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Abstract—With the development of machine learning, it is popular that mobile users can submit individual symptoms at any time
anywhere for medical diagnosis. Edge computing is frequently adopted to reduce transmission latency for real-time diagnosis service.
However, the data-driven machine learning, which requires to build a diagnosis model over vast amounts of medical data, inevitably
leaks the privacy of medical data. It is necessary to provide privacy preservation. To solve above challenging issues, in this paper, we
design a lightweight privacy-preserving medical diagnosis mechanism on edge, called LPME. Our LPME redesigns the extreme
gradient boosting (XGBoost) model based on the edge-cloud model, which adopts encrypted model parameters instead of local data to
remove amounts of ciphertext computation to plaintext computation, thus realizing lightweight privacy preservation on resource-limited
edge. In addition, LPME provides secure diagnosis on edge with privacy preservation for private and timely diagnosis. Our security
analysis and experimental evaluation indicates the security, effectiveness and efficiency of LPME.

Index Terms—Privacy-preserving, XGBoost, homomorphic encryption, secure computation, edge computing.
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1 INTRODUCTION

Machine learning is taking an ever-increasing role in
medical diagnosis, and has become prevalent for mobile
users to submit symptoms at any time and then get di-
agnosis results. Compared with the shortage of experts
and high cost in manual diagnosis, machine learning-based
diagnosis has the great advantages in improving the qual-
ity of healthcare service and avoiding expensive diagno-
sis expenses. Thus, the construction of machine learning-
based medical diagnosis has attracted much attentions from
both academic and industrial fields. With the emergence of
telemedicine applications, more and more demands have
blossomed in healthcare [1], [2], clinical decision [3], and
mobile telemedicine [4]. However, the blossom has also
been accompanied by various problems, i.e., the limitation
of training data, vulnerabilities, and privacy concerns.

In medical practice, it is a crucial issue that the collection
of enough medical data is time-consuming and expensive. A
single medical origination usually stores a limited number
of medical data, which is hard to support the construction of
data-driven machine learning. To train an accurate diagnosis
model, it is necessary to share the training data distributed
among various medical institutions. With the advances of
extensive storage space and unlimited computing capaci-
ty in cloud computing, machine learning over outsourced
medical data has been extensively studied with the adoption
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Fig. 1: The framework of edge computing for medical diag-
nosis.

of cloud [5], [6]. However, with the ever-increasing interac-
tions between mobile users and the cloud, it incurs undesir-
able transmission latency and untimely request response [7],
[8], [9]. A delayed diagnosis response directly influences
patients’ life and health as well as medical safety, especially
for patients with a diagnosis for acute disease (e.g., acute
heart disease, pneumonia). To address this dilemma, edge
computing, as a new computing paradigm, has been pro-
posed to decrease latency and provide efficient computation
service by using edge nodes [10], [11], [12], [13] which are
close to mobile users. In the last few years, machine learning
schemes based on edge computing [14], [15], [16] have an
extensive development, which is significant to improve the
diagnosis efficiency with edge computing. Fig. 1 plots a
typical edge network with several edge nodes (i.e., medi-
cal organizations) that owns restricted storage ability and
limited computing power.

To concentrate on the vulnerability in medical diagnosis,
it is important to adopt a high-performance model on edge
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for real-time and reliable medical diagnosis. Extreme gradi-
ent boosting (XGBoost) as the most state-of-the-art machine
learning model enjoys the excellent prediction performance
in the distributed setting, which demonstrates the outstand-
ing ability in Kaggle competitions. Besides, with the tree-
based structure, XGBoost has the advances of explainability
and ease of understanding. Therefore, there are a large
number of schemes applied the XGBoost model for medical
diagnoses [17], [18], [19], but they ignore the important issue
of data privacy during the training phase. Actually, patients
diagnosed with private diseases (e.g., HIV, Hepatitis B virus)
usually bear some psychological barrier when the diagnosis
results are leakage to others. It is considered as a cause
to worsen the condition. Thus, it is necessary to provide
privacy preservation for them. Besides, the medical data
contain a large amount of sensitive information, with the
release of privacy policies (i.e., GDPR [20] and HIPPA [21]),
more and more data are forbidden to transform in the form
of plaintext. Therefore, it is urgent to protect privacy of
medical diagnosis in the edge computing environment [22],
[23], [24], [25].

To address privacy concerns, Homomorphic encryption
(HE) [26] is a promising solution to avoid privacy leak-
age risks while protecting data confidentiality. The existing
privacy-preserving machine learning mechanisms based on
HE mainly rely on the cloud computing framework with
single-cloud model or dual-cloud mode, which has been
extended to edge computing [27]. Unfortunately, the single-
cloud model [28] is more vulnerable to lead the privacy
leakage compared with dual-cloud model, as the secret
key is stored in the single cloud. Once the cloud is com-
promised, the sensitive information are disclosed. Besides,
the strong assumption of non-collusion between two semi-
honest cloud servers defined in the dual-cloud model lim-
its practical applications [29], [30], [31]. In addition, the
training phase of machine learning involves amounts of se-
cure computation over encrypted data. With the increasing
outsourced-encrypted data, it bears a heavy computation
burden [32], [33], especially for resource-constrained edge
nodes, which is the first challenging issue. Therefore, it is
critical to take lightweight into consideration with privacy-
preserving machine learning in edge computing.

To address the above challenges, we design a lightweight
privacy-preserving XGBoost over encrypted model param-
eters to greatly lighten computational overhead, compared
with data sharing-based privacy-preserving machine learn-
ing. In this paper, we present the Lightweight Privacy-
preserving Medical diagnosis in Edge computing, which
is termed as LPME. Specifically, our LPME mainly has the
following constructions:

• Lightweight XGBoost on edge: LPME system constructs
a XGBoost-based diagnosis model with model pa-
rameters trained over multiple edge nodes rather
than training data, which not only eliminates the
drawbacks of burdensome training data storage, but
also guarantees the feasibility of XGBoost.

• Privacy-preserving training: LPME system designs HE-
based secure computation with a single-cloud model,
which selects optimal parameters over encrypted
model parameters during the training phase. Since

the secret key is randomly split into two parts, only
one is stored in the single cloud. Thus, the single-
cloud model can not only provide strong privacy
preservation for training the lightweight XGBoost,
but also guarantee the reliability of the privacy-
preserving training on the resource-limited edges.

• Secure diagnosis on XGBoost at edge: LPME system pro-
vides secure diagnosis, in which a mobile user can
submit his/her encrypted requests to an edge, then
the edge will return the corresponding diagnosis re-
sults. During the process, HE is adopted to guarantee
confidentiality of the returned diagnosis results for
implementing the private and timely diagnosis.

2 RELATED WORK

Earlier work on privacy-preserving machine learning [34],
[35] has been proposed to provide privacy preservation
during the training phase, but these schemes lacked imple-
mentation. Thereafter, increasing schemes have been pro-
posed to provide privacy protection. Fu et al. [36] present-
ed a privacy-preserving non-negative matrix factorization
method based on addition HE, which supports matrix fac-
torization with encrypted data, but these matrix parameters
can be obtained by another party during the computa-
tion process, it will lead to the potential privacy leakage.
Ma et al. [29] proposed a privacy-preserving random tree
framework with Paillier cryptosystem, which implemented
accurate and secure training over encrypted data. Wang et
al. [32] presented a privacy-preserving collaborative neu-
ral network scheme to construct a model without privacy
disclose. Mohassel et al. [33] designed a privacy-preserving
system for efficient training neural networks. The above
schemes [29], [32], [33] all adopt the HE-based mechanism,
which are feasible for machine learning with privacy preser-
vation. However, the secure computation implemented over
large number of encrypted data leads to high computation
overhead [31].

