
A High-Performance Algorithm for Identifying Frequent Items
in Data Streams

Daniel Anderson

Georgetown University

Pryce Bevan

Georgetown University

Kevin Lang

Oath Research

Edo Liberty
∗

Amazon

Lee Rhodes

Oath

Justin Thaler

Georgetown University

ABSTRACT
Estimating frequencies of items over data streams is a common

building block in streaming data measurement and analysis. Misra

and Gries introduced their seminal algorithm for the problem in

1982, and the problem has since been revisited many times due

its practicality and applicability. We describe a highly optimized

version of Misra and Gries’ algorithm that is suitable for deploy-

ment in industrial settings. Our code is made public via an open

source library called Data Sketches that is already used by several

companies and production systems.

Our algorithm improves on two theoretical and practical aspects

of prior work. First, it handles weighted updates in amortized con-

stant time, a common requirement in practice. Second, it uses a

simple and fast method for merging summaries that asymptotically

improves on prior work even for unweighted streams. We describe

experiments confirming that our algorithms are more efficient than

prior proposals.

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near
linear time algorithms; • Networks→ Network measurement;

KEYWORDS
streaming algorithms, mergeable summaries, frequent items

ACM Reference Format:
Daniel Anderson, Pryce Bevan, Kevin Lang, Edo Liberty, Lee Rhodes, and Justin

Thaler. 2017. A High-Performance Algorithm for Identifying Frequent Items

in Data Streams. In Proceedings of IMC ’17. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3131365.3131407

1 INTRODUCTION
Identifying frequent items (also known as heavy hitters) and an-

swering point queries (i.e., queries of the form “approximately how

many times did item i appear in the stream?) are two of the most

basic computational tasks performed on data streams. Due to their

practical importance, streaming algorithms for these tasks have

∗
Research performed while at Yahoo Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IMC ’17, November 1–3, 2017, London, United Kingdom
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5118-8/17/11. . . $15.00

https://doi.org/10.1145/3131365.3131407

been studied intensely [6, 7, 9, 13, 14, 17, 21, 31–35]. These algo-

rithms process a massive dataset in a single pass, and compute very

small summaries of the dataset, from which it is possible to derive

accurate—though approximate—answers to frequent items queries

and point queries.

It may seem as though streaming frequency approximation is

well-understood, with little room for further insight or improve-

ment. However, when we set about implementing an algorithm

suitable for industrial use on web-scale data, we found that existing

algorithms have two significant shortcomings. First, they are not

very efficient when handling weighted stream updates (i.e., data

steams where each piece of data comes with an associated impor-

tance measure). Second, although existing algorithms allow for

merging summaries produced from different streams to obtain a

summary for the union of the streams, existing merging procedures

are slow and space intensive. In this work, we describe an optimized

streaming algorithm and a merging procedure that together address

both of these shortcomings.

1.1 Problem Statement and Applications
Given a data stream σ of length n over a universe [m] = {1, . . . ,m},
where each stream update is of the form (i j ,∆j) for some i j ∈ [m]

and ∆j > 0 is a weight, let fi =
∑
j : i j=i ∆j denote the (weighted)

frequency of i in the stream and let N =
∑
j ∆j denote the weighted

stream length. The goal of an algorithm for answering point queries

is the following. In a single pass over the stream, the algorithm

must compute a small summary (sometimes also called a sketch) of
the stream such that, for any item i ∈ [m], it is possible to efficiently

derive an estimate
ˆfi such that | ˆfi − fi | is small.

Ideally, the algorithm should also be able to identify (ϕ, ε)-heavy
hitters (in the ℓ1-norm). That is, given a user-specified threshold ϕ,
the algorithm should be able to identify all items i with fi ≥ ϕ · N ,

possibly also returning a small number of “false positive” items

whose frequency is slightly below the specified threshold ϕN .

The Importance of Weighted Updates. The majority of the litera-

ture on streaming approximate frequency analysis considers the

case of unweighted updates, where ∆j = 1 for all j . However, there
are many applications in which the ability to efficiently handle

weighted updates is critical. For instance, much of the literature on

streaming algorithms for identifying frequent items and answering

point queries has been motivated by applications in network traffic

measurement, many of which naturally involve weighted updates.

For example, it is often useful to track the total amount of data

that individual users, or pairs of users, send over a network. This is

essential for accounting and pricing, anomaly detection (such as

https://doi.org/10.1145/3131365.3131407
https://doi.org/10.1145/3131365.3131407

IMC ’17, November 1–3, 2017, London, United Kingdom D. Anderson et al.

detecting hotspots, worms, and DDoS attacks), and traffic engineer-

ing [18, 19, 21–24, 28, 38, 39, 46, 48]. In this setting, the weight of

each stream update (i.e., packet) is its size in bytes.

Alternatively, it may be useful to track the total duration of

network flows, or the total time that users spend using a mobile

app or watching online video. In these settings, the weight of a

stream update is the duration of the event in question.

As another example, in spam detection, it is useful to track the

total number of recipients of emails from a given address, and many

emails have an enormous number of recipients. For this reason,

Yahoo is using (weighted) frequent items algorithms in back-end

systems for spam detection and email threading [3].

More generally, weighted updates arise whenever items from the

data universe are associated with importance factors. For example,

in information-retrieval and text mining, term frequency–inverse

document frequency (tf-idf for short) is a standard statistic that

assigns a value to each word in a document that is part of a larger

corpus. The value assigned to a word increases with the number

of times a word appears in the document, but decreases with the

frequency of the word in the corpus, in order to account for the

fact that some words appear more frequently in general.

In addition to the applications above, we will also see (cf. Section

3.2) that the ability to efficiently handle weighted updates enables

extremely efficient merging of summaries—significantly faster than

merging procedures proposed in prior work. Moreover, unlike al-

gorithms tailored to unweighted updates, algorithms capable of

handling weighted updates typically apply to real-valued weights.

This will be the case for the algorithms we give in this work.

There are a number of simple ways to modify algorithms for the

unweighted setting to handle the weighted setting. However, as

we describe in Sections 1.3.4-1.3.5, all of the modifications that (to

our knowledge) have been proposed in prior work have significant

shortcomings.

The Importance of Mergeability. Ideally, streaming algorithms

will produce summaries that are mergeable, meaning that one can

process many different streams of data independently, and then the

summaries computed from each stream can be quickly combined

to obtain an accurate summary for the union of the datasets [2].

Mergeable summaries are useful in a wide variety of settings. For

example, they enablemassive datasets to be automatically processed
in a fully distributed and parallel manner, by partitioning the data

arbitrarily across many machines, summarizing each partition, and

seamlessly combining the results. Another application is to power

conservation and latency minimization in weak peripheral devices.

For example, one of the key benefits of the Internet of Things (IoT)

is that it enables the monitoring and aggregation of data from IoT

devices such as sensors and appliances. Such devices are often

power-limited, so it is essential to minimize the amount of data that

must be sent from each device to the aggregation center. Mergeable

summaries enable this: each device can itself compute a summary of

its own data, and send only the summary to the aggregation center,

which merges all received summaries to obtain a global summary

for all devices’ datasets. (See Section 3 for additional applications

of mergeable summaries).

1.2 Our Contributions
Improved Streaming Algorithm for Weighted Updates. Our
algorithm is similar to the popular Misra-Gries (MG) [35] and Space
Saving (SS) [34] algorithms. However, it differs from them in sev-

eral simple yet important ways, enabling our algorithm to process

weighted updates in a highly efficient manner. Our algorithm runs

in amortized constant time per stream update, and employs op-

timized data structures to minimize its memory footprint while

maximizing throughput. We present experimental results validating

the superiority of our algorithms over existing solutions.

Our experiments also clarify conventional wisdom regarding the

best way to implement frequent items algorithms in practice. Prior

literature strongly suggested that the best algorithm in practice is

a min-heap based implementation of SS (we denote this implemen-

tation of SS by MHE—short for min-heap extension—cf. Section

1.3.5). Indeed, experimental work of Cormode and Hadjieleftheriou

[14] that focused exclusively on the setting of unweighted streams

identified SS as state of the art. They showed that a linked-list based
implementation of SS (denoted in [14] as SSL) is noticeably faster

than the min-heap based implementation, but also significantly

more space intensive. Moreover, SSL does not naturally extend to

weighted updates, whileMHE does. Based on these findings, sub-

sequent work (e.g., [36]) in the weighted setting used MHE as the

implementation of choice. We overturn this conventional wisdom:

our implementations do not use a min-heap, yet are significantly

faster and more space efficient thanMHE.
Improved Merging Procedure. We give a simple and efficient

method for merging summaries produced by our algorithm, or

more generally, any counter-based algorithm (cf. Section 1.3 for

a definition of this class of algorithms). Our merging procedure

significantly improves on prior work in terms of both speed and

memory usage, even for unweighted streams.

Other Implications of Our Improvements. We note that algo-

rithms for answering point queries and identifying heavy hitters

are often used in a black-box fashion as subroutines in streaming

algorithms solving more complicated problems. These include esti-

mating the empirical entropy of a data stream [12], and identifying

hierarchical heavy hitters [36], both of which have important ap-

plications in network traffic monitoring and anomaly detection

[16, 25, 44–47].

For example, the Hierarchical Heavy Hitters (HHH) problem ex-

tends the notion of frequent items to hierarchical data. To motivate

the problem definition, suppose that a single entity controls all IP

addresses in a subnet (say, all addresses of the form 021.132.145.*,

where * is a wildcard byte, to borrow an example from [36]). It is

possible for the controlling entity to spread out traffic among the

addresses in the subset so that no single IP address is a heavy hitter.

Nonetheless, a network manager may want to know if the control-

ling entity itself is a heavy hitter (i.e., if the sum of the traffic of all

IP addresses in the subnet exceeds a specified threshold). The HHH

problem [5, 15, 16, 20, 26, 30, 36, 41, 43, 46] is defined to capture

this scenario.

State of the art algorithms [5, 36] for the HHH problem maintain

one instance of an algorithm for identifying heavy hitters for each

level of the hierarchy. At query time, these algorithms identify

A High-Performance Algorithm IMC ’17, November 1–3, 2017, London, United Kingdom

HHHs by combining, in a simple manner, the information stored

in all of the summaries. We omit further details for brevity.

Our optimized algorithms for answering point queries and identi-

fying heavy hitters can be directly substituted without modification

into these more complicated algorithms. While we leave this task to

future work, we expect that our optimizations would yield similar

speed and memory improvements in these settings.

