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Abstract—As various mobile devices and location-based ser-
vices are increasingly developed in different smart city scenarios
and applications, many unexpected privacy leakages have arisen
due to geolocated data collection and sharing. While these
geolocated data could provide a rich understanding of human
mobility patterns and address various societal research questions,
privacy concerns for users’ sensitive information have limited
their utilization. In this paper, we design and implement a
novel LSTM-based adversarial mechanism with representation
learning to attain a privacy-preserving feature representation of
the original geolocated data (i.e., mobility data) for a sharing
purpose. We quantify the utility-privacy trade-off of mobility
datasets in terms of trajectory reconstruction risk, user re-
identification risk, and mobility predictability. Our proposed
architecture reports a Pareto Frontier analysis that enables the
user to assess this trade-off as a function of Lagrangian loss
weight parameters. The extensive comparison results on four
representative mobility datasets demonstrate the superiority of
our proposed architecture and the efficiency of the proposed
privacy-preserving features extractor. Our results show that by
exploring Pareto optimal setting, we can simultaneously increase
both privacy (45%) and utility (32%).

Index Terms—mobility datasets, LSTM neural networks, mo-
bility prediction, data privacy

I. INTRODUCTION

Geolocation and mobility data collected by location-based

services (LBS), can reveal human mobility patterns and ad-

dress various societal research questions [1]. For example,

Call Data Records (CDR) have been successfully used to

provide real-time traffic anomaly and event detection [2], and

a variety of mobility datasets have been used in shaping

policies for urban communities and epidemic management in

the public health domain [3]. Human mobility prediction based

on users’ trajectories, a popular and emerging topic, supports a

series of important applications ranging from individual-level

recommendation systems to large-scale smart transportation.

While there is no doubt of the usefulness of predictive

applications for mobility data, privacy concerns regarding the

collection and sharing of individuals’ mobility traces have

prevented the data from being utilized to their full potential [4].

A mobility privacy study conducted by De Montjoye et

al [5] illustrates that four spatio-temporal points are enough

to identify 95% of the individuals in a certain granularity. As

human mobility traces are highly unique, a mechanism capable

of decreasing the user re-identification risk can offer enhanced

privacy protection in mobility data sharing.

In the past decade, the research community has extensively

studied privacy of geolocated data via various location privacy

protection mechanisms (LPPM) [6]. Some traditional privacy-

preserving approaches such as k-anonymity and geo-masking

have shown to be insufficient to prevent users from being

re-identified [5], [7], [8]. More recently, some related works

also try to apply machine-learning or deep-learning based

approaches to explore the effective LPPM. Rao et al. proposed

an LSTM-TrajGAN model to generate privacy-preserving syn-

thetic mobility datasets for data sharing and publication [9].

Feng et al. investigated human mobility data with privacy

constraints via federated learning, achieving promising pre-

diction performance while preserving the personal data on

the local devices [10]. Though these state-of-the-art models

provide a reasonable balance between utility and privacy, the

effectiveness of the privacy mechanism and utility metrics have

not been fully investigated in human mobility literature.

To this end, we posit an architecture for quantifying the

utility-privacy trade-off of mobility datasets in terms of data

reconstruction leakage (i.e., Privacy I), user re-identification

risk (i.e., Privacy II), and mobility predictability (i.e., Utility).

In order to do so, we explore a novel mechanism to investigate

these trade-offs and train a privacy-preserving feature extractor

EncL based on representation learning and adversarial learn-

ing. Inspired by PAN [11] (privacy adversarial network), we

employ adversarial learning to better balance the potential

trade-off between privacy and utility. In contrast to PAN,

which focuses on the privacy of images, our approach is

designed for complex time-series data that exhibits spatial-

temporal characteristics. At the core of our architecture lies an

LSTM auto-encoder (AE) with three branches, corresponding

to the three training optimization objectives of the feature

extractor EncL: i) to maximize the loss associated with the

reconstructed output by generative learning, ii) to minimize
the prediction loss using the learned representation from the

EncL by discriminative learning, and iii) to maximize the

percentage of users who are re-identifiable through their trajec-

tories by discriminative learning. We use Lagrange multipliers

to vary the weights that are given to each of these objectives

before combining them into a total loss, Lsum. The output of

this model is a Pareto-Frontier analysis that would guide the

user in investigating the trade-off between utility and privacy.