To solve the above issue, model sharing-based privacy-
preserving machine learning framework has been designed,
which outsources encrypted model parameters rather than
a larger number of local data. It can not only guarantee
the training of machine learning, but also move amounts
of outsourced computation over ciphertexts to local compu-
tation over plaintexts, which can significantly improve the
efficiency and reduce the computation burden. Yu et al. [37]
first introduced a framework based on outsourced models
from multiple data owners without disclosing local data.
However, this framework uses random numbers rather
than encryption technology, which is highly susceptible
to inference attack resulting in privacy leakage [38]. After
that, Cheng et al. [39] proposed a secure XGBoost over
encrypted model parameters. However, these parameters
can be decrypted and obtained by another party. Due to
parameters also contain sensitive information, it can threat-
en the security of local data. Li et al. [40] proposed a
secure classification service with the outsourced encrypted
Support Vector Machine (SVM) models, but it cannot im-
plement privacy-preserving model training. Aono et al. [41]
presented a privacy-preserving deep learning system based
encrypted models without revealing the participants’ local
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data to a server, which greatly reduced execution times of
involved secure computation with remaining the accuracy.
Unfortunately, Wang et al. [42] demonstrated that the afore-
mentioned schemes [40], [41] will bring a privacy leakage in
the single-cloud model. Due to the privacy of trained model,
it is easy to leak when the cloud is compromised.

To avoid the limitation in the single-cloud model, the
dual-cloud model is employed to prevent the computing
process from privacy leakage. Liu et al. [31], [30] demonstrat-
ed the security and accuracy of secure computation with
dual-cloud server model. Besides, Hu et al. [28] showed that
the non-colluding dual-cloud model achieved a higher level
of security compared with the single-cloud model. Even
one server is compromised, it still cannot leak the privacy
of trained model with the existence of the other server.
With the privacy requirements in edge computing, Liu et
al. [27] extended the secure computation based on a dual-
cloud model to the environment of edge computing. Un-
fortunately, encrypted data should be transmitted between
two cloud servers for secure computation, which will incur
the communication burden and heavy computational over-
head. Besides, each resource-limited edge node involves five
modular exponentiation operations, two modular addition
operations and six modular multiplication operations for
secure computation, which is impractical in the edge com-
puting environment. Zhang et al. [43] proposed a privacy-
preserving feature transform on edge with lightweight, but
the submitted images were presented as the form of plain-
text, which cannot guarantee strong privacy preservations.
To the best of our knowledge, existing literatures do not take
the tradeoff between privacy concerns and lightweight into
consideration in the edge computing [22], [44], [45]. Apart
from achieving efficiency and real-time model training, we
also devise a lightweight privacy-preserving machine learn-
ing scheme with strong privacy preservations on edge.

TABLE 1: Functionalities, securities and techniques in vari-
ous schemes: A comparative summary

Functions Fun1 Fun2 Fun3 Fun4 Fun5 Fun4

[29] Data Random forest Dual-cloud ! % %

[32] Data Neural network Dual-cloud ! % %

[33] Data Neural network Dual-cloud ! % %

[40] Model SVM Single-cloud % % %

[41] Model Deep learning Single-cloud % ! %

[27] Data Deep learning Dual-cloud ! % !

LPME Model XGBoost Single-cloud ! ! !

Notes. Fun1: Data or Model sharing-based privacy preservation; Fun2: Ma-
chine learning algorithm; Fun3: Single-cloud or Dual-cloud secure computa-
tion model; Fun4: Whether supporting strong security or not; Fun5: Whether
achieving lightweight transmission or not; Fun6: Whether supporting edge
computing or not.

TABLE 1 summarizes the comparison between LPME
system and previous privacy-preserving machine learning
schemes [29], [32], [33], [40], [41], [27]. It reveals that LPME
provides not only a dual-server model of strong secure
computation based on edge, but also lightweight privacy-
preserving machine learning based on secure model shar-
ing.

3 PRELIMINARY

This section describes the XGBoost [46], [39] as the basic of
machine learning algorithm, and then defines two-trapdoor

public-key cryptosystem [30] as the basic cryptosystem in
LPME system.

3.1 XGBoost Algorithm

Given a training dataset X ∈ Rn×d with n samples and
d features, the object function of XGBoost in t-th round is
represented as

Obj(t) '
n∑
i=1

{`(yi, ŷ(t−1)i ) + gift(xi) +
1

2
hif

2
t (xi)}+ Ω(ft),

gi = ∂ŷ(t−1)`(yi, ŷ
(t−1)
i ), hi = ∂2ŷ(t−1)`(yi, ŷ

(t−1)
i ),

where gi represents the first gradient of loss function `, and
hi represents the second gradient of `. The regularization
Ω(ft) = γT + 1

2ψ‖w‖
2 measures the complexity of model,

where T means the number of leaf nodes.
Besides, the logistic loss ` of training loss measures how

well model fits on training data, as demonstrated in

`(yi, ŷ
(t−1)
i ) = yi ln(1 + e−ŷi) + (1− yi) ln(1 + eŷi).

Assume that a XGBoost model XGB contains K trees.
Given the i−th training sample xi ∈ Rd, the corresponding
prediction ŷi is computed as

ŷi =
K∑
k=1

Fk(xi),

s.t.Fk ∈ XGB, where XGB = {F1,F2, ...,FK}.

3.2 Two-trapdoor Cryptosystem

The two-trapdoor public-key cryptosystem contains five
algorithms as follows.

• (pk, sk) ← KeyGen(=): Given the security parame-
ter =, distinct odd primes p, q are generated, where
|p| = |q| = =, η = pq, and λ = lcm(p − 1, q − 1).
The public key pk = (η, %) and secret key sk = λ are
generated, where % = (1 + η) mod η2.

• sk(1), sk(2) ← KeyS(sk): The secret key sk = λ
is randomly divided into two secret shares sk(1)

and sk(2) satisfying
∑2
i=1 sk

(i) ≡ 0 mod λ and∑2
i=1 sk

(i) ≡ 1 mod η2.
• [[x]] ← Encpk(x): Given a plaintext x, it outputs an

encrypted data [[x]] = %x · rη mod η2 with a public
key pk, where r ∈ Z∗η2 denotes a random number.

• x ← Decsk([[x]]): Given an encrypted data [[x]], it
decrypts the corresponding plaintext x with secret
key sk, where x = [[x]]λ mod η2−1

η λ−1 mod η.
• [[x]](i) ← SDecsk(i)([[x]]): Given an encrypted data

[[x]], it outputs the corresponding decryption share
[[x]](i) with a secret share sk(i), where [[x]](i) =

[[x]]sk
(i)

mod η2.
• x ← WDec({[[x]](1), [[x]](2)}): Given the tuple of de-

cryption shares {[[x]](1), [[x]](2)}, it outputs the de-

cryption x, where x =
∏2
i=1[[x]]

(i) mod η2−1
η .