1.3 Overview of Prior Work
In a comprehensive paper and survey, Cormode and Hadjielefthe-

riou [14] provide a detailed comparison of proposed algorithms

for finding heavy hitters and answering point queries in the case

of unit weight updates. They classified algorithms into three classes:

counter-based algorithms, quantile algorithms, and (linear) sketches.

They found that counter-based algorithms perform significantly

better in terms of space, speed, and accuracy than quantile and

sketching algorithms, a finding that we confirmed in our own ini-

tial experiments. Hence, we focus on counter-based algorithms for

the remainder of this work.

1.3.1 Counter-Based Algorithms. A counter-based algorithm

stores k counters, where k is a parameter of the algorithm that

controls both the space usage and the error (larger k corresponds

to more space and less error). Each counter stores an approximate

count for some item of the data universe; the various counter-based

algorithms differ in how they assign counters to items and how

they determine the approximate counts.

Cormode andHadjieleftheriou [14] found that two counter-based

algorithms are state of the art: Misra-Gries (MG) [35] and Space

Saving (SS) [34]. They found that the estimates returned by SS tend
to be more accurate than those returned byMG – we discuss the

reasons for the improved accuracy of SS relative to MG in Section

2.3.1. However, subsequent work by Agarwal et al. [2] observed that

these two algorithms are actually isomorphic, in the following sense.

The estimates returned by the SS algorithm with k + 1 counters can
be derived from the summary computed by theMG algorithm with

k counters. That is, the summaries computed by both SS andMG
contain essentially the same information about the stream, but the

algorithms differ in how they use this information to determine a

“best estimate” for any point query.

Our algorithm can be naturally viewed as an extension and

modification of MG. Hence, we now describeMG in detail.

1.3.2 Description of the Misra-Gries Algorithm For Unit Weight
Updates. Every time the algorithm processes a stream update (i,+1),
theMG algorithm looks to see if i is assigned a counter, and if so it

increments the counter. If not, and an unassigned counter exists, the

algorithm assigns the counter to i and sets the approximate count

to 1. If no unassigned counter exists, the algorithm decrements all

counters by 1, and marks all counters set to 0 as unassigned. When

asked to provide an estimate
ˆfi for the frequency of item fi , the

algorithm returns 0 if i is not assigned a counter, and returns the

value of the counter assigned to i otherwise.
See Algorithm 1 for pseudocode. The following standard lemma

bounds the error of any estimate returned by the MG algorithm

[35], and we provide the proof for completeness.

Algorithm 1 Misra-Gries Algorithm for Unit Weight Updates

1: Algorithm: Misra-Gries(k):

2: T ← ∅ // T is set of items assigned a counter

3: Function Update(i, +1):
4: if i ∈ T :
5: c (i) ← c (i) + 1
6: else if |T | < k :
7: T = T ∪ {i }
8: c (i) ← 1

9: else:
10: DecrementCounters()

11: Function DecrementCounters():

12: for all j ∈ T :
13: c (j) = c (j) − 1
14: if c (j) = 0:

15: T = T \ {j }
16: Function Estimate(i):
17: if i ∈ T
18: return c (i)
19: else
20: return 0

Lemma 1.1. TheMG algorithm with k counters is guaranteed to
return, for each i ∈ [n], and estimate ˆfi satisfying 0 ≤ fi − ˆfi ≤
N /(k + 1).

Proof. It is obvious from the description of the algorithm that

0 ≤ fi − ˆfi for all i . To prove that fi − ˆfi ≤ N /k for all i , observe

that fi − ˆfi is at most the total number of decrement operations

over the course of the algorithm, and there can be at most N /k
decrement operations. Indeed, if there are d decrement operations,

then since each decrement operation affects all k counters, the

sum of the counter values at the end of the algorithm is exactly

N −d · (k + 1). Since no counter value is ever negative, it holds that
N − d · (k + 1) ≥ 0, and hence d ≤ N /(k + 1). □

Using a similar proof, Berinde et al. [6] show that the MG algo-

rithm also satisfies the following guarantee. This guarantee, referred

to by Berinde et al. as a tail guarantee, is much stronger than Lemma

1.1 for streams with a very skewed frequency distribution (i.e., with

a relatively small number of frequent items constituting the bulk

of the stream).

Lemma 1.2 (Berinde et al. [6]). Let N res(j) denote the sum of
the frequencies of all but the top j most frequent items. For any j < k ,
theMG algorithm with k counters is guaranteed to return, for each
i ∈ [n], and estimate ˆfi satisfying 0 ≤ fi − ˆfi ≤ N res(j)/(k + 1 − j).

Efficiently Implementing Misra-Gries for Unit Weight Up-
dates.Anatural way to implement theMG algorithm is to maintain

a hash table that stores all assigned counters. The key for a counter

is the item it is assigned to, and the value is the count. Whenever a

stream update (i,+1) arrives, the algorithm looks up key i in the

hash table, and if it is present, it increments the corresponding value

(i.e., count). If not, the algorithm checks to see if the hash table is

storing k key-value pairs. If not, the key-value pair (i, 1) is inserted
into the hash table. If so, the algorithm iterates over all key-value

pairs in the hash table, decrementing each value and deleting any

pair if the value becomes zero. Assuming all hash table operations

IMC ’17, November 1–3, 2017, London, United Kingdom D. Anderson et al.

Algorithm 2 Space Saving Algorithm for Unit Weight Updates

1: Algorithm: SpaceSaving(k):

2: T ← ∅ // T is set of items assigned a counter

3: Function Update(i, +1):
4: if i ∈ T :
5: c (i) ← c (i) + 1
6: else if |T | < k :
7: T = T ∪ {i }
8: c (i) ← c (i) + 1
9: else :
10: j ← arg minj∈T c (j)
11: c (i) ← c (j) + 1
12: T = (T \ {j }) ∪ {i }
13: Function Estimate(i):
14: if i ∈ T :
15: return c (i)
16: else
17: return minj∈T {c (j) }

(i.e., lookup, insert, and delete) take O (1) amortized time, and that

enumerating all key-value pairs in the hash table can be done in

time O (k), then this implementation runs in amortized O (1) time

per stream update. This amortized time bound exploits the fact that

decrement operations, which require enumerating all k key-value

pairs, only occur at most N /k times.

1.3.3 Description of the Space Saving Algorithm For Unit Weight
Updates. When processing a stream update (i,+1), the SS algo-

rithm behaves identically to MG, except in the case where i is not
assigned a counter, and no unassigned counter exists. In this case,

SS increments the counter with the smallest value and assigns it

to i . When asked to provide an estimate
ˆfi for item the frequency

of item fi , the algorithm returns the value of the smallest counter

if i is not assigned a counter, and returns the value of the counter

assigned to i otherwise. See Algorithm 2 for pseudocode.

Efficiently Implementing Space Saving for Unit Weight Updates.
The SS algorithm can be naturally implemented by using amin-heap

data structure to track the smallest counter at all times. Following

[14], we refer to this implementation as SSH. Unfortunately, the

use of a min-heap is slow (taking time O (logk) per stream update),

and it also nearly doubles the space usage compared to the MG
implementation described above, since both a hash table of capacity

k and a min-heap must be stored.

In the case of unit updates, Metwally et al. [34] propose a doubly

linked list based data structure they call Stream Summary that can

process updates in O (1) time. However, the need to store pointers

in the linked list will more than double the space usage of the Misra-

Gries implementation described above. Moreover, as mentioned

again in Section 1.3.5 below, this implementation method does not

naturally extend to weighted updates.

1.3.4 Extending Misra-Gries to the Weighted Case: Prior Work
and Its Limitations. There are a number of simple ways to extend the

MG algorithm to handle weighted updates. Perhaps the simplest is

to treat an update (i j ,∆j) as ∆j unit updates. We refer to this as the

Reduce-To-Unit-Case (RTUC-MG) extension of the MG algorithm.

However, this takes time at least ∆j per stream update, which is

unacceptable when the weights may be large (this approach is also

awkward to apply to the case of non-integer weights).

To our knowledge, the only other proposal to extend the MG
algorithm to weighted updates is due to Berinde et al. [6], who sug-

gest the following modification. Every time the algorithm processes

a stream update (i j ,∆j), the algorithm looks to see if i j is assigned
a counter, and if so it increments the counter by ∆j . If not, and an

unassigned counter exists, the algorithm assigns the counter to i
and sets the approximate count to ∆j . If no unassigned counter

exists, the algorithm’s behavior depends on whether ∆j ≤ cmin,

where cmin denotes the minimum value of any counter. If ∆j ≤ cmin,

then all stored counters are reduced by ∆j . Otherwise, all counters
are reduced by cmin, and some counter with zero count (there must

be at least one now) is assigned to i j and given count ∆j − cmin. We

refer to this as the Reduce-By-Min-Counter (RBMC) extension of

the MG algorithm to weighted updates.

It is easy to see that the RBMC algorithm produces estimates

identical to the RTUC-MG algorithm, and hence satisfies the ac-

curacy guarantees of Lemmas 1.1 and 1.2. The advantage of the

RBMC-MG algorithm is in its runtime, which does not grow lin-

early with ∆j . The main shortcoming of the RBMC algorithm is

that it still may not run in amortized O (1) time per stream update.

In fact, there are streams on which the proposal will perform ex-

pensive decrement operations on essentially every stream update:

consider a stream where the first k updates increment the counts

of distinct items by an arbitrarily large number M , and then the

following M stream updates are unit updates to different items.

Decrement operations, each requiring time Θ(k), will be performed

on every one of the last M updates in the stream. While such ex-

amples may be contrived, Section 4 provides experimental results

on real datasets showing that the runtime of this algorithm is sig-

nificantly higher in practice than the alternatives presented in this

paper.

1.3.5 Extending Space Saving to the Weighted Case: Prior Work
and Its Limitations. The SS algorithm also has a natural Reduce-
To-Unit-Case (RTUC-SS) extension to weighted updates. However,

like theRTUC-MG alogrithm, this takes time at least ∆j per stream
update, which is unacceptable when the weights may be large.

The min-heap based implementation, SSH, of SS naturally ex-

tends to the weighted case. We refer to this as the Min-Heap-
Extension (MHE) extension of the SS algorithm toweighted updates.