We report the analysis of our architecture (i.e., LSTM-PAE)

by a thorough evaluation on four real-world representative
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(a) (b)

Fig. 1: (a) Schematic overview of the proposed privacy-preserving adversarial architecture with representation learning,

consisting of data reconstruction risk unit, mobility prediction unit, and user re-identification risk unit. (b) The baseline LSTM

network for standalone classifiers.

mobility datasets. A benchmark comparison is carried out with

the state-of-the-art algorithm based on Generative Adversarial

Network (GAN), namely LSTM-TrajGAN [9]. The results

show that our architecture achieves better utility-privacy trade-

offs than other models. That is, in the given spatial-temporal

granularity, it is possible to achieve a better privacy level for

a dataset with the same utility value and vice versa.

II. DESIGN OF THE ARCHITECTURE

A. Problem Definitions

Before describing our proposed LSTM-PAE model in de-

tail, we first give a brief problem definition of the trade-off

between mobility data utility and privacy in terms of mobility

prediction accuracy, user re-identification efficiency and data

reconstruction differences.

Data Utility: Mobility datasets are of great value for

understanding human behavior patterns, smart transportation,

urban planning, public health issue, pandemic management,

and etc. Many of these applications rely on the next loca-

tion forecasting of individuals, which in the broader context

can provide an accurate portrayal of citizens’ mobility over

time [12]. Mobility prediction not only can be analyzed to

understand personalized mobility patterns, but can also inform

the allocation of public resources and community services. We

focus on the capability of mobility prediction (next location
forecasting) in this paper, and leverage the accuracy of the pre-

diction as an important metric for quantifying the data utility.

Hence, the definition of Utility is concluded as followed:

Utility (U): the mobility predictability (i.e., next location

prediction accuracy)

Privacy Protection: With more and more intelligent devices

and sensors are utilized to collect information about human ac-

tivities, the trajectories also expose increasing intimate details

about users’ lives, from their social life to their preferences.

A mobility privacy study conducted by De Montjoye et

al. [5] illustrates that four spatio-temporal points are enough

to identify 95% of the individuals in a certain granularity. The

capability of de-identification is important to balance the risks

and benefits of mobility data usage, for all data owners, third

parties, and researchers. We leverage the data reconstruction

risk and user re-identification risk as our privacy metrics to

evaluate our proposed privacy-aware architecture. Hence, the

definition of Privacy is summarized as followed:

Privacy I (PI): the differences between the reconstructed

data X ′ and the original data X , that is, information loss in

the reconstruction process.

Privacy II (PII): the user re-identification inaccuracy, that

is, the user de-identification effectiveness.

B. Architecture Overview

Our proposed privacy-preserving adversarial feature

encoder, the LSTM-PAE, is based on representation learning

and adversarial learning and aims to ease data sharing

privacy concerns. As shown in Figure 1a, we design a

multi-task adversarial network to learn an LSTM-based

encoder EncL, which can generate the optimized feature

representations f = EncL(X) via lowering privacy disclosure

risk of user identification information and improving the

task accuracy (i.e., mobility predictability) concurrently.

Two potential malicious privacy leakages from the data

reconstruction risk unit and the user re-identification risk

unit, are attempted to retrieve sensitive information from the

feature representations f .

