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ABSTRACT
The advent of in-band network telemetry (INT) facilitates the dy-
namic and fine-grained monitoring of network conditions. Never-
theless, the current INT specification incurs a substantial measure-
ment overhead, diminishing bandwidth utilization, and potential
data fragmentation. Moreover, the rapid accumulation of teleme-
try reports may give rise to data lakes in the collector, resulting
in computational burden and telemetry degradation. To address
these two problems, we propose an integrated solution for high-
efficiency in-band network telemetry, including an improved INT
scheme, SF-INT, to reduce measurement overhead and the usage
of SmartNIC to accelerate report processing. SF-INT employs net-
work node registers to store the telemetry information collected
at previous nodes by previous packets. When a packet arrives at
one node, the node performs store-and-forward actions to deter-
mine the telemetry information stored in the current register and
the telemetry information carried by the packet to the next hop.
The packet carries only one node’s telemetry information during a
telemetry process, thus keeping a constant packet size. In contrast,
the standard INT increases the packet size due to the hop-by-hop
insertion of metadata. SmartNIC offloads report processing from
the CPU and obtains comprehensive telemetry data by analyzing
a set of telemetry reports. The testbed experiment results have
demonstrated that our solution reduces measurement overhead
and efficiently processes reports at nearly the line rate.
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1 INTRODUCTION
In recent years, there has been a notable expansion in the scale
of data center networks. Network congestions, traffic bursts, and
elephant flows may happen in fast-changing networks [2]. Network
measurement technology assists in understanding network condi-
tions, facilitating the timely detection of these issues. Traditional
network measurement focuses on end-to-end performance, but
monitoring modern networks requires more granular information
within a network. With the rise of programmable data plane (PDP),
in-band network telemetry (INT) has attracted widespread interest.
INT enables the source node to insert an INT header containing
telemetry instructions into ordinary packets and collect metadata
from each network node, achieving fine-grained monitoring of
network conditions.

However, the current INT specification [6] has two limitations.
First is the problem of high overhead.When one node on the teleme-
try path processes and forwards a data packet, the node’s metadata,
such as "Node ID" and "Hop Latency," is inserted after the INT
header in this packet. Consequently, the packet size will consis-
tently grow with the path length, leading to excessive overhead and
reducing link utilization. In the context of IPv4, packet fragmen-
tation occurs when the packet size exceeds the Maximum Trans-
mission Unit (MTU). In IPv6, however, the prohibition of on-path
fragmentation causes packet drops, prompting packet retransmis-
sions. Both scenarios result in performance degradation. Reserving
appropriate space for INT in the packet header is also challenging
because telemetry paths change dynamically. Insufficient space
leads to packet loss or fragmentation, the superfluous space waste
bandwidth.

Second is the processing issue of high-speed telemetry reports.
The sink node strips the inserted INT header and metadata from
each ordinary packet and generates a telemetry report. Subse-
quently, the INT collector obtains and stores telemetry data from
several reports for further analysis. With the increased network
bandwidth, continuously generated reports at high speeds may ac-
cumulate as a data lake [21] in the collector if they are not processed
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promptly. This phenomenon not only diminishes the measurement
accuracy of INT but also increases computational pressure. CPU
multi-threading may alleviate this to a certain extent, at the cost of
heavy resource burden.

To reduce the INT overhead, researchers employed different
sampling-based schemes [10–13] to reduce the number of data pack-
ets or the amount of INT metadata involved in telemetry, thereby
reducing bandwidth usage. For example, INT-label [12] utilizes a
label sampling-based scheme to reduce overhead. These sampling
schemes provide a tradeoff between measurement accuracy and
bandwidth usage. However, they still need to address the prob-
lem of packet size increasing with the number of nodes, and the
INT collector also needs optimization. Recently, the eXpress Data
Path (XDP) [15, 16] is used to speed up the collection and anal-
ysis of telemetry data, thereby reducing CPU usage and storage
consumption. Moreover, SmartNIC applies its programmable fea-
tures to implement customized functions, such as accelerating the
processing of telemetry reports [3]. Since SmartNIC offloads many
functions from the CPU, much CPU resource is liberated from the
hardware level.