However,MHE suffers from the same poor (i.e., O (logk)) update
time and larger space usage (relative toRBMC) as in the unit weight
update case. Despite these shortcomings, this implementation of

SS for weighted updates was used in at least one prior work on

computing Hierarchical Heavy Hitters [36]. The implementation

of Space Saving that uses the Stream Summary data structure does

not naturally extend to weighted updates [14].

We discuss additional prior work in Section 5.

1.4 Isomorphism Results for Weighted Streams
We mention that the MHE and RBMC algorithms are isomorphic,

in the sense that the estimates returned by the MHE algorithm

with k + 1 counters can be derived from the summary computed by

the RBMC algorithm with k counters. This follows immediately

from the facts that both the MHE and RBMC produce the same

A High-Performance Algorithm IMC ’17, November 1–3, 2017, London, United Kingdom

estimates as RTUC-SS and RTUC-MG respectively, and the latter

two algorithms were shown to be isomorphic by Agarwal et al. [2].

2 OUR ALGORITHM
For expository purposes, we first propose an initial modification of

the MG algorithm that achieves (up to a constant factor) the same

accuracy guarantees as the RBMC algorithm, while guaranteeing

O (1) amortized runtime per stream update. We then describe our

final algorithm, which improves over the runtime and space usage

of the initial modification by a factor close to 2.

2.1 An Initial Proposal
For simplicity, we assume throughout this section that k is even.

Recall (cf. Section 1.3.4) that the main downside of the RBMC algo-

rithm [6] is that it does not guarantee O (1) amortized runtime per

stream update. The reason was that RBMC may have to perform

decrement operations essentially every stream update, and each

decrement operation requires iterating over k counters.

To guaranteeO (1) amortized time per stream update, it is enough

to ensure that decrement operations are performed at most once

every (say)k/2 stream updates.Wemention that a similar technique

was used by Liberty to efficiently identify “frequent directions” in

a stream of vectors [29].

To ensure that this property holds, it suffices to consider the

following simple modification of RBMC. Every time the algorithm

processes a stream update (i j ,∆j), the algorithm looks to see if i j
is assigned a counter, and if so it increments the counter by ∆j . If
not, and an unassigned counter exists, the algorithm assigns the

counter to i j and sets the approximate count to ∆j . If no unassigned
counter exists, the algorithm decrements all counters by themedian
counter value c

median
. The algorithm then marks all counters set

to a non-positive value as unassigned. If ∆j is larger than c
median

,

then i j is then assigned a counter, which is set to ∆j − cmedian
.

We refer to this algorithm as the Reduce-By-Median-Counter
(MED) extension of the MG algorithm to weighted updates. See

Algorithm 3 for pseudocode, which is expressed in slightly more

general form. Specifically, in Algorithm 3, c
median

is replaced by

the the k∗’th largest counter value, where k∗ is a parameter of the

algorithm. One recovers the description above by setting k∗ = k/2.

2.1.1 Runtime and Accuracy Analysis.

Lemma 2.1. In Algorithm 3, a DecrementCounters() operation
(Lines 15-20) is performed at most once every k∗ stream updates.

Proof. Observe that DecrementCounters() operations are per-

formed only when all k counters are assigned. Every time a Decre-

mentCounters() operation is executed, Line 18 sets at least k∗ coun-
ters to a non-positive value, and all such counters become unas-

signed in Line 20. Since any Update(i,∆) operation assigns at most

one counter to i , it follows that after a DecrementCounters() opera-

tion, at least k∗ Update() operations must occur before all counters

once again become assigned. □

Lemma 2.1 is easily seen to imply that Algorithm 3 can be im-

plemented in O (1) amortized time per stream update. The main

observation is that ck∗ (cf. Line 16) can be found in timeO (k) using
the Quickselect algorithm [27]. Hence, decrement operations can be

Algorithm 3 The Reduce-By-Median-Counter (MED) Extension of the

MG Algorithm to Weighted Updates

1: // Notation: k∗ is a parameter of the algorithm

2: Algorithm: Initial-Algorithm(k):

3: T ← ∅ // T is set of items assigned a counter

4: Function Update(i, ∆):
5: if i ∈ T :
6: c (i) ← c (i) + ∆
7: else if |T | < k :
8: T = T ∪ {i }
9: c (i) ← c (i) + ∆
10: else :
11: DecrementCounters()

12: if ∆ ≥ ck∗ // See Line 16 for definition of ck∗
13: T = T ∪ {i } // |T | ≤ k∗ + 1 ≤ k after this line

14: c (i) ← c (i) + ∆ − ck∗
15: Function DecrementCounters():

16: // Notation: Let ck∗ be the k∗-largest value, counting multiplicity,

// in the multiset {c (j) : j ∈ T }.
17: for all j ∈ T :
18: c (j) = c (j) − ck∗
19: if c (j) ≤ 0:

20: T = T \ {j }
21: Function Estimate(i):
22: if i ∈ T :
23: return c (i)
24: else
25: return 0

performed in O (k) time, and by Lemma 2.1, decrement operations

occur at most once every k∗ = Ω(k) stream updates.

Theorem 2.2. By maintaining all k counters in a hash table of
capacity supporting (amortized) constant time insertions, deletions,
and lookups, and enumeration of all counters inO (k) time, Algorithm
3 can be implemented in amortized constant time as long as the
parameter k∗ ≥ Ω(k).

It is also not difficult to show that this implementation satisfies

the same error guarantee as Lemma 1.1 up to a factor of 2. In fact,

we prove the following tail guarantee that is significantly stronger

than Lemma 1.1 for streams with skewed frequency distributions.

Our analysis exploits the key ideas of earlier analyses (of theMG
algorithm) by Agarwal et al. [2] and Berinde et al. [6].

Theorem 2.3. For any j < k∗, Algorithm 3 returns, for each i ∈ [n],
an estimate ˆfi satisfying 0 ≤ fi − ˆfi ≤ N res(j)/(k∗ − j).

Proof. It is obvious from the description of the algorithm that

0 ≤ fi − ˆfi for all i . To prove the second inequality, we will pro-

ceed by induction on the number of stream updates n. For clarity,
we introduce some notation. Let fi,n =

∑
j≤n:i j=i ∆j denote the

(weighted) frequency of item i in the first n stream updates, and

similarly let
ˆfi,n denote the output of Estimate(i) after the first n

stream updates. Let En = maxi fi,n − ˆfi,n denote the maximum

error of any estimate that might be returned by the summary after

processing n stream updates. LetCn =
∑
i ∈T c (i) denote the sum of

all counts in the summary after the first n stream updates have been

processed. Let Nn =
∑n
i=1 ∆i denote the weighted stream length

after n stream updates.

IMC ’17, November 1–3, 2017, London, United Kingdom D. Anderson et al.

For expository purposes, we establish the second inequality for

j = 0, before establishing it for any j < k∗.

Establishing the second inequality for j = 0. In the case j = 0

it is sufficient to show establish the following lemma.

Lemma 2.4. En ≤ (Nn −Cn)/k
∗.

Proof. We show this by induction onn. Clearly it holds forn = 0.

Assume by way of induction that it holds for streams consisting of

n − 1 updates.

Proof Outline for Lemma 2.4. The key observations are (a) that

error is only introduced by calls to DecrementCounters() and (b)

whenever DecrementCounters() is called, at least k∗ counters are
reduced by ck∗ . Hence, the error in any estimate increases by ck∗ ,
and the difference between N and C increases by at least k∗ · ck∗ .
This ensures that the difference between N andC is always at least

k∗ times the error of the summary, as desired. The rest of the proof

makes this argument formal.

Suppose first that the nth stream update (in ,∆n) does not cause
DecrementCounters() to be called. In this case, after processing

the nth stream update, fin and
ˆfin both increase by ∆n , and for

any i , in , fi and
ˆfi are unchanged. Hence, En = En−1, i.e.,

the error of the summary is unchanged by the nth stream up-

date. Meanwhile, Nn and Cn both increase by ∆n . It follows that
(Nn − Cn) = (Nn−1 − Cn−1). Putting these facts together and in-

voking the inductive hypothesis, we conclude as desired that

En = En−1 ≤ (Nn−1 −Cn−1)/k
∗ = (Nn −Cn)/k

∗.

Next, suppose that the nth stream update does cause Decre-

mentCounters() to be called. We assume w.l.o.g. that ∆n ≤ ck∗ ;
if not, then we instead treat update (in ,∆n) as two separate up-

dates (in , ck∗) followed by (in ,∆n − ck∗), as the algorithm behaves

identically in this case.

Then the largest k∗ counters are each decremented by ck∗ , and
no counter is incremented (as Lines 13-14 are not executed due to

the assumption). Hence,

Nn −Cn =Nn−1+∆n−Cn ≥ Nn−1+∆n− (Cn−1−k
∗ · ck∗)

=Nn−1 −Cn−1 + k
∗ · ck∗ + ∆n

≥Nn−1 −Cn−1 + k
∗ ·ck∗ . (1)

Meanwhile, it holds that

En ≤ En−1 + ck∗ . (2)

To see this, first observe that, for all i , in , ˆfi,n − ˆfi,n−1 ≤ ck∗ , and

fi,n = fi,n−1. Hence, fi,n − ˆfi,n ≤ fi,n−1 − ˆfi,n−1 + ck∗ , i.e., the
error in the estimate for i increased by at most ck∗ when processing

the nth stream update.

To see that Equation (2) also holds for in itself, observe first

that the fact that DecrementCounters() was called when processing

the nth stream update means that in was not assigned a counter

after n − 1 stream updates. Hence,
ˆfin,n−1 = 0. Meanwhile, the

assumption that ∆n ≤ ck∗ then ensures that
ˆfin,n = 0 as well. And

clearly fin,n = fin,n−1 + ∆n . Putting these facts together implies

that fin,n −
ˆfin,n = fin,n−1+∆n−

ˆfin,n−1 ≤ fin,n−1 + ck∗−
ˆfin,n−1.

That is, the error in the estimate for in increased by at most ck∗
when processing the nth stream update. Equation (2) follows.

Combining Equations (1) and (2) with the inductive hypothesis,

we conclude as desired that

En ≤ En−1 + ck∗ ≤ (Nn−1 −Cn−1)/k
∗ + ck∗

≤ (Nn −Cn − k
∗ck∗)/k

∗ + ck∗ = (Nn −Cn)/k
∗.