Given mobility raw data X for Privacy I (e.g., data re-

construction risk unit), the ground-truth label zi for Privacy
II (e.g., user re-identification risk unit), and the ground-truth

label yi for utility (e.g., mobility prediction), we train the

LSTM encoder EncL of this multi-task network by adversarial

learning to learn the representation F = EncL(X ). We

design a specific loss function, namely sum loss Lsum, for

this optimization process. Specifically, when reconstructing the

data X ′, an LSTM decoder DecL attempts to recreate the data

based on the features F , that is DecL : F → X ′. This data

reconstruction unit is trained by maximizing the reconstruction

loss LR while minimizing the Lsum. The mobility prediction
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Dataset-City
Bounding Box Record Counts Number

Latitude Longitude Train Test User ID POI Weekday Hour
MDC-Lausanne 46.50 46.61 6.58 6.73 77393 19429 143 149 7 24
Privamov-Lyon 45.70 45.81 4.77 4.90 62077 16859 58 129 7 24
GeoLife-Beijing 39.74 40.07 116.23 116.56 95038 24578 145 960 7 24
FourSquare-NYC 40.55 40.99 -74.28 -73.68 43493 11017 466 1712 7 24

TABLE I: Overview of four mobility datasets.

unit, that is the utility discriminator UD, is trained to output a

probability distribution of the next location of interest, and this

distribution has Y potential classes. Discriminative training

here is to maximize the prediction accuracy by minimizing the

utility loss LU , denoted as minLU . The user re-identification

risk unit, that is the privacy discriminator PD, is trained to

re-identify whom the target trajectory belongs. Then in this

privacy discriminator, the user re-identification loss LP is

maximized, denoted as maxLP .

In general, the encoder EncL should satisfy high pre-

dictability (min LU ) and low user re-identification accuracy

(max LP ) of the mobility data when maximizing the recon-

struction loss (max LR) in reverse engineering, where the

training objective can be written as:

min (Lsum)

= −λ1 (maxLR) + λ2 (minLU )− λ3 (maxLP)

= −λ1‖DecL(F)−X‖2 + λ2(−
Y∑

i=1

yilog(UD(F)))

− λ3(−
Z∑

i=1

zilog(PD(F)))

(1)

where yi is the ground-truth label for Utility, zi is the ground-

truth value for Privacy II; λ1, λ2 and λ3 are Lagrange

multipliers [13].

The overall training is to achieve privacy-utility trade-off

by adversarial learning on LR, LU , and LP concurrently. The

gradient of the loss (i.e., θR, θU , θP ) back-propagates through

the LSTM network to guide the training of the encoder EncL.

The encoder is updated with the sum loss function Lsum until

convergence. The Lagrange multipliers are utilized to find the

maxima or minima of a constrained problem. When two of

them are set to zero, the model is transformed to a specific

evaluation tool for a specific task. When three multipliers are

utilized together, they control the relative importance of each

unit and guide the overall model to find the maxima or minima

given the specific trade-off choices.

III. EXPERIMENTAL SETTING

A. Datasets

Experiments are conducted on four representative mobil-

ity datasets: Mobile Data Challenge Dataset (MDC) [14],

PRIVA’MOV [15],

FourSquare NYC [16], and GeoLife [17]. Once imported into

our architecture, each dataset was filtered and preprocessed

individually to derive their respective test and training sets

illustrated in Table I.

MDC: The MDC dataset, recorded from 2009 to 2011,

contains a large amount of continuous mobility data for

184 volunteers with smartphones running a data collection

software, in the Lausanne/Geneva area. Each record of the

gps-wlan dataset represents a phone call or an observation of

a WLAN access point collected during the campaign [14].

PRIVA’MOV: The PRIVA’MOV crowd-sensing campaign

took place in the city of Lyon, France from October 2014

to January 2016. Data collection was contributed by roughly

100 participants including university students, staff, and fam-

ily members. The crowd-sensing application collected GPS,

WiFi, GSM, battery, and accelerometer sensor data. For the

purpose of this project, we only used the GPS traces from the

dataset [15].

GeoLife: The GeoLife dataset was collected by Microsoft

Research Asia from 182 users in the four and a half year

period from April 2007 to October 2011 and contains 17,621

trajectories, mostly at a 5-second sampling rate [17].

