguilar, R. (2003). Mineŕıa de datos. Fundamentos,
técnicas y aplicaciones. Salamanca: University of
Salamanca.

Altschul, S. F., Gish, W., Miller, W., Meyers, E. W., &
Lipman, D. J. (1990). Basic local alignment search
tool. Molecular Biology, 215, 403–410.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang,

J., Zhang, Z., Miller, W., & Lipman, D. J. (1997).
Gapped blast and psi-blast: a new generation of
protein database search programs. Nucleic Acids
Research, 25, 3389–3402.

Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., &
Zanasi, A. (1998). Discovering data mining. From
concept to implementation. Prentice Hall.

Corlett, L. (2003). Web content mining: a survey
(Technical Report). Department of Computer Sci-
ence, California State University.

de la Higuera, C. (2002). Current trends in gram-
matical inference. Proceedings of Joint Iapr Inter-
national Workshops Sspr 2000 and Spr 2000 (pp.
130–135). Lecture Notes in Artificial Intelligence,
Springer-Verlag.

de la Higuera, C. (2004). A bibliographical study of
grammatical inference. Pattern Recognition.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., & Uthu-
rusamy, R. (1996). Advances in knowledge discovery
and data mining. Salamanca: MIT Press.

66

Incremental discovery of sequential patterns for grammatical inference

Fu, K.-S. (1974). Syntactic methods in pattern recog-
nition. Academic Press.

Henikoff, S., & Henikoff, J. G. (1992). Amino acid
substitution matrices from protein blocks. Proc. Na-
tional Academic Science, 89, 10915–10919.

Horning, J. J. (1969). A study of grammatical inference
(Technical Report 139). Computer Science Depart-
ment, Stanford University.

Howard, K. (2004). La fiebre de la bioinformática.
Investigación y ciencia: nueva genética, 38, 79–82.

Lee, L. (1996). Learning of context-free languages: a
survey of the literature (Technical Report). Com-
puter Science Department, Stanford University.

López, V., & Aguilar, R. (2002). Mineŕıa de datos
y aprendizaje automático en el procesamiento del
lenguaje natural. Workshop de mineŕıa de datos
y aprendizaje, IBERAMIA 2002 (pp. 209–216).
Sevilla: University of Sevilla.

Louden, K. C. (1997). Compiler construction. Princi-
ples and practice. International Thomsom Publish-
ing Inc.

Lucas, S. (1994). Structuring chromosomes for context
free grammar evolution. Proceedings of first IEEE
International Conference on Evolutionary Compu-
tation (pp. 130–135).

Miclet, L. (1986). Structural methods in pattern recog-
nition. Chapman and Hall.

Mitra, S., & Acharya, T. (2003). Data mining. Mul-
timedia, soft computing and bioinformatics. John
Wiley and sons.

Moreno, A. (1998). Lingúıstica computacional.
Madrid: Editorial Śıntesis.

67

Data-dependencies and Learning in Artificial Systems

Palem GopalaKrishna krishna@cse.iitb.ac.in

Research Scholar, Computer Science & Engineering, Indian Institute of Technology - Bombay, Mumbai, India

Abstract

Data-dependencies play an important role in
the performance of learning algorithms. In
this paper we analyze the concepts of data
dependencies in the context of artificial sys-
tems. When a problem and its solution are
viewed as points in a system configuration,
variations in the problem configurations can
be used to study the variations in the so-
lution configurations and vice versa. These
variations could be used to infer solutions to
unknown instances of problems based on the
solutions to known instances, thus reducing
the problem of learning to that of identifying
the relations among problems and their solu-
tions. We use this concept in constructing a
formal framework for a learning mechanism
based on the relations among data attributes.
As part of the framework we provide metrics
– quality and quantity – for data samples and
establish a knowledge conservation theorem.
We explain how these concepts can be used in
practice by considering an example problem
and discuss the limitations.

1. Introduction

Two instances of a function can only differ in their
arguments, i.e. the input data. When a function is
sensitive to the data it is operating upon, even a slight
variation in the nature of data can cause large varia-
tions in the path of execution. This property of being
sensitive to data is termed as data-dependency which
poses critical restrictions on the applicability of algo-
rithms themselves.

The success of any data-dependent learning algorithm
highly depends on the nature of the data samples it
learns from. A well designed algorithm with mis-
matched data is unlikely to succeed in generalization.
Thus a careful analysis of the size and quality of the
input data samples is vital for the success of every
learning algorithm. While there exists sufficient num-

ber of metrics for learning in traditional systems in
this regard (Kearns, 1990; Angluin, 1992), there exists
almost none for learning in artificial systems, where
the typical requirements would be action selection and
planning implemented through agents (Wilson, 1994;
Bryson, 2003). These agents would act as determinis-
tic systems and thus demand non-probabilistic metrics
with data-independent algorithms.