□

Establishing the second inequality for any j < k∗. For nota-
tional simplicity, let us assume that f1 ≥ f2 ≥ · · · ≥ fj . Lemma 2.4

implies that

Cn ≤ Nn − k
∗ · En . (3)

Meanwhile, it is clear that at the end of the stream, c (i) ≥ fi − En
for all i , which implies that

Cn ≥

j∑
i=1

(fi − En) ≥
*.
,

j∑
i=1

fi
+/
-
− j · En . (4)

Putting Equations (3) and (4) together, we conclude that

*.
,

j∑
i=1

fi
+/
-
− j · En ≤ Nn − k

∗ · En ,

which in turn implies that (k∗ − j) · En ≤ Nn −
∑j
i=1 fi = N res(j) .

Hence, En ≤ N res(j)/(k∗ − j). This completes the proof. □

2.2 The Final Algorithm
Algorithm 3 has two disadvantages that are important in prac-

tice. First, an extra k words of space are required during every

DecrementCounters() operation, on top of the Θ(k) words of space
required for that hash table that maintains the counters. This extra

space is required in order to find the k∗’th largest counter, as the

Quickselect algorithm (or any sorting procedure) cannot be done in

place without destroying the hash table. This disadvantage nearly

doubles the space usage of the algorithm.

Second, during each DecrementCounters() operation, the algo-

rithm must make an extra pass through the summary to find the

k∗’th largest counter, before decrementing all counters and discard-

ing the non-positive ones. As DecrementCounters() operations is

the time bottleneck in practice, this significantly slows the concrete

efficiency of the algorithm.

In order to address both of these disadvantages at once, we make

the following observation. In neither the proof of Theorem 2.2 (es-

tablishing constant amortized update time for Algorithm 3) nor

Theorem 2.3 (establishing strong bounds on the error of Algorithm

3) is it crucial that we decrement by the k∗’th largest counter value

for k∗ = k/2. The property that ensures constant amortized update

time as per Theorem 2.2 is that each DecrementCounters() opera-

tion decrements by a value that is larger than a constant fraction of

the counters. The property exploited to establish the error bounds

of Theorem 2.3 is that each DecrementCounters() operations decre-

ments by a value that is smaller than a constant fraction of the

counters.

Both properties can be ensured by modifying the Decrement-

Counters() function as follows. We randomly sample ℓ counters in

the hash table, where ℓ = O (logn) is a suitably chosen parameter.

We then compute the median of the sampled counters, and decre-

ment all counters by this value, discarding any counters that are

A High-Performance Algorithm IMC ’17, November 1–3, 2017, London, United Kingdom

non-positive after decrementing. We refer to this algorithm as the

Reduce-By-Sample-Median (SMED) extension of theMG algorithm.

See Algorithm 4 for pseudocode.

Theorem 2.5. There is an ℓ = O (logn) such that Algorithm 3 can
be implemented to run in amortized constant time with probability
at least 1 − 1/n.

Proof. Standard Chernoff bounds (e.g., [37, Theorem 4.4]) imply

that if ℓ ≥ c · logn for a suitably large constant c > 0, then with

probability at least 1 − 1/n2 the median c∗ of ℓ counters sampled

from {c (i) : i ∈ T } will satisfy c∗ ≥ c (i) for at least k/3 values

of i (where recall that k = |T | whenever a DecrementCounters()

operation occurs). By a union bound, we conclude that this event

occurs for all DecrementCounters() operations with probability at

least 1 − 1/n. In this event, DecrementCounters() operations occur

at most once every k/3 stream updates. The claimed time bound

now follows from the same argument as in Theorem 2.2. □

Theorem 2.6. For any constant c > 2, there is an ℓ = O (logn)
such that the following holds with probability at least 1 − 1/n. For
any j < k/c , Algorithm 4 will return, for each i ∈ [n], and estimate
ˆfi satisfying 0 ≤ fi − ˆfi ≤ N res(j)/(k/c − j).

Proof. It is easy to see that the proof of Theorem 2.3 applies

even if Algorithm 4 decrements all counters by at most ck∗ rather
than exactly ck∗ . Hence, it suffices to show that for any constant

c > 2, there is an ℓ = O (logn) such that with probability at least

1 − 1/n2, the median c∗ of ℓ counters sampled from {c (i) : i ∈ T }
satisfies c∗ ≤ c (i) for at least k/c values of i ∈ T . Indeed, this
property holds by standard Chernoff bounds [37, Theorem 4.4]. By

combining this property with a union bound over all Decrement-

Counters() operations, we conclude that with probability at least

1− 1/n, Algorithm 4 always decrements all counters by at most ck∗
where k∗ = k/c . □

2.3 Additional Implementation Details
A highly optimized implementation of Algorithm 4 in Java has

been incorporated into an open source library [40] that is widely

deployed within Yahoo and several other companies. We briefly

present additional implementation details not covered above.

2.3.1 Variant of Function Estimate(). In our implementation, we

modified the function Estimate() compared to the pseudocode of Al-

gorithm 4. Specifically, our implementation keeps a variable offset

that tracks the sum of all decrement values c∗ over all Decrement-

Counters() operations. If i is assigned a counter, then our imple-

mentation’s estimate
ˆfi for fi is c (i) + offset. If i is not assigned a

counter, the returned estimate is 0.

This represents a hybrid of the estimates returned by the MG
and SS algorithms (cf. Algorithms 1 and 2 respectively). It behaves

analogously to the MG algorithm on items i not assigned counters

– outputting 0 in this case – and (as explained below) analogously

to the SS algorithm on items i that are assigned counters.

Our reasoning for this choice is as follows. Before theMG and SS
algorithms were realized to be isomorphic [2], Cormode and Had-

jieleftheriou [14] found that the estimates returned by SS were su-

perior in practice, despite the fact that the worst-case error bounds

Algorithm 4 The Reduce-By-Sample-Median (SMED) Extension of the

MG Algorithm to Weighted Updates

1: // Notation: k∗ is a parameter of the algorithm

2: Algorithm: Initial-Algorithm(k):

3: T ← ∅ // T is set of items assigned a counter

4: Function Update(i, ∆):
5: if i ∈ T :
6: c (i) ← c (i) + ∆
7: else if |T | < k :
8: T = T ∪ {i }
9: c (i) ← c (i) + ∆
10: else :
11: DecrementCounters()

12: if ∆ ≥ c∗ // See Line 17 for definition of c∗

13: T = T ∪ {i } // |T | ≤ k∗ + 1 < k after this line

14: c (i) ← c (i) + ∆ − c∗

15: Function DecrementCounters():

16: // Notation: ℓ is a parameter

17: // Randomly sample ℓ counters from T
// and let c∗ be the median of the samples.

18: for all j ∈ T :
19: c (j) = c (j) − c∗

20: if c (j) ≤ 0:

21: T = T \ {j }
22: Function Estimate(i):
23: if i ∈ T :
24: return c (i)
25: else
26: return 0

for both algorithms are essentially identical. The reason for this is

that the SS estimates are “more aggressive” – in particular, whereas

theMG algorithm will always strictly underestimate the frequency

of an item (unless fewer than k items appear in the stream), the

SS algorithm may well output exactly correct estimates of frequent

items. The estimates returned by our actual implementation inherit

this desirable property of SS.
On the other hand, the SS algorithm has the undesirable property

that it will always strictly overestimate the frequency of an item that

does not appear in the stream (unless fewer than k items appear

in the stream), whereas theMG algorithm always outputs exactly

correct estimates (namely, 0) for such items. The estimates returned

by our actual implementation inherit this desirable property of

MG.
We remark that, likeMG and SS themselves, our implementation

is also capable of outputting tight upper and lower bounds on the

frequency of i . The upper bound is c (i) + offset, while the lower

bound is c (i) (or 0 if i is not assigned a counter).

2.3.2 Choice of ℓ. We performed numerical calculations estab-

lishing that the choice ℓ = 1024 guarantees that the following holds.

For streams of length N ≤ 10
20
, Algorithm 4, with probability at

least 1 − 1.5 × 10−8, returns estimates
ˆfi for all i ∈ [m] satisfying

the following error guarantee: 0 ≤ fi − ˆfi ≤ N res(j)/(.33 · k − j).
Hence, we set ℓ = 1024 in our implementation.

2.3.3 Hash Table and Exact Space Usage. We experimented with

a wide variety of hash table implementations for storing counters.

While many performed similarly, we discovered that a good choice

IMC ’17, November 1–3, 2017, London, United Kingdom D. Anderson et al.

is to use linear probing. Specifically, keys and values are kept in

two parallel arrays of length L ≈ 4k/3 (the length is rounded up

to the closest power of two to ensure fast modular arithmetic on

indices into the arrays, in case a probe “falls off the end” of the

array). We keep an additional array of state variables, where a state

of 0 indicates that a cell is unoccupied, and a positive state equals

the distance (plus one) of the stored key x from its preferred cell

h(x), where h : [m]→ L is the hash function. Insertion and lookup

operations are processed as in standard linear probing: the imple-

mentation successively looks at cells h(x),h(x) + 1(mod L), . . . ,
until the key is found or an empty cell is discovered.

The other functionality that must be supported by our hash table

is decrementing all values by a specified amount c∗ and deleting all
that become non-positive. This is done by starting at the end (i.e.,

largest index) of a run (i.e., a contiguous sequence) of occupied cells;

each time a non-positive value is identified, the implementation

deletes it, and then works its way toward the end of the run, shifting

keys and values forward as necessary to ensure that all future

lookup and insert operations behave correctly.

State variables need only consist of 2 bytes with overwhelming

probability (we performed numerical calculations showing that

when k ≤ 2
32

and L = 4k/3, the probability that at any given time a

state variable exceeds 2
14

is at most 10
−250

). Hence, assuming item

identifiers and approximate counts are 8 bytes each, and that 4k/3
is a power of 2, our implementation uses 18 · (4/3) ·k = 24 ·k bytes,

plus a small constant number of additional bytes.

3 MERGING SUMMARIES
An extremely important functionality in real systems is the ability

to efficiently merge the summaries of separate data sets (via an

arbitrary aggregation tree) to obtain a summary of the union of

the data sets, without increasing the size of the summary or its

approximation error. This mergeability property enables a wide

variety of scenarios. In addition to the settings described in Section

1.1, the following additional applications make essential use of

mergeability.