FourSquare NYC: The Foursquare NYC dataset contains

check-ins in NYC and Tokyo collected during the approxi-

mately 10 months from 12 April 2012 to 16 February 2013,

containing 227,428 check-ins from 1,083 subjects in New York

City [16].

B. Training

The main goal of the proposed adversarial network is to

learn an efficient feature representation based on the utility

and privacy budgets, using all users’ mobility histories. In most

experiments in this work, the trajectory sequences consist of 10

historical locations with timestamps (i.e., SL = 10). After the

pre-processing of the datasets, 70% of the records of each user

are segmented as the training dataset, 10% as the validation

dataset and the remaining 20% as the testing dataset. We utilize

the mini-batch learning method with size of 128 to train the

model until the expected convergence. We take a gradient step

to optimize the sum loss Lsum (i.e., Equation 1) in terms of

LR, LU , and LP concurrently. Meanwhile, the sum loss Lsum

is also optimized by using the Adam optimizer with learning

rate of 0.0003. All the experiments were performed with the

Tesla V100 GPU; a round of training would take 30 seconds

on average and each experiment trains for 1000 rounds.

C. Metrics

We set Euclidean and Manhattan distance as our evaluation

metrics for the data reconstruction unit to evaluate the quality

of the reconstructed data X ′ generated from extracted features

f . Euclidean distance gives the shortest or minimum distance

between two points, while Manhattan distance applies only
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if the points are arranged in the form of a grid, and both

definitions are feasible for the problem we are working on.

Note that these two distances have limited capability in

showing the quality of the reconstructed data X ′, however,

they intuitively capture the differences between the original

data X and the reconstructed data X ′. We leverage the top-n

accuracy as our evaluation metric for both mobility prediction

and user re-identification risk units.

IV. ARCHITECTURE EVALUATION

In this section, we present the comparison results of the

proposed architecture LSTM-PAE and two baseline models

under the same training setting.

Baseline Models
I. Standalone Model: It comprises three independent sub-

models, namely data reconstruction sub-model, mobility pre-

diction sub-model, and user re-identification sub-model. Each

of the sub-models have a similar layer design as the cor-

responding unit in the LSTM-PAE, however, the results of

the three sub-models are completely independent and have

no effect on others. Differently from the LSTM-PAE, which

leverages adversarial learning to finally attain an extracted fea-

ture representation f that satisfies the utility requirements and

privacy budgets simultaneously, the standalone models only

are trained for optimal inference accuracy at the individual

tasks.

II. LSTM-TrajGAN [9]: It is an end-to-end deep learning

model to generate synthetic data which preserves essential spa-

tial, temporal, and thematic characteristics of the real trajectory

data. Compared with other common geomasking methods,

TrajGAN can better prevent users from being re-identified.

The TrajGAN work claims to preserve essential spatial and

temporal characteristics of the original data, verified through

statistical analysis of the generated synthetic data distribu-

tions, which is in a line with the mobility prediction based

utility assessment in our work. Hence, we train a mobility

prediction model for each dataset and evaluate the mobility

predictability of synthetic data generated by the TrajGAN. In

contrast to the TrajGAN that aims to generate synthetic data,

our proposed LSTM-PAE is training an encoder EncL that

forces the extracted representations f to convey maximal utility

while minimizing private information about user identities, via

adversarial learning.

A. Performance Comparison

We first compare our proposed models with the standalone

model and the LSTM-TrajGAN model on four representative

mobility datasets, as details shown in Table II. The overall

performance is evaluated in terms of the utility level provided

by the mobility prediction unit and the privacy threat provided

by two risk units The Model I is our proposed architecture but

without applying the Lagrange multipliers (i.e., where each

losses are weighed equally), and the Model II is the one with

Lagrange multipliers (i.e., λ1 = 0.1, λ2 = 0.8, λ3 = 0.1
for the results in Table II). The results in Table II are based

on the input data with trajectory sequence length 10 (that is

SL = 10). Because the standalone models are trained without

the consideration for the utility-privacy trade-offs, the results

on the standalone models can be leveraged to explain the best

inference accuracy (i.e., mobility prediction accuracy and user

re-identification accuracy) that each composition unit could

achieve. Differently from the standalone model, the TrajGAN

and LSTM-PAE are both taking the utility-privacy trade-offs

into consideration and we compare their trade-offs with the

standalone version. Hence, in Table II, these results are shown

in utility decline and privacy gain, both of which are in a

percentage format. The similarity indexes are leveraged to

intuitively represent the difference between the original data

X and reconstructed data X ′, where the larger value indicates

numerical differences between them.