Besides, the cryptosystem based on addition homomor-
phic owns two properties as follows:

[[x1 + x2]] = [[x1]] · [[x2]] and [[−x]] = [[x]]η−1. (1)
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3.3 Secure Computation

Here, we introduce the Secure Multiplication (SMUL) and
Secure Comparison (SCOM) operations for secure computa-
tion. Suppose that there are two semi-honest parties (i.e.,
Alice and Bob) in the multiplication and comparison over
encrypted data, the goals of SMUL and SCOM are that all
intermediate results and final computation results cannot
be disclosed to both parties. Given two encrypted numbers
[[x1]] and [[x2]], Alice holds a secret share sk(1), Bob holds
the other secret share sk(2). SMUL and SCOM are defined as
follows:
SMUL([[x1]], [[x2]]) → [[x1 × x2]]: Alice first generates [[x′1]] =
[[x1]] · [[r1]], [[x′2]] = [[x2]] · [[r2]], where r1, r2 ∈ Z∗η2 are two
random numbers, then uses SDecsk(1) to obtain [[x′1]](1) and
[[x′2]](1). On receiving these encrypted data, Bob uses SDec
and WDec with sk(2) to obtain x′1 and x′2, and computes
[[res]] = x′1 × x′2. Then, Alice runs [[x1 × x2]] = [[res]] · [[r1 ×
r2]]η−1 · [[x1]]η−r2 · [[x2]]η−r1 to remove random numbers, and
the multiplication result [[x1 × x2]] is returned.
SCOM([[x1]], [[x2]])→ res: Alice first calculates [[x′1]] = [[x1]]2 ·
[[1]], [[x′2]] = [[x′2]]2 · [[1]], and runs [[res]]← ([[x′1]] · [[x′2]]η−1)r1 ·
[[r2]], where r1, r2 ← Zη (r2 � r1) are two random num-
bers. Then, [[res]](2) ← SDecsk(1)([[res]]) is obtained. After
involving the SDec and WDec algorithms, Bob obtains res
via computing the bit length of res as Eq. 3, and returns the
comparison result.

res =

{
x1 < x2, |res| > |η|/2;
x1 ≥ x2, otherwise.

(2)

4 PROBLEM FORMULATION

In this section, we define system model, threat model and
design goals of LPME system, respectively.

4.1 System Model

Our system model mainly involves four entities: Key Gen-
eration Center (KGC), Cloud Platform (CP), Edge Nodes
(ENs), and Mobile Users (MUs), which is demonstrated in
Fig. 2. Assume thatN ENs are contained in the system. Note
that the communication among these entities is synchro-
nized with a secure channel, such as Secure Socket Layer
(SSL) and Transport Layer Security (TLS). The concrete role
of each entity is shown as follows:

• Key generation center. KGC is fully trusted to generate,
manage, and distribute secret keys for our system,
where the secret shares are sent to other entities for
future secure computation (Step 1©).

• Edge node. An EN, which stores limited medical data,
is a medical institution with the constraints of storage
space and computation capacity. During the training
phase, an EN is willing to collaboratively build a
global model with other ENs, which submits local-
ly optimal model parameters after encryption, and
provides computation service for CP to implement
secure computation (Step 2©).

• Cloud platform. CP has unlimited computation and s-
torage capacities. It first receives the encrypted mod-
el parameters from multiple ENs, and then chooses

Keys

Keys

Encrypted local      
parameters

Encrypted global 
parameters

Diagnosis 
request Diagnosis 

result

......

......

KGC MUs

CP
ENs

Keys

Fig. 2: System model.

the globally optimal model parameters for the con-
struction of a global model (Step 3©).

• Mobile user. A MU is able to submit an encrypted
request to a nearby EN for diagnosis (Step 4©), and
obtain the encrypted diagnosis result returned by the
EN (Step 5©). To protect diagnosis privacy, secure
computation of the diagnosis phase is implemented
between a MU and the EN together.

4.2 Threat Model

For the adversarial perspective, we consider the possible
threats of the system depending on the information accessed
by entities (i.e., CP, ENs, and MUs) in the system.

• Threats from entities: Assume that KGC is trustable
for key distribution. MUs, ENs, and CP are consid-
ered as honset-but-curious entities that honestly follow
specified protocols but attempt to obtain additional
information from encrypted data. In practice, the
collusion between CP and ENs reveals the privacy
of ENs while the collusion between an EN and a
MU also discloses individual sensitive information.
Therefore, CP, EN, and MU are not worth colluding
with other entities to avoid individual privacy leak-
age. We assume that there is no collusion between
CP and ENs, ENs and MUs, respectively.

• Threats from external adversary: We assume that the
external adversary has the ability to eavesdrop on
the transmitted information from the communication
channels between CP and ENs, MUs and ENs, re-
spectively. And also an adversary can corrupt an EN
or a MU or the CP.

4.3 Design Goals
Our system aims to achieve a privacy-preserving machine
learning framework with secure training, accurate diag-
nosis, and lightweight computation under the adversarial
environment. Design goals are shown in following:

• Security. (a) Each locally-built model from an EN
contains sensitive information that cannot be dis-
closed for model privacy. (b) The parameters and
intermediate computation results cannot be leaked
during the construction process of the global model.
(c) All MU-submitted requests sent to ENs and the
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corresponding diagnosis results are only known to
the MU for diagnosis privacy.

• Efficiency. LPME system should guarantee the effi-
ciency of medical diagnosis with the trained global
model and keep the lightweight workload on the
ENs and MUs.

• Effectiveness. LPME system should keep reliable and
accurate diagnosis service, which is of great signifi-
cance to provide accurate diagnosis results for MUs.

5 LPME FRAMEWORK

In this section, we detailedly describe how to construct a
basic lightweight privacy-preserving XGBoost framework
for the global diagnosis model, then design secure diagnosis
on edge to provide the private and timely diagnosis service.
The notation definitions are described in Table 2.

TABLE 2: Notation descriptions in LPME system

Notations Descriptions
sk(1), sk(2) Secret shares for CP and ENs
λ1, λ2 Secret shares for ENs and MUs
η Security parameters
[[x]](1), [[x]](2) Decryption shares for [[x]]
XGB Trained XGBoost model
~ Tree height
d Feature dimension of training data
↑ Numerator symbol
↓ Denominator symbol
f∗, s∗ Split threshold with the value s∗ on f∗-th feature
KeyGen,KeyS Key generation and key split algorithms
Enc,Dec Encryption and decryption algorithms
SDec,WDec Partial decryption and full decryption algorithms
SCOM Secure comparison over two encrypted data
SMUL Secure multiplication over two encrypted data
cons Approximate precision

5.1 Overview
Fig. 3 illustrates the proposed process of LPME system. The
process consists of three principal stages:

• Key generation: To provide privacy preservation-
s, KGC first employs KeyGen to generate a key
pair (pk, sk). Then, KeyS(sk) is invoked twice
to randomly split sk into secret shares, i.e.,
(sk(1), sk(2))← KeyS(sk) and (λ1, λ2)← KeyS(sk),
where (sk(1), sk(2)) satisfy sk(1) + sk(2) ≡ 0 mod λ
and sk(1) + sk(2) ≡ 1 mod η2, (λ1, λ2) satisfy
λ1 + λ2 ≡ 0 mod λ and λ1 + λ2 ≡ 1 mod η2.
In addition, KGC distributes {sk(1), pk} to the CP,
{sk(2), λ1, pk} to ENs, and {λ2, pk} to MUs.

• Lightweight privacy-preserving XGBoost: To construct
a global model over N ENs, ENs first locally train
and encrypt decision nodes before sending them
to CP (Step 1©). Then, CP chooses the best split
of a decision node among submitted-nodes as the
global node to achieve global optimization (Step 2©).
Finally, each EN builds local leaf nodes (Step 3©).

• Secure diagnosis on edge: To implement a secure diag-
nosis service, a MU is required to encrypt symptoms
before transmitting them to a nearby EN. It is neces-
sary to protect the confidentiality of the submitted-
symptoms and the returned diagnosis results.

BuildLocalNode

ENs

 BuildGlobalNode

CP

Encrypted 

local optimal
Encrypted 

global optimal
 BuildLeaf

ENs
. . .

