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Preface

Rapid advancements in data storage technology along with the increase in data
accessibility have paved the way for data science to become one of the
fastest-growing research and application fields. Data science revolves around
gaining insights from data, using different tools, statistical models, and machine
learning algorithms, with the goal to discover hidden patterns from the raw data. To
take on competitors, organizations need to recruit more and more skilled data
scientists to help them leverage data analytics. However, extracting useful infor-
mation has proven extremely challenging. Our conventional mathematical and
analytical methods still face difficulty in deciphering complex data systems. To
tackle this, data mining, which supports a wide range of business intelligence
applications, has opened up exciting opportunities for discovering patterns in var-
ious types of data. With the deployment of data and soft computing techniques to
scour extensive databases, diverse unique and meaningful patterns can be found,
which otherwise remain unknown. As a result, new theories, algorithms, and
technologies are continually being developed to run advanced statistical interpre-
tations. Additionally, soft computing techniques can handle imprecision, uncer-
tainty, partial truth, and approximation to achieve tractability, robustness, and low
solution cost. The techniques, individually or in an integrated manner, are turning
out to be strong candidates for performing tasks in the area of data mining, busi-
ness, decision support systems, supply chain management, medicine, financial
systems, automotive systems and manufacturing, image processing, etc. It provides
the challenge of transforming data into innovative solutions perceived as a new
value by customers.

Following the success of our four previous SCDM conferences in 2014 until
2020, we were glad to continue this journey of achievements with our fifth inter-
national conference. This year, the SCDM 2022 was held in a virtual space on May
30–31, 2022. It allowed remote participants to access live, interactive networking
opportunities, and content, no matter where they are located. We received 61 paper
submissions from 14 countries around the world. The conference also approved one
special session that is Emerging Trends in Intelligent Systems and Data Science.
Each paper in regular submission and special session was screened by the
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proceeding’s chair and carefully peer-reviewed by at least three experts from the
program committee. Finally, only 39 papers with the highest quality and merit were
accepted for oral presentation and publication in this volume proceeding, giving an
acceptance rate of 64%.

On behalf of SCDM 2022, we would like to express our highest gratitude to the
conference organizer; Faculty of Computer Science & Information Technology,
UTHM, and also to the Soft Computing & Data Mining research group, Steering
Committee, Conference Chair, Program Committee Chair, Organizing Chairs,
Special Session Chair, all Program and Reviewer Committee members for their
valuable efforts in the review process that helped us to guarantee the highest quality
of the selected papers for the conference.

We would also like to express our thanks to the keynote speakers, Prof. Dr Farid
Meziane from the University of Derby, England; Dr Afnizanfaizal Abdullah from
Aerodyne Group, Malaysia; and Prof. Dr Abdul Samad Hasan Basari from
Universiti Tun Hussein Onn Malaysia. Our special thanks are also due to Dr
Thomas Ditzinger for publishing the proceeding in Lecture Notes in Networks and
Systems, Springer. We wish to thank the members of the organizing committee for
their very substantial work, especially those who played essential roles.

Lastly, we would like to give the warmest of thanks to all the authors for their
valuable input as well as all the participants for their enthusiastic engagement. We
thank you for your time, service, and for making this conference as successful as
it is.

Rozaida Ghazali
Nazri Mohd Nawi
Mustafa Mat Deris
Jemal H. Abawajy

Nureize Arbaiy
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Fast Hard Clustering Based on Soft Set
Multinomial Distribution Function

Iwan Tri Riyadi Yanto1,4(B), Ririn Setiyowati2, Mustafa Mat Deris3,
and Norhalina Senan4

1 Department of Information Systems, University Ahmad Dahlan, Yogyakarta, Indonesia
yanto.itr@is.uad.ac.id

2 Department of Mathematics, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan,
Surakarta, Indonesia

ririnsetiyowati@staff.uns.ac.id
3 Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia,