Data-independence essentially means that the path
of execution (the series of instructions carried out)
is independent of the nature of the input data. In
other words, when an algorithm is said to be data-
independent, all instances of the algorithm would fol-
low the same execution path no matter what the input
data is. We can understand this with the following ex-
ample. Consider an algorithm to search a number in
a given array of numbers. Such an algorithm would
typically look like below.

int Search(int Array[], int ArrLen, int Number) {

for(int i=0; i < ArrLen; ++i)

if(Array[i] == Number)

return i;

return -1;

}

The above procedure sequentially scans a given array
of numbers to find if a given number is present in the
array. It returns the index of the number if it finds
a match and −1 otherwise. The time complexity of
this algorithm is O(1) in the best case and O(n) in the
average and worst cases. However, if we change the
iterator construct from for(i = 0; i <ArrLen; ++i) to
for(i=ArrLen-1; i ≥ 0;−− i), then the performances
would vary from best to worst and vice versa.

On the other hand consider the following data-
independent version of the same code.

int Search1(int Array[], int ArrLen, int Number) {

int nIndex = -1;

for(int i=0; i < ArrLen; ++i) {

int bEqual = (Number == Array[i]);

nIndex = bEqual * i + !bEqual * nIndex;

}

return nIndex;

}

69

Data-dependencies and Learning in Artificial Systems

Search1 is same as Search with the mere exception
that we have replaced the non-deterministic if state-
ment with a series of deterministic arithmetic con-
structs that in the end produce same results. The
advantage with this replacement is that the path of
execution is deterministic and independent of the in-
put array values, thus facilitating us to reorder or even
parallelize the individual iterations. This is possible
because no (i + 1)th iteration depends on the results
of ith iteration, unlike the case of search where the
(i + 1)th iteration would be processed only if the ith
iteration fails to find a match.

Demanding a time complexity of O(n) in all cases,
it might appear that Search1 is inferior to Search in
performance. However, for this small cost of perfor-
mance we are gaining two invaluable properties that
are crucial for our present discussion: stability and
predictability.

It is a well-known phenomenon in the practice of
learning algorithms that the performance of learner is
highly affected by the order of the training data sam-
ples, making the learner unstable and at times unpre-
dictable. In this regard, what relation could one infer
between the stability of the learner and the depen-
dencies among data samples? How does such relation
affect the performance of learner? Can these depen-
dencies be analyzed in a formal framework to assist
the learning? These are some of the issues that we try
to address in the following.

2. Learning in Artificial Systems

By an artificial system we essentially mean a man-
made system that has a software module, commonly
known as agent, as one of its components. The artifi-
cial system itself could be a software program such as a
simulation program in a digital computer, or it could
be a hardware system such as an autonomous robot
in the real world. And there could be more than one
agent in an artificial system. The system can use the
agents in many ways as to steer the course of simula-
tion or to process the environmental inputs (or events)
and take the necessary action etc. . . . Additionally,
the functionality of agents could be static, i.e. does
not change with experience, or it could be dynamic,
varying with experience. The literature addressing
these can be broadly classified into two classes, namely
the theories that study the agents as pre-programmed
units (such as (Reynolds, 1987; Ray, 1991)), and the
theories that consider the agents as learning units
which can adjust their functionality based on their
experience (e.g. (Brooks, 1991; Ramamurthy et al.,
1998; Cliff & Grand, 1999)). The present discussion

Figure 1. Different paths indicate different algorithms to
solve a task instance in configuration space

falls into the second category. We discuss a learning
mechanism for agents based on the notion of data-
dependencies.

Consider an agent that is trying to accomplish a task,
such as solving a maze or sorting the events based on
priority etc..., in an artificial system.

Assume that the instantaneous configuration (the cur-
rent state) of artificial system is described by n gener-
alized coordinates q1, q2, . . . , qn, which corresponds to
a particular point in a Cartesian hyperspace, known
as the configuration space, where the q’s form the n
coordinate axes. As the state of the system changes
with time, the system point moves in the configuration
space tracing out a curve that represents ”the path of
motion of the system”.

In such a configuration space, a task is specified by a
set of system point pairs representing the initial and
final configurations for different instances of the task.
An instance of the task is said to be solvable if there
exists an algorithm that can compute the final con-
figuration from its initial configuration. The task is
said to be solvable if there exists an algorithm that
can solve all its instances.

Each instance of the algorithm solving an instance of
the task represents a path of the system in the con-
figuration space between the corresponding initial and
final system points. If there exists more than one al-
gorithm to solve the task then naturally there might
exist more than one path between the two points.

The goal of an agent that is trying to learn a task in
such a system is to observe the algorithm instances and
infer the algorithm. In this regard, all the information
that the agent would get from an algorithm instance
is just an initial-final configuration pair along with a
series of configuration changes that lead from initial
configuration to final configuration. The agent would
not be aware of the details of the underlying process

70

Data-dependencies and Learning in Artificial Systems

that is responsible for these changes, and has to infer
the process purely based on the observations.

The agent is said to have ”learned the task” if it can
perform the task on its own, by moving the system
from any given initial configuration to the correspond-
ing final configuration in the configuration space. It
should be noted that the procedure used (the algo-
rithm inferred) by the agent may not be the same
as the original algorithm from whose instances it has
learned.

It should also be noted that the notion of learning the
task, as described above, does not allow any proba-
bilistic or approximate solutions. The agent should be
able to perform the task correctly under all circum-
stances. An additional constraint that we put on the
agent is that it should infer the algorithm from as few
algorithmic instances as possible. This is important
for agents of both real world systems and simulation
systems alike, for in case of agents observing samples
from real world environment it may not be possible
to pickup as many samples as they want, and in case
of simulated environments each sample instance incurs
an execution cost in terms of time and other resources
and hence should be traded sparingly.

