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Abstract

The paper describes the implementation and evaluation
of a system able to generate poetry satisfying rhyth-
mical and rhyming constraints from an input image.
The poetry generation system consists of a Convolu-
tional Neural Network for image object classification,
a module for finding related words and rhyme words,
and a Long Short-Term Memory (LSTM) Neural Net-
work trained on a song lyrics data set compiled specifi-
cally for this work. In total, 153 stanzas were generated
and evaluated in two different experiments. The results
indicate that the deep learning based system is capable
of generating subjectively poetic, grammatically correct
and meaningful poetry, but not on a consistent basis.

1 Introduction

Computational linguistic creativity involves theoretical
study of language as well as developing computer algo-
rithms to process and generate language. It uses a varied
arsenal of machine learning, artificial intelligence and statis-
tics to generate, predict and extract the meaning of texts,
such as story narratives, jokes, analogies, word associations,
and poetry. For language generation, poetry is one of the
more interesting and complex challenges, since its value de-
pends on both form and content. In this paper, a state-of-the-
art poetry generator is designed and implemented. It takes
an image as input and uses Inception (Szegedy et al. 2016), a
pre-trained convolutional neural network (CNN) image clas-
sifier, to find objects in the image. The poetry generator then
returns a short stanza based on the objects, by combining
tree search with a Long-Short Term Memory (LSTM) recur-
rent neural network (RNN) trained on a custom made data
set built from scratch from 200, 000+ songs. Instead of us-
ing rule-based and fill-in methods, the system actively pre-
dicts outcomes in a creative way. Strophically correct poems
are guaranteed by combining tree search with deep learning,
searching for optimal paths with suitable rhyme words.

Poetry has various different forms and is a very subjective
genre, therefore a concrete definition of poetry can be hard
to nail down. The definition used in this paper is:

Poem. A set of lines satisfying rhyming and rhythmic con-
straints. The text generated consists of one stanza contain-
ing Y lines. The lines have to be a length of X syllables, and
a line must rhyme with another line.

By using this definition, it is clear what kind of poetry is
being generated, and conclusions can be based on this. Fur-
thermore, a stanza is a group of lines separated from oth-
ers in a poem, often to shift between action, moods and
thoughts. The terms stanza and poetry will be used inter-
changeably about the poetry generated by this system.

The next section describes the state-of-the-art in poetry
generation, focusing on corpus-based methods and deep
learning approaches. The data set gathering and the pre-
processing of the songs are outlined in Section 3. Section 4
talks about the design and implementation of the poetry gen-
eration system. Section 5 shows the results gathered from
the system, which are then discussed and evaluated in Sec-
tion 6, showing that participants in a survey were able to
identify a system generated poem vs a human generated
poem with a 76.5% success ratio, with the system being
able to generate stanzas that were perceived as aesthetically
good, but not by everyone and not consistently. Finally, the
conclusions are drawn and possible future work is discussed.

2 Related Work

Deep learning has proven very successful in image recog-
nition where convolutional neural networks have heavily
dominated in recent years. Most of latest efforts in po-
etry generation also use deep learning, although the re-
search field itself started developing already in the 1990s,
with multiple different methods being tried out. The high
complexity of creative language creates substantial chal-
lenges for poetry generation, but even though the task is
complex, many interesting systems have been developed.
Gervas (2002) roughly divided poetry generation into four
types of approaches: template-based (e.g., PoeTryMe by
Oliveira, 2012 and Netzer et al.’s 2009 Haiku generator),
generate and test (e.g., WASP by Gervds, 2000 and Tra-
La-Lyrics by Oliveira, Cardoso, and Pereira, 2007) , evo-
lutionary (e.g., POEVOLVE by Levy, 2001 and McGo-
nagall by Manurung, 2004), and Case-Based Reasoning
approaches (e.g., ASPERA by Gervds, 2001 and COL-
IBRI by Diaz-Agudo, Gervés, and Gonzalez-Calero, 2002).
Oliveira (2017) updates and extends Gervds’ classification,
while Lamb, Brown, and Clarke (2017) introduce a slightly
different taxonomy. However, the focus in recent years can
really be said to have shifted to two types of approaches,
corpus-based and deep learning-based methods.