Privacy-preserving XGBoost

Diagnosis model

ENs

Secure diagnosis on edge Encrypted 
symptoms

Secure diagnosis

MU Encrypted 
result

Keys 

Key 

generation

Keys 

Trained model

Fig. 3: The overview of LPME

5.2 Lightweight Privacy-preserving XGBoost

We assume that multiple ENs collaboratively construct the
global model without sharing training data. Without loss of
generality, the data stored in multiple ENs are considered
as non-i.i.d distribution, i.e., they have the global distri-
bution but also maintain individual biased distribution.
Therefore, the final trained model of each EN not only learns
knowledge over all ENs, but also remains local differences.
Specifically, the proposed privacy-preserving XGBoost is
built over N ENs. During the training of k-th round, the
k-th tree model is represented as Fk(x) = wq(x), where tree
nodes are divided into decision nodes and leaf nodes, and
each decision node contains a split value. Fig. 4 shows the
concrete process of building a tree with the tree height ~ = 3
It is necessary to build a tree from a root node down to leaf
nodes.

5.2.1 BuildDecisionNode
To construct decision nodes over N ENs, the specific pro-
cess is divided into BuildLocalNode (i.e., building decision
nodes on a local EN) and BuildGlobalNode (i.e., building
decision nodes with ENs on CP).
BuildLocalNode: For the i-th (i ∈ [1, N ]) EN, the best
splitting is selected with maximization of Gain. As shown
in

Gain =
1

2
× gain− ψ,

gain =
G2
L

HL + ψ
+

G2
R

HR + ψ
− (GL +GR)2

HL +HR + ψ
,

GL =
∑
i∈XL

gi, GR =
∑
i∈XR

gi,

HL =
∑
i∈XL

hi, HR =
∑
i∈XR

hi,

XL and XH denote the sample space of the leaf and right
tree nodes after the splitting, respectively.

Suppose that a set of split candidates is represented
as {Sf}df=1, the split threshold s∗m on the f∗m-th feature
with the maximal Gain is locally optimal split. The specific
process is shown in Algorithm 1. For the construction of the
globally optimal split, the i-th EN sends locally optimal split
[[s∗i ]], [[f∗i ]] and the evaluation index [[gaini]] = ([[α↑i ]], [[α↓i ]])

to CP after encryption, where gaini =
α↑i
α↓i

and α↓i > 0.
For example, a local node is trained over the i-th EN

to yield s∗i = 1.25, f∗i = 1 and gaini = −22.5. Due to
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Fig. 4: The concrete process of building a tree.

the encryption needs to be implemented over integers, the
i-th EN approximates rational numbers to integers. cons
denotes the precision of approximation. i.e., [[s∗i ]] = [[125]]←
Encpk(1.25 ∗ cons)1, and gaini = − 45

2 , where α↑i = 45 and
α↓i = 2 before encryption.

Algorithm 1: Locally Optimal Split
Input: Sample space X with d features on current node.
Output: Optimal local split [[f∗]],[[s∗]], with [[α↑]] and [[α↓]].

1 score← 0;
2 f∗, s∗ ← 0;
3 α↑ ← 0, α↓ ← 1;
4 for 0 < f ≤ d do
5 for sj ∈ Sf do
6 /* Sf is the set of split candidate on f -th feature

*/
7 if score < Gain then
8 score← Gain;
9 /* gain = α↑

α↓
*/

α↑ ← G2
L(HR + ψ) +G2

R(HL + ψ)(HL +
HR + ψ)− (GL +GR)

2(HL + ψ)(HR + ψ);
10 α↓ ← (HL + ψ)(HR + ψ)(HL +HR + ψ);
11 f∗ ← f ;
12 s∗ ← sj ;

13 Encpk(·) is called to encrypt f∗, s∗, α↑, α↓;
14 return [[f∗]], [[s∗]], [[α↑]], [[α↓]].

Before introducing BuildGlobalNode, we design Com-
pareEncIndex to compare encrypted evaluation indexes
[[gaini]] and [[gainj ]] of two decision nodes to find the deci-
sion node with the maximum gain for global optimization.
Two decision nodes are computed with BuildLocalNode by
two ENs (i.e., denoted as ENi and ENj).
CompareEncIndex: To compare two values of [[gaini]] and
[[gainj ]], we illustrate the specific process as

α↑i

α↓i
−
α↑j

α↓j
=
α↑i × α

↓
j − α

↓
i × α

↑
j

α↓i × α
↓
j

(α↓i × α
↓
j > 0).

For simplification, if α↑i × α
↓
j − α

↓
i × α

↑
j < 0, then

gaini < gainj ; Otherwise, gaini ≥ gainj . The com-
parison process is executed by computing [[α↑i × gain↓j ]],
[[α↓i × gain↑j ]], [[val]] = [[α↑i × α↓j ]] · [[α↓i × α↑j ]]

η−1. Then,
res← SCOM([[val]], [[0]]) is obtained.

If res = 0, then gaini ≥ gainj ; Otherwise gaini <
gainj . The whole process involves secure multiplication
(SMUL) and secure comparison computation (SCOM) between
CP and ENs, where CP holds sk(1) and ENs hold sk(2). The
specific process is shown as follows.

1. Note that cons = 100.

Step 1. CP first randomly chooses two numbers r1, r2 ∈
Zη , and then computes the blinded numbers as [[α↑′i ]] ←
[[α↑i ]] · [[r1]], [[α↓′i ]]← [[α↓i ]] · [[r1]].

Similarly, [[α↑′j ]] and [[α↓′j ]] are computed by blinding r2.
Besides, decryption shares are computed with SDecsk(1)(·),
then [[α↑′i ]], [[α↓′j ]] and the corresponding decryption shares
are sent to ENi, while [[α↑′j ]], [[α↓′i ]] and the corresponding
decryption shares are sent to ENj .

Step 2. Once receiving the encrypted data, each EN op-
erates with SDecsk(2)(·) and WDec(·) to obtain the blinded
numbers, and then returns the multiplication result [[res′]]pk
over the blinded numbers to CP.

Step 3. CP removes the blinded random numbers r1, r2
to obtain the encrypted multiplication results [[α↑i ×α

↓
j ]] and

[[α↓i × α↑j ]]. More details of SMUL are shown in [30]. After
that, CP obtains [[val]] computed as

[[val]] = [[α↑i × α
↓
j − α

↓
i × α

↑
j ]],= [[α↑i × α

↓
j ]] · [[α

↓
i × α

↑
j ]]
η−1,

then calculates [[2 · val + 1]] = [[val]]2 · [[1]].
Besides, two numbers r′1, r

′
2 ∈ Zη (r′2 � r′1) are random-

ly selected, then [[2r′1 ·val+r′2]]← ([[2val+1]]·[[1]]η−1)r
′
1 ·[[r′2]].

Finally, CP obtains [[2r′1 · val + r′2]](1) ← SDecsk(1)([[2r
′
1 ·

val+ r′2]]) before sending [[2r′1 · val + r′2]] and its decryption
shares to an EN (i.e., ENi or ENj , according to the idle state).

Step 4: With SDec and WDec algorithms, the EN obtains
2r′1 · val + r′2. After computing as

res =

{
1, |2r′1 · val + r′2| > |η|/2
0, otherwise

, (3)

the EN encrypts res and sends [[res]], [[res]](1) ←
SDecsk(1)([[res]]) to CP. Then, CP obtains the final compar-
ison result according to res. If res = 0, gaini ≥ gainj ;
Otherwise, gaini < gainj .