Consider a system that keeps a separate summary for many

subsets of a large dataset. This might occur if, e.g., a company keeps

a separate summary for data obtained in each 1-hour period over

the course of several years. The company may further subdivide

the data by, say, geographic region or other attributes. At query

time, an analyst can specify which data are of interest (e.g., the

analyst may be interested in users from a given state who used the

company’s service in a given 48-hour window). The summaries can

then be seamlessly merged to answer approximate queries about

the data of interest. In this important example, merging is occurring

at query time, and millions or billions of summaries may need to

be merged to answer the query. Hence, merging must be extremely

efficient, justifying our focus in this section on developing a highly

optimized merging procedure.

As a final example, consider multiple datasets that are geographi-

cally distributed. It may be infeasible to transmit the entirety of any

one of the datasets to a central machine. If an analyst is interested

in the union of the datasets, mergeable summaries enable each

dataset to be summarized separately, and merely the summaries

transmitted to one machine.

3.1 Earlier Merging Procedures
The Procedure of Berinde et al. [6]. The merging procedure we

describe in this section is highly similar to a proposal of Berinde et al.

[6], who described their proposal in the context of arbitrary counter-

based summaries. Berinde et al. suggested that, in order to merge

many summaries, one should treat each counter in each summary

as a stream update (so a counter c (i) assigned to item i is treated as a
stream update (i, c (i))) and feed all the stream updates into a single

new summary. They proved that if the counter-based algorithm

when run on a single stream can return estimated frequencies
ˆfi for

each i satisfying | fi − ˆfi | ≤ N res(j)/(k − j), then the output of the

merging procedure can return estimated frequencies
ˆfi satisfying

| fi − ˆfi | ≤ 3 · N res(j)/(k − 2j), (5)

where the quantities fi and N res(j)
in Equation (5) refer to the

concatenation of the streams that were fed into each of summaries

being merged.

The proposal and accuracy analysis of Berinde et al. [6] have

two significant limitations. First, the accuracy analysis only guar-

antees that the merged summary has at most triple the error of the
constituent summaries. Second, as pointed out in [2], when merg-

ing many summaries, the proposal does not support an arbitrary

aggregation tree (i.e., it is not possible to repeatedly merge pairs

of summaries in an arbitrary manner until a single summary is

obtained). Rather, each summary must be merged “into” a single

output summary. This second limitation is really a different mani-

festation of the first: the reason that Berinde et al. cannot support

an arbitrary aggregation tree is that their error analysis cannot rule

out the possibility that each edge in the tree causes a tripling of the

error. Hence, the final error bound for an arbitrary aggregation tree

would be exponentially large in the number of summaries being

merged.

The merging procedure we propose in this section is closely

related to that Berinde et al. However, we address both of the limita-

tions above by giving a much tighter error analysis. Moreover, since

our merging procedure uses our algorithms’ Update(i,∆) procedure
as a black box, it inherits the benefits of our Update(i,∆) procedure
(e.g., amortized constant runtime) relative to prior algorithms for

weighted streams.

Our procedure has the additional advantage of not requiring

the allocation of a new output summary for a merge; rather, when

merging two summary via our procedure, we seamlessly update the

state of one of the two summaries and output the result (discarding

the other summary once merging is complete).

We mention in passing that other merging procedures for fre-

quent items algorithms have been proposed [31, 32], but they pro-

vide weaker error guarantees than Berinde et al. (i.e., the error

increases with each merge step).

The Procedure of Agarwal et al. [2]. Agarwal et al. [2] provided a

merging procedure for theMG and SS algorithms that does support

arbitrary aggregation trees. In this discussion, we focus on the case

of the MG algorithm for simplicity. To merge two MG summaries

with k counters each, their merging procedure works as follows.

The counters from each summary are first added together (so if an

item i is assigned a counter in both summaries, its count is set to

A High-Performance Algorithm IMC ’17, November 1–3, 2017, London, United Kingdom

the sum of the two counters). The counters are then sorted, and all

but the top k counters are discarded.

Suppose that for j = {1, 2}, the j’th MG summary is a summary

of a stream σj of weighted length Nj , and let N = N1 + N2 denote

the weighted length of the concatenated stream σ := σ1 ◦ σ2. Let
fi denote the frequency of i in σ . Agarwal et al. proved that the

resulting summary returns estimates
ˆfi for all i such that:

0 ≤ fi − ˆfi ≤ (N −C)/(k + 1), (6)

where C is the sum of the counters in the merged summary.

Implementing the Merging Procedure. The natural way to implement

the merging procedure of Agarwal et al. is the following. First,

allocate a new hash table capable of storing up to 2k counters.

Second, iterate through the counters (i, c (i)) in both summaries,

adding all (i, c (i)) pairs into the new hash table (if key i already
resides in the hash table, then add c (i) to its value). This has the

effect of summing counters. Third, sort the (i, c (i)) pairs in the

hash table by c (i). Fourth, create a new summary of capacity k and

insert the top k (i, c (i)) pairs into the summary, discarding earlier

summaries and the intermediate hash table used for merging.

We observe that an alternative implementation of the third and

fourth steps above is to use Quickselect [27] to identify the kth
largest counter ck in the hash table. One then makes an additional

pass through the counters, identifying all that are at least as large as

ck , and feeding each into the new summary. This implementation

runs in time O (k).

Disadvantages. This merging procedure has a number of disadvan-

tages in practice. First, it requires allocating a hash table of capacity

2k to add the counters, which potentially doubles the combined

space usage of the two constituent MG summaries. Second, the

original sorting-based proposal of Agarwal et al. requires Ω(k logk)
time. As we observe above, one can use Quickselect to reduce the

runtime to O (k), but the Big-Oh notation hides a substantial con-

stant factor, and running Quickselect on up to 2k counters is a

runtime bottleneck in practice. Third, while this merging procedure

easily extends to the case where the two summaries have differ-

ing numbers of counters (say k1 and k2 counters respectively), it
requires Ω((k1 + k2) · log(k1 + k2)) time. One can hope to achieve

O (min(k1,k2)) time.

In this section, we give a different merging procedure that mit-

igates these disadvantages. Our procedure applies generically to

any counter-based algorithm that can efficiently handle weighted
updates. We now describe the procedure in this level of generality.

The Procedure of Cafaro and Pulimeno [10]. Building on earlier

work of Cafaro and Tempesta [11], Cafaro and Pulimeno propose a

variant of the merging procedure of Agarwal et al. [2], and prove

that it satisfies a slightly stronger error guarantee than that of Agar-

wal et al. [2]. However, Cafaro and Tempesta’s proposal suffers

from the similar downsides to that of Agarwal et al.: it requires allo-

cating a hash table of capacity 2k to add counters, and it inherently

requires sorting counters (although [10] states that the procedure

runs in time O (k), this appears to assume that the counters are

already sorted by count).

Algorithm 5 Our Merge Procedure

1: // Notation: T1, T2 are both counter-based summaries,

2: // i.e., T2 is a set of items i and approximate counts c (i), and
3: // T1 comes with an UpdateT1 () procedure.
4: Function: Merge(T1, T2):
5: for each i ∈ T2:
6: UpdateT1 (i, c (i))
7: return T1

3.2 Our Merging Procedure
Description of our Merging Procedure. For simplicity, let us as-

sume that both summaries to be merged are configured to store

k counters. Let k ′ denote the number of (non-zero) counters in

the second summary to be merged. In our merging procedure, the

k ′ non-zero counters from the second summary are treated as k ′

stream updates, and each stream update is fed into the first sum-

mary using the summaries Update() procedure. That is, for each

item i assigned a counter c (i) in the second summary, then the func-

tion Update(i, c (i)) is called on the first summary. See Algorithm 5

for pseudocode.

Space Usage. Clearly, this merging procedure avoids the 2k extra

words of space (on top of the space to store the two summaries

being merged) required by the merging procedure of Agarwal et

al. [2]. It uses no more space than that already used by the two

summaries being merged, seamlessly updating the state of one

of the summaries, outputting the result, and discarding the other

summary upon completion.

Speed. We can guarantee that our merging procedure runs in

time O (k). This follows from the fact that the Update() operation

for our algorithms take O (1) time unless a DecrementCounters()

operation is triggered, and a DecrementCounters() operation takes

O (k) time and is triggered at most once every Ω(k) stream updates.

One might hope that if k ′ ≪ k (which will be the case, e.g., if the

second summary is significantly smaller than the first), then the

merging procedure runs in O (k ′) time. Unfortunately, we cannot

quite provide this guarantee. For example, if the second summary

contains only a single nonzero counter c (i), and calling Update(i, c (i))
on the first summary triggers a DecrementCounters() operation,

then the merging procedure will take Θ(k) time. However, we can

guarantee the following. If Ω(k/k ′) summaries of size at most k ′

are merged into a single summary of size k , then the amortized

time per merge is O (k ′).

Error. We now show that our merging procedure, when applied

to our MED algorithm (Algorithm 3) satisfies an error property

analogous to that established by Agarwal et al. (cf. Equation (6)).

Using similar ideas, it can be shown that our merging procedure

satisfies the analogous guarantees when applied to Algorithm 4,

but we omit this result for brevity. While our merging procedure

satisfies many desirable properties compared to that of Agarwal et

al. [2], our error analysis exploits the same key ideas as theirs.

Theorem 3.1. Suppose that for j = {1, 2}, we run Algorithm 3 with
k counters on a stream σj of weighted length Nj . Let N = N1 + N2

denote the weighted length of the concatenated stream σ := σ1 ◦ σ2.
Let fi denote the frequency of i in σ . Then after applying the merging

IMC ’17, November 1–3, 2017, London, United Kingdom D. Anderson et al.

procedure of Algorithm 5, the resulting summary can, for any i , return
an estimate ˆfi satisfying

0 ≤ fi − ˆfi ≤ (N −C)/k∗, (7)

where C is the sum of the counter values in the merged summary. In
fact, for any j < k∗, it holds that

0 ≤ fi − ˆfi ≤ N res(j)/k∗. (8)

Proof. Clearly 0 ≤ fi − ˆfi for all i . We now turn to establishing

that fi − ˆfi ≤ (N −C)/k∗.

For j ∈ {1, 2}, let ˆfi, j denote the estimate for i returned by sum-

mary j after being run on σj , and let fi, j denote the true frequency

of item i in σj . Let Ej := maxi fi, j − ˆfi, j , and let c (j) denote the
sum of the counter values in summary j after being run on σj .

Let E = maxi fi − ˆfi denote the maximum error in any estimate

returned by the merged summary. Finally, let S denote the sum

of all values ck∗ that are computed during DecrementCounters()

operations called during the merge procedure.