Corpus-based methods aim to find other poems and use
their structure to create new poems. They often use mul-
tiple corpora and substitute words based on their part-of-
speech (POS) tags and relevance. Colton, Goodwin, and
Veale (2012) presented Full-FACE Poetry Generation, a
corpus-based system which uses templates to construct po-
ems according to constraints on rhyme, metre, stress, sen-
timent, word frequency, and word similarity. The system
creates an aesthetic, a mood of the day, by analyzing news-
papers articles, and then searches for an instantiation of a
template maximizing the aesthetic.

Toivanen et al. (2012) introduced a system using two cor-
pora, a grammar corpus and a poetry corpus, in order to
provide semantic content for new poems and to generate a
specific grammatical and poetic structure. The system starts
by choosing a topic, specified by a single word. Topic as-
sociated words are then extracted from a background graph,
a network of associations between words based on term co-
occurrence. A desired length text is then randomly selected
from the grammar corpus, analyzed and POS-tagged, and
each word is substituted by words associated to the topic.
Toivonen et al. (2013) extend this model and show how sim-
ple methods can build surprisingly good poetry.

Zhang and Lapata (2014) made one of the earliest at-
tempts at generating poetry using deep learning. The poem
is composed by user interaction, with the user providing
different keywords, that has to be words appearing in the
ShiXueHanYing poetic phrase taxonomy. The generator cre-
ates the first line of the poem based on the keywords and
then expands the keywords into a set of related phrases that
are ranked using multiple character-level neural networks.
The system is very complicated and computationally heavy,
using a CNN and two RNNss, but yields respectable results.

Wang, Luo, and Wang (2016) proposed an architecture
using an attention-based recurrent neural network, which ac-
cepts a set of keywords as the theme and generates poems by
looking at each keyword during the generation. The input
sequence is converted by a bi-directional GRU (gated recur-
rent unit) encoder to a sequence of hidden states. These hid-
den states are then used to regulate a decoder that generates
the poem character by character. At each time step, the pre-
diction for the next character is based on the current status
of the decoder and all the hidden states of the encoder.

Wang et al. (2016) used a planning-based recurrent neu-
ral network, inspired by the observation that a human poet
often makes an outline before writing a poem. The system
takes a user’s input which can be either a word, a sentence
or a whole document, and generates the poem in two stages:
First, in the poem planning stage the input query is trans-
formed into as many keywords as there are lines in the poem,
using TextRank (Mihalcea and Tarau 2004) to evaluate the
importance of words. However, if the user’s input query is
too short, keyword expansion is done using both an RNN
language model and a knowledge-based method, where the
latter aims to cover words on topics that are not in the train-
ing data. Then in the poem generation stage, the system
takes all previous generated text and the keyword belonging
to a given line as input, and generates the poem sequentially
line by line. The generator uses the same encoder-decoder

structure with GRUs as in (Wang, Luo, and Wang 2016), but
slightly modified to support multiple sequences as input.

Ghazvininejad et al. (2016) proposed Hafez, a system
that creates iambic pentameter poetry given a user-supplied
topic. It starts by selecting a large vocabulary, and computes
stress patterns for each word based on CMUdict,! an open-
source machine-readable pronunciation dictionary for North
American English that contains over 120,000 words. A
large set of words related to the user topic are retrieved using
the continuous-bag-of-words model of word2vec (Mikolov
et al. 2013). Next, rhyme words are found and put at the end
of each line. Also using CMUdict, the system tries to find
rhyming words with related words. However, as a fall-back
for rare topics, fixed pairs of often used words are added.
A Finite-state-acceptor (FSA) is built, with a path for every
conceivable sequence of vocabulary words that obeys for-
mal rhythm constraints. A path through the FSA is selected
using a RNN for scoring the final outcome. The RNN uses
a two layer recurrent neural network with long short-term
memory, trained on a corpus of 94, 882 English songs.

Most similar to the present work is the recent effort by Xu
et al. (2018) to use an encoder-decoder model to generate
Chinese poetry. They utilised the poem data set of Zhang
and Lapata (2014) together with images collected from the
Internet that depicted key words contained in the poems. In
the encoder part, a CNN extracts visual features from the
input images, while semantic features from previously gen-
erated lines of the poem are built by a bi-directional Gated
Recurrent Unit (GRU). The decoder then consists of another
GRU that generates a new line of the poem (Chinese) char-
acter by character, using the visual and semantic features
together with the keywords.