Correctness. The final comparison result res of two
values of [[gaini]] and [[gainj ]] is correct if:

• The comparison result satisfies res = 0, the original
value of val is val ≥ 0. We get

[[val]] = [[α↑i × α
↓
j ]] · [[α

↓
i × α

↑
j ]]
η−1

= [[α↑i × α
↓
j − α

↓
i × α

↑
j ]]

⇒ α↑i × α
↓
j − α

↓
i × α

↑
j ≥ 0.

Due to α↓i × α
↓
j > 0, we get the derivation with the follow-

ing formulas:

gaini − gainj =
α↑i

α↓i
−
α↑j

α↓j
=
α↑i × α

↓
j − α

↓
i × α

↑
j

α↓i × α
↓
j

,

⇒ gaini − gainj ≥ 0,

⇒ gaini ≥ gainj .

• The comparison result satisfies res = 1, we get val <
0. It is derived from the following formulas:

val = α↑i × α
↓
j − α

↓
i × α

↑
j < 0

⇒ α↑i × α
↓
j − α

↓
i × α

↑
j < 0

⇒ gaini − gainj < 0

⇒ gaini < gainj .
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Based on above proof, we prove that if val ≥ 0, then
α↑i ×α

↓
j−α

↓
i ×α

↑
j ≥ 0, i.e., gaini−gainj ≥ 0, gaini > gainj ;

Otherwise, gaini < gainj .
BuildGlobalNode: After receiving the locally optimal split
{([[s∗n]], [[f∗n]])}Nn=1 and the evaluation indexes {[[gainn]]}Nn=1

from N ENs, the CP will find the split ([[s∗]], [[f∗]]) with the
maximal gain to implement the global optimum.

Algorithm 2: Globally Optimal Split

Input: Encrypted gain parameters {[[α↑n]], [[α↓n]]}Nn=1,
encrypted locally optimal split {[[s∗n]], [[f∗n]]}Nn=1.

Output: Globally optimal split f∗ and s∗.
1 [[score↑]]← [[0]], [[score↓]]← [[1]];
2 f∗ ← [[0]], [[s∗]]← [[0]];
3 for 0 < n ≤ N do
4 /* CompareEncIndex */

[[score↑ × α↓n]]← SMUL([[score↑]], [[α↓n]]);
5 [[score↓ × α↑n]]← SMUL([[score↓]], [[α↑n]]);
6 SCOM([[score↑ × α↓n]] · [[score↓ × α↑n]]η−1, [[0]]);
7 if A−B < 0 then
8 score↑ ← α↑n, score↓ ← α↓n;
9 [[f∗]]← [[f∗n]], [[s∗]]← [[s∗n]];

10 return [[f∗]], [[s∗]].

Computing with CompareEncIndex, CP can choose the
globally optimal split ([[s∗]], [[f∗]]) for a decision node with
the maximal gain among submitted split {[[s∗n]], [[f∗n]]}Nn=1.
Then, the globally optimal split ([[s∗]], [[f∗]]) will be sent
to each EN as the split threshold of i-th decision node.
The specific process of globally optimal split is shown
in Algorithm 2. Once receiving the ([[s∗]], [[f∗]]), each EN
builds the i-th decision node with the globally optimal split
after decryption to obtain s∗ = bs∗/conse. Then, the current
sample space X is divided into leaf sub-space XL and right
sub-space XR. After that, each EN will build the (i + 1)-th
tree node for locally optimal split. The process is iterated
until reaching the tree height ~.

5.2.2 BuildLeaf
Upon reaching the tree height ~, the structure of k-th tree
is fixed. To construct leaf nodes, the leaf weight of a tree is
denoted as w ∈ ZT . The structure of a tree is represented
as q ∈ Zd → {1, 2, ..., T}, where T denotes the leaf number.
The optimal weight in the j-th leaf is computed as

w∗j = − Gj
Hj + ψ

, Gj =
∑
i∈Xj

gi, Hj =
∑
i∈Xj

hi,

where Xj is the sample space of leafj .
Therefore, the k-th tree is built in each EN, the tree

structure is the same with other trees from ENs, but leaf
nodes over local data are different from others. After K
iterations, the XGBoost model XGB is constructed over each
EN, which not only leverages shared knowledge over all
ENs, but also remains local differences.

5.3 Secure Diagnosis on Edge

Considering the constraint of the limited computing capac-
ity of MUs and the privacy of submitted-symptoms, we
design a secure diagnosis strategy between the EN and MU.

Ù
Ù

 

i-th Tree 

f=1,s1

w3w1 w2

sym2>s2

f=2,s2

sym1<s1

f=3,s3

w4

 

fi  (sym)=w2

a)

b)

c)

Fig. 5: The prediction on the k-th tree.

The whole process involves lightweight secure computation.
Note that an EN owned by a medical institution stores the
encrypted local diagnosis model for secure diagnosis over
encrypted requests, and a MU owns mobile terminals and
gives assistance for secure computation during the process
of diagnosis. As the parameters of EN’s trained model and
information of MU’s requests contain sensitive information,
it is significant to provide strong privacy preservations
without leaking any privacy during the diagnosis process.

Step 1: As the MU’s characteristics contain sensitive
information, the submitted-symptoms are computed as
[[sym]] = {[[sym1]], [[sym2]], ..., [[symd]]} with Enc algorithm.
Besides, to prevent diagnosis result from being leaked to
other MUs, the MU chooses a random number r ← Zη , and
then submits [[r]] ← Encpk(r) with [[sym]] and [[sym]](2) =
{[[sym1]](2), [[sym2]](2), ..., [[symd]]

(2)}.
Step 2: Once receiving [[sym]], EN will implement secure

diagnosis on an encrypted XGBoost as demonstrated in
Algorithm 3, where SCOM is involved with the MU and
EN to compare the submitted [[sym]] with the encrypted
split threshold on each tree node from the root node until
encountering a leaf node, where the split threshold of the
current node is represented as [[s]] of f -th feature.

Taking the prediction on a tree as a toy example, Fig. 5
demonstrates the specific process: a) The threshold split of
the root node is [[s1]] on the corresponding feature index
f = 1, and [[sym1]] is the first feature of the submitted
symptom [[sym]]. Then, SCOM([[s1]], [[sym1]]) is executed to
compare [[sym1]] with [[s1]]. b) If the comparison result is
sym1 < s1, then [[sym]] will be passed to the left child-node
of the current node, whose threshold split is [[s2]] on the
corresponding feature index f = 2. And also, [[sym2]] is the
second feature value of [[sym]], and then [[sym2]] is compared
with the split threshold [[s2]] by SCOM([[s2]], [[sym2]]). c) If the
comparison result is sym2 > s2, then the right child-node of
the current node is obtained, and its leaf weight is yielded
as the prediction value Fk(sym) = w2.

In this way, after prediction on all K trees contained
in the XGBoost, we obtain K leaf weights of each tree,
then the final diagnosis results are [[ŷ]] = [[F1(sym)]] ·
[[F2(sym)]]·, ..., ·[[FK(sym)]], i.e., ŷ =

∑K
k=1 Fk(sym).

Hence, the final diagnosis result [[ŷ]] is obtained. To protect
the result from being leaked to other MUs, EN computes
the returned diagnosis result [[ŷ′]] as [[ŷ′]] ← [[ŷ]] · [[r]],
[[ŷ′]](1) ← SDecλ1

([[ŷ′]]). Then, both [[ŷ′]] and [[ŷ′]](1) are sent
to the MU.