We propose an integrated solution for high-efficiency in-band
network telemetry. It implements high efficiency by designing an
improved method named Stateful-INT (SF-INT) to address the over-
head problem and leveraging a SmartNIC-equipped collector to
process telemetry reports quickly. SF-INT’s feature exists in each
network node’s register, which stores the telemetry information
containing some fields in the SF-INT header and metadata. When
a packet arrives, the node will perform store-and-forward actions
based on the telemetry information in its register. With the newly
defined SF-INT header, the packet size remains constant for the
same telemetry instructions. Then, the sink node separates the
metadata from an ordinary packet and generates one telemetry
report. Finally, SmartNIC accelerates telemetry report processing,
prevents a data lake from appearing in the collector, and reduces the
CPU’s burden. After receiving a set of telemetry reports with the
same 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 in the SF-INT header, SmartNIC’s high-concurrency
design enables efficient report parsing, facilitating metadata extrac-
tion and obtaining comprehensive telemetry data for all nodes.

The main contributions include:
(1) We propose an integrated solution for improving INT’s effi-

ciency with low overhead and powerful report processing capacity.
SF-INT utilizes node’s register to store telemetry information and
deals with arriving packets according to the store-forward action
rules. The metadata length will remain the same during transmis-
sion because the newly defined SF-INT will not insert nodes’ meta-
data hop-by-hop, then saving bandwidth. The SmartNIC-equipped
collector accelerates telemetry report processing while reducing
the CPU consumption. It can obtain complete telemetry data for all
nodes on the path from a set of reports with the same 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 .

(2) We have implemented the integrated solution, where SF-INT
is prototyped on Intel Tofino programmable switches, and telemetry
reports are processed on Netronome SmartNIC. Experiment results
have shown that SF-INT effectively reduces telemetry overhead,
where the packet size is only affected by telemetry instructions and
does not increase with the number of network nodes. The addi-
tional latency due to the collection of multiple reports is slight, such

as only 9.3𝜇𝑠 in an 8-node telemetry path. Therefore, SF-INT bar-
gains away slight delay in exchange for the low-overhead attribute.
Moreover, our solution can achieve a processing throughput of 7.13
𝑀𝑝𝑝𝑠 , and the processing rate of telemetry reports keeps up with
the arrival rate.

(3) We have implemented and evaluated the integrated solution
in the IPv6 environment. Our work is a helpful attempt to promote
the application of INT in the next-generation network.

2 BACKGROUND
2.1 In-band Network Telemetry
In-band network telemetry (INT) is a framework for collecting and
reporting network states through a data plane, which can help
network operators gain a more granular understanding of network
states, facilitate network troubleshooting, andmonitor performance.
The current INT specification [6] has three types of INT headers:
MD-type, Destination-type, and MX-type. It is common practice to
employ the MD type to obtain detailed information about all nodes
along the path, whose process is shown in Fig.1. When an ordinary
packet arrives, a source node inserts an INT header containing
telemetry instructions, followed by its INT metadata. Telemetry
instructions determine the information (e.g., Node ID, Hop latency)
required to collect. Accordingly, the transit node inserts its INT
metadata following the INT header and then forwards the packet to
the next node. The sink node strips the INT header and aggregates
INT metadata inserted in the packet to generate a report. Finally,
the original packet continues the journey toward the destination,
while the telemetry report is transmitted to the collector to obtain
telemetry data.