Table II demonstrates that our proposed models, especially

the one with Lagrangian multipliers, outperforms the LSTM-

TrajGAN model across various datasets. For instance, when

models are trained with the MDC dataset, our Model II
achieves the best privacy-utility trade-offs among different

models, as the utility decline is only 13.43% but with 65.51%

privacy gain, while 46.32% utility decline and 20.32% privacy

gain with the TrajGAN. The similarity indexes also indicate

the reconstructed data X ′ via Model II has bigger differences

than the one via the TrajGAN. Second, although the utility

decline of the TrajGAN on the Priva’Mov dataset is 4.21%

higher than our Model II, both two privacy metrics of the

TrajGAN are worse than the Model II. Our model has better

overall trade-offs in utility requirements and privacy budgets.

The performance on Geolife and FourSquare are similar but

inverse, where the utility of our model is better than TrajGAN

and with slightly weaker privacy preservation. We leverage the

composite metrics to score the overall performance of different

models, and demonstrates that our model achieves better

utility-privacy trade-offs. The comparisons between Model I
and Model II also illustrate the importance of the Lagrange

multipliers in not only providing flexibility to our proposed

architecture that enable its application in different scenarios,

but also enhancing the utility-privacy trade-offs in this special

case.

B. Utility-Privacy Analysis

In this section, we first present the utility-privacy trade-off

analysis between TrajGAN and our proposed LSTM-PAE in

terms of the mobility prediction accuracy (i.e., U) and user

de-identification efficiency (i.e., PII). We then discuss the

privacy risk (i.e., PII) of our proposed framework among four

representative mobility datasets.

1) Trade-off Comparison: Figure 2 presents the trade-off

comparisons of the four datasets in terms of the U and PII
under different Lagrangian settings, where the hollow squares
and hollow diamonds show the tradeoffs provided by the

proposed LSTM-PAE in SL = 5 and SL = 10, respec-

tively. The solid points present the utility-privacy trade-off

provided by the TrajGAN under the same spatial granularity

and same trajectory sequence length. As can be seen from

these results, in all four cases the synthetic dataset generated
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Datasets Models
Privacy I Utility (% for decline) Privacy II (% for gain)

Euc(log) Man(log) top-1 top-3 top-5 top-1 top-3 top-5

MDC
Standalone 0.001 0.002 0.9347 0.9837 0.9922 0.9247 0.9819 0.9911
TrajGAN 3.526 5.456 -46.32% -24.16% -15.98% +20.32% +8.13% +4.02%

Our Model
I 2.294 4.542 -54.56% -34.74% -25.10% +69.80% +50.44% +39.95%
II 3.732 6.023 -13.43% -6.26% -3.95% +65.51% +45.11% +34.86%

Priva’Mov
Standalone 1.281 2.554 0.9482 0.9878 0.9954 0.5643 0.8215 0.8765
TrajGAN 3.704 5.779 -6.60% -1.89% -0.93% +14.17% +14.35% +8.88%

Our Model
I 1.740 3.433 -3.36% -1.59% -0.81% +27.02% +14.19% +9.19%
II 4.164 5.803 -10.81% -6.83% -4.91% +35.29% +14.97% +10.05%

Geolife
Standalone 1.903 3.804 0.4705 0.6842 0.7636 0.6572 0.8690 0.9294
TrajGAN 4.581 6.680 -62.31% -50.45% -43.72% +66.73% +47.89% +37.22%

