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Abstract—In this work, the power management techniques 

implemented in a high-performance node for Wireless Sensor 

Networks (WSN) based on a RAM-based FPGA are presented. 

This new node architecture is intended for high-end WSN 

applications that include complex sensor management like video 

cameras, high compute demanding tasks such as image encoding 

or robust encryption, and/or higher data bandwidth needs. In the 

case of these complex processing tasks, yet maintaining low 

power design requirements, it can be shown that the combination 

of different techniques such as extensive HW algorithm mapping, 

smart management of power islands to selectively switch on and 

off components, smart and low-energy partial reconfiguration, an 

adequate set of save energy modes and wake up options, all 

combined, may yield energy results that may compete and 

improve energy usage of typical low power microcontrollers used 

in many WSN node architectures. Actually, results show that 

higher complexity tasks are in favor of HW based platforms, 

while the flexibility achieved by dynamic and partial 

reconfiguration techniques could be comparable to SW based 

solutions. 

Keywords: FPGA based WSN node; low power design; partial 

reconfiguration; power islands, energy management. 

I.  INTRODUCTION 

WSN applications are evolving towards more demanding 
scenarios and requirements. This fact implies the use of much 
more powerful processing units to be able to deal with new 
algorithms and higher amounts of data. 

 In classic WSN applications, simple tasks have been 
always performed by ultra-low power microcontrollers with 
very limited computing capabilities. However, a growing 
tendency to higher compute demanding applications has 
appeared. Some factors that characterize these new applications 
are: a) the use of more complex sensors such as cameras, radars 
or ultrasound positioning equipment, among others; b) 
intensive processing tasks running either autonomously in 
every node or as part of the network management, c) the 
increase of raw data to be processed due to the use of these 
more complex algorithms or to the increase in the number of 
nodes, etc..  

Even though the use of FPGAs in WSN applications has 
been avoided by many designers mostly because of their high 
power consumption, results show that by taking advantage of 
HW acceleration together with some power management 

techniques, it is possible to obtain energy efficient solutions 
that are suitable for these high performance WSN applications. 

As it will be explained within the next sections, the typical 
application profile of a WSN has, in general, a very low duty 
cycle, see FIGURE 1.  

 

FIGURE 1: Typical WSN application profile 

 
Therefore, it is crucial for these nodes to have extremely 

low power consumption during sleep time, since the node will 
be most of the time in this mode. This may be achieved by 
either selecting devices with very low static power 
consumption or, if not possible, to implement the required 
power on/off control for some components. 

Although SRAM-based FPGAs cannot compete in terms of 
static power consumption with other FPGA technologies, like 
the non-volatile ones, the increased flexibility provided by the 
possibility of dynamically and partially reconfigure them, as 
well as the higher resource availability, may make these RAM 
based FPGAs good candidate solutions for high performance 
applications. So, the purpose of this work is to show the power 
management techniques that are applied to a custom designed 
node architecture with an SRAM FPGA, so that the main 
drawback of excessive energy consumption is minimized. 

One problem of RAM-based FPGAs is their relatively high 
static power consumption even when activating their power 
save modes. Another drawback is that they are not alive at 
power up, so every time the FPGA is powered off, its 
configuration is lost. Due to these reasons, in order to achieve 
minimize power consumption during sleep time, the FPGA 
must be switched off so that it has to be configured again after 
every off cycle.  

In FIGURE 2, a typical power consumption profile of the 
RAM-based FPGA node is shown. Three regions are 
differentiated: sleep period, reconfiguration period and 
compute period. These plots, once assumed that voltage is kept 



constant, may be obtained by measuring current consumption, 
as it will be done in the experiments. 

 

FIGURE 2: Energy profile of the High Performance Node 

 
The power management techniques described in this paper 

focus on the reduction of the current consumption during these 
three periods. The sleep periods is reduced by switching on 
only those components that are required to determine the wake-
up conditions. The configuration period, as it will be shown 
will be reduced by diminishing the reconfiguration time, since 
current consumption is roughly independent on the type of 
bitstream. Finally, consumption reduction during the 
computing period is exercised by moving most tasks from SW 
into HW, with some energy saving improvements which are 
the main results published by the authors in [1]. 

II. RELATED WORK 

High performance applications are often related to the use 
of complex algorithms such as video compression, data 
encryption, tracking, etc. Many of them are multimedia 
applications that include low-power video cameras or 
microphones, and they are known as Wireless Multimedia 
Sensor Networks (WMSN). In [2] and [3], surveys about these 
applications are detailed. According to [3], these applications 
are classified in: surveillance, traffic monitoring and 
enforcement, personal and health care, gaming and 
environmental and industrial. Surveillance is probably the best 
example of the increase of complexity in traditional WSN 
applications. Traditionally, surveillance based on WSNs was 
limited to intruder detection or movement in target areas. 
Features like cameras or node synchronization permit location 
tracking or people identification, as seen in [4], [5], [6] and [7].  