Sink

Ordinary packet

Collector

Destination

Host
Source

Transit

Metadata

Figure 1: Overview of INT

2.2 SmartNIC
SmartNIC has many advantages [19] and is widely used in many
areas, such as offloading functions, accelerating packet process-
ing [4, 8, 17], and storage optimization [18, 20] . This paper adopts
Netronome SmartNIC, which is equipped with the NFP-4000[5]
multi-threaded and multi-core stream processor, where each stream
processing core, micro-engine (ME), is regarded as a small CPU
core. Therefore, Netronome SmartNIC can execute programs con-
currently. It has two 10𝐺𝑏𝑝𝑠 Ethernet interfaces and 2𝐺𝐵 of DDR3
DRAM. We employ this memory to design a ring buffer for caching
INTmetadata extracted from telemetry reports. Moreover, Netronome
SmartNIC supports P4 Match-Action operations and a subset lan-
guage of C andMicroC. Therefore, we use P4 to perform preliminary
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parsing of telemetry reports andMicroC to perform the fine-grained
extraction and cache operations.

3 METHODOLOGY
3.1 SF-INT Design
In the standard INT scheme, the hop-by-hop process of inserting
metadata causes packet size to grow with the number of nodes,
leading to high telemetry overhead. To address this issue, we de-
signed a low-overhead scheme, SF-INT. Its main idea is to utilize
one register on each programmable switch to store telemetry infor-
mation containing the values of 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 , 𝑆𝑇 , and the telemetry
metadata of a particular node, defined in the SF-INT header (re-
fer to Subsection 3.1.1). When a node receives a packet with the
SF-INT header, it performs a store-and-forward action based on
the telemetry information of the arrival packet and the telemetry
information stored in its registers (refer to Subsection 3.1.2). Each
forwarded packet only contains one node’s telemetry information,
while the packet size is fixed along the entire path, which reduces
telemetry overheard compared with the standard INT. The IPv6
encapsulation of SF-INT is presented in Subsection 3.1.3.

3.1.1 SF-INT header. The SF-INT header is shown in Fig.2, which
is modified based on the standard INT-MD header [6]. We defined
some new fields in the reserved bits of the INT-MD header. The
SF-INT flag field, denoted as 𝐶 , occupies 1 bit, whose values of "1"
and "0" indicate that this packet is an SF-INT packet or an standard
INT header. The urgent field, denoted as𝑈 , occupies 1 bit, where "1"
represents the emergency mode and will switch to the standard INT.
The stateful field 𝑆𝑇 occupies 2 bits, which indicates the current
state of the SF-INT header in the packet. Three states represent the
order of priority from high to low: High (H), Medium (M), and Low
(L). It is an essential factor when one network node determines
store-and-forward actions.

We reuse the original "Domain Specific ID" field as the new "pack-
etID " field, which occupies 16 bits. SF-INT obtains comprehensive
metadata of all nodes along the transmission path by dealing with a
set of SF-INT reports with the same 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 . Moreover, the SF-INT
metadata stack, followed by the SF-INT header, inserts or updates
one node’s telemetry metadata according to the store-and-forward
action rules.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Ver = 2   |D |E |M|C |         Reserved          |U |  ST |    Hop ML   |  RemainingHopCnt  | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       Instruction Bitmap                 |             Domain Specific ID (packetID)      | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          DS Instruction                     |                             DS Flags                          |  
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                                                                                                              | 
~                                                                                                                                            ~
~                                                    SF-INT Metadata Stack                     ~
~                                                                                                                                            ~                                                 
|                                                                                                                                              | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

Figure 2: SF-INT header and metadata stack

3.1.2 Store-and-forward Actions. We design the store-and-forward
rules based on the particular fields (i.e., 𝑆𝑇 priority state and 𝑝𝑎𝑐𝑘𝑡𝐼𝐷)
in the SF-INT header. Each network node utilizes a register to
temporarily store the telemetry information (containing the 𝑆𝑇 ,
𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 fields in the SF-INT header and metadata). When one
packet arrives, the network node updates its local register and for-
wards this packet to the next hop based on the 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 and 𝑆𝑇

using the forwarding rules in Table1. Here, the packet only carries
the current node’s telemetry information or the current register’s
telemetry information. Finally, the SmartNIC-equipped collector ac-
quires the telemetry metadata of the full-path nodes after receiving
a set of SF-INT reports with the same 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 . Therefore, SF-INT
achieves in-band network telemetry with a constant packet size.