86400 Parit Raja, Batu Pahat, Johor, Malaysia
mmustafa@uthm.edu.my

4 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn
Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

halina@uthm.edu.my

Abstract. Categorical data clustering is still an issue due to difficul-
ties/complexities of measuring the similarity of data. Several approaches have
been introduced and recently the centroid-based approaches were introduced to
reduce the complexities of the similarity of categorical data. However, those tech-
niques still produce high computational times. In this paper, we proposed a clus-
tering technique based on soft set theory for categorical data via multinomial
distribution called Hard Clustering using Soft Set based on Multinomial Distri-
bution Function (HCSS). The data is represented as a multi soft set where every
soft set have its probability to be a member of the clusters. Firstly, the corrected
proof is shown mathematically. Then, the experiment is conducted to evaluate the
processing times, purity and rand index using benchmarks datasets. The experi-
ment results show that the proposed approach have improve the processing times
up to 95.03% by not compromising the purity and rand index as compared with
baseline techniques.

Keywords: Clustering · Categorical data · Multi soft set · Multinomial
distribution function

List of Symbols and Abbreviations

S: Information system/information Table
S{0,1}: System with value {0, 1}
U : Universe
|U |: Cardinality of U
u: Object of U
A: Set of Attribute/Variables
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4 I. T. R. Yanto et al.

a: Subset of attribute
E: Parameter in soft set
i: Index i
j: Index j
k: Indek k
l: Index l
e: Subset of parameter
V : Domain Value set
Va: Domain (values set) of variable a
f : Information Function
F : Maps parameter function
y: Object
P(U ): Power of Universe
(F,A): Soft set
F(a): Soft set of parameter a
C(F,E): Class soft set
P: Probability
pi: Probability for each trial i
f (x, ak): Probability mass function
ni,Ni: Number of Trial i
λ: Probability of multinomial distribution
Ck : Cluster k
K : Number of clusters
zik : Indicator function
CML(z, λ): Conditional maximum likelihood function
MaximizeLCML(z, λ): Maximizing the log-likelihood function
LCML(z, λ,w1,w2): Lagrange function
w1: Lagrange multiplier constrains 1
w2: Lagrange multiplier constrains 2
HCSS: Hard Clustering using Soft Set based on Multinomial Distribu-

tion Function

1 Introduction

Clustering is the process of partitioning data sets frommultiple variables into groups. The
clustering problem often arises in the fields like image processing [1], pattern recognition
[2], control system [3]. Until now, the most popular algorithm from various clustering
algorithms that have been developed is k-means algorithm [2, 4, 5]. It produces efficiency
and effectiveness in clustering with a large amount of data sets. However, k-means
clustering algorithmunable to solvedata sets that has categorical variables. The algorithm
is only able to minimize a numerical cost function. Nevertheless, the k-means clustering
algorithmwas improved byHuang [4] into the k-modes clustering algorithm to eliminate
the numeric-only limitation. Since then, the k-modes algorithms began to make major
improvement such as the improvement of k-modes clustering using new dissimilarity



Fast Hard Clustering Based on Soft Set Multinomial Distribution Function 5

measures [6–8] and k-modes algorithm based on fuzzy set [9, 10]. Another algorithms
least sum of square based for non-parametric approach clustering has been discussed in
[11–14].

Due to its relatively good performance, some improved versions of k-modes [15–17]
have been proposed using more effective dissimilarity measurements to distinguish the
importance of different attribute values. Furthermore, Kim et al. [18] proposed the use
of fuzzy centroids approach to upgrade the efficiency of fuzzy k-modes. It has been
improved by [19] to handle mix data numerical and categorical data based on genetic
algorithm. Also, the fast clustering is still in concern currently especially in large dataset
[3, 20, 21]. Another problem in categorical data is there are no inherent distance measure
object to another object. The clustering algorithms developed for managing numerical
data cannot directly be used to cluster categorical data [11]. Thus, the challenging of
categorical data clustering is more than the numerical. Since categorical data is reg-
ularly watched as tallies coming about from a settled number of trials in which each
trial comprises of making one determination from a prespecified set of categories. The
categorical data can be assumed as from trial independent following the multinomial
distribution. Thus, the parametric approach is more suitable for categorical data [22]. In
[23] discussed some of parametric approach for categorical data clustering. However,
almost all categorical data clustering techniques listed in [19] represent binary data sets.
The problemwith the aforementioned methods is that they have a long computation time
and a low cluster purity.