Step 3: Once receiving the returned diagnosis result, the
MU will decrypt the result with [[ŷ′]](2) ← SDecλ2([[ŷ′]]), and
ŷ′ ← WDec([[ŷ′]](1), [[ŷ′]](2)), and then remove the random
number r to get the final result ŷ.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:27:28 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004627, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

Correctness. The value of ŷ is correct as: If ŷ′ satisfies

[[ŷ′]] = [[ŷ + r]] = [[ŷ]] · [[r]] = %ŷ+r · rη mod η2,

[[ŷ′]](1) = SDecλ1
([[ŷ′]]) = [[ŷ′]]λ1 mod η2,

[[ŷ′]](2) = SDecλ2
([[ŷ′]]) = [[ŷ′]]λ2 mod η2,

ŷ′ = WDec([[ŷ′]](1), [[ŷ′]](2)) =

∏2
i=1[[ŷ′]](i) mod η2 − 1

η
,

then the final prediction result ŷ is yielded as ŷ = ŷ′ − r =
(ŷ + r)− r.

Algorithm 3: Secure Diagnosis on Encrypted XGBoost
Input: Encrypted instance [[sym]], an encrypted XGBoost

[[XGB]] = {[[Fk]]}Kk=1 comprises of K encrypted
trees.

Output: Encrypted diagnosis result [[ŷ]].
1 [[ŷ]]← [[0]];
2 for 1 ≤ k ≤ K do
3 [[node]]← the root node of [[Fk]];
4 while true do
5 if node is a leaf node then
6 /* the k-th round prediction w */
7 Obtain label weight [[w]] from the leaf node;
8 /* ŷ = ŷ + w */
9 [[ŷ]]← [[ŷ]] · [[w]];

10 break;

11 else
12 Obtain the split threshold [[s]] on f -th feature

from [[node]];
13 Obtain the f -th feature value [[symf ]] from

[[sym]];
14 SCOM([[s]], [[symf ]]); /* secure comparison

SCOM */
15 if s ≤ f then
16 [[node]]← [[node]].leftChild;

17 else
18 [[node]]← [[node]].rightChild;

19 return [[ŷ]].

6 SECURITY ANALYSIS

In this section, we first give various attack types and then
analysis the security of the proposed LPME system under
these attacks.

6.1 Attaack Analysis

According to the descriptions in Section 4.2, we divide
these attacks into the following types under the adversarial
environment.

Type-I: Corruption : Assuming an adversary attempts to
corrupt and collude CP, ENs and MUs to observe private
information and tamper secret key stored in these entities.
This type of attack consists of three attack models.

• Ciphertext-only attack model: The adversary can ob-
serve encrypted parameters and attempt to deduce
secret keys.

• Known-sample attack model: The adversary can obtain
some plaintext parameters with the corresponding
ciphertexts and attempt to deduce secret keys.

• Chosen-plaintext-attack model: The adversary can en-
crypt certain plaintexts to obtain the corresponding
ciphertexts for the deduction of secret keys.

Type-II: Eavesdropping: Assuming an adversary attempts
to eavesdrop the transmitted information from the commu-
nication channel, he/she attempts to obtain privacy infor-
mation and deduce these sensitive data.

6.2 Privacy Analysis

Based on the above-given attacks, we define the real vs. ideal
model to formalize security analysis in LPME system. More
specifically, assume that an adversary Adv interacts with a
challenger in the real world to perform the predefined pro-
tocol

∏
. Then, it interacts with a simulator Sim to complete

the process in the ideal world. If the view of the adversary in
the real-world is indistinguishable from the view in the ideal
world, then we consider that LPME system is secure, which
is represented as {IDEAL∏

,Sim(m)} c≡ {REAL∏
,Adv(m)},

where m is the input,
∏

is the corresponding protocol,
and

c≡ denotes the computationally indistinguishable. We
illustrate the security of LPME system as follows.

Theorem 1. Our proposed lightweight privacy-preserving
machine learning is secure against semi-honest CP or ENs
based on the semantic security of secure computation [31],
which can resist the distinguishment of intermediate com-
putational results with the non-collusion between CP and
ENs.

Proof. Given the above real vs. ideal model, we separately
analysis the security of each phase in our privacy-preserving
XGBoost framework.

Assume that an adversary AdvCP corrupts CP. We con-
struct a simulator SimCP by executing in an ideal world,
where all entities have trusted computation. The construc-
tion of SimCP is executed as follows.

Phase 1: In each iteration of building a decision node over
ENs, the i-th EN encrypts its local parameters [[gaini]] and
([[s∗i ]], [[f

∗
i ]]) to CP after running BuildLocalNode over indi-

vidual training data. Then, SimCP receives AdvCP’s inputs
[[gaini]] and ([[s∗i ]], [[f

∗
i ]]). Obviously, the semantic security of

encrypted data has been proved to resist the Type-II attacks
in the two-trapdoor cryptosystem. Since CP holds only one
secret share sk(2), it cannot learn any content information
from encrypted local parameters.

Phase 2: Then, SimCP adopts CompareEncIndex to
choose the globally optimal split over the encrypted pa-
rameters {([[s∗i ]], [[f∗i ]])}Ni=1 from ENs. The secure compu-
tation (SMUL and SCOM) is involved in the process, and
it has been proved be secure against the semi-honest ad-
versary AdvCP [47], where AdvCP can corrupt CP in the
real world. The view of AdvCP is defined as REALAdvCP =(
{([[s∗i ]], [[f∗i ]])}Ni=1, {[[gaini]]}Ni=1, sk

(1), {[[gain(1)i ]]}Ni=1

)
, and

[[gaini]]
(1) is obtained with SDecsk(1)(·) that still owns se-

mantic security of the two-trapdoor cryptosystem. Given
{[[gaini]]}Ni=1, sk

(1), SimCP can simulate the view of AdvCP
in the real world, the specific process is shown as follows:

• CP blinds random numbers to obtain [[gaini]]
′, and

uses SDecsk(1)(·) to get decryption shares [[gain]]′(1).
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• The EN first implements SDecsk(2)(·) and WDec(·) al-
gorithms to get gain′ that contains blinded numbers,
and then returns the corresponding computation re-
sult [[res]] to SimCP.

Informally speaking, if AdvCP distinguishes the view
in the real world from the view in the ideal world with
sk(2), then AdvCP is able to distinguish encrypted data
or the decryption share, which violates semantic securi-
ty of the two-trapdoor cryptosystem. Therefore, AdvCP is
unfeasible to distinguish the ideal world from the real
world. The distributions of REALAdvCP and IDEALSimCP =(
{[[gaini]]}Ni=1, sk

(1), {[[gain(1)i ]]}Ni=1

)
are indistinguishable

with semantic security, as demonstrated in IDEALSimCP

c≡
REALAdvCP .

Besides, the adversary AdvEN can corrupt an EN,
which includes the intermediate computational numbers
{(gain↑′i , gain

↓′
i )}Ni=1. We construct a simulator SimEN as

follows:

• SimEN simulates the process of BuildLocalNode.
Given inputs gaini and (s∗i , f

∗
i ), SimEN receives

AdvEN’s inputs gain′i and returns encrypted data
[[gain′i]] with random numbers r to AdvEN.

• SimEN sends [[gain′i]] to the trusted entity for hon-
est CompareEncIndex computation. Then, SimEN re-
ceives intermediate results {[[gain(1)i ]]} with a secret
share sk(2). At the same time, SimEN returns inter-
mediate results {[[gain′(1)i ]]} to AdvEN.

Based on above analysis, the view of AdvEN is defined as

REALAdvEN =
(
sk(2), {[[gain′i]]}Ni=1, {[[gain

′(1)
i ]]}Ni=1,

)
. Giv-

en (sk(2), {[[gaini]]}Ni=1, {[[gain
(1)
i ]]}Ni=1) to construct SimEN

with the above operations, the view of SimEN is defined as
IDEALSimEN =

(
{[[gaini]]}Ni=1, {[[gain

(1)
i ]]}Ni=1

)
. Thus, we can

conclude IDEALSimEN

c≡ REALAdvEN .
Therefore, Type-I attacks can be resisted. The proposed

lightweight privacy-preserving XGBoost can resist Type-I
and Type-II attacks which is unable to leak any privacy
information.