The use of these capabilities can also make a breakthrough 
in terms of human health-monitoring applications, mostly 
related to telemedicine and complete patient monitoring. Also, 
non-intrusive study of people behavior, mainly elder people 
suffering dementia, has been reported in [8] and [9]. 

 Applications related to environmental care and industrial 
monitoring can be also faced and improved by means of using 
these high performance networks. For instance, full 
manufacturing processes including quality control can be 
monitored relying on artificial vision techniques. 

Not only the inclusion of new sensors but also the 
toughening of traditional constraints such as maximum latency, 
bandwidth, the increase in the number of nodes or security 
requirements, causes architectural changes in WSN platforms. 
In [10] and [11], a survey about this kind of applications is 
studied including encryption algorithms ([12] [13]) which at 
the beginning where considered unfeasible to be carried out by 

WSNs. As an example of complex data calculations, in [14], 
the authors face data-mining for WSNs while in [15] 
distributed multimedia source coding is addressed. 

Using FPGAs in wireless sensor nodes for high demanding 
scenarios is not a novel approach. In [16], for instance, the 
authors introduce a Spartan 3E prototype board as a 
coprocessor attached to an external ZigBee transceiver for the 
implementation of a hyper-chaos encryption engine. Similar 
applications using off-the-shelf FPGA boards are shown in [17] 
[18] [19] and [20]. These approaches prove that including 
hardware-based devices in WSNs offer benefits in terms of 
flexibility and performance. However, in spite of being valid 
for proof of concept, existing solutions are far from showing 
real new WSN architectures, leaving behind important aspects 
such as power consumption, power management, sensor 
integration. On the contrary, the development of a complete 
FPGA based node is provided in [21], including a low-
performance Spartan 2E. The complete node including 
communications is integrated in a 25 mm × 25 mm board.  

Hardware reconfigurability is addressed for WSN nodes. In 
[22], Philipp and Glesner propose a virtual reconfiguration 
layer on top of a flash-based low power FPGA, which is the 
main computing device, with no microcontroller aside. This 
approach enhances notably the flexibility by allowing HW 
changes, but limits some other issues like the possibility of 
using self-repair strategies, self-reconfiguration for increased 
fault-tolerance or system adaptation, inclusion of intrinsic 
evolvable systems, etc., which could be interesting features for 
WSN technology. 

Among SRAM based dynamically and partially 
reconfigurable FPGAs, the Spartan 6 family offers the lowest, 
yet not small at all, technology commercially available today, 
with sufficient number of resources for the targeted application 
fields. Spartan-6 partial reconfiguration was originally 
addressed by [23] and [24], so they match with the imposed 
requirements.  

Partial reconfiguration for enhanced boot-up sequences in 
Spartan-3 devices was addressed by Hubner and Becker in 
[25], where they proposed a multi-phase technique for fast 
boot-up. In our approach we also address this issue, but in 
order to diminish energy consumption in the reconfiguration 
phase. 

III. PROPOSED NODE ARCHITECTURE 

For the correct understanding of the power management 
techniques used in our proposed HiReCookie platform (High-
Performance Reconfigurable Cookie), is to know some 
information about the node architecture and characteristics.  

WSN nodes include at least four functional blocks: 
processing, communication, sensing and/or acting, and power 
supply. In order to have a flexible and modular design, the 
Cookie platform is divided into four different PCBs, each of 
them covering one of these previous roles. Every layer is 
connected to their neighbours through crossing vertical 
connectors. See FIGURE 3. It is possible to exchange every layer 
separately if different sensors, communication modules, power 
supply sources, etc. are needed. This modularity is very useful 



when adapting the node to different requirements. The four 
layers mentioned are listed below. 

 

FIGURE 3: Cookie Layer architecture. 

 
- Sensor layer: it includes conditioning circuits for both digital 
and analog sensors and/or actuators.  

- Power supply layer: The node can be powered from a 
USB cable, lithium or AA batteries or directly from the mains 
(using the USB connection). It includes a DC to DC converter 
(TPS650243) to provide the needed current (up to 1,6A) and 
voltage level. This power management IC provides three 
highly efficient step-down converters (up to 97% efficiency) 
that enter in low power mode with light load for maximum 
efficiency across the widest possible range of load currents, 
and two LDOs for lower currents. It can also recharge a 
500mAh battery in only one hour from the USB connection. 

- Communication layer: it includes a radio module to 
communicate data between nodes. There are both ZigBee and 
Bluetooth versions. In the case of the ZigBee module, different 
frequencies are available (2.4 GHZ and 868 MHz). The module 
used along this work is the Telegesis ETRX2 ZigBee module. 

- Processing layer (HiReCookie): it is the brain of the 
platform. It is the layer in charge of processing all the 
information given by the sensors and the radio module. It 
includes a Spartan 6 Xilinx FPGA (XC6SLX150-2) and a tiny 
microcontroller (ATtiny 2313V) in charge of the execution of 
the power management tasks together with the necessary tools 
to implement the proposed power management strategies.  

Even though there is a microprocessor in the board, this 
architecture is not considered as a mixed uP+FPGA system, 
since the controller is just for power management, and it does 
not handle nor manipulates any other data. Moreover, the SoPC 
approach is followed in order to allocate both SW and HW 
resources inside the FPGA. 