3 Data set

Optimally, a data set should consist of data as close as pos-
sible to the desired results of the system, since the goal of
training computer models is to mimic the data set as closely
as possible. However, collecting a data set consisting of po-
etry is very inconsistent, meaning that every poet writes dif-
ferently and uses different words and expressions. The result
is that the available sample of reasonably consistent poetry is
rather small. In comparison, hundreds of thousands of song
lyrics — essentially rhythmic poems — are readily avail-
able. Hence, those in the field of poetry generation com-
monly use song lyrics rather than poetry as their data sets.
Therefore, just like Ghazvininejad et al. (2016), song lyrics
were chosen as a base for the data gathered for this project,
since other data sets of the right size and content are not
available due to various copyright protections. For the same
reasons, the collected data set cannot be distributed further.
The data set was collected from www.mldb. org, an on-
line song lyrics database. A Python script was written to
connect to their site, sort through the HTML files of the site
and find the song text, artist and album. Beautiful Soup?
handles the HTML file by creating a parse tree, making it
easy to navigate and handle the data provided in the HTML

lwww.speech.cs.cmu.edu/cgi-bin/cmudict/
2www.crummy . com/software/BeautifulSoup/



file. A total of 206, 150 songs were collected, with a vocabu-
lary of 391, 363 unique words and 46, 346, 930 tokens in to-
tal. This dataset was filtered to remove songs that contained
less than 95% of English words, as well as non-lyric content
such as escape characters (e.g., newline, backslash and quote
characters), custom messages by the sender (e.g., “Submit-
ted by x” and “Thanks to y”), name of artists, verse and cho-
rus notation, and notation of physical movements. After fil-
tering, 80, 608 songs remained with a vocabulary of 91, 097
unique tokens. This is still too large and sparse a dataset
for efficiently training a classifier, so all songs containing
words that are not in the top 30,000 vocabulary were also
removed, leaving 40, 685 songs (8,712,213 tokens) with a
final vocabulary size of 27, 601.

4 System Design and Implementation

The system consists of several stages. First, after an im-
age is obtained it is run through Inception for classification.
The output from Inception is the five top scoring classes. If
these are scored lower than a set threshold, the result is dis-
carded; otherwise they are used to find related words using
ConceptNet by utilising ConceptNet’s related words feature
to return a scored list of related concepts, and then using the
core of ConceptNet to find edges for the concepts, with the
concept at the other end of the edge being saved and scored.
When all related words have been found, rhyme words are
explored, with the aim that both rhyming words should be
related to the picture.

The next stage is to find the optimal path through a tree
structure to construct a sentence. The path starts from the
start of the sentence and ends on the rhyme word at the given
line. Any number of lines can be generated. When a line is
generated, an attempt to check the grammatical structure is
made, but its use is limited. Figure 1 shows all steps from an
input image to the generated poetry.

Finding rhyming words from images

Looking at the components of the architecture in more de-
tail, Inception-v3 (Szegedy et al. 2016) is the object recog-
nition part, so the images used in the experiments must con-
tain at least one object recognizable by Inception-v3, which
is a 42 layer convolutional neural network available through
TensorFlow in both Python and C++. Inception-v3 is pre-
trained on the 2012 ImageNet Large Visual Recognition
Challenge (ILVRC), where the task is to classify a picture
into one of 1,000 classes. The classes have no particular
themes, however, 400 of them are animals, while the rest are
quite diverse and can be anything from CD player to castle.

The keywords returned by the CNN are used to gather a
large set of related words, based on the related words fea-
ture in ConceptNet (Speer and Havasi 2012), which returns
a number of words along with a similarity score between 0
and 1. The next step looks at the edges of the concepts be-
longing to the keywords: each edge has another concept end
point, and these are retrieved along with a score, which is
between 1 and 12, but normalized to [0, 1]. The scores from
related words and nearby concepts are treated equally. If the
system has few high scoring related concepts, the system
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Figure 1: A high level overview of the system

will prune the highest scores and retrieve concepts related to
them. This repeats until the system has at least 200 related
words. All related words need to be in the vocabulary. The
more related words that are gathered, the more options the
system has to chose from. At 200, or more, words the sys-
tem seemingly has no problems finding applicable related
words. The risk of finding no appropriate related words, or
using poorly scored related words is that the poem will not
be perceived as relevant to the image given as input.