Table 1: SF-INT’s Rules of store-and-forward actions

Rule
State Action

Arrival Register Forward Register
packet store packet update

1 M(A) H(S) H(S) L(A)
2 M(A) L(S) M(C) H(A)
3 M(A) E() M(C) H(A)
4 H(A) H(S) H(S) H(A)
5 H(A) L(S) L(S) L(A)
6 H(A) E() H(A) E()
7 L(A) H(S) H(S) L(A)
8 L(A) L(S) L(S) L(A)
9 L(A) E() L(A) E()

The complete forwarding rules in Table 1 ensure that the INT
collector is able to obtain the full path of telemetry data by ag-
gregating a set of SF-INT reports with the same 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 . Given
a telemetry instruction, each packet carries the same amount of
telemetry information with the fixed packet size. The design prin-
ciple of rules is letting the packet carry the metadata with high
priority and saving the metadata with low priority in the node’s
register. For simplicity, we adopt some abbreviations: (1) Empty
register, 𝐸 () denotes the node register is empty. (2) 𝐴 denotes the
telemetry metadata carried by the arrival packet; 𝑆 denotes the
metadata stored in the node register; and 𝐶 denotes the metadata
collected at the current node. (3) List the priorities in descending
order: high (H), medium (M), and low (L).

Packet Generator Node 1 Node 2 Node 3

1

SmartNIC Buffer
1

Register

2
32

32

Destination

Node 1 Node 2 Node 3

1 1
3

32
1 1

1

Telemetry Information Report
1st Packet

2nd Packet
3

Figure 3: SF-INT Prototype: store-and-forward process

As an example, Fig.3 shows a store-and-forward process in a
simple network. Here, a packet generator generates ordinary IPv6
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packets and sends them to a destination after traversing three net-
work nodes.When the first packet (with blue color) arrives at Node1,
Node1 inserts its telemetry metadata (with blue grids labeled 1 )
and the priority state of 𝑆𝑇 = 𝑀 into the SF-INT header of the first
packet. When the first packet arrives at Node2, its register is empty.
According to Rule 3, Node2 stores the first packet’s telemetry infor-
mation (𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 = 1, 𝑆𝑇 = 𝐻 , and Node1’s metadata) in the local
register, while the forwarded packet carries Node2’s metadata and
sets 𝑆𝑇 = 𝑀 . As a sink node, Node3 directly sends the SmartNIC
an SF-INT report, which includes its telemetry metadata (with blue
grids labeled 3) and the carried telemetry metadata of Node2 (with
blue grids labeled 2).

After receiving the 2nd packet, Node1 inserts its telemetry meta-
data (with orange grids labeled 1 ) and the priority state of 𝑆𝑇 = 𝑀

into the SF-INT header of the 2nd packet. When the 2nd packet
arrives at Node 2, its register is not empty, so Node 2 selects rule
1 according to the information matching. Node2 stores the car-
ried telemetry information (𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 = 2, 𝑆𝑇 = 𝐿, and Node1’s
metadata) in the local register (with orange grids labeled 1). The
forwarded packet carries Node1’s metadata stored in its register
(with blue grids labeled 1) and sets 𝑆𝑇 = 𝐻 . Again, Node3 directly
sends the SmartNIC an SF-INT report, which includes its telemetry
metadata (with orange grids labeled 3) and the carried telemetry
metadata of Node1 (with blue grids labeled 1). Finally, the SmartNIC
collector gets the telemetry metadata at all nodes collected by the
first packet (𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 = 1) in the full path.