On the other hand, categorical data have multi-valued attribute where it can be
represented as a multi soft set [24]. The theory of soft set proposed by Molodtsov [25] is
a new method for dealing with uncertainties in data. Some exiting clustering techniques
based on soft set theory have been proposed in [26–28]. When compared to the theories
of fuzzy set, probability, and interval mathematics, one of the key advantages of soft
set theory is that it is free of the insufficiency of the parameterization tools. Whereas,
the concept of multi-soft sets proposed by [24] is used for a multi-valued information
systems to be applied to the categorical data without representing data in the binary
values [24]. Thus, we would like to propose a Fast Hard Clustering based on Soft Set
Multinomial Distribution Function to cluster the categorical data.

The rest of the paper is organized as follows Sect. 2 describes related works on
information system, soft set, multinomial distribution. Section 3 constructs the mathe-
matical modelling of the problem and proof the solution mathematically. Section 4 runs
the computation experiment on data set. Finally, we conclude our work in Sect. 5.

2 Related Works

This section describes the basic of Information system, soft set theory and multinomial
distribution.

2.1 Information System

Let’s tuple S = (U ,A,V , f ), where U represents the universe of objects, A be a set of
variables or parameters, V is a domain (values set) of variable a ⊂ A and the information
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function is a total function as in Eq. (1) such that f (u, a) ∈ Va, ∀(u,a)∈U×A.

f : U × A → V . (1)

Definition 1. Given S = (U ,A,V , f ) as an information system. Suppose that a ∈ A,Va

= {0, 1}, then S is a bivalued information system, and can be defined as S{0,1}.

S{0,1} = (
U ,A,V{0,1}, f

)
. (2)

Obviously, for every u ∈ U , f (u, a) ∈ {0, 1}, for every ai ∈ A and v ∈ V , the map
avi of U is avi : U → {0, 1}, such that

avi =
{
1 f (u, a) = v
0 otherwise

. (3)

2.2 Soft Set Theory

Soft set [25, 26] is a mathematical method for dealing with uncertainty via appropriate
parametrization. Let U be an universe set, E be a set of parameters and A ⊂ E,F be
the function that maps parameter A into the set of all subsets of the set U as shown in
Eq. (4).

F : A → P(U ). (4)

Then, the pair of (F,A) is called as soft set over U . ∀a∈A,F(a) be considered as the
set of a-approximate elements of (F,A).

Consider to an information system definition, a soft set can be interpreted as a special
type of information systems, termed a binary-valued information.

Proposition 1. Each Soft set (F,A) can be defined as S{0,1}.

Proof: Lets the set of universe U in (F,E) can be considered as the universe U , the set
of parameters denoted by E where A ⊂ E. Next, the function of the information system,
f is written as:

f =
{
1, u ∈ F(e)
0, u /∈ F(e)

. (5)

That is, when ui ∈ F
(
ej

)
, where ui ∈ U and ej ∈ E, then f

(
ui, ej

) = 1, otherwise
f
(
ui, ej

) = 0. To this, we have V
(
hi, ej

) = {0, 1}. Therefore, for A ⊂ E, (F,A) can be
represented as

(
U ,A,V{0,1}, f

)
. Thus, based on Definition 1, it can be defined as S{0,1}.

Definition 2. The value-class of the soft set denoted by C(F,E) are the class of all value
sets of a soft set (F,E).
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Based on Proposition 1, A Boolean-valued information system deals with the “stan-
dard” soft set. For a categorical value of information systemdenoted by S = (U ,A,V , f )
with V = ⋃

a∈A Va and Va states the domain of attribute a. The domain Va has categor-
ical values or multi values. A decomposition can be constructed from S into |A| number
of Boolean-valued information system S = (

U ,A,V{0,1}, f
)
. The decomposition of

A = {
a1, a2, · · · , a|A|

}
into the disjoint-singleton attribute {a1}, {a2}, · · · ,

{
a|A|

}
is the

basis of decomposition of S = (U ,A,V , f ).