We formalize these concepts in the following.

2.1. A Formal Framework

Consider an agent that it trying to learn a task T in a
system S whose configuration space is given by

C(S) = {~s1, ~s2, . . . , ~sN},

where each ~si is a system point represented with
n−coordinates {qi1 , qi2 , . . . , qin

}.

Let A be an algorithm to solve the task T, and
A1, A2, . . . , Ak be the instances of A solving the in-
stances T1, T2, . . . , Tk of T respectively.

In the configuration space each Ti is represented by a
pair of system points (~si1 , ~si2), and the corresponding
Ai by a path between those system points.

Let I, F be two operators that when applied to an
algorithm instance Ai, yield the corresponding initial
and final system points respectively, such as I(Ai) =
~si1 and F (Ai) = ~si2 . We also define the corresponding
set versions of these operators ~I and ~F as following.
For all A′ ⊆ {A1, A2, . . . , Ak},

~I(A′) = {I(Ai) |Ai ∈ A′},

and
~F (A′) = {F (Ai) |Ai ∈ A′}.

The goal of the agent is to perform T, by mimicking
or modeling A, inferring A’s details from a subset of
its instances.

By following the tradition of learning algorithms, let
us call A as the target concept, and the subset of its in-
stances D = {D1, D2, . . . , Dd} ⊆ {A1, A2, . . . , Ak} as
the training set or data samples, and the agent as the
learner. We use the symbol L to denote the learner.

At any instance during the phase of learning the set
D can be partitioned into two subsets O,O′ such that

(O ∪O′ = D) ∧ (O ∩O′ = ∅).

The set O ⊆ D denotes the set of data samples that
the learner has already seen, and the set O′ ⊆ D de-
notes the set of data samples the learner has yet to see.
Learning progresses by presenting the learner with an
unseen sample Di ∈ O′, and marking it as seen, by
moving it to the set O. Starting from O = ∅, O′ = D,
this process of transition would be repeated till it be-
comes O = D,O′ = ∅.

In this process, each data sample Di decreases the ig-
norance of the learner L about the target concept A,
and hence could be assigned some specific informa-
tion content value that indicates how much additional
information L can gain from Di about A.

We can determine the information content values of
data samples by establishing the concept of a zone,
where we treat an ensemble of system points that share
a common relation as a single logical entity.

Definition. A set Z ⊆ C(S) defines a zone if there
exists a function f : C(S) → {0, 1} such that for each
~si ∈ C(S) :

f(si) =
{

1 if ~si ∈ Z,
0 if ~si /∈ Z.

The function f is called the characteristic function of
Z.

For the configuration space C(S) = {~s1, ~s2, . . . , ~sm},
we can construct an equivalent zone-space Z(S) =
{Z1, Z2, . . . , Zr}, such that the following holds.

∀~si ∃Zi [~si ∈ Zi] ∧ ∀r
i=1∀r

j=i+1 [Zi ∩ Zj = ∅] ∧
∀r

i=1 [Zi 6= ∅] ∧ ∪r
i=1Zi = C(S).

The zone-space can be viewed as a m−dimensional
space with each Zi being a point in it, where m is some
function of n whose value depends upon and hence
would be decided by the nature of T. Let the range of
ith coordinate of this m−dimensional space be [0, ri].

71

Data-dependencies and Learning in Artificial Systems

If we use the notation |P | to indicate the size of any
set P, then we could represent the volume of the zone-
space as

vol(Z(S)) = |Z(S)| =
m∏

i=1

ri.

Define an operator ∇ : C(S) → Z(S) that when ap-
plied to a system point in the configuration space
yields the corresponding zone in the zone-space. Sim-
ilarly, let ~∇ be the corresponding set version of this
operator defined as, for all S′ ⊆ C(S),

~∇(S′) = {∇(~si) | ~si ∈ S′}.

At any instance the knowledge of L about A depends
on the set of samples it has seen till then, and the infor-
mation content of a data sample depends on whether
the sample has already been seen by L or not.

To define formally, the knowledge of the learner, after
having seen a set of samples O ⊆ D, is given by

KO(L) =
∑

Z∈~∇(~I(O))

|Z| .

The information content of any data sample Di ∈ D,
after the learner has seen a set of samples O ⊆ D, is
given by

ICO(Di) =

 |∇(I(Di))| if ∀Dj ∈ O [∇(I(Di)) 6=
∇(I(Dj))];

0 otherwise;

and the information content of all data samples would
be given by

−→
ICO(D) =

∑
Z∈~∇(~I(D−O))

|Z| .

It should be noted that the above definitions measure
the information content of data samples relative to the
state of the learner and satisfy the limiting conditions
K∅(L) = 0,

−→
ICD(D) = 0.

The process of learning is essentially a process of trans-
fer of information from data samples to the learner,
resulting in a change in the state of the learner. When
these changes are infinitesimal, spanning many steps,
the transformation process satisfies the condition that
the line integral

L =
∫ D

∅
E do, (2.1)

where E =
−→
ICO(D)−KO(L), has a stationary value.