When the related words are found, the system looks for
rhyme pairs. This is done using CMUdict, which finds the
pronunciation of a given word. For instance, the word dictio-
naryisreturned as D IH1 K SH AHO N EH2 R IY0, where the
numbers are the syllable stress and the letters the pronuncia-
tion. Two rhyming rules are used to find the rhyming words.
The first checks if the endings of the words are pronounced
the same. The length of the rhyme does not matter, though it
must be at least one syllable long. The second rule states that
the consonant sounds preceding the rhyme must be different.
A consequence of this is that slant thymes are not allowed
in the system. Therefore, mostly perfect rhymes are present
in the thymes. This is a design choice, because slant rhymes
such as milk—talk do not sound particularly good. However,
if the system cannot find any suitable rhyming words, the
second rhyming rule is discarded, and only the word endings
are checked. Ideally, both rhyme words should be related to
the initial image, but if there are no related words rhyming
with each other, the system looks for other words rhyming
on a related word in the vocabulary. The highest scoring
related words and their rhyming words are preferred.



Predicting word sequences

The Long Short-Term Memory (LSTM) network then has
the task of predicting the next word in a given sequence. It
takes a word and the previous hidden state as an input, be-
fore producing an array of the scores for each other word in
the vocabulary. The hidden state is then updated taking the
whole sequence of previous words into consideration. The
vocabulary is embedded into a dense Vector Space Model
representation before being fed further into the network. The
embedding matrix is initialized randomly, but as the train-
ing goes on, the model learns to differentiate between words
by looking at the data set. To save memory when training,
batches of the data set are converted into tensors that Tensor-
Flow can use to train the model.

When training a network, several different parameters
have to be set. Following Zaremba, Sutskever, and
Vinyals (2014), the most important variables experimented
with were: batch size, learning rate and learning rate de-
cay, probability of keeping a neuron (dropout; Srivastava et
al., 2014), number of steps unrolled in the LSTM layers, and
parameter initialisation. The learning rate starts at 1.0, but
after 14 epochs it is decreased by a factor of 1.15 after each
epoch. The batch size is 20, and the parameters are uni-
formly initialized in the range [—0.04,0.04]. The dropout
rate is 65% for non-recurrent units. The number of steps un-
rolled in the LSTM layers is 35. The training time for the
best performing network was 34 hours and 41 minutes on a
NVIDIA GeForce GTX 970 with 4 GB memory.

Several different architectures of the LSTM network were
tried, with the model with the lowest word perplexity score
during training, and therefore best performing, having four
layers: one input layer to represent the words coming in
from the data set, followed by two hidden layers with the
size of 1100 cells, and one softmax layer to give the predic-
tions for the next words. The core of the network are the
LSTM cells found in the two hidden layers that compute the
possible values for the next predictions.

The loss function the network tries to minimize is
the average negative log probability of the target word:
—% Zfil In(Prarger;) Where N is the total training set size,
target is the target word, and ¢ is the word being looked at.
The log loss is the cross entropy between the distribution
of the true labels and the predictions given by the network.
Therefore, by minimizing the log loss, the weights are opti-
mized to produce a precise distribution of true labels. This is
equivalent to maximizing the product of the predicted prob-
ability under the model. Per-word perplexity then measures
how well the LSTM network performs during training:

N
6_% s In(prarget,) — eloss (1)

A gradient descent optimizer is used along with backprop-
agation to minimize the loss function during training. The
backpropagation algorithm uses the error values found by
the loss function, L, to calculate the gradient of the loss func-
tion with respect to the weights, w, in the network, 2—5.

To optimise the architecture with respect to word perplex-
ity, the number of layers, hidden units, and epochs were var-

ied. Zaremba, Sutskever, and Vinyals (2014) achieved a per-

plexity of 68.7 on the Penn Tree Bank data set, with a vocab-
ulary of only 10, 000 words. Usually when training on larger
vocabularies, the network should be more confused, so per-
plexity should increase. Here the vocabulary size is 27, 601,
but the tested networks still achieved remarkably low per-
plexity: with only one hidden layer and 1100 hidden units,
the LSTM'’s perplexity after 53 epochs was 65.0. With two
hidden layers and 1100 units, perplexity dropped further, to
36.7 after 53 epochs. The reason for the low perplexity is
the data set: song lyrics tend to use a small variety of words
and often repeat lines. The network tries to mimic this be-
haviour. The result is that the predictions of rare words are
often 0.0, with major implications for system performance.