Definition 3. [24] Suppose that S = (U ,A,V , f ) is a categorical-valued information
systemandaBoolean-valued information system is expressed byS = (

U , ai,Vai , f
)
, i =

1, 2, · · · |A| with

S = (U ,A,V , f ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S1 = (
U , a1,V{0,1}, f

) ⇔ (F, a1)
S2 = (

U , a2,V{0,1}, f
) ⇔ (F, a2)

.

.

. = (
(F, a1), (F, a2), · · · ,

(
F, a|A|

))

S|A| = (
U , a|A|,V{0,1}, f

) ⇔ (
F, a|A|

)

. (6)

Furthermore, a multi soft set over universe U representing a categorical-
valued information system S = (U ,A,V , f ) is expressed as (F,E) =(
(F, a1), (F, a2), · · · ,

(
F, a|A|

))
.

2.3 Multinomial Distribution

Ageneralization of the binomial distribution is the multinomial distribution [29]. LetsNi

be the number of results in category i in a series of independent trials a with probability
pi for each trial, where, 1 ≤ i ≤ m,

∑m
i=1pi = 1. Then for each m-tuple of non-negative

integers (n1, n2, . . . , nm) with sum n.

P(N1 = n1,N2 = n2, . . . ,Nm = nm) = n!
n1!n2! . . . nm!p

n1
1 pn22 . . . pnmm . (7)

Example 1. Suppose, there are 10 balls in a basket consists 2 red balls, 3 green balls
and 5 blue balls. From the basket, 4 balls will be selected, with replacement. Then, the
probability of drawling 2 green balls and 2 blue balls is

P(n1 = 0, n2 = 2, n3 = 2) = 4!
0!2!2!0.2

00.320.52 = 0.135.

A multinomial distribution with parameter ak = (ajlk , l = 1, . . . ,mj, j = 1, . . . , p)
can be described as the probability mass function as follows;

f (x, ak) =
∏p

j=1

∏mj

l=1

(
ajlk

)xjl
, (8)

where
∑mj

i−1 a
jl
k = 1. The generic polytomous variable j(j = 1, . . . , p) consist of

categories mj, and m = ∑p
j=1 mj indicates the total number of levels.
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3 Hard Clustering Using Soft Set Based on Multinomial
Distribution Function (HCSS)

Assume that U is a random sample size |U | from distribution f (y, λ). A partition U =
{u1, u2, . . . , u|U |} into K cluster C = {c1, c2, . . . , cK } by indicator zik where zik = 1 if
ui ∈ ck and zik = 0 if otherwise. Then, the cluster joint distribution function of U based
on cluster C can be defined as

∏K
k=1

∏
ui∈ck zik f k(y, λ).

To the pair (F,A), select it to multi-soft set over U which represents a categorical-
valued information system S = (U ,A,V , f ), with (F, a1), · · · ,

(
F, a|A|

) ⊆ (F,A) and
(
F, aj1

)
, · · ·

(
F, aj|aj|

)
⊆ (

F, aj
)
. Suppose that λikjl is a probability of ui ∈ (

F, ajl
)
into

cluster Ck , k = 1, 2, . . . ,K, i = 1, 2, . . . , |U |, j = 1, 2, . . . , |A| and l = 1, 2, . . . ,
∣∣aj

∣∣,
thus, the MMD of multi soft set can be written as

fk(y, λ) =
∏|A|

j=1

∏|aj|
l=1

(
λikjl

)∣
∣F,ajl

∣
∣
,where

∑|aj|
l=1

λkjl = 1,∀k, j. (9)

Thus, the objective function of the clustering is to find the highest probability (λ) of
the conditional maximum likelihood function as in (10) to assign the U to cluster C.

CML(z, λ) =
K∏

k=1

|U |∏

i=1

zik

|A|∏

j=1

|aj|∏

l=1

(
λikjl

)∣
∣F,ajl

∣
∣
. (10)

where

K∑

k=1

zik = 1, zik ∈ {0, 1} for i = 1, 2, . . . , |U |.

|aj|∑

l=1

λkjl = 1.