3.1.3 IPv6 Encapsulation of SF-INT. We utilize the hop-by-hop ex-
tension header in an IPv6 packet to encapsulate an SF-INT packet,
where the "next header" field in the basic IPv6 header equals 0. As
shown in Fig. 4(a), the SF-INT header and other related headers are
embedded between the IPv6 basic header and the packet payload,
where a newly defined "INT option" represents the type of the
subsequent header and its length. The default type is the SF-INT
header defined in Subsection 3.1.1; one optional type is the standard
INT header in INT 2.1 [6]. The utilization of hop-by-hop extensions
ensures that all network nodes process SF-INT packets. The newly
designed INT option and the SF-INT header facilitate the comple-
tion of telemetry tasks without modifying the fields employed by
existing protocols.

Hopbyhop Option

Ethernet 

IPv6 

INT Option
SF-INT Header & 

Metadata Stack

Next header = 0

Packet Payload

UDP

(a) SF-INT packet

UDP

Ethernet

IPv6

Telemetry Report 
Group

Individual Report

Original IPv6

Next header = 17

Hopbyhop Option

SF-INT Header & 
Meatdata Stack

Next header = 0
UDP 

Payload

INT Option

(b) SF-INT report

Figure 4: Packet Formats of SF-INT

Similarly, we modify the format of telemetry reports based on
Telemetry Report Format 2.0 [7]. As shown in Fig.4(b), we use the

UDP payload to carry the header and metadata stripped from the
sink node, where the "next header" field in the basic IPv6 header
equals 17.

3.2 SmartNIC Processing
Currently, network bandwidth is on the rise, and packet transmis-
sion rates are increasing. Telemetry reports are generated at high
speed when conducting the tasks of in-band network telemetry. Us-
ing a CPU will consume many resources, but the processing speed
of reports may not meet requirements. By leveraging SmartNIC,
we offload the report processing from the CPU, effectively reducing
its workload and achieving high-performance report processing.

We have a SmartNIC-equipped collector to process reports. The
SF-INT reports generated by the sink node enter the SmartNIC
through the physical interface. As shown in Fig.5, the report pro-
cessing process mainly consists of three parts: (1) The P4 module
performs parsing and Match-Action operations and then calls the
C function. (2) The Micro-C module defines the storage structure
and writes the metadata into that structure. (3) The host module
enables threads to read data located in the storage structure and
store it in the Redis database according to requirements.

match action

Paser

Micro Engines

Micro-C 
Functions

P4

Call C Functions

Micro-C

Ring Buffer

Redis Server

Host Thread 1

Host Thread 2

Host Thread 3

......

Read

Host

SF-INT Reports

Figure 5: SmartNIC’s Processing of SF-INT Reports

P4module:Weutilize 54micro engines (MEs) on the Netronome
SmartNIC for programming, each with four threads running the
same program. After SF-INT reports enter through the physical
interface, the built-in load-balancing algorithm allocates them to
different MEs for processing. The P4 module will perform field
parsing on these reports according to the report specification shown
in Fig. 4(b), and the successfully parsed reports will be sent to the
Match-Action section. Then, this part will match the 𝐶 field in the
SF-INT header to filter out the fully parsed SF-INT reports. Finally,
the fully parsed reports are handed over to the Micro-C module for
processing.

Micro-C module:We define a ring buffer of 32K in the Micro-C
module to store the metadata in the reports.We utilize the 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷
field of each SF-INT report as the hash index. When the 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷
exceeds the buffer length, the index will be reset to start a new
storage round. In this way, themetadata in the reports with the same
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𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 will be stored in the same location to realize the collection
of complete telemetry data. The telemetry instructions determine
the storage structure, saving SmartNIC memory consumption. For
example, if five telemetry instructions need to be measured, the
storage structure contains five entries.

We use semaphore mechanism to enable MEs in SmartNIC to
compete for the position of the buffer. When a thread of a ME oc-
cupies the location, other threads need to wait. Micro-C supports
embedded assembly language, and we utilize this property to imple-
ment the operations of occupying and releasing semaphores. As a
result, this approach reduces the overhead associated with reading
and writing to the SmartNIC’s memory. When a set of reports with
the same 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 is processed, a complete set of metadata (i.e.,
telemetry data for that all nodes) will be stored at this location.