Theorem 2. Our secure diagnosis on edge is secure a-
gainst the semi-honest EN or the MU as long as secure
computation can resist the distinguishment of intermediate
computational results and the collusion attack does not exist
between ENs and MUs.

Proof. The specified analysis for secure diagnosis is shown
as follows. The security requirement is resist an adversary
AdvEN that corrupts the EN to obtain the privacy. Given the
tuple of (λ1, [[r]], [[sym]]), the simulator SimEN is constructed
as follows.

Phase 1: SimEN runs Algorithm 3 on the encrypted
submitted-symptoms [[sym]] from the MU to predict the
diagnosis result [[ŷ]], the whole process involves secure
comparison over two encrypted data (i.e., SCOM), where the
security of SCOM has been proved, more details are shown
in [30]. During process of SCOM, there are no privacy leakage
between the EN and the MU.

Phase 2: Besides, [[ŷ]] is obtained by combining with
addition homomorphic. After that, the final diagnosis re-
sult is produced. To guarantee the confidentiality of di-

agnosis result, SimEN first blinds the random number [[r]]
with [[ŷ]] to output [[ŷ′]] based on addition homomorphic
without learning any information of encrypted data, then
implements [[ŷ′]](1) ← SDecλ1

([[ŷ′]]) to get the decryption
share, finally sends both [[ŷ′]](1) and [[ŷ′]] to the MU. At the
same time, the view of AdvEN is defined as REALAdvEN =(
λ1, [[r]], [[sym]], [[ŷ]], [[ŷ′]], [[ŷ′]](1)

)
.

Therefore, the distributions of AdvEN and SimEN
are unidentifiable with semantic security as shown in
IDEALSimEN

c≡ REALAdvEN .
Assume that an adversary AdvMU corrupt a MU, the

simulator SimMU is constructed as follows.

• SimMU simulates [[sym]]← Encpk(sym). And AdvMU
runs on the same inputs to obtain [[sym]] at the
same time. Due to the semantic security of the two-
trapdoor cryptosystem, the whole process can resist
the Type-II attack.

• SimMU simulates the prediction process with an EN,
the details are similar to the execution process of
SimEN.

• After obtaining the returned diagnosis result, SimMU
implements [[ŷ′]](2) ← SDecλ2

([[ŷ′]]) and ŷ′ ←
WDec([[ŷ′]](1), [[ŷ′]](2)) to get the blinded result ŷ′, and
then removes the random number to obtain ŷ. At the
same time, AdvMU outputs ŷ.

Based on above analysis, itis inferred that the distribu-
tions of REALAdvMU and IDEALSimMU are undistinguishable
as shown in IDEALSimMU

c≡ REALAdvMU . Therefore, Type-I
attacks can be resisted. Similar to the above analysis, Type-I
and Type-II attacks can be resisted in the process of secure
diagnosis.

To guarantee the security of the LPME system, the ma-
licious adversaries cannot distinguish encrypted data from
the other encrypted data without the corresponding secret
shares. Therefore, LPME system can resist Type-I and Type-II
attacks with the above theorems.

7 PERFORMANCE ANALYSIS

In this section, we first detail the experiment setting, then
analysis the theoretical performance compared with other
privacy-preserving scheme [29]. Finally, we evaluate the
performance of LPME system with two real-world datasets
to illustrate the effectiveness, efficiency and feasibility.

7.1 Experimental Setting

We perform our evaluation on two public datasets.

• Heart disease dataset2: It consists of 303 instances,
14 features as well as two labels, where a patient
without heart disease is labeled “0”, a patient with
heart disease is labeled “1”.

• Thyroid disease dataset3: It contains 3,163 instances,
25 features and two labels, where a patient without
thyroid disease is labeled “0”, a patient with thyroid
disease is labeled “1”.

2. http://archive.ics.uci.edu/ml/datasets/Heart+Disease
3. http://www.kaggle.com/kumar012/hypothyroid
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TABLE 3: Comparison between LPME and [29]

Overhead Phase LPME framework Ma et al. [29]

Computational
Training O(K2~−1NTSCOM) O(t(2~ − 1)Ttotal)
Secure diagnosis O(K2~−1TSCOM) O(t(2~ − 1)TSCOM)

Communication
Training O(NK2~−1χ) O(|X|dχ)
Secure diagnosis O(K2~−1χSCOM) O(t(2~ − 1)χtotal)

Notes. K denotes the number of trees contained in a XGBoost, t is the tree
number of a random forest and χ denotes the bit length of an encrypted
data. Besides, Ttotal are the total computation overhead of a decision node for
secure computation in [29], and Ttotal = ε1TEnc+ε2TAdd + ε3TSMUL+ε4TSCOM,
where TAdd, TSMUL, TSCOM, TEnc, TSDec, TWDec are the time for homomorphic
addition, secure multiplication, secure comparison, Enc, SDec, and WDec,
respectively. |X| denotes the size of training data, χtotal denotes the total
communication overhead of a decision node for secure computation in [29],
and χtotal = ε3χSMUL + ε4χSCOM, where ε1, ε2, ε3 and ε4 are operation times
of Enc, homomorphic addition, secure multiplication and secure comparison,
respectively.

Experiment setup: We use the cross-validation method
to split 2/3 dataset as the training set and the remained
as the validation set, our LPME system is implemented
in Java, the experiments are evaluated on PC tester (3.30
GHz four-cores processors and 4 GB memory). To train
a XGBoost model over multiple ENs, XGboost is adopted
with the parameters γ = 0, ψ = 20 and sampling rate
ratesam = 80% over local training data of each EN.

For the construction of the k-th tree of a XGBoost, the
whole process involves the construction of decision node
with BuildLocalNode and BuildGlobalNode over N ENs.
During the phase of BuildLocalNode, each EN builds lo-
cal decision nodes described in Section 3. Then, multiple
locally-built nodes are sent to CP for choosing the global
optimal decision node with BuildGlobalNode. Finally, each
EN builds individual leaf nodes over the local dataset with
BuildLeaf.

7.2 Comparative Analysis

We implement detail comparison analysis of the computa-
tional overhead and communication overhead in Table 3 to
demonstrate LPME system and [29]. Different from LPME
system, [29] is a privacy-preserving distributed learning
framework, which securely trains over encrypted training
data.

Theoretical Analysis. For training the privacy-
preserving machine learning, the computational complexity
of [29] isO(t(2~−1)Ttotal), where all training processes of a
decision node are implemented over encrypted data with se-
cure computation, and Ttotal = ε1TEnc +ε2TAdd + ε3TSMUL +
ε4TSCOM, ε4 is a substantial number. This is because the
large amount of SCOM are required to select the best split
among numerous encrypted candidate values for training
a decision node. On the other hand, the computational
complexity of LPME framework is O(K2~−1NTSCOM). Note
that a large number of secure computation over encrypted
data has been moved to plaintext computation, only several
times SCOM are involved in the phase of BuildGlobalNode.
Therefore, the computational overhead of training has been
greatly reduced. Besides, the communication complexity
of [29] is χtotal = ε3χSMUL + ε4χSCOM, only SCOM and SMUL
are involved in the transformation of intermediate results,
and the communication complexity of LPME framework is
O(NK2~−1χ). Since LPME framework involves the fewer

TABLE 4: Accuracy comparison

Tree number K 1 2 3 4 5

Heart dataset LPME 80.4% 83.1% 87.0% 89.1% 90.6%
XGBoost 78.9% 82.8% 86.8% 88.9% 90.3%

Thyroid dataset LPME 89.3% 89.6% 94.8% 96.7% 97.1%
XGBoost 89.5% 89.7% 95.0% 96.4% 97.0%

Notes. Tree height is ~ = 3, N = 3, the size of samples is 100 items.

number (i.e., NK2~−1) of SCOM, there is less communication
overhead in LPME framework compared with [29].