Our Model
I 1.776 3.469 -31.45% -25.02% -21.90% +54.88% +39.59% +30.81%
II 4.616 6.928 -21.13% -18.78% -17.11% +55.49% +40.40% +32.34%

FourSquare
Standalone 2.357 4.464 0.6468 0.8210 0.8823 0.8780 0.9735 0.9892
TrajGAN 4.795 6.710 -26.30% -22.30% -18.75% +51.86% +32.49% +23.49%

Our Model
I 2.418 4.533 -51.05% -41.45% -35.20% +53.47% +35.26% +25.86%
II 4.541 6.638 -2.54% -3.14% -2.84% +51.08% +34.39% +26.16%

TABLE II: Performance comparison between our proposed models with standalone model and the TrajGAN model. The Model
I is our proposed architecture without Lagrange multipliers, and the Model II is the one with multipliers (λ1 = 0.1, λ2 =

0.8, and λ3 = 0.1). The results shown in this table are all with trajectory sequence length 10 (i.e., SL = 10). The Privacy I
intuitively shows the difference between the raw data and reconstructed data; the Utility (%) represents the utility declines;

and the Privacy II(%) represents the privacy gains calculated via the user re-identification inaccuracy rate.

(a) MDC (b) PrivaḾov (c) Geolife (d) Foursquare

Fig. 2: Pareto Frontier trade-off of Utility and Privacy on four datasets. The hollow squares and diamonds present results of

the proposed models. The solid points present results of the TrajGAN. Blue color means SL = 5. Black color means SL = 10.

by the TrajGAN is not pareto-optimal. That is, in that given

spatial-temporal granularity, the proposed architecture is able

to achieve a better privacy level for a dataset with the same

utility value. Compared with the TrajGAN, our proposed ar-

chitecture improves utility and privacy at the same time on four

datasets. Especially for the performance on the MDC dataset,

the privacy improves 45.21% than the TrajGAN while the

utility also increases 32.89%. These results illustrate that our

proposed model achieves promising performance in training a

privacy-sensitive encoder EncL for different datasets.

2) Privacy Leakage Risk Analysis: After evaluating the

superior performance of our proposed framework, we discuss

the privacy leakage risks among four representative mobility

datasets in terms of user re-identification inaccuracy (PII,
privacy gain in Figure 3). We use five different combinations

of Lagrangian multipliers to evaluate the comprehensive per-

formance of the proposed model, namely setting I, II, III, IV,
and V in Figure 3.

Figure 3 presents Utility and Privacy II (i.e., user re-

identification risk) trade-offs of the proposed system on the

four datasets. The Zero line (i.e., y = 0%) in each sub-figure

is leveraged to indicate the original utility rate (U) and privacy

rate (PII) of the raw data. The blue line with square marker

is the privacy gain rate with top-1 accuracy and the blue

line without marker is the top-5 accuracy. The orange lines

with and without triangle marker present the utility decline

rate with top-1 and top-5 accuracies, respectively. Hence, the

orange area represents the utility decline while the light-green

area represents the privacy gain when compared with original

results. The dark-green area represents the trade-offs between

utility and privacy budgets. The x-axis shows five different

settings of the model, and the y-axis shows the trade-offs (i.e.,
trade-offs = privacy gain + utility decline).

In summary, these trade-offs are all positive in different

model settings on four different datasets. The performance

on the Geolife data is the best, while less than 20% utility
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Fig. 3: User re-identification privacy gain (PII) versus utility decline (U) on four datasets. The orange area represents the

utility decline while the light-green area represents privacy gain. The dark-green area represents the trade-offs between utility

achievement and privacy budgets. The x-axis shows five different settings of the model, and the y-axis shows the trade-offs.

decline but more than 50% privacy gains. The performance on

MDC and FourSquare also show the promising utility-privacy

trade-offs, especially for setting V on the FourSquare dataset,

both the utility and privacy increase. The uniqueness of human

mobility trajectories is high, and these trajectories are likely to

be re-identified even with a few location data points [5]. Our

results emphasize that the concern of user re-identification risk

could be alleviated effectively with our proposed model.