Generating poetry

The poetry generation takes the related words, rhyme pairs
and a trained LSTM network as input. It creates a tree struc-
ture to find the highest scoring paths through the tree, applies
part-of-speech tagging to the paths, and returns the most op-
timal path that fits the grammar constraints. The stanzas are
chosen to be 4 lines long, with each line being 8 syllables
long, and the rhyming scheme being AABB. One stanza is
generated per image. First, a tree is generated for each line
in the stanza. One node symbolizes one word and its sylla-
bles, and each edge is the score between one node and an-
other, as provided by the trained LSTM network. The root of
the tree is an empty string with the initialized hidden state.
Based on the root and the hidden state, the system takes the
top 30 words predicted and sets them as the root’s children.
For these, the system generates 30 predictions. This process
is done when the syllable constraints are fulfilled.

However, this tree is too large to be effective and the
search takes too long. In the worst case scenario, when all
words are monosyllabic, a tree finding the path to an eight
syllable length phrase will consist of 30® nodes. Due to vari-
ous calculations in TensorFlow, only about five nodes can be
looked at per second, so searching through that many nodes
is unacceptable. The solution to this is two-folded: First, a
depth first search is performed while deleting all child nodes
that have already been looked at. Second, the tree is pruned
based on the score of a line or syllabic constraints.

The depth first search takes the syllable constraints into
account. When the search reaches a leaf node, the system
generates a score of how good the line is, which is the sum
of each prediction for each word. The line can be positioned
anywhere in the stanza, depending on the rhyming scheme
chosen for the stanza. A tuple is generated that contains the
rhyme words for two different lines, and scored based on
how relevant the words are to the image. The tree search
then goes back to look at the leaf node’s parent, sets the cur-
rent node to be looked at as one of the siblings of this node,
and calculates the next predictions for this new node. This
is done 30 times, once for each of the 30 top predictions.

Pruning of the tree is done in two ways: Based on the
score, or based on different syllabic constraints. A node is
skipped if does not fulfil the following constraint:

Shode  top_score[—1]
StOt 2

nodescore >

2)



where Spode is the syllable count for a given node, Syt
the total number of syllables needed to finish the line, and
top_score[—1] the worst top score achieved at this point.

The score of a given line is calculated in two parts, with
one coming from the words generated in the sentence and
the other being the prediction of the rhyming word. These
values are continuously normalised against other values in
the top score list, so that the line score and the rhyme word
prediction are evaluated as equal parts — otherwise, the line
score would dominate, since it is the sum of multiple predic-
tions, while the rhyme word prediction is only one.

The system tends to repeat words, since the network is
trained on song lyrics that often are repetitive. Therefore
words already used in a line receive lower scores, and are
avoided if possible. Furthermore, the system prefers to use
easy and safe words. Because of this, a higher score is given
to the related words. This forces the system to explore new
words and hence enhances performance. However, com-
pletely avoiding repetition of words also has a disadvantage,
since repetition is an important poetic feature.

A problem the system cannot handle very well is the tran-
sition between the generated line and the rhyme word. POS-
tagging is added to address this problem. The tagger first
tags the line generated, and then the rhyme word separately.
However, tagging a word without any context is not possi-
ble, so the 1M word POS-tagged Brown corpus is used to
determine the most frequent tag of the rhyme word. By fix-
ing the thyme word at the end of the line, and POS-tagging
again, this time the line and the rhyme word together, the
rhyme word gets another POS-tag. If this tag matches the
most frequent one in the Brown corpus, the line is accepted.
Clearly, it is not always enough to check that the POS-tag
matches the most frequent tag; however, it guides the sys-
tem to generate grammatically better poems.

5 Experiments and Results

Two different experiments were conducted to test the sys-
tem. In the first, human subjects selected any image of their
choosing, preferably one they had taken themselves. This
image was then run through the system, and the subject eval-
uated the generated poems according to three criteria de-
scribed below. To avoid testing the system on images and
to ensure using the best generated poetry, the participants
were first asked to find at least three images of their choos-
ing. Each image was then run through the system and the
stanzas retrieved, which the participants were asked to rate.