This is known as the Hamilton’s principle, which states
that out of all possible paths by which the learner

could move from K∅(L) to KD(L), it will actually
travel along that path for which the value of the line
integral (2.1) is stationary. The phrase ”stationary
value” for a line integral typically means that the in-
tegral along the given path has same value to within
first-order infinitesimals as that along all neighboring
paths (Goldstein, 1980; McCauley, 1997).

We can summarize this by saying that the process of
learning is such that the variation of the line integral
L is zero.

δL = δ

∫ D

∅
E do = 0.

Thus we can formulate the following conservation the-
orem.
Theorem 1. The sum KO(L)+

−→
ICO(D) is conserved

for all O ⊆ D.

Proof. We shall prove this by establishing that
KOi

(L) +
−→
ICOi

(D) = KOj
(L) +

−→
ICOj

(D) for all
Oi, Oj ⊆ D.

Consider O1, O2 ⊆ D such that |O2| − |O1| = 1. Let
O2−O1 = {Di}. To calculate the information content
value of Di, we need to consider two cases.

Case 1. ∇(I(Di)) = ∇(I(Dj)) for some Dj ∈ O1.

In such case, ~∇(~I(O2)) = ~∇(~I(O1)), and hence
ICO1(Di) = ICO2(Di) = 0.

KO2(L) =
∑

Z∈~∇(~I(O2))
|Z|

=
∑

Z∈~∇(~I(O1))
|Z|

= KO1(L).
−→
ICO2(D) =

−→
ICO1(D)− ICO1(D)

=
−→
ICO1(D).

KO2(L) +
−→
ICO2(D) = KO1(L) +

−→
ICO1(D).

Case 2. ∇(I(Di)) 6= ∇(I(Dj)) for all Dj ∈ O1. In
such case, ICO1(Di) = |∇(I(Di))| .

−→
ICO2(D) =

−→
ICO1(D)− ICO1(Di)

=
−→
ICO1(D)− |∇(I(Di))| .

KO2(L) =
∑

Z∈~∇(~I(O2))
|Z|

=
∑

Z∈~∇(~I(O1+{Di})) |Z|

=
∑

Z∈~∇(~I(O1))

|Z|+
∑

Z∈{∇(I(Di))}

|Z|

= KO1(L) + |∇(I(Di))| .
KO2(L) +

−→
ICO2(D) = KO1(L) + |∇(I(Di))|+

−→
ICO1(D)− |∇(I(Di))|

= KO1(L) +
−→
ICO1(D).

72

Data-dependencies and Learning in Artificial Systems

Thus whenever |O2| − |O1| = 1, it holds that

KO2(L) +
−→
ICO2(D) = KO1(L) +

−→
ICO1(D).

Now consider two sets Oi, Oj ⊆ D such that |Oj | −
|Oi| = l, l > 1. Let Oj −Oi = {Dj1 , . . . , Djl

}. We can
construct sets P1, . . . , Pl−1 such that

P1 = Oi ∪ {Dj1}, . . . , Pl−1 = Oi ∪ {Dj1 , . . . , Djl−1}.

Then it holds that

|P1| − |Oi| = |P2| − |P1| = · · · = |Oj | − |Pl−1| = 1.

However, we have proved that

KO2(L) +
−→
ICO2(D) = KO1(L) +

−→
ICO1(D)

whenever |O2| − |O1| = 1, and hence it follows that

KOi(L) +
−→
ICOi(D) = KP1(L) +

−→
ICP1(D),

KP1(L) +
−→
ICP1(D) = KP2(L) +

−→
ICP2(D),

...
KPl−1(L) +

−→
ICPl−1(D) = KOj

(L) +
−→
ICOj

(D),

and thereby, KOi
(L)+

−→
ICOi

(D) = KOj
(L)+

−→
ICOj

(D).

Hence the sum KO(L) +
−→
ICO(D) is conserved for all

O ⊆ D.

An important consequence of this theorem is that ir-
respective of the order of individual samples that L
chooses to learn from, the gain in its knowledge would
always be equal to the corresponding loss in the infor-
mation content of the data samples.

KOj (L)−KOi(L) =
−→
ICOi(D)−

−→
ICOj (D).

We now define two metrics – quality and quantity –
for the data samples to denote the notions of necessity
and sufficiency.

The metric quality measures the relative information
strength of individual samples, defined as

quality(D) =
|D| −

∣∣∣~∇(~I(D))
∣∣∣

|D|
× 100%.

Ideally a data sample set should have this value to be
100%. Smaller values indicate the presence of unnec-
essary samples that do not contribute to learning.

Similarly we define the quantity of data samples as

quantity(D) =

∣∣∣~∇(~I(D))
∣∣∣

|Z(S)|
× 100%.

This is a sufficiency measure and hence a value less
than 100% indicates the insufficiency of data samples
to complete the learning.

Theorem 2. The knowledge of the learner, after
completing the learning over data samples D having
quantity(D) = 100%, would be equal to the volume of
the configuration space |C(S)| .

Proof. When the quantity(D) = 100%,∣∣∣~∇(~I(D))
∣∣∣ = |Z(S)| .

Since ~∇(~I(D)) ⊆ Z(S),∣∣∣~∇(~I(D))
∣∣∣ = |Z(S)| ⇒ ~∇(~I(D)) = Z(S).

From theorem 1 we have,

KD(L) +
−→
ICD(D) = K∅(L) +

−→
IC∅(D).