Equation (10) is equivalent to maximizing the log-likelihood as in (11).

MaximizeLCML(z, λ) =
K∑

k=1

|U |∑

i=1

zik

|A|∏

j=1

|aj|∏

l=1

(
λ
i
kjl

)∣
∣F,ajl

∣
∣

=
K∑

k=1

|U |∑

i=1

zik

|A|∑

j=1

|aj|∑

l=1

ln
(
λikjl

)∣
∣F,ajl

∣
∣
. (11)

Subject to

K∑

k=1

zik = 1, zik ∈ {0, 1} for i = 1, 2, . . . , |U |.
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|aj|∑

l=1

λkjl = 1.

Proposition:Lets (F,A) be a soft set overU which represents a categorical-valued infor-

mation system with (F, a1), · · · ,
(
F, a|A|

) ⊆ (F,A) and
(
F, aj1

)
, · · · ,

(
F, aj|aj|

)
⊆

(
F, aj

)
. Suppose (F, a1), · · · ,

(
F, a|A|

) ⊆ (F,A) and
(
F, aj1

)
, · · · ,

(
F, aj|aj|

)
⊆

(
F, aj

)
be a multi soft set of U . Then zik and λkjl are local maximum for LCML(z, λ) if

only if

λkjl =
∑

ui∈
(
F,ajl

) zik
∑|aj|

l=1

∑
ui∈

(
F,ajl

) zik
, (12)

zik =

⎧
⎪⎨

⎪⎩

1 if
|A|∑

j=1
ln

(
λikjl

)
= max

1≤k ′≤K

|A|∑

j=1
ln

(
λikjl

)

0 otherwise

. (13)

Proof. The maximizing problem in Eq. (11) is equivalent to the Lagrangian function of
LCML as in (14).

LCML(z, λ,w1,w2) =
|U |∑

i=1

K∑

k=1

zik

|A|∑

j=1

∣
∣aj

∣
∣

∑

l=1

ln
(
λikjl

)
∣
∣∣F,ajl

∣
∣∣ − w1

⎛

⎝
K∑

k=1

zik − 1

⎞

⎠ − w2

⎛

⎜
⎝

∣
∣aj

∣
∣

∑

l=1

λkjl − 1

⎞

⎟
⎠ (14)

By take the first derivative of the Lagrangian LCML with respect to the zik , λkjl,w1,w2
and set to be 0. The equation system obtained can be defined as follows

∂LCML

∂zik
=

|A|∑

j=1

|aj|∑

l=1

ln
(
λikjl

)∣
∣F,ajl

∣
∣
− w1 = 0, (15)

∂LCML

∂λkjl
=

∑|U |
i=1 zik

∣∣F, ajl
∣∣

λkjl
− w2 = 0, (16)

∂LCML

∂w1
= −

(
K∑

k=1

zik − 1

)

= 0, (17)

∂LCML

∂w2
= −

⎛

⎝
|aj|∑

l=1

λkjl − 1

⎞

⎠ = 0. (18)

From (16)

w2 =
∑|U |

i=1 zik
∣∣F, ajl

∣∣

λkjl
(19)
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λkjl =
∑|U |

i=1 zik
∣∣F, ajl

∣∣

w2

Substitute to (18)

|aj|∑

l=1
λkjl =

|aj|∑

l=1

∑|U |
i=1 zik

∣
∣F,ajl

∣
∣

w2

1 =
∑|aj|

l=1

∑|U |
i=1 zik

∣∣F,ajl
∣∣

w2

w2 =
|aj|∑

l=1

|U |∑

i=1
zik

∣∣F, ajl
∣∣

(20)

Substitute to (16), then

|aj|∑

l=1

|U |∑

i=1
zik

∣∣F, ajl
∣∣ =

∑|U |
i=1 zik

∣∣F,ajl
∣∣

λkjl
;

λkjl =
∑|U |

i=1 zik
∣
∣F,ajl

∣
∣

∑|aj|
l=1

∑|U |
i=1 zik

∣
∣F,ajl

∣
∣

(21)

