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Motivation

Hyperbolic tangent and Sigmoid function are widely used, especially 

signal processing based application

• High accuracy

• Reasonable hardware cost

• Fit to the stochastic end-to-end system
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Background

Stochastic computing

Generate a random sequence to represent a number 

based on fraction of the number 1’s in bitstream

• Unipolar format

𝑥 = 𝑝 𝑋 = 1 = 𝑝 𝑋

• Bipolar format

𝑥 = 𝑝 𝑋 = 1 − 1 = 2𝑝 𝑋 − 1

Format conversion can be done the two format

(a) Stochastic number generator

(b) Converting stochastic number to binary number
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Existing Methods

FSM based method 

Pros

• Synthesize sophisticated funtions

Cons

• High hardware cost

• Low accuracy 
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Existing Methods

Series expansion and JK-FFs method

Pros

• End-to-end stochastic

• Reasonable hardware cost

Cons

• Low accuracy 

Stochastic implementation of 𝑒−𝑎𝑥 using Maclaurin 

polynomial

Stochastic implementation of 𝑒−𝑎𝑥 (𝑎 > 1) using 𝑒−𝑏𝑥

cascaded

Stochastic implementation of 

tanh 𝑎𝑥 𝑎𝑛𝑑 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥)(𝑎 > 1) with bipolar input 

using format conversion

tanh 𝑎𝑥 =
𝑒𝑎𝑥 − 𝑒−𝑎𝑥

𝑒𝑎𝑥 + 𝑒−𝑎𝑥
=
1 − 𝑒−2𝑎𝑥

1 + 𝑒−2𝑎𝑥
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Existing Methods

Piecewise linear approximation:

Pros

• Good accuracy

• Reasonable hardware cost

Cons

• Input format conversion from 

binary to stochastic

The architecture of stochastic implementation of the 

function 𝑒−2𝑥.
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SC based Bernstein Polynomials

• Polynomial functions 𝒇(𝒙) are done by using multiplications and 

additions 

• It fails to compute the polynomial functions which computation 

range is outside [0, 1], e.g 𝟏. 𝟐𝒙 − 𝟏. 𝟐𝒙𝟐

• For any polynomial functions, transforming a power-form 

polynomial to a Bernstein polynomial:

𝐵 𝑥 =෍

𝑖=0

𝑛

𝑏𝑖𝐵𝑖,𝑛(𝑥)

Where 𝐵𝑖,𝑛(𝑥) =
𝑛
𝑖
𝑥𝑖 1 − 𝑥 𝑛−𝑖. 
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Proposed Architecture

Implementing hyperbolic tangent and 

sigmoid function in the bipolar format

• 𝒕𝒂𝒏𝒉 𝒂𝒙 =
𝟏 − 𝒆−𝟐𝒂𝒙

𝟏 + 𝒆−𝟐𝒂𝒙
𝒂 > 𝟎

• 𝒔𝒊𝒈𝒎𝒐𝒊𝒅 𝟐𝒂𝒙 =
𝟏

𝟏 + 𝒆−𝟐𝒂𝒙

 𝒕𝒂𝒏𝒉 𝒂𝒙 = 𝟐
𝟏

𝟏+ 𝒆−𝟐𝒂𝒙
− 𝟏

= 𝟐𝒔𝒊𝒈𝒎𝒐𝒊𝒅 𝟐𝒂𝒙 − 𝟏 [1]
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Proposed Architecture

Bipolar format: 𝒙 = 𝟐𝑷𝒙 − 𝟏

• 𝒙 ∈ −𝟏, 𝟏

• 𝑷𝒙 ∈ 𝟎, 𝟏

 Format conversion between bipolar and unipolar format

𝒔𝒊𝒈𝒎𝒐𝒊𝒅 𝟐𝒂𝒙 ∈ 𝟎, 𝟏 => output is unipolar format

Applying format conversion to equation (1) to same 

bitstream of 𝒔𝒊𝒈𝒎𝒐𝒊𝒅 𝟐𝒂𝒙 ⇒ 𝒕𝒂𝒏𝒉(𝒂𝒙)
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Proposed Architecture

Impmentation of 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝟐𝒂𝒙)

• 𝒔𝒊𝒈𝒎𝒐𝒊𝒅 𝟐𝒂𝒙 =
𝟏

𝟏+ 𝒆−𝟐𝒂𝒙

=
𝟏

𝟏+ 𝒆−𝟐𝒂(𝟐𝑷𝒙−𝟏)
=

𝟏

𝟏+ 𝒆−𝟒𝒂𝑷𝒙𝒆−𝟐𝒂

=
𝒆−𝟐𝒂

𝒆−𝟐𝒂+ 𝒆−𝟒𝒂𝑷𝒙

• The approximation can now be made by 

using Bernstein computations. Stochastic implementation of 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) based 

Bernstein computation
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Simulations & Experiments Set-up

Design 

• 𝑺𝒊𝒈𝒎𝒐𝒊𝒅 𝟐𝒙 , 𝑺𝒊𝒈𝒎𝒐𝒊𝒅 𝟒𝒙 , 𝒕𝒂𝒏𝒉 𝒙 , 𝒕𝒂𝒏𝒉(𝟐𝒙)
• 5th order Bernstein polynomial

Simulation

• Matlab

• 10 bit LFSR

• Mean Absolute Error (MAE) results of 

approximated and target functions

• Monte Carlo experiments

Implementation

• Synopsys DC using TSMC 180 nm
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Results & Comparison 

Matlab simulation results

Function Tanh(2x) and sigmoid(4x)

Method
Proposed FSM [4] JK-FF [6]

n=3 n=5 2 states -

MAE 0.007 0.003 0.03 0.05

Function Tanh(x) and sigmoid(2x)

Method
Proposed FSM [4] JK-FF [6]

n=3 n=5 2 states -

MAE 0.003 0.001 0.06 0.02
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Results & Comparison 

Simulation results compared different approaches with target functions: 𝐭𝐚𝐧𝐡(𝒙), 𝐭𝐚𝐧𝐡(𝟐𝒙), 

𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝟐𝒙), 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝟒𝒙) respectively
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Results & Comparison 

Synopsys DC simulation results

Function Tanh(x) and sigmoid(2x)

Method
Proposed FSM [4] JK-FF [6]

n=3 n=5 2 states -

Area ( 𝜇𝑚 2) 1554 1777 1345 10121

Latency (𝑛𝑠) 2.25 2.33 2.38 3.42

Power (𝑚𝑊) 0.07 0.08 0.06 0.4
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Results & Comparison 

Synopsys DC simulation results

Function Tanh(2x) and sigmoid(4x)

Method
Proposed FSM [4] JK-FF [6]

n=3 n=5 2 states -

Area ( 𝜇𝑚 2) 1777 2106 1551 10476

Latency (𝑛𝑠) 2.33 3.3 3.07 3.07

Power (𝑚𝑊) 0.11 0.11 0.08 0.08
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Conclusions

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) and 𝑡𝑎𝑛ℎ(𝑎𝑥) based Bernstein 

polynomial in bipolar format:

• Comparable hardware complexity

• Improvement of accuracy
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