Since K∅(L) = 0 and
−→
ICD(D) = 0,

KD(L) =
−→
IC∅(D)

=
∑

Z∈~∇(~I(D−∅)) |Z|
=

∑
Z∈~∇(~I(D)) |Z|

=
∑

Z∈Z(S) |Z|
= |C(S)| .

Thus when quantity(D) = 100%, KD(L) = |C(S)| .

Theorem 3. The target concept can not be learnt with
less than |Z(S)| number of data samples.

Proof. Consider a data sample set D = {D1, . . . , Dd}
having quantity(D) = 100% and |D| < |Z(S)| .

Let P = Z(S) − ~∇(~I(D)) = {P1, . . . , Pl}, l ≥ 1. As-
sume that L has learned the target concept completely
from D. Then, by theorem 2, KD(L) = |C(S)| , and by
theorem 1,

KD(L) +
−→
ICD(D) = K∅(L) +

−→
IC∅(D).

Since K∅(L) = 0 and
−→
ICD(D) = 0, it leads to

|C(S)| =
−→
IC∅(D)

=
∑

Z∈~∇(~I(D−∅)) |Z|
=

∑
Z∈~∇(~I(D)) |Z|

=
∑

Z∈(Z(S)−P) |Z|
=

∑
Z∈Z(S) |Z| −

∑
Z∈P |Z|

= |C(S)| −
∑

Z∈P |Z|.

This is not possible unless P = ∅, in which case it
would become Z(S) = ~∇(~I(D)), and |D| ≥ |Z(S)| .
Hence proved.

73

Data-dependencies and Learning in Artificial Systems

2.2. A Learning Mechanism Based on
Data-dependencies

Consider a task instance T1 with end points (~s1, ~s2) in
the configuration space. If we express T1 as a point
function f, then we could write ~s2 = f(~s1). An algo-
rithm instance A1 that solves T1 would typically im-
plement the functionality of f thereby representing a
path between ~s1 and ~s2. If there exists more than one
way to implement f, then there exists more than one
path between ~s1 and ~s2. Such a set of paths might be
denoted by f(~s1, α) with f(~s1, 0) representing some
arbitrary path chosen to be treated as reference path.

Further, if we select some function η(~x) that vanishes
at ~x = ~s1 and ~x = ~s2, then a possible set of varied
paths is given by

f(~x, α) = f(~x, 0) + α η(~x).

It should be noted that all these varied paths terminate
at the same end points, that is, f(~x, α) = f(~x, 0) for
all values of α.

However, when we try to consider another task in-
stance T2 to be represented with these variations, we
need to make them less constrained. The tasks T1 and
T2 would not have the same end points in the con-
figuration space and hence there would be a variation
in the coordinates at those points. We can, however,
continue to use the same parameterization as in the
case of single task instance, and represent the family
of possible varied paths by

fi(~x, α) = fi(~x, 0) + α ηi(~x),

where α is an infinitesimal parameter that goes to zero
for some assumed reference path. Here the functions
ηi do not necessarily have to vanish at the end points,
either for the reference path or for the varied paths.
Upon close inspection, one could realize that the varia-
tion in these family of paths is composed of two parts.

1. Variations within a task instance due to different
algorithmic implementations.

2. Variations across task instances due to different
initial system point configurations.

The learner can overcome the first type of variations by
observing that the end points, and their corresponding
zones, are invariant to the paths between them. In this
regard, all the system points that belong to the same
initial, final zone pair could be learned with a single
algorithm instance. However, for the second type of
variations, the learner may not be able to overcome
them without any prior knowledge of the task. All the

Figure 2. Schematic illustration of path variations across
task instances in configuration space

different instances of the task would have different cor-
responding zones for their end points and hence they
need to be remembered as they are.

Below we present a mechanism that uses these con-
cepts of variations in the configurations paths to infer
solutions to the unknown problem instances based on
the solutions to the known problem instances. This
results in a learning like behavior where the known
problem-solution configuration pairs form the training
set samples. Such samples could be collected by the
following procedure.

1. For a given problem identify the appropriate con-
figuration space and number of dimensions.

2. Express the solution as a logical relation Rs in
terms of coordinates of the configuration space.

3. Use Rs to identify an appropriate characteristic
function Fs to form a solution zone.

4. Use Fs in deciding the characteristic functions
for other zones and the number of dimensions for
zone-space.

5. Define the operator ∇ to map the system points
from configuration space to the zones in zone-
space.

6. Define an appropriate variation operator δ in the
configuration space such that variations in the
known problem configurations would give clue to
the variations in the solution configurations, such
as, solution(x + δx) = solution(x) + δx.

7. Construct the sample problem-solution configura-
tion pairs by using any traditional algorithm. The

74

Data-dependencies and Learning in Artificial Systems

samples should be such that all zones are repre-
sented.

Once we have all the required data samples with us,
the training procedure is simple and straightforward in
that all that is needed is to mark each of the sample
problem configurations as the reference configuration
for the corresponding zone and remembering the re-
spective solution configurations for those references.
We can use a memory lookup table to store these ref-
erence solutions. The procedure is as follows.

For each data sample Di = (~pi, ~si)
{

Let Z = ∇(pi);
RefProbConfig[Z] = ~pi;
RefSolConfig[Z] = ~si;

}

Once the training is over, we can compute the solution
configuration ~s for any given problem configuration ~p
in the configuration space as follows.