In the second experiment, the subjects were tested to see
if they could differentiate between poetry generated by the
system and poetry written by a human. Here, a participant
was shown an image and the corresponding human gener-
ated and machine generated stanzas, and asked which stanza
was the human generated one.

Finally, the participants were asked about their overall
thoughts of the system. 46 persons participated in the ex-
periments, with no requirement that they should have any
prior experience of writing or evaluating poetry. A total of
153 stanzas were rated on the three criteria, and a total of
38 evaluations were done to decide if the poetry was from a
human or a computer.

The sun is in my big raincoats
I don’t know what to do scapegoats
I’m raining and it looks like rain
There’s so much for me to abstain

Score: [3.0, 2.7, 2.0]

Figure 2: “Red Umbrella” by DLG Images (CC BY 2.0)
www.flickr.com/photos/131260238C%40N08/16722739971/.

I don’t know why it feels like crabs

* That make me want to look at cabs

Ll So come on lets get out of zoo
And dive into my big canoe

Score: [3.0, 2.5, 1.0]

Figure 3: “Jellyfish” by Jennifer C (CC BY 2.0)
www.flickr.com/photos/29638108 %40N06/34440131755/.

I want to be with your tent group
In the shape of your hand and troop
My life is an operation
So come on lets go now station

Score: [2.5, 3.0, 2.5]

Figure 4: “KFOR 12 training”, The U.S. Army (CC BY 2.0)
www.flickr.com/photos/soldiersmediacenter/3953834518/.

Grammaticality, poeticness and meaningfulness

State-of-art poetry generation commonly use either auto-
matic or human-based evaluation methods. The automatic
approaches, such as BLEU (Papineni et al. 2002), origi-
nate in machine translation research and assume that human
written references are available, which is not the case for the
present work. Another problem with these evaluation meth-
ods is that they have been found to have little coherence with
human evaluation (Liu et al. 2016).

Hence we will here focus on human-based evaluation,
in particular along the lines of Manurung’s (2004) criteria
grammaticality (lexical and syntactic coherence; in essence
ruling out random sequences of words), meaningfulness
(convey a conceptual message which is meaningful under
some interpretation; here it will also include topic coher-
ence with the visual input), and poeticness (phonetic fea-
tures such as rthymes and rhythmic patterns). Each of the
dimensions is scored on a scale of 1-3. A slightly differ-
ent version of these criteria has also been proposed: flu-
ency, meaning, poeticness and coherence (Yan et al. 2013;
He, Zhou, and Jiang 2012). However, no in-depth explana-
tion of these criteria has been made and different definitions
of the four metrics have been given, so this work will use
the metrics of Manurung (2004) and the goal of the first ex-
periment was to evaluate each poem on those criteria. The
average score and standard deviation of all poems evaluated
were 2.614 + 0.519 for poeticness, 2.381 £ 0.470 for gram-
maticality, and 2.050 4 0.712 for meaningfulness, with me-
dian scores of 2.8, 2.5, and 2.0, respectively.



Hole in the back of my bottle
I don’t know what it’s like throttle
It makes me feel this way grape wine
And when I'm with you flask align

Score: [2.8, 2.5, 2.5]

Figure 5: “NAPA 2012” by cdorobek (CC BY 2.0)
www.flickr.com/photos/cdorobek/8093546797/.

I don’t know what to do cute bear
The way you look at me when fair
And I’'m so in love with teddy
You’re just a part of already

Score: [2.8, 2.7, 3.0]

Figure 6: Picture by Yumeng Sun, used with permission

Five randomly selected poems are shown in Figures 2—-6
to display a variety of different scored poems. The input
image is to the left while the generated poem related to the
image is on the right, followed by the score for the poem,
in the order of poeticness, grammaticality, meaningfulness.’
As can be seen, poeticness scores higher than grammatical-
ity and meaningfulness. The reason for this is the guaran-
tee of the lines being eight syllables long, and almost every
line rhymes. When the system cannot find suitable rhyme
words, sub-optimal rhyme words are chosen.The grammati-
cality score is a bit lower, and the meaningfulness is slightly
above the “partially meaningful” level. Both of these are in-
fluenced by the system predicting line ending thyme words
with a 0 probability. This happens when the LSTM network
dislikes all the rhyming words found, scoring them all as O.