It is clear that E ≤ E1 + E2 + S . By Lemma 2.4,

E ≤ (N1 −C1)/k
∗ + (N2 −C2)/k

∗ + S . (9)

Recall from the proof of Lemma 2.4 that any DecrementCounters()

operation decreases at least k∗ counters by ck∗ . Hence, S ≤ (C1 +

C2 − C)/k
∗
. Combining this with Equation (9), we conclude that

E ≤ (N1 − C1)/k
∗ + (N2 − C2)/k

∗ + (C1 + C2 − C)/k∗ = (N1 +

N2 − C)/k
∗ = (N − C)/k∗, establishing Equation (7). To see that

Equation (8) follows from Equation (7), use the same argument

from the proof of Theorem 2.3 (as the proof of Theorem 2.3 showed

that the desired tail guarantee follows in a black box manner from

Lemma 2.4). □

We remark that a final advantage of our merging procedure

is that it does not require significant additional code on top of

the streaming algorithm itself: it simply invokes the streaming

algorithm’s Update() procedure in a black-box manner.

Note. A subtlety regarding implementations of our proposed merg-

ing procedure is as follows. If counters are stored in hash tables,

then the performance guarantees of the hash table assume that hash

values are (roughly) uniformly distributed throughout the table.

If our merge procedure is used to merge two summaries whose

hash tables use the same hash function, then care must be taken

to ensure that this property continues to hold. For example, if one

iterates through the second summary’s hash table from front to

back, calling Update(i, c (i)) on the first summary for each counter

(i, c (i)) encountered, then one may “overpopulate” the front of the

first summary’s hash table.

One avoids this issue entirely if the summaries choose their hash

functions independently of each other. Even for summaries that

do use the same hash function, this issue can be addressed by, say,

iterating through the second summary’s counters in a random order.

4 EXPERIMENTS
The goal of this section is to investigate three issues. First, we

compare our main algorithm SMED to alternatives: the proposals

RBMC and MHE of prior work, and a variant of SMED that we

call SMIN. The difference between SMIN and SMED is that the

DecrementCounters() operation of SMIN decrements all counters

by the sample minimum counter value, instead of the sample me-

dian value. Notice that SMIN is identical to RBMC, except that
the DecrementCounters() operation of RBMC decrements by the

global minimum counter value, while SMIN decrements by the

minimum counter value in a sample of size ℓ = 1024.

We find that SMED is significantly faster than the the algorithms

of prior work (5.0x-8.3x faster thanMHE and up to 32.8x faster than

RBMC). While it is not quite as accurate as MHE or RBMC for a

given amount of memory, the maximum error of SMED is at most

30% larger than that of MHE, and less than 2.5x that of RBMC and

SMIN (the latter two algorithms had nearly identical error on the

datasets used in our experiments). Moreover, the increased error of

SMED relative to alternatives can be overcome, while simultane-

ously decreasing runtime, by increasing the number of counters by

a small factor (less than 2x). This is entirely expected, as our error

analysis (cf. Theorems 2.3 and 2.6) indicate that for sufficiently large

settings of the parameter ℓ, SMED with k counters has error that

is no worse than RBMC with ≈ k/2 counters. Hence, we find that

our novel SMED algorithm is the preferable option, except possibly

in settings where space and accuracy are paramount.

Even in settings in which space and accuracy are paramount,

we find that on the datasets with which we experimented, the

preferable solution is our novel algorithm SMIN. For a given space

bound, SMIN achieves error nearly identical to RBMC (and much

better thanMHE), with far superior speed.

Second, our main algorithm SMED (cf. Algorithm 4) naturally

allows for a smooth tradeoff between error and speed as follows.

While SMED itself implements the DecrementCounters() proce-

dure by sampling many counters and decrementing by the sample

median, one could instead decrease by a different sample quan-

tile (at the extreme end is SMIN, which decrements by the sample

minimum). A larger decrement amount increases the error, but

ensures that DecrementCounters() operations occur less frequently,

and hence speeds up the algorithm. We investigate this tradeoff on

real and synthetic datasets, and find that decrementing by sample

medians is indeed an attractive point on this tradeoff curve.

Third, we compare our merging procedure to prior work [2],

and find that ours is significantly faster (up to 12x faster than a

straightforward implementation of prior work [2]) while using less

than half the space.

4.1 Details
All experiments were run on a machine runningWindows 10 with a

Intel Core i5-6600K 3.5GHz Quad-Core Processor, (2 x 8GB) DDR4-

2666 Memory, and a 500GB SSD. Test data was generated from

the CAIDA Anonymized Internet Traces 2016 Dataset [1]. The first

eighteen packet capture files in the dataset were chosen. These were

then preprocessed into updates of the form (ai ,∆i), where ai is the
source IP with decimal points excluded, and ∆i is the packet size in
bits. These eighteen preprocessed streams were then concatenated

into one larger stream. The stream length wasn ≈ 585.3 million and

the weighted stream length was N :=
∑n
i=1 ∆i ≈ 32.4 × 1010. The

total size on the packet captures was 34.0 GB. Since the data came

from an IPv4 packet capture, the universe size ism = 2
32
. Although

IPv4 addresses can be stored with 32 bits, our implementations, for

purposes of generality, use a long long data type (64 bits) to store

A High-Performance Algorithm IMC ’17, November 1–3, 2017, London, United Kingdom

Figure 1: Runtime Comparison of Four Algorithms

each. The implementations can be trivially modified to only use 32

bits per identifier if desired.

The number of unique identifiers in the packet stream was ap-

proximately 24.7 million. Given this many unique identifiers, the

trivial (exact) algorithm that keeps a hash table storing an exact

count for each unique IP address in the stream will use hundreds

of megabytes of space. Our new algorithms use less than 1% of the

space of this trivial solution so long as they are run with less than

about 247,000 counters.

We also ran experiments on synthetic data generated by a Zipfian

distribution with various skewness parameters. The algorithms

performed entirely similarly on these datasets and the packet trace

data. Hence, for brevity we only present our experimental results

on the packet trace data.

4.2 Properties Exhibited By All Algorithms
For any fixed stream, as the number of counters k used in a counter-

based algorithm increases, the algorithm grows closer and closer

to being exact, and the number of DecrementCount() operations

relative to the number of stream updates decreases. Hence, the

algorithms’ performances (in both speed and error) converge as the

number of counters grows. Consequently, the biggest differences

between the counter-based algorithms explored in our experiments

are observed when the number of counters is relatively small.

4.3 Comparison to Baselines
We compared our new algorithms, SMED and SMIN, to the algo-

rithms for weighted streams given in prior work,RBMC andMHE.
While RBMC, SMED, and SMIN all use the same amount of space

(in bytes) for a given number of counters k ,MHE uses additional

Figure 2: Maximum Error Comparison of Four Algorithms.
RBMC is omitted from both plots, as its error is indistin-
guishable from SMIN. For an equal number of counters k
(bottomplot), RBMC,MHE, and SMINall have indistinguish-
able maximum error, and hence only one is displayed. In-
deed, RBMCwith k counters is isomorphic toMHEwith k+1
counters, cf. Section 1.4.

space owing to the need to maintain a min-heap data structure

in addition to a hash table storing all counters. Figures 1 and 2

present both equal-space and equal-counters comparisons of the

algorithms.

For each of our five tested values of k , we ran each algorithm

10 times on the same packet stream, and all numbers reported are

averages of all 10 runs (the error and space usage for the MHE
and RBMC algorithms are deterministic functions of the stream,

so only the timings varied from run to run for these algorithms).

Figures 1 and 2 show runtime and maximum error comparisons

for the four algorithms. Only the runtime graphs contain the results

for RBMC, because the error of RBMC and SMIN were so close

as to be indistinguishable.

Comparison of SMED to Alternatives. Figure 1 demonstrates

that SMED significantly outperforms all three alternatives in terms

of runtime. For an equal amount of space, SMED was faster than

MHE by a factor of 5x-8.3x. Compared to SMIN, SMED was 3.3x-

13.3x faster, and compared to RBMC, SMED was 7.7x-32.8x times

faster. As indicated in Section 4.2, the smaller the number of coun-

ters k , the faster SMED is relative to the alternatives.

Figure 2 demonstrates that for, an equal amount of space, the

maximum error of SMED is only 13%-30% larger than that of MHE.
RBMC and SMIN both have significantly less error than SMED

IMC ’17, November 1–3, 2017, London, United Kingdom D. Anderson et al.

and MHE for a given amount of space. However, the maximum

error of SMED is never more than 2.5x that of RBMC and SMIN.
Moreover, the figure demonstrates that this increased error of

SMED relative to alternatives can be overcome (while simulta-

neously decreasing runtime) by increasing the number of counters

(and hence space consumption) by a factor of less than 2x.

In conclusion, SMED appears to be the most attractive option,

except in settings where space and error are significantly more im-

portant than speed. In these settings, our new SMIN algorithm is

more attractive than the alternatives from prior work, namelyMHE
and RBMC (we note that Section 4.4 below demonstrates that it

is possible to smoothly interpolate between SMED and SMIN, ob-
taining different tradeoffs between speed and error. Exactly which

tradeoff is preferable depends on the relative importance of speed

vs. error in the application domain). Figures 1 and 2 demonstrate

that for an equal amount of space, SMIN is about 2.3-2.5x faster

than RBMC, and their error behaviors are indistinguishable. For

an equal amount of space, SMIN is never more than 1.6x slower

thenMHE and is actually faster thanMHE for large k ; meanwhile,

the error of MHE is 1.8x-1.9x that of SMIN.

4.4 Tradeoffs Between Speed and Error
Recall that SMED takes a sample of the keys currently being stored

in the hash table, uses Quickselect [27] to compute the median of

the sample, then decrements all counters by this quantity. We ran

tests on a large number of variations of this novel algorithm, where

a variation might decrement by other sample quantiles rather than

the sample median. Overall, we tested fifty total variations, ranging

from the 0th quantile to the 98th quantile. Note that decrementing

by the 0th quantile yields the algorithm SMIN.
The top plot in Figure 3 shows the runtime in seconds for each

setting of k , and how it varies with the quantile used to determine

decrements. The runtimes for SMIN and a few other low quantiles

are not displayed so as not to distort the graph, as those runtimes

are significantly larger than the rest. This is expected, as the less

aggressively DecrementCounters() decreases counter values, the

greater the number of DecrementCounters() operations that occur.