1. For the given problem configuration ~p, apply the
operator ∇ and find the zone Z = ∇(~p);

2. Get the reference problem configuration ~pi =
RefProbConfig[Z], and compute the variation
δ(~p, ~pi);

3. Compute the required solution configuration from
the reference solution configuration by applying
the variation parameter as:

~s = RefSolConfig[Z] + δ(~p, ~pi);

2.3. An Example Problem

To explain how these concepts of variations in the con-
figuration paths could be used in practice, we consider
an example problem of sorting. We outline a proce-
dure that implements sorting based on the concepts
we have discussed till now.

The reason behind choosing sorting as opposed to any
other alternative is that the problem of sorting has
been well studied and well understood, and requires no
additional introduction. However, it should be noted
that our interest here is, rather to explain how zones
can be constructed and used for the sorting problem,
than to propose a new sorting algorithm; and hence
we do not consider any performance comparisons. In
fact, the procedure we outline below runs with O(n2)
time complexity requiring O(2n2

) memory, thus any
performance comparisons would be futile.

To start with, we can consider the task of sort-
ing as being represented by its instances such as
{(3, 5, 4), (3, 4, 5)}, where the second element (3, 4, 5)
represents the sorted result of first element (3, 5, 4).
We can consider these elements as points in a
3−dimensional space.

Thus in general given an array of n integers to be
sorted, we can form a system with n−coordinate axes
resulting in an n−dimensional configuration space. If
we assume that each element of the array can take
a value in the range [0, N], where N is some maxi-
mum integer value, then there would be a total of Nn

system points in the configuration space. That is, fol-
lowing our notation from section 2.1, |C(S)| = Nn. To
construct the corresponding zone-space for this con-
figuration space, consider the following mathematical
specification for sorting,

∀n
i=1∀n

j=1 [i < j ⇒ a[i] < a[j]],

where a is an array with n integers. This specifica-
tion represents a group of conditions that need to be
satisfied by the array if it has to considered as being
in sorted order. Now, we can use this specification in
identifying the following.

1. Number of dimensions of zone-space: The spec-
ification involves two quantifiers ∀n

i=1 and ∀n
j=1,

with an additional constraint i < j. Thus the valid
values could be i = 1, . . . , n, j = i + 1, . . . , n, re-
sulting in a group of n × (n − 1)/2 conditions to
be accounted for. Each condition would form one
coordinate axis in the zone-space and hence we
have n× (n− 1)/2 axes.

2. Range of each axis of zone-space: Since each axis
is formed out of the condition (a[i] < a[j]), with
various values of i, j representing various axes, the
range of each axis would be defined by the number
of possible conditions (a[i] < a[j]), (a[i] = a[j])
and (a[i] > a[j]), which is three. Hence the range
of each axis ri = 3.

3. Operator ∇ : Each zone is a point in zone-space
with n × (n − 1)/2 coordinates. To find these
coordinate values we need to evaluate n×(n−1)/2
conditions (one for each axis) as below.

for(int i=0,r=0; i<n; ++i)
for(int j=i+1; j<n; ++j,++r)

ZCoord[r]=((a[i]=a[j])?0:((a[i]<a[j])?1:2));

4. Variation operator δ : We implement the variation
operator using the differences between relative ar-
ray positions of numbers before and after sorting.
We can use the array indexing and de-indexing

75

Data-dependencies and Learning in Artificial Systems

operations for this purpose. For example, sorting
a = {3, 5, 4} produces ~a = {3, 4, 5}, which gives us
a variation in the indices of elements from (0, 1, 2)
to (0, 2, 1). Thus we can use our variation operator
to express ~a as, ~a = { a[0], a[2], a[1] }.

Once we have these necessary operators with us, we
can start assigning the reference (unsorted, sorted)
configuration pairs for each zone by using any tradi-
tional sorting algorithm such as heapsort or quicksort,
as shown below.

for(int i=0; i < nSamples; ++i)
{

GetZCoord(Unsorted[i], ZCoord);
quicksort(Unsorted[i], Sorted[i]);
SetRefConfig(ZCoord, Unsorted[i], Sorted[i]);

}

It should be noted that we have 3n×(n−1)/2 zones in
the zone-space and hence we need so many sample
(unsorted, sorted) pairs as well. However, once we
complete the training with all those samples, we can
use the following procedure to sort any of the Nn pos-
sible arrays.

void LSort(int nArray[], int nSize, int nSorted[])
{

GetZCoord(nArray, ZCoord);
GetRefConfig(ZCoord, RefProb, RefSol);
for(int i=0; i < nSize; ++i)

nSorted[i] = nArray[RefSol[i]];
}

2.4. Limitations

Having presented the mechanism for learning based on
the concepts of variations in the system configuration
paths, here we discuss the limitations of this approach.

Disadvantages: 1. As could be easily understood,
the concepts of configuration space and zone-
space form the central theme of this ap-
proach. However, it may not be always pos-
sible to come up with appropriate configura-
tion space or zone-space for any given prob-
lem. In fact, for many tasks such as face
recognition etc. . . we readily do not have any
clues for logical relations among the data at-
tributes. This is one of the biggest limitations
of this approach.