Then, for a given z, all the inner sums of quantity
∑|U |

i=1

∑K
k=1 zik

∑|A|
j=1

∑|aj|
l=1 ln

(
λkjl

)∣∣F,ajl
∣∣
are non negative and independent. Maximiz-

ing the quantity is equivalent tomaximizing the each inner sum. For 1 < k < K the inner
sum the quantity as

|U |∑

i=1
zik

|A|∑

j=1

|aj|∑

l=1
ln

(
λkjl

)∣
∣F,ajl

∣
∣

⇔
|U |∑

i=1
zik

( |A|∑

j=1

|aj|∑

l=1
ln

(
λkjl

)∣
∣F,ajl

∣
∣
) (22)

for 1 < i < |U |, zik is fix and non negative and for each i = 1, 2, . . . , |U |, ∣∣F, ajl
∣
∣ =

1 if u1 ∈ (
F, ajl

)
and

∣∣F, ajl
∣∣ = 0 if u1 /∈ (

F, ajl
)
, it follows that

∑|U |
i=1 zik

∣∣F, ajl
∣∣ =∑

ui∈
(
F,ajl

) zik , ∀ui ∈ U , i = 1, 2, . . . , |U |. Thus,

λkjl =
∑

ui∈
(
F,ajl

) zik
∑|aj|

l=1

∑
ui∈

(
F,ajl

) zik
(23)

and inner sum
∑|U |

i=1

∑K
k=1 zik

∑|A|
j=1

∑|aj|
l=1 ln

(
λkjl

)∣
∣F,ajl

∣
∣

maximize iff

each term
∑|A|

j=1

∑|aj|
l=1 ln

(
λkjl

)∣
∣F,ajl

∣
∣
= ∑|A|

j=1 ln
(
λikjl

)
,∀ui ∈ U , i = 1, 2, . . . , |U |, l =

1, 2 . . . ., |aj| is maximize. Thus,

zik =

⎧
⎪⎨

⎪⎩

1 if
|A|∑

j=1
ln

(
λikjl

)
= max

1≤k ′≤K

|A|∑

j=1
ln

(
λikjl

)

0 otherwise

(24)



Fast Hard Clustering Based on Soft Set Multinomial Distribution Function 11

4 Computational Run on UCI Datasets

In the experiment, MATLAB version 9.0.0.341360 (R2016a) is used to determine the
performance in terms of cluster purity, rand index and computational time of the HCSS
and other two fuzzy k-based approaches. They are executed sequentially on the speci-
fications of a computer with an Intel Core i5, the total main memory is 8GB, and the
operating system is Mac OS High Sierra. The Experiment will be conducted on four
categorical datasets obtained from the UCI Machine Learning Repository [30], namely
Zoo, Spect, Monk and Car. The all techniques are run by 100 differences initial mem-
bership function randomly for each datasets. The average in term of cluster purity, Rank
Index and Computational Time is captured in Fig. 1. It shows that the HCSS technique
is able to maintain the cluster purity and Rank index compared by the FC and FkP.
Nevertheless, The result of computation time indicates that HCSS overcome FC and
FkP technique. In detail, FC and FkP respectively consume approximately 0.7017 s and
0.4615 s of execution time to Process four dataset in average. In contrast, PSS tech-
nique requires only approximately 0.031 s of execution time in average for four dataset.
It clearly shows a improvement of execution time by 95.03% as in Table 1. Thus. the
HCSS is superior in terms of computational timewith able tomaintenance the rank index
and purity comparing to the baselines.

Table 1. Comparison results in term of time responses

Zoo Monk Spect Car Average

FC 0.8732 0.9206 0.7037 0.7037 0.7017

FkP 0.2617 0.3754 0.4645 0.0099 0.4615

HCSS 0.0236 0.0253 0.0995 0.0107 0.0310

Improvement 95.03%

Fig. 1. Mean results of cluster purity, rand index, and computational time
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5 Conclusion