It is also interesting to compare the results of poems with
two or more lines where the rhyme word is predicted by a
non-zero number against poems containing zero or one such
lines, since when the rhyme word is predicted by a zero
value, the POS-tagging and the word relevance decide the
rhyme word and the corresponding line. There can be two
reasons for a zero score: that the network has been trained
on the word but does not consider it a good fit, or that the
training data contained too few occurrences of the rhyming
word so that the network is uncertain about its fitness. 33 of
the 153 stanzas contain two or more lines where the thyme
word was predicted by a non-zero value. Looking at the
scores for those only, it is clear that when it is known that
the system has an opinion of the thyming word, performance
increases (note that the opinion not necessarily has to be
good). The average poeticness goes from 2.614 to 2.793,
grammaticality increases from 2.381 to 2.691, and poetic-
ness from 2.050 to 2.464. However, the Pearson Correlation
Coefficient reveals that even though there technically is a
positive correlation between the number of non-zero predic-
tions for the rhyme word and survey scores, the relationship

3Unless stated otherwise, images are used under Creative
Commons Attribution 2.0 license (CC BY 2.0):
creativecommons.org/licenses/by/2.0/legalcode

It’s been a long time and I’ve bees
But I don’t want to get disease
I’m all out of love, oh so sweet

Just give me one more chance to meet

I am flying in the warm air
The other bees are very fair
It is a beautiful sunday
I am leaving later today

Figure 7: “bee” by David Elliott (CC BY 2.0)
www.flickr.com/photos/drelliottOnet/15105557167/

I want to see swans in the sky
You and me, we are in for fly
If there’s a lake out there for goose
There is no limit for excuse

Eating dinner like a wild goose
Food is something that I can’t lose
Although cooking is really tough
Nothing better can make me bluff

Figure 8: “Canada Geese” by Kevin M. Klerks (CC BY 2.0)
www.flickr.com/photos/ledicarus/34618458382/.

is weak: the correlation score for poeticness was 0.1658,
0.3040 for grammaticality, and 0.2674 for meaningfulness.

Human- and machine generated poetry experiment

The second experiment was done to see if the participants
could differentiate between the machine generated poetry
and human written poetry. The process was as follows: Af-
ter 30 stanzas had been evaluated, the four highest rated po-
ems were selected. The persons who had chosen those im-
ages were asked to write a poem with the same syllabic and
rhyming constraints, i.e., each sentence had to have eight
syllables, and the two first and two last lines should rhyme.
For all these four images, the computer generated stanza
and human evaluated stanza are shown in Figures 7-10. The
top stanza next to each image is the computer generated one,
and the stanza in italics is the human written. The ques-
tion asked to the participants of the experiment was: “Which
stanza is human generated?” 38 persons evaluated the four
items, giving a total of 152 evaluations. The participants
chose the correct option in total 117 times, while the wrong
option was chosen 35 times, so the participants had a 76.5%
success ratio. Figure 8 was the easiest for the participants to
single out, with only 5 of 38 participants answering wrongly.
For Figures 7, 9, and 10, respectively 10, 11 and 9 partici-
pants erroneously picked the machine generated stanza.
The last part of the experiment was to get the participant
sentiments. The question asked to the participants was: “Af-
ter seeing the results of the images that you chose, and the
poetry of the four images of experiment two, do you have
any final thoughts?” 29 of the 46 participants used the word
“fun” when evaluating the poetry, while 20 participants used
the word “random”, and a few used the word “bad”. Other
notions such as “interesting system” and “the poems feel
alive” were also common. Seven participants mentioned
“personification” as a core value of the generation system.



Broomstick on the back of my broom
Move on like dead man can assume
I don’t know what to do and sweep

It makes me think that I’'m asleep

Checking the status of my broom
I need the broom to sweep the room
I have no choice to keep waiting
It’s hard for me to stop hating

Figure 9: “broom” by danjo paluska (CC BY 2.0)
www.flickr.com/photos/sixmilliondollardan/3074916976/.