2. To present the learner with some sample con-
figurations, we assumed the existence of an
algorithm that could solve the task at hand.

However, this assumption may not hold at
all times. Once again, face recognition is an
example.

3. The memory requirements are too high. We
have already seen that we need 3n×(n−1)/2

samples to correctly learn the sorting task.

However, given the goal of mimicking a human being
and the scope of abstract concepts the agents have
to learn from human beings, and given the virtually
unlimited number of problem instances that could be
solved by this learning mechanism, the memory re-
quirements should not become a problem at all (note
that the memory requirements do not depend on N
but on n, so there is no upper limit to the number of
problem instances that can be solved correctly). Fur-
ther advantages are as follows.

Advantages: 1. Independent of the order of train-
ing data samples. In this method, the learner
is invariant to the order in which it receives
the data samples. All that a learner does with
a data sample is, compute the corresponding
zone and mark the sample as a reference for
that zone. This process clearly is indepen-
dent of the order of the data samples and
hence gives the same results in all circum-
stances. It should be noted that the tradi-
tional learning algorithms does not guarantee
any such invariance.

2. Additional samples do not create any bias. If
there exists more than one sample per zone,
the characteristic functions of zones guaran-
tee that they all would produce the same re-
sults as that of first sample. Hence the train-
ing would not be biased by the presence of ad-
ditional samples. Further, a sample could be
repeated as many times as one wants without
affecting the training results. This is useful
for situations where a robot might be learn-
ing from real world, where some typical ob-
servations (such as the changing traffic lights,
flow of vehicles etc. . .) would get repeated
more frequently compared with some rare ob-
servations (such as earth quakes or accidents
etc. . .). Traditional learning algorithms fail
to provide unbiased results in such situations.

3. Non-probabilistic metrics and accurate re-
sults. To meet the demands of artificial sys-
tems, the metrics we have devised are com-
pletely deterministic and are void of any
probabilistic assumptions and thus can be
adapted to any suitable system.

76

Data-dependencies and Learning in Artificial Systems

4. Expandable to multi-task learning. Though
we have concentrated on learning a single
task in this discussion, there is nothing in this
method that could prevent the learner from
learning more than one task at the same time.
For example, once an agent learns to sort
in ascending order (SASC), it can further
learn to sort in descending order (SDSC)
simply by computing the new variation op-
erator δSDSC directly from (δSASC), instead
of from new sample problem-solution config-
uration pairs. This saves the training time
and cost for SDSC. However, to implement
this feature the agent should be informed of
the relation between the tasks a priori. Smart
agents that can automatically recognize the
relation among tasks based on their configu-
ration spaces should be an interesting option
to explore further in this direction.

5. Knowledge transfer. All the knowledge of
the learner is represented in terms of refer-
ence configurations for individual zones. Any
learner who has access to these reference con-
figurations can perform equally well as the
owner of the knowledge itself, without the
need to go through all the training again.
This could lead to the concept of tradable
knowledge resources for agents.

6. Perfect partial learning. Just as additional
samples do not create bias, lack of samples
also would not create problems for learning.
A training set with quantity less than 100%
would still give correct results as long as the
problem instance at hand is from one of the
learnt zones. That is, whatever the agent
learns, it learns perfectly. This feature comes
handy to implement low cost bootstrapping
robots with reduced features and functional-
ity which can be used as ”data sample sup-
pliers” for other full-blown implementaions.
This concept of bootstrapping robots is one
of the fundamental concepts of artificial life
study in that it might invoke the possibility of
self-replicating robots (Freitas & Gilbreath,
1980; Freitas & Merkle, 2004).

3. Conclusions

The notion of data-independence for an algorithm
speaks for constant execution paths across all its in-
stances. A variation in execution path is generally
attributable to the variations in the nature of data.
When a problem and its solution are viewed as points
in a system configuration, variations in the problem

configurations can be used to study the variations in
the solution configurations and vice versa. These vari-
ations could be used to infer solutions to unknown
instances of problems based on the solutions to the
known instances.

This paper analyzed the problem of data-dependencies
in the learning process and presented a learning mech-
anism based on the relations among data attributes.
The mechanism constructs a Cartesian hyperspace,
namely the configuration space, for any given task, and
finds a set of paths from the initial configuration to fi-
nal configuration that represents different instances of
the task. As part of the learning process the learner
gradually gains information from data samples one by
one, till all data samples were processed. Once such
a transfer of information is complete, the learner can
solve any instance of the task without any restrictions.

The mechanism presented is independent of the order
of data samples and has the flexibility to be expand-
able to multi-task learning. However, the practical-
ity of this approach may be hindered by the lack of
appropriate algorithms that could provide sample in-
stances. Further study to eliminate such bottlenecks
could make this a perfect choice to implement learning
behavior in artificial agents.

References

Angluin, D. (1992). Computational learning theory:
survey and selected bibliography. Proceedings of the
twenty-fourth annual ACM symposium on Theory of
computing (pp. 351–369). New York: ACM Press.

Balmer, M., Cetin, N., Nagel, K., & Raney, B. (2004).
Towards truly agent-based traffic and mobility simu-
lations. AAMAS ’04: Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents
and Multiagent Systems (pp. 60–67). Washington,
DC, USA: IEEE Computer Society.