From the 0th quantile (SMIN) to the 50th quantile (SMED), runtime

drops heavily (specifically, as indicated previously in Section 4.3,

SMED is 3.3x-13.3x faster than SMIN, depending on number of

counters k .) Trivially the best runtimes are achieved by using very

high quantiles in the DecrementCounters() operation, but the “re-

turns” are diminishing: using the 98th quantile yields an algorithm

that is only 20-30% faster than using the the 20th quantile.

The middle and bottom plot in Figure 3 displays the relationship

between quantile and maximum error. As expected, the trend here

is that as quantile increases, error increases. However, the error

increases relatively slowly as the quantile increases from 0 to about

70, before shooting up rapidly thereafter. We conclude that, on

the datasets tested, any quantile less than roughly 70 represents a

reasonable choice in the tradeoff curve between speed and error;

exactly which point on the curve is most desirable will depend on

the relative importance of speed vs. error in an application.

We believe, however, that it is wise to always use a quantile

of roughly 10 or higher (i.e., we believe this is preferable to using

SMIN). Such a choice of quantile achieves almost all of the accuracy

Figure 3: Time and error of our algorithms as a function of
the quantile Used by DecrementCounters(). The middle and
bottom plots are identical, except that the bottom plot cuts
off large quantiles in order to better illustrate the error for
small quantiles.

advantages of SMIN, while coming with significantly improved

worst-case runtime bounds compared to SMIN. In particular, this

provides runtime guarantees even for data distributions that differ

substantially from any that we experimented on.

4.5 Merging
In addition to the prior tests, we also ran experiments to evaluate

our merging procedure (cf. Section 3). We compared our proposed

procedure against the proposal of Agarwal et al. [2], as well as the

variant that we proposed (cf. Section 3.1) that uses Quickselect [27]

A High-Performance Algorithm IMC ’17, November 1–3, 2017, London, United Kingdom

Figure 4: Speed of Our Merge Procedure Compared to Prior
Work. ACH+13 denotes a direct implementation of themerg-
ing procedure of Agarwal et al. [2]. Hoa61 denotes our pro-
posed Quickselect-based implementation of the procedure
of [2] (cf. Section 3.1).

rather than sorting to identify the kth largest counter after “adding”

the counters from the two sketches being merged. Recall that our

merging procedure uses the Update() operation of a counter-based

algorithm as a black box; we tested our merging procedure using

the Update() procedure of SMED.
In each of our experiments, we merged 50 pairs of sketches,

with each sketch having a capacity of k counters. These experi-

ments require 50x the amount of raw data that is required to test

a single sketch. Hence, we “filled up” the sketches using synthetic

data streams before merging them: the streams had item identi-

fiers drawn from a Zipfian distribution with parameter α = 1.05,

and item wieghts were generated from a uniformly random distri-

bution from 1 to 10,000 (cf. [6, Section 5] for a definition of this

distribution).

As illustrated in Figure 4, when using SMED, our proposed
merging procedure runs up to 8.6x-10x faster than the procedure

of [2] (the bigger the sketch, the faster our proposed procedure is

relative to that of [2]). Our proposed merging procedure is 1.9x-2.26

faster than the Quickselect-based variant. Moreover, the error of

our merge procedure when using SMED was always within 2.5%

of the error of the procedure of [2] and the equivalent Quickselect-

based variant; owing to the small magnitude of this difference, we

do not display this error graphically.

It is worth mentioning that our proposed merge algorithm also

uses less space than the two alternatives. Both alternatives require

allocating an additional hash table of capacity 2k in order to store

all counters from both sketches, as well as an extra hash table of

capacity k to store the final merged sketch. Hence, they consume

2.5x more space than our procedure, which uses no additional space

beyond that already used by the two sketches to be merged.

5 OTHER PRIORWORK
Work of Sivaraman et al. Recent independent work of Sivaraman

et al. [42] proposes modifying the SS algorithm (cf. Section 1.3.3) as

follows. When processing a stream update (i,∆), if i is not assigned
a counter and all counters are in use, sample ℓ counters at random

(where ℓ is a design parameter), and then reassign this counter to i
and increment it by ∆. The primary motivation for this proposal is

to minimize memory accesses on each stream update, as memory

accesses are a bottleneck in network switching hardware. For ℓ =

O (1), this proposal runs in constant time per stream update, but

may have larger error than our proposals. We leave a detailed

experimental comparison of our algorithms with the proposal of

Sivaraman et al. [42] to future work.

Work of Ben-Basat et al. Recent independent work of Ben-Basat

et al. [4] also revisits the problem of identifying frequent items

in data streams, with the goal of designing algorithms that can

efficiently handle weighted updates. They give two algorithms.

The first achieves amortized constant update time. The second

modifies the first to achieve worst-case constant update time, at

the expense of constant-factor increases in space usage and update

time. (A similar transformation can be applied to our algorithms to

achieve worst-case constant update time). Ben-Basat et al. [4] do

not consider mergability of summaries.

At a very high level, the algorithms of [4] maintain two tables

of counters, an Active Table and a Passive Table. Like all counter-

based algorithms, the data structures periodically “fill up” with

counters, and small counters are then purged from the structure.

Roughly speaking, their Active table attempts to accurately track

counts of all items that have been updated since the previous purge

operation, while the Passive Table tracks counters that survived

the previous purge operation but have not been updated since. We

refer to their paper for additional details. While the algorithms of

[4] and our own work achieve similar asymptotic performance, the

full version of our paper will contain an experimental comparison

showing that the constant factors in the time and space complexity

of our implementation are smaller than the algorithms of [4].

6 CONCLUSION AND FUTURE DIRECTIONS
Wedescribed a highly optimized version ofMisra and Gries’ seminal

algorithm for estimating frequencies of items over data streams. Our

algorithm improves on two theoretical and practical aspects of prior

work. First, it handles weighted updates in amortized constant time.

Second, it uses a simple and fast method for merging summaries

that asymptotically and concretely improves on prior work even

for unweighted streams.

One direction for future work is to incorporate our optimized

algorithms into more complicated streaming algorithms that use

heavy hitter algorithms as subroutines. As described in Section 1.2,

these include estimating the empirical entropy of a data stream

[12], and identifying hierarchical heavy hitters (HHHs) [5, 36].

Another direction is to explore the possibility of obtaining fur-

ther speedups by judiciously skipping some stream updates (i.e.,

dropping some stream updates altogether). This class of optimiza-

tions has previously been applied to other algorithms for com-

puting heavy hitters [8]. In addition, Ben-Basat et al. [5] recently

explored a related approach to obtain algorithms for identifying

HHHs with constant update time, showing that judiciously skip-

ping some updates offers impressive speedups with little loss in

accuracy. Whether these approaches would have a similar effect

on our algorithms (which already have constant amortized update

time) is unclear.

IMC ’17, November 1–3, 2017, London, United Kingdom D. Anderson et al.

REFERENCES
[1] 2016. The CAIDA UCSD Anonymized Internet Traces 2016 Dataset.

(2016). https://www.caida.org/data/passive/passive_2016_dataset.xml. Specific

files used: equinix-chicago.dirA.20160121-130000.UTC.anon.pcap.gz to equinix-

chicago.dirA.20160121-131800.UTC.anon.pcap.gz.

[2] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei

Wei, and Ke Yi. 2013. Mergeable summaries. ACM Trans. Database Syst. 38, 4
(2013), 26. https://doi.org/10.1145/2500128

[3] Nir Ailon, Zohar Shay Karnin, Edo Liberty, and Yoelle Maarek. 2013. Threading

machine generated email. In Sixth ACM International Conference on Web Search
and Data Mining, WSDM 2013, Rome, Italy, February 4-8, 2013. 405–414. https:
//doi.org/10.1145/2433396.2433447

[4] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2017. Optimal

elephant flow detection. arXiv preprint arXiv:1701.04021 (2017). To Appear in

IEEE INFOCOM 2017.

[5] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez

Waisbard. 2017. Constant Time Updates in Hierarchical Heavy Hitters. arXiv
preprint arXiv:1707.06778 (2017). To Appear in ACM SIGCOMM 2017.

[6] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. 2010. Space-

optimal heavy hitters with strong error bounds. ACM Trans. Database Syst. 35, 4
(2010), 26. https://doi.org/10.1145/1862919.1862923

[7] Arnab Bhattacharyya, Palash Dey, and David P. Woodruff. 2016. An Optimal

Algorithm for ℓ1-Heavy Hitters in Insertion Streams and Related Problems. In

Proceedings of PODS. 385–400. https://doi.org/10.1145/2902251.2902284

[8] Supratik Bhattacharyya, Andre Madeira, S Muthukrishnan, and Tao Ye. 2007.

How to scalably and accurately skip past streams. In Data Engineering Workshop,
2007 IEEE 23rd International Conference on. IEEE, 654–663.

[9] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff.

2016. Beating CountSketch for heavy hitters in insertion streams. In Proceedings
of STOC. 740–753. https://doi.org/10.1145/2897518.2897558

[10] Massimo Cafaro and Marco Pulimeno. 2016. Merging Frequent Summaries.. In

ICTCS. 280–285.
[11] Massimo Cafaro and Piergiulio Tempesta. 2011. Finding frequent items in parallel.

Concurrency and Computation: Practice and Experience 23, 15 (2011), 1774–1788.
[12] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. 2010. A near-

optimal algorithm for estimating the entropy of a stream. ACM Trans. Algorithms
6, 3 (2010). https://doi.org/10.1145/1798596.1798604

[13] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent

Items in Data Streams. In Proceedings of ICALP. 693–703.

[14] Graham Cormode and Marios Hadjieleftheriou. 2010. Methods for finding fre-

quent items in data streams. VLDB J. 19, 1 (2010), 3–20. https://doi.org/10.1007/
s00778-009-0172-z

[15] Graham Cormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava. 2003.

Finding hierarchical heavy hitters in data streams. In Proceedings of the 29th
international conference on Very large data bases-Volume 29. VLDB Endowment,

464–475.

[16] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. 2004.

Diamond in the Rough: Finding Hierarchical Heavy Hitters in Multi-Dimensional

Data. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Paris, France, June 13-18, 2004, Gerhard Weikum, Arnd Christian

König, and Stefan Deßloch (Eds.). ACM, 155–166. https://doi.org/10.1145/1007568.

1007588

[17] Graham Cormode and S. Muthukrishnan. 2004. An Improved Data Stream

Summary: The Count-Min Sketch and Its Applications. In Proceedings of LATIN.