Host module: The host module enables threads to read teleme-
try data on the ring buffer. Based on the specific telemetry needs,
these telemetry data can be employed for analysis or periodically
refreshed into the Redis database.

4 EVALUATION
4.1 Testbed Setup
As shown in Figure 6, the testbed includes eight network nodes op-
erating at Intel Tofino P4 programmable multi-pipeline switches (2
pipelines) 1, two Ubuntu servers (kernel version 4.15.0-142-generic)
with 24 Intel Xeon 2.30GHz CPU cores and 128G memory, and
one destination host. Each link between two switches is 100𝐺𝑏𝑝𝑠
(with a thick solid line), while each link between a switch and a
server/host is 10𝐺𝑏𝑝𝑠 (with a thin solid line).

SmartNIC Collector

Packet Generator

Destination

Figure 6: Testbed Topology

One server is the INT collector equipped with Netronome Agilio
CX 2x10GbE SmartNIC, responsible for processing telemetry re-
ports and analyzing telemetry data as required. The other server is
the packet generator with the DPDK[9] test tool TRex [14], which
sends 64-byte packets to the host with a data rate of 10𝐺𝑏𝑝𝑠 . The
node connected to the packet generator is the source node, the node
connected to the INT collector is the sink node, and the others are
transit nodes. We conduct experiments in the IPv6 environment to
promote the INT deployment in the next-generation network.

Next, we evaluate the performance of our solution when the
transmission path consists of different numbers of network nodes
(from 2 to 8) and the telemetry instructions increase from 2 to
1One pipeline can act as a network node since it contains the blocks of ingress, packet
replication engine, and egress, having their own parser, deparser, and match-action
units. And each pipeline is mapped to a set of physical switch ports.

5. These telemetry instructions include "Node ID," "Hop latency,"
"Ingress timestamp," "Egress timestamp," and "Level 2 Ingress/Egress
interface ID", selected from the INT specification [6]. In particu-
lar, "Node ID" is the mandatory instruction identifying the node
inserting the telemetry metadata.

4.2 Telemetry Overhead
To evaluate the telemetry overhead in an IPv6 environment, we
measured the size of a telemetry packet when launching 5 telemetry
instructions on the transmission path with 8 network nodes. As
shown in Fig. 7, the standard INT lengthens the packet during hop-
by-hop forwarding because each node inserts its INT metadata.
It will lead to high overhead, especially when the path is long.
Many sampling-based INT schemes [10–13] also suffer from the
same problem because of embedding metadata continuously. In
contrast, SF-INT exhibits the overhead benefit of constant-size
packets during the whole path for identical telemetry instructions.
Each node executes store-and-forward actions according to the
register’s telemetry information and predefined rules. The length of
telemetry packets is affected by the number of instructions instead
of the number of nodes.

2nd 3rd 4th 5th 6th 7th 8th
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0

100

200

300
Ov

er
he

ad
 (B

yt
es

 p
er

 P
ac

ke
t) Header

INT Metadata
SF-INT Metadata

Figure 7: Overhead comparison of SF-INT and INT

4.3 Throughput
We use TRex to send IPv6 packets up to 14.7𝑀𝑝𝑝𝑠 , 9.89𝐺𝑏𝑝𝑠 (nearly
the full rate, 10𝐺𝑏𝑝𝑠) when changing the number of telemetry
instructions from 2 to 5. Fig. 8(a) compares the packet sending rate
and the total throughput, which is the output rate of the processed
report in SmartNIC. The throughput of our integrated solution
increases with the sending rate, and its maximum reaches 9.13 Gbps.
It demonstrates that our solution, which consists of SF-INT and
a SmartNIC-equipped collector, can efficiently perform telemetry
measurements and process the generated telemetry reports over a
10𝐺 link (nearly the line rate).