For the secure diagnosis, the computational complexity
of LPME framework is O(K2~−1TSCOM), and the communi-
cation complexity is O(K2~−1χSCOM). In contrast, the com-
putational complexity of [29] is O(t(2~ − 1)TSCOM), and the
communication complexity of [29] is O(t(2~ − 1)χtotal).

Efficient Analysis. For training the privacy-preserving
machine learning, LPME framework costs 5.567 s for the
tree construction of each iteration, where the bit length is
|η| = 1024 bits, tree height ~ = 3, and the number of ENs is
N = 3. In contrast, [29] costs 1.77 × 105 s for a single tree.
Obviously, the efficiency has a significant enhancement in
LPME framework.

Effective Analysis. To measure the performance of ma-
chine learning, two indicators are introduced to measure
the ability of predicting positive samples (i.e., “recall”) and
predicting negative samples (i.e., “specificity”). As repre-
sented in recall = TP

Ptotal
specificity = FP

Ftotal
, TP denotes

the positive samples whose prediction result is negative,
FP denotes the negative samples whose prediction result is
positive, Ptotal denotes the total number of positive samples,
and Ftotal denotes the total number of negative samples.

As demonstrated in Fig. 6(a), the LPME system is
compared with other privacy-preserving medical diagnosis
schemes [29] over Thyroid disease dataset. When |η| = 1024
bits, N = 3, K = 5 and ~ = 3, the accuracy is 97.0%, the
recall is 97.7%, and the specificity is 92.3% in the LPME
system, while the accuracy is 81.2%, the recall is 81.8%
and 76.9% when t = 5 and ~ = 3 in [29]. Therefore, the
performance of LPME system has a significant improvement
compared with [29].

7.3 Experimental Analysis
Effectiveness. For evaluating the accuracy of LPME system,
we test the performance compared with the original XG-
Boost, as shown in Table 4. The observations are presented
as follows:

• The accuracy of LPME system is improved with the
increase of tree number K, the accuracy is 80.4%
over Heart disease dataset and 89.3% over Thyroid
disease dataset when K = 1, while the accuracy
is 90.6% over Heart disease dataset and 97.1% over
Thyroid disease dataset when K = 5.

• LPME system has a negligible difference of accuracy
compared with the original XGBoost that imple-
ments over the global dataset, where the accuracy
difference of two datasets is less than 1%. When
K = 5, the accuracy is 90.6% (0.3% improvement)
over Heart disease dataset and 97.1% (0.1% improve-
ment) over Thyroid disease dataset compared with
the original XGBoost.
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(f) |η| = 1024 bits, N = 3, ~ = 3.

Fig. 6: Performance of LPME. (a) is the accuracy comparison of LPME and [29], where |η| = 1024 bits, 3 ENs, K = 5 and
~ = 3. (b) is the running time of LPME system varying with bit length |η|, where 3 ENs, tree number K = 1 and tree height
~ = 3. (c) is the running time and accuracy of LPME system varying with tree height ~, where |η| = 1024 bits, tree number
K = 1 and 3 ENs. (d) is the running time of LPME system, where |η| = 1024 bits, tree number K = 1 and tree height
~ = 3. (e) is the running time of private diagnosis strategy varying with tree height ~ ∈ [3, 8], where |η| = 1024 bits, 3 ENs
and tree number K = 5. (f) is the running time of private diagnosis strategy varying with tree number K ∈ [1, 6], where
|η| = 1024 bits, 3 ENs and tree height ~ = 3.

TABLE 5: Accuracy with the variation of tree height

Tree height ~ 3 4 5 6 7 8
Heart dataset 80.4% 83.3% 87.6% 88.9% 92.1% 92.4%

Thyroid dataset 89.3% 89.5% 89.6% 91.5% 96.1% 97.1%

Notes. K = 1, the number of ENs is N = 3, the size of samples is 100 items.

Efficiency. From plotted in Figs. 6, we notice that the
performance of LPME is influenced by the bit length of η,
maximum tree height ~, and the size of ENs N , we evaluate
the impact over the Thyroid disease dataset. As shown in
Fig. 6(b), with the vary of bit length |η|, the running time
of LPME system increases with the growth of bit length
|η|. Since more ciphertexts are required to be processed,
the running time grows when |η| increases. To realize 80-
bit security level4, we denote |η| = 1024 bits in LPME
system, where the running time of each iteration for training
privacy-preserving machine learning costs 5.567 s, where
EN number N = 3 and tree height ~ = 3.

As demonstrated in Fig. 6(c), we observe that the accura-
cy and the running time of LPME system has an important
influence with the vary of tree height ~ ∈ [3, 10]. The reason
is that with the tree grows, the higher the degree of fitting
is, the smaller the training deviation (i.e., higher accuracy)
of the model is. Besides, as described in Table 5, we observe

4. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-57pt1r4.pdf

that the accuracy over two public datasets has the variation
with varying tree height ~ ∈ [3, 8]. However, it will lead
to the overfitting problem when the tree height ~ grows
too much. Moreover, with tree height ~ growing, there
are involved more decision nodes to compute. Thus, the
running time increases with the growth of ~. Considering
both accuracy and running time of LPME system, we choose
tree height ~ = 3 to avoid the overfitting problem for
training the privacy-preserving machine learning.

As represented in Fig. 6(d), we discover that with the
growth of the number of ENs, the running time increases
with the range of N ∈ [1, 10], where each EN hosts 100
samples for training. The reason is that the more decision
nodes are outsourced to construct the global model, it in-
volves more ciphertexts in the CompareEncIndex algorithm
for the construction of a global node. Thus, the running time
increases with more ENs are joined.

For the secure diagnosis, the diagnosis time is shown
in following: For an encrypted symptoms [[sym]], CP costs
2.03 s for diagnosis over encrypted data, and then MU
costs 0.71 ms to decrypt the final result, where K = 5,
~ = 3, N = 3, |η| = 1024 bits and d = 25. Since
the diagnosis process involves ciphertext computation, the
diagnosis time depends on the tree height ~. As plotted in
Figs. 6(e)(f), we discover that the diagnosis time increases
with the tree height ~ and tree number K. As the tree height
~ increases, the encrypted symptoms [[sym]] are required to
compare with more decision nodes contained in a tree, the
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corresponding feature value of [[sym]] is required to compare
with encrypted split value of decision node. Thus, secure
comparison SCOM on two encrypted data costs more time.
Besides, the number of trees grows with each iteration. With
more and more trees, the diagnosis result of the encrypt-
ed symptoms [[sym]] needs to implement over more trees.
Therefore, the diagnosis time increases with tree number K.

8 CONCLUSION

This paper has proposed a lightweight privacy-preserving
XGBoost framework on edge, which could not only provide
lightweight XGBoost over edge nodes with strong priva-
cy preservations, but also achieve privacy-preserving and
real-time medical diagnosis on edge. The proposed LPME
system with secure computation could securely construct
XGBoost model with lightweight overhead, and efficiently
provide medical diagnosis without privacy leakage. Experi-
mental results over real-world datasets verified the efficien-
cy and security of the LPME system on edge computing.
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