It’s been a long time since the kick
It makes me want to hold you stick
And I know communication
I’ve got so much combination

Tapping on my keyboard at night
Hoping it will not cause a fight
You are my only listener
Don’t let me be your prisoner

Figure 10: Picture by Yumeng Sun, used with permission

6 Discussion

The average score of 2.614 in the ‘poeticness’ category tells
that people overall found the stanzas in between partially
poetic and poetic in terms of thythm and rhyming. How-
ever, the standard deviation is quite high (0.519), either rep-
resenting a big spread of the sentiment of the participants,
or a big spread in the quality of the poems generated. The
average score of 2.381 for ‘grammaticality’ indicates that
the language is closer to being partially grammatically cor-
rect than grammatically correct. The standard deviation of
0.470 indicates that the spread is smaller than for poeticness,
but it is still quite large. The average score of 2.050 for the
‘meaningfulness’ category tells that the system is on aver-
age evaluated as partially meaningful, although the standard
deviation of 0.712 indicates that meaningfulness is the most
inconsistent property of the poems generated by the system.

Several effects of using song lyrics as training data for the
LSTM network are reflected in the poetry, including: exten-
sive use of the first person pronoun (/) as well as of the word
love and terms related to it, repetition of some phrases (e.g.,
“I don’t know”, “I want to”, “It’s been a long time since”,
“So come on”), and that a large part of the vocabulary is pre-
dicted with zero probability at any given point in time. As
a result, and as can be seen in the examples above, a large
fraction of the generated stanzas include at least one form of
I: 87% had at least one first person pronoun, 42% had two,
and 12% of the poems had three. The extensive use of pro-
nouns can lead to personification (non-human objects taking
on human characteristics), with the poems often gaining hu-
man traits even though there are no humans in the image.
Furthermore, love appears 10,671 times in the dataset and
is found in 7% of the songs, leading to it appearing in 11%
of the poems generated, which makes the poetry love based.

The system has a couple of limitations. The first one is
Inception: if it misclassifies the input image, the system will
perform poorly, because all related words and rhyme words
will become related to the wrong class. Another limitation
is that only the top-1 class is used to find related words. The
reason to only use the top-1 result is that other results are
often not related and might be wrong, therefore hurting the
performance of the system. This means that only one ob-
ject in the image is used. Using object recognition instead
of classification might yield better results, since this would
make it possible to identify multiple objects in the image.
This could make the generated poems more dynamic as the
poem can choose from a broader set of related words, and
mention multiple objects in the image.

7 Conclusion and future work

A system was designed and implemented to take an image as
input and generate poetry related to the image. The system
includes a CNN for object classification, a module to find re-
lated words and rhyme pairs, and an LSTM network to score
a tree search where nodes are representing the words be-
ing generated. 153 stanzas were generated and experiments
were conducted with volunteering participants to evaluate
the quality. The results of the system were varied, with a big
standard deviation on the three criteria it was evaluated on.
The system was not able to consistently generate stanzas that
are perceived by everyone to be aesthetically good. The best
results were achieved when the LSTM network could predict
the rhyme word with non-zero prediction scores, however,
only a weak correlation was found between the evaluation
and the stanzas containing non-zero predictions.

A data set of more than 200, 000 songs was gathered and
pre-processed to train the LSTM model. Various difficulties
arose when gathering the data, the biggest being the variety
of random content in the song lyrics. Upon closer inspec-
tion of the data set some content that is not song lyrics are
still present, however, the fraction of this content does not
have any noticeable impact on the system. Using song lyrics
is interesting due to elements of personification emerging
and the grammar in a line is usually good until the rhyme
word appears, while the system has trouble predicting thyme
words. Overall the system will probably never write any
poetic masterpiece, but the evaluations made by the partici-
pants indicate that some generated stanzas were subjectively
enjoyable. This suggests that the implementation could be
useful as a foundation for other poetry generation systems.

One option for trying to enhance the performance of the
predictions is changing the LSTM network to a Sequence to
Sequence Model (Cho et al. 2014). Several newer poetry
generation systems such as Wang et al. (2016) use this ap-
proach, and report good results. Another possible change
to the system is to train a separate model for fetching re-
lated words. One popular model for doing this is to train a
word2vec model. Implementing this into the system could
enhance performance by finding better related words and
better rhyming words. Training the LSTM network on po-
etry instead of song lyrics is also an interesting variation to
test. Poetry has different properties than song lyrics, such as
using a bigger variety of words more often.
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