We further investigate the report processing capacity of Smart-
NIC. As shown in Fig 9, the processing rate of SmartNIC reaches
up to 7.13𝑀𝑝𝑝𝑠 in the case of 2 telemetry instructions. Moreover,
the curve with the same number of instructions is stable and will
not decrease with the number of nodes. Compared to the scheme
that employed SmartNICs to process standard INT reports [3], our
SF-INT holds distinct advantages. Comparing Fig.9(a) and Fig.9(b),
for the same number of telemetry instructions, the report departure
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Figure 8: Perfomrance of our integrated solution

rate (Output) is near the report arrival rate (Input) in the Smart-
NIC, indicating its excellent processing capacity. The extraction
and analysis of SF-INT metadata from telemetry reports will hardly
impact the total throughput. It is also noteworthy that the Smart-
NIC offloads report processing from the host CPU, thus alleviating
the CPU burden at the hardware level.
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4.4 Latency
SF-INT obtains all nodes’ metadata from a set of telemetry reports
with the same 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 . According to the store-and-forward rules,
the collector requires 𝑁 − 1 reports to obtain comprehensive meta-
data on the 𝑁 -node path. It introduces an additional latency for
receiving these telemetry reports accompanied by multiple packets,
which arrive at different times.

Using the tshark tool, we captured the nanosecond-level times-
tamps of telemetry reports when arriving at the SmartNIC’s physi-
cal port. Then, we calculated the average interval delay of 𝑁 − 1
adjacent reports for each round of 65536 reports 2. As shown in
Fig. 8(b), the number of nodes mainly affects the latency. The more
nodes there are, the more telemetry reports with the same 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷
are required to obtain comprehensive metadata. However, packet
arrival rates are speedy in today’s data center networks. Experi-
mental results show that the latency is small, with an average of
9.3 𝜇𝑠 in the 8-node path, which is acceptable to many applica-
tions. Furthermore, 99% of latency values are below the average.
That is, SF-INT bargains away slight delay in exchange for the
low-overhead attribute.

2The field of 𝑝𝑎𝑐𝑘𝑒𝑡𝐼𝐷 occupies 16 bits, 65536=216 .

5 CONCLUSION
This paper has designed and implemented the integrated solution
for high-efficiency in-band network telemetry, including the low-
overhead SF-INT and the high-performance SmartNIC-equipped
collector. We have built a real testbed to verify our solution using
Intel Tofino switches and Netronome SmartNIC. Experimental re-
sults have shown that our solution can achieve low overhead by
keeping a constant packet size during the whole path at the cost of
slight delay. Moreover, the SmartNIC can process SF-INT telemetry
reports at nearly the line rate. In our future work, we will make
improvements in the following areas:

Comparisons under different application scenarios. SF-INT
has demonstrated significant potential in addressing the issue of
INT packet inflation. We will conduct a comprehensive evaluation
of SF-INT on various application scenarios, comparing it with the
popular solutions in the research community, such as PINT [1],
INT-Label [12], and Delta-INT [11]. This evaluation will consider
multiple performance metrics, including switch memory utilization,
bandwidth occupancy, and other relevant factors.

Couple with the existing sampling INT schemes. Given
that real applications may not require every packet to embed the
INT metadata for all nodes. We plan to further reduce overhead
by skipping some inessential nodes, sampling partial packets, and
removing redundant metadata, which increases the adaption to
various environments.

Introduce 40G SmartNICs. Considering the increasing band-
width of modern networks, we will experiment with higher specifi-
cation SmartNICs to achieve higher throughput. 40G SmartNICs
exhibit superior capabilities compared with their 10G counterparts
and stand an excellent chance to accelerate the processing of teleme-
try reports. We will also compare our solution with the mature ones,
like DPDK[9], by evaluating the speed in processing telemetry re-
ports and CPU consumption.

Enhance the ability to handling exceptions. When facing
special network events such as packet loss and route updates, en-
hance INT to quickly obtain the complete path’s telemetry reports
and flexibly respond to complicated network conditions such as
multipath data transmission.
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