Brooks, R. A. (1991). Intelligence without reason. Pro-
ceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI-91) (pp. 569–595).
San Mateo, CA, USA: Morgan Kaufmann publishers
Inc.

Brugali, D., & Sycara, K. (2000). Towards agent
oriented application frameworks. ACM Computing
Surveys, 32, 21–27.

Bryson, J. J. (2003). Action selection and individua-
tion in agent based modelling. Proceedings of Agent
2003: Challenges of Social Simulation.

77

Data-dependencies and Learning in Artificial Systems

Cliff, D., & Grand, S. (1999). The creatures global
digital ecosystem. Artificial Life, 5, 77–93.

Collins, J. C. (2001). On the compatibility between
physics and intelligent organisms (Technical Report
DESY 01-013). Deutsches Elektronen-Synchrotron
DESY, Hamburg.

Decugis, V., & Ferber, J. (1998). Action selection in
an autonomous agent with a hierarchical distributed
reactive planning architecture. AGENTS ’98: Pro-
ceedings of the second international conference on
Autonomous agents (pp. 354–361). New York, NY,
USA: ACM Press.

Franklin, S. (2005). A ”consciousness” based architec-
ture for a functioning mind. In D. N. Davis (Ed.),
Visions of mind, chapter 8. IDEA Group INC.

Freitas, R. A., & Gilbreath, W. P. (Eds.). (1980).
Advanced automation for space missions, Proceed-
ings of the 1980 NASA/ASEE Summer Study. Na-
tional Aeronautics and Space Administration and
the American Society for Engineering Education.
Santa Clara, California: NASA Conference Publi-
cation 2255.

Freitas, R. A., & Merkle, R. C. (2004). Kinematic
self-replicating machines. Georgetown, TX: Landes
Bioscience.

Goldstein, H. (1980). Classical mechanics. Addison-
Wesley Series in Physics. London: Addision-Wesley.

Kamareddine, F., Monin, F., & Ayala-Rincón, M.
(2002). On automating the extraction of programs
from proofs using product types. Electronic Notes
in Theoretical Computer Science, 67, 1–21.

Katsuhiko, T., Takahiro, K., & Yasuyoshi, I. (2002).
Translating multi-agent autoepistemic logic into
logic program. Electronic Notes in Theoretical Com-
puter Science, 70, 1–18.

Kearns, M. J. (1990). The computational complexity of
machine learning. ACM Distinguished Dissertation.
Massachusetts: MIT Press.

Lau, T., Domingos, P., & Weld, D. S. (2003). Learn-
ing programs from traces using version space alge-
bra. K-CAP ’03: Proceedings of the international
conference on Knowledge capture (pp. 36–43). New
York, USA: ACM Press.

Laue, T., & Röfer, T. (2004). A behavior architecture
for autonomous mobile robots based on potential
fields. RoboCup 2004. Springer-Verlag.

Littlestone, N. (1987). Learning quickly when irrele-
vant attributes abound: A new linear-threshold al-
gorithm. Machine Learning, 2.

Lopez, R., & Armengol, E. (1998). Machine learning
from examples: Inductive and lazy methods. Data
& Knowledge Engineering, 25, 99–123.

Maes, P. (1989). How to do the right thing. Connection
Science Journal, 1.

McCauley, J. (1997). Classical mechanics. Cambridge
University Press.

Moses, Y. (1992). Knowledge and communication: A
tutorial. TARK ’92: Proceedings of the 4th con-
ference on Theoretical aspects of reasoning about
knowledge (pp. 1–14). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Raedt, L. D. (1997). Logical settings for concept-
learning. Artificial Intelligence, 95, 187–201.

Ramamurthy, U., Franklin, S., & Negatu, A. (1998).
Learning concepts in software agents. From Ani-
mals to Animats 5: Proceedings of The Fifth Inter-
national Conference on Simulation of Adaptive Be-
havior. Cambridge: MIT Press.

Ray, T. S. (1991). Artificial life ii, chapter An Ap-
proach to the Synthesis of Life. Newyork: Addison-
Wesley.

Ray, T. S. (1994). Evolution, complexity, entropy and
artificial reality. Physica D, 75, 239–263.

Reynolds, C. W. (1987). Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics,
21, 25–34.

Schmidhuber, J. (2000). Algorithmic theories of every-
thing (Technical Report IDSIA-20-00 (Version 2.0)).
Istituto Dalle Molle di Studi sull’Intelligenza Artifi-
ciale, Manno-Lugano, Switzerland.

Wilson, S. W. (1994). Zcs: a zeroth level classifier
system. Evolutionary Computation, 2, 1–18.

Zurek, W. H. (1989). Algorithmic randomness and
physical entropy. Physical Review A, 40, 4731–4751.

78

Author Index

Aguilar, Ramiro 59
Alonso, Luis 59
De Raedt, L. 37
Frasconi, P. 37
GopalaKrishna, Palem 69
Kitzelmann, Emanuel 15
López, Vivian 59
Monakhova, Emilia 29
Monakhov, Oleg 29
Moreno, Maŕıa N. 59
Muggleton, Stephen 9
Passerini, A. 37
Rao, M. R. K. Krishna 51
Schmidhuber, Jürgen 11
Schmid, Ute 15
Wysotzki, Fritz 13

81