V. CONCLUSION

In this paper, we presented a privacy-preserving architecture

based on the adversarial networks. Our model takes into ac-

count three different optimization objectives and searches for

the optimum trade-off for utility and privacy of a given dataset.

We reported an extensive analysis of our model performances

and the impact of its hyper-parameters using four real-world

mobility datasets. The Lagrange multipliers λ1, λ2, and λ3

bring more flexibility to our framework that enable it to satisfy

different scenarios’ requirements according to the relative

importance of utility requirements and privacy budgets. We

evaluated our framework on four datasets and benchmarked

our results against an LSTM-GAN approach. The comparisons

indicate the superiority of the proposed framework and the

efficiency of the proposed privacy-preserving feature extractor

EncL. Expanding this work, we will consider other utility

functions for our model such as community detection based

on unsupervised clustering methods or deep embedded clus-

tering methods. In future work, we will leverage automated

search techniques, such as deep deterministic policy gradient

algorithm, for efficiency in searching for the optimal Lagrange

multipliers.
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E. Letouzé, A. A. Salah, R. Benjamins, C. Cattuto et al., “Mobile phone
data for informing public health actions across the covid-19 pandemic
life cycle,” 2020.

[4] J. Krumm, “A survey of computational location privacy,” Personal and
Ubiquitous Computing, vol. 13, no. 6, pp. 391–399, 2009.

[5] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel,
“Unique in the crowd: The privacy bounds of human mobility,” Scientific
reports, vol. 3, p. 1376, 2013.

[6] B. Gedik and L. Liu, “Protecting location privacy with personalized k-
anonymity: Architecture and algorithms,” IEEE Transactions on Mobile
Computing, vol. 7, no. 1, pp. 1–18, 2007.

[7] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability
in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[8] Y. Zhan, A. Kyllo, A. Mashhadi, and H. Haddadi, “Privacy-aware
human mobility prediction via adversarial networks,” arXiv preprint
arXiv:2201.07519, 2022.

[9] J. Rao, S. Gao, Y. Kang, and Q. Huang, “Lstm-trajgan: A deep
learning approach to trajectory privacy protection,” arXiv preprint
arXiv:2006.10521, 2020.

[10] J. Feng, C. Rong, F. Sun, D. Guo, and Y. Li, “Pmf: A privacy-preserving
human mobility prediction framework via federated learning,” Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 4, no. 1, pp. 1–21, 2020.

[11] S. Liu, J. Du, A. Shrivastava, and L. Zhong, “Privacy adversarial
network: representation learning for mobile data privacy,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 3, no. 4, pp. 1–18, 2019.

[12] Y. Zhan and H. Haddadi, “Towards automating smart homes: contextual
and temporal dynamics of activity prediction,” in Adjunct Proceedings
of the 2019 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2019 ACM International
Symposium on Wearable Computers, 2019, pp. 413–417.

[13] B. Beavis and I. Dobbs, Optimisation and stability theory for economic
analysis. Cambridge university press, 1990.

[14] J. K. Laurila, D. Gatica-Perez, I. Aad, O. Bornet, T.-M.-T. Do,
O. Dousse, J. Eberle, M. Miettinen et al., “The mobile data challenge:
Big data for mobile computing research,” Tech. Rep., 2012.

[15] S. B. Mokhtar, A. Boutet, L. Bouzouina, P. Bonnel, O. Brette, L. Brunie,
M. Cunche, S. D’Alu, V. Primault, P. Raveneau et al., “PRIVA’MOV:
Analysing human mobility through multi-sensor datasets,” in NetMob
2017, 2017.

[16] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Modeling user activity
preference by leveraging user spatial temporal characteristics in LBSNs,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45,
no. 1, pp. 129–142, 2014.

[17] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li, Geolife GPS trajectory
dataset - User Guide, geolife gps trajectories 1.1 ed., July 2011, geolife
GPS trajectories 1.1. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/geolife-gps-trajectory-dataset-user-guide/

12