29–38. https://doi.org/10.1007/978-3-540-24698-5_7

[18] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. 2002. Frequency

estimation of internet packet streams with limited space. In European Symposium
on Algorithms. Springer, 348–360.

[19] Nick Duffield, Carsten Lund, and Mikkel Thorup. 2001. Charging from sampled

network usage. In Proceedings of the 1st ACM SIGCOMMWorkshop on Internet
Measurement. ACM, 245–256.

[20] Cristian Estan, Stefan Savage, and George Varghese. 2003. Automatically inferring

patterns of resource consumption in network traffic. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications. ACM, 137–148.

[21] Cristian Estan and George Varghese. 2002. New Directions in Traffic Measure-

ment and Accounting. In Proceedings of the 2002 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (SIGCOMM
’02). ACM, New York, NY, USA, 323–336. https://doi.org/10.1145/633025.633056

[22] Wenjia Fang and Larry Peterson. 1999. Inter-AS traffic patterns and their impli-

cations. In Global Telecommunications Conference, 1999. GLOBECOM’99, Vol. 3.
IEEE, 1859–1868.

[23] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rexford,

and Fred True. 2001. Deriving traffic demands for operational IP networks:

Methodology and experience. IEEE/ACM Transactions on Networking (ToN) 9, 3
(2001), 265–280.

[24] Lukasz Golab, David DeHaan, Erik D. Demaine, Alejandro Lopez-Ortiz, and

J. Ian Munro. 2003. Identifying Frequent Items in Sliding Windows over On-

line Packet Streams. In Proceedings of the 3rd ACM SIGCOMM Conference on

Internet Measurement (IMC ’03). ACM, New York, NY, USA, 173–178. https:

//doi.org/10.1145/948205.948227

[25] Yu Gu, Andrew McCallum, and Donald F. Towsley. 2005. Detecting Anomalies in

Network Traffic Using Maximum Entropy Estimation. In Proceedings of the 5th
Internet Measurement Conference, IMC 2005, Berkeley, California, USA, October
19-21, 2005. USENIX Association, 345–350. http://www.usenix.org/events/imc05/

tech/gu.html

[26] John Hershberger, Nisheeth Shrivastava, Subhash Suri, and Csaba D Tóth. 2005.

Space complexity of hierarchical heavy hitters in multi-dimensional data streams.

In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. ACM, 338–347.

[27] C. A. R. Hoare. 1961. Algorithm 65: Find. Commun. ACM 4, 7 (July 1961), 321–322.

https://doi.org/10.1145/366622.366647

[28] Anukool Lakhina, Mark Crovella, and Christophe Diot. 2005. Mining anomalies

using traffic feature distributions. ACM SIGCOMM Computer Communication
Review 35, 4 (2005), 217–228.

[29] Edo Liberty. 2013. Simple and deterministic matrix sketching. In Proceedings of
KDD. 581–588. https://doi.org/10.1145/2487575.2487623

[30] Yuan Lin and Hongyan Liu. 2007. Separator: sifting hierarchical heavy hitters

accurately from data streams. Advanced Data Mining and Applications (2007),
170–182.

[31] Amit Manjhi, Suman Nath, and Phillip B. Gibbons. 2005. Tributaries and Deltas:

Efficient and Robust Aggregation in Sensor Network Streams. In Proceedings of
SIGMOD. 287–298. https://doi.org/10.1145/1066157.1066191

[32] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Ol-

ston. 2005. Finding (Recently) Frequent Items in Distributed Data Streams. In

Proceedings of ICDE. 767–778. https://doi.org/10.1109/ICDE.2005.68

[33] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate Frequency

Counts over Data Streams. In Proceedings of VLDB. VLDB Endowment, 346–357.

http://dl.acm.org/citation.cfm?id=1287369.1287400

[34] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Com-

putation of Frequent and Top-k Elements in Data Streams. In Proceedings of
ICDT. 398–412. https://doi.org/10.1007/978-3-540-30570-5_27

[35] J. Misra and David Gries. 1982. Finding repeated elements. Science of Computer
Programming 2, 2 (1982), 143 – 152. https://doi.org/10.1016/0167-6423(82)90012-0

[36] Michael Mitzenmacher, Thomas Steinke, and Justin Thaler. 2012. Hierarchical

Heavy Hitters with the Space Saving Algorithm. In Proceedings of ALENEX.

160–174. https://doi.org/10.1137/1.9781611972924.16

[37] Michael Mitzenmacher and Eli Upfal. 2005. Probability and computing - random-
ized algorithms and probabilistic analysis. Cambridge University Press.

[38] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. 2003. Approximate

fairness through differential dropping. ACM SIGCOMMComputer Communication
Review 33, 2 (2003), 23–39.

[39] Frederic Raspall, Sebastia Sallent, and Josep Yufera. 2006. Shared-state Sampling.

In Proceedings of the 6th ACM SIGCOMMConference on Internet Measurement (IMC
’06). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/1177080.1177082

[40] Lee Rhodes, Kevin Lang, Alexander Saydakov, Justin Thaler, Edo Liberty, and

Jon Malkin. 2015. DataSketches: A Java software library for streaming data

algorithms. Apache License, Version 2.0. (2015). https://datasketches.github.io.

[41] Vyas Sekar, Nick G Duffield, Oliver Spatscheck, Jacobus E van der Merwe, and

Hui Zhang. 2006. LADS: Large-scale Automated DDoS Detection System.. In

USENIX Annual Technical Conference, General Track. 171–184.
[42] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukr-

ishnan, and Jennifer Rexford. 2016. Smoking Out the Heavy-Hitter Flows with

HashPipe. CoRR abs/1611.04825 (2016). http://arxiv.org/abs/1611.04825 To appear

in SDN 2017.

[43] Patrick Truong and Fabrice Guillemin. 2009. Identification of heavyweight

address prefix pairs in IP traffic. In Teletraffic Congress, 2009. ITC 21 2009. 21st
International. IEEE, 1–8.

[44] Arno Wagner and Bernhard Plattner. 2005. Entropy Based Worm and Anomaly

Detection in Fast IP Networks. In 14th IEEE International Workshops on Enabling
Technologies (WETICE 2005), 13-15 June 2005, Linköping, Sweden. IEEE Computer

Society, 172–177. https://doi.org/10.1109/WETICE.2005.35

[45] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. 2005. Profiling internet

backbone traffic: behavior models and applications. In Proceedings of the ACM
SIGCOMM 2005 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications, Philadelphia, Pennsylvania, USA, August
22-26, 2005, Roch Guérin, Ramesh Govindan, and Greg Minshall (Eds.). ACM,

169–180. https://doi.org/10.1145/1080091.1080112

[46] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick G. Duffield, and Carsten Lund.

2004. Online identification of hierarchical heavy hitters: algorithms, evaluation,

and applications. In Proceedings of the 4th ACM SIGCOMM Internet Measurement
Conference, IMC 2004, Taormina, Sicily, Italy, October 25-27, 2004, Alfio Lombardo

and James F. Kurose (Eds.). ACM, 101–114. https://doi.org/10.1145/1028788.

1028802

[47] Haiquan (Chuck) Zhao, Ashwin Lall, Mitsunori Ogihara, Oliver Spatscheck, Jia

Wang, and Jun Xu. 2007. A Data Streaming Algorithm for Estimating Entropies

https://www.caida.org/data/passive/passive_2016_dataset.xml
https://doi.org/10.1145/2500128
https://doi.org/10.1145/2433396.2433447
https://doi.org/10.1145/2433396.2433447
https://doi.org/10.1145/1862919.1862923
https://doi.org/10.1145/2902251.2902284
https://doi.org/10.1145/2897518.2897558
https://doi.org/10.1145/1798596.1798604
https://doi.org/10.1007/s00778-009-0172-z
https://doi.org/10.1007/s00778-009-0172-z
https://doi.org/10.1145/1007568.1007588
https://doi.org/10.1145/1007568.1007588
https://doi.org/10.1007/978-3-540-24698-5_7
https://doi.org/10.1145/633025.633056
https://doi.org/10.1145/948205.948227
https://doi.org/10.1145/948205.948227
http://www.usenix.org/events/imc05/tech/gu.html
http://www.usenix.org/events/imc05/tech/gu.html
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/2487575.2487623
https://doi.org/10.1145/1066157.1066191
https://doi.org/10.1109/ICDE.2005.68
http://dl.acm.org/citation.cfm?id=1287369.1287400
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1016/0167-6423(82)90012-0
https://doi.org/10.1137/1.9781611972924.16
https://doi.org/10.1145/1177080.1177082
https://datasketches.github.io
http://arxiv.org/abs/1611.04825
https://doi.org/10.1109/WETICE.2005.35
https://doi.org/10.1145/1080091.1080112
https://doi.org/10.1145/1028788.1028802
https://doi.org/10.1145/1028788.1028802

A High-Performance Algorithm IMC ’17, November 1–3, 2017, London, United Kingdom

of Od Flows. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement (IMC ’07). ACM, New York, NY, USA, 279–290. https://doi.org/10.

1145/1298306.1298345

[48] Qi Zhao, Abhishek Kumar, and Jun Xu. 2005. Joint Data Streaming and Sampling

Techniques for Detection of Super Sources and Destinations. In Proceedings of

the 5th ACM SIGCOMM Conference on Internet Measurement (IMC ’05). USENIX
Association, Berkeley, CA, USA, 7–7. http://dl.acm.org/citation.cfm?id=1251086.

1251093

https://doi.org/10.1145/1298306.1298345
https://doi.org/10.1145/1298306.1298345
http://dl.acm.org/citation.cfm?id=1251086.1251093
http://dl.acm.org/citation.cfm?id=1251086.1251093

	Abstract
	1 Introduction
	1.1 Problem Statement and Applications
	1.2 Our Contributions
	1.3 Overview of Prior Work
	1.4 Isomorphism Results for Weighted Streams

	2 Our Algorithm
	2.1 An Initial Proposal
	2.2 The Final Algorithm
	2.3 Additional Implementation Details

	3 Merging Summaries
	3.1 Earlier Merging Procedures
	3.2 Our Merging Procedure

	4 Experiments
	4.1 Details
	4.2 Properties Exhibited By All Algorithms
	4.3 Comparison to Baselines
	4.4 Tradeoffs Between Speed and Error
	4.5 Merging

	5 Other Prior Work
	6 Conclusion and Future Directions
	References