The problem of fuzzy-based categorical data clustering can be overcome by several
algorithms. However, these algorithms do not provide higher clusters purity and lower
response times. Thus, the hard categorical data clustering based on soft set via multino-
mial distribution is proposed. The data is decomposed based soft set to become a multi
soft set andmultivariate multinomial distribution is used for clustering the data. Compar-
ative analysis of the proposed algorithm called HCSS and two baseline algorithms with
respect to purity, rand index and response time have been done. The results show that
the proposed approach out performs the existing approaches in terms of lower response
times up 95.03% by not compromising the purity and rand index. In the future work, we
will extend the proposed approach based on fuzzy to increase the performance of the
technique.
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Abstract. This paper proposes a new clustering technique for handling a cate-
gorical data called Parametric Soft set (PSS). It bases on statistical distribution
namely multinomial multivariate function. The probability of the data category
with binary value can be calculated by binomial distribution. Its generalization
called multinomial distribution function for data category with multivariate val-
ues. Firstly, the data is represented as multi soft set where every object in each soft
set has its probability. The probability of each object is calculated by cluster joint
distribution function following the multivariate multinomial distribution function.
The highest probability will be assigned to the related cluster. The first experiment
is conducted to estimate the parameter of the data drawn from random multivari-
ate mixtures distribution.While the second experiment is evaluated the processing
times, purity and rand index using benchmarks datasets. The experiment results
show that the proposed approach has improved the processing times up to 92.96%.
It also has better performance in term of purity and rand index and error mean of
the estimation parameters.

Keywords: Clustering · Categorical data · Multi soft set · Multinomial
distribution function

1 Introduction

There are two definitions assumed on the partitioning process or clustering process to
group the data into several classes. First, well-defined notion of similarity or distance
between data objects is needed to measure the resemblance the object. Second, the
process to decide the object will be in the same groups or separate into differences group
can be developed based on the characteristic of the data [1, 2]. In practice, it called
unsupervised learning or clustering process.
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There are so many clustering techniques developed because of many various similar-
ity or distance measure in mathematics and many model which can be used to labeling
the object such as [3–6]. It makes the notion of clusters cannot be precisely defined and
create some various model of clustering i.e. centroid, density, distribution, connectivity,
graph-based, neural models, etc. [7]. The clustering technique can be categorized into
three types. i.e. pairwise distance cluster, target on optimizing by given merit function
and statistical modeling [8]. Only pairwise distances between clustered objects are used
in the first type. This is because a tractable mathematical representation for objects is
not necessary, these approaches have a wide range of applications. However, due to the
quadratic computational complexity of calculating all the pairwise distances, they do
not scale well with big data sets. Linkage clustering [9–11] and spectra clustering [12]
are two examples. The second type is concerned with optimizing a certain merit func-
tion. The merit function represents the widely held idea that good clustering requires
objects in the same cluster to be similar, while objects in other clusters should be as
diverse as possible. The similarity metric and criterion for evaluating the overall quality
of clustering differ amongst algorithms. K-means and k-centroid are two terms that are
included in this type. The third type is based on statistical analysis [8]. Each cluster is
distinguished by a fundamental parametric distribution (known as a component), such
as the multivariate Gaussian for continuous data, the Poisson distribution for discrete
data, multinomial distribution for multi values data.

The differences of typical of the data requires careful consideration to determine the
similarity or distance measure [2]. In practice, there are various types of data that are
used to implement the clustering algorithm, such as numeric, and categorical. Unlike the
numerical data, the categorical data contains the attributes which do not have any natural
order, so distance measure cannot be executed straightforwardly on categorical attribute
[13]. Data category can be assumed following the random multivariate multinomial
distribution function [14]. Other hand, categorical data havemulti-valued attributewhere
it can be represented as a multi soft set [15]. Thus, this paper proposes the parametric
clustering approach based on soft set theory. The data is decomposed to be amulti soft set
respect to all attributes where the probability every soft set in each attribute is calculated
using multinomial distribution function. Each object on attributes has different values
of probability respect to the cluster. The object with high probability will be assign into
the related cluster.

The rest of the paper is organized as follows: Sect. 2 describes related works on
information system, soft set, multinomial distribution. Section 3 describes the proposed
approach based on soft set multinomial distribution function. Section 4 describes the
experiment results on the estimation parameter. Finally, we conclude our work in Sect. 5.