The block diagram in FIGURE 4 is divided into two 
different areas separated by the vertical bus. Components 
included on the right side belong to the processing layer while 
the blocks placed on the left side correspond to other layers. 
The architecture of the processing layer is divided into seven 
different power islands that can be powered on and off 
separately. Every one of these islands, together with the power 
management policies will be explained in the next section. In 
the Figure, power islands are represented by colors.  

The FPGA is the brain of the platform. It will be in charge 
of all the processing tasks and management decisions. 
However, the external microcontroller is the only device that 
remains always powered. It works as a sentry to wake up the 

rest of the system according to the orders given by the FPGA.. 
In order to achieve autonomous boot-up, an initial bitstream is 
stored in the Flash memory so that it is automatically loaded 
into the FPGA once both devices are powered. The Flash 
memory also works as a storage device for programs, other 
bitstreams or application data. 

 

FIGURE 4: Processing Layer Architecture 

 
The RAM memory is mainly used as an extension program 

memory to provide fast access to the program data. Since 
configuration energy is related with the reconfiguration speed, 
this memory may be very convenient when dynamic and partial 
reconfiguration (DPR) is used.  

An ADC converter is also used for the system to be able to 
process data from analog sensors as well as for measuring the 
instant power consumption in every island. This way, the node 
is power-aware and may take dynamic power management 
decisions. 

IV. LOW POWER ORIENTED ARCHITECTURE 

The inclusion of high performance components in the 
platform leads to high energy consumption. Even though some 
of the components have their own power save modes, the static 
consumption is still too high according to the WSN standard 
levels (in the case of the FPGA is around 60-80 mA). In order 
to solve this problem, the architecture of the platform has been 
divided into seven different power islands that can be switched 
on and off independently in case they are not required. All the 
different power islands and the reasons why they were selected 
are detailed below: 

- Island 1: FPGA core@1.2 V, and auxiliary logic of the 
FPGA@ 2.5 V 

- Island 2: Sensor board @ 3.3 V 
- Island 3: ADC, power consumption circuitry @ 3.3 V 
- Island 4: RAM memory and FPGA bank 3 @ 1.8 V 
- Island 5: FPGA banks 1 and 2 @ 1.8 V 
- Island 6: External clock and FPGA bank 0  @ 3.3 V 
- Island 7: Flash memory @ 1.8 V 

As it can be seen, four different power supply voltages are 
required: 1.2 V, 1.8 V, 2.5 V and 3.3 V. The FPGA core is the 
only one powered at 1.2 V and, since it needs to be powered 
together with the auxiliary logic, both rails are considered as 
the same island but not at the same voltage. The auxiliary logic 



must be powered at 2.5 V. The 1.8 V supply rail is used to 
power banks 1, 2 and 3, the external memories and the external 
microcontroller. The external microcontroller is not included in 
any island since it needs to be powered at all times. The pins 
used for the communication between the ATtiny and the FPGA 
are located in bank 2. Apart from that, all the dedicated pins for 
configuration are shared between banks 1 and 2, so these two 
input output banks belong to the same island. The RAM 
memory and bank 3 are placed together in a different island, 
because the RAM memory controller, which is a hard IP of the 
FPGA, is placed on the left side where this bank is located. 
Regarding the 3.3 V rail, independent islands have been 
included to allow managing the sensors separately from the 
power measurement circuitry. The management of these power 
islands defines different power down modes that will be 
discussed in the next section. 

In order for the system to be able to wake up from these 
sleep modes, there must be a component acting as a sentry to 
manage the wake up signals. This component must be smart 
enough to be able to handle the power management execution 
but yet simple enough to have very low power consumption 
since it is the only module that remains powered at all times. 
As it was mentioned before, the component selected to carry 
out this duty is the ATtiny 2313V AVR microcontroller. This 
controller includes three different power modes: Idle, Power 
Down and Standby. The Standby mode will not be used since it 
requires an external oscillator that is not included in this 
platform. The microcontroller can wake the system up using 
different sources of interruption. The selection of these sources 
depends on the power mode that is being used within the 
ATtiny so that it defines how deeply the system is sleeping.  

The microcontroller may be in any of the following low 
power modes: 

- Idle mode (10 µA at 0.1 MHz): In this mode, an interrupt 
coming from its UART, which is connected to the radio 
device,, any internal timer, a threshold value in a sensor or an 
interruption caused by the FPGA (if it is awake), can wake the 
microcontroller up. 

- Power down mode (< 0.1 µA): In this mode, only an 
interruption caused by the FPGA and the watchdog timer can 
wake up the microcontroller. When the node is working inside 
the Sleep region, the FPGA is not powered so the only way to 
wake up the microcontroller is the watchdog timer. 

Therefore the sources of interruption to wake the system up 
are: the radio module, analog sensors or internal timers. The 
power supply layer includes a DC to DC converter that could 
be enabled or disabled by external signals, but this feature is 
not being used in this design, since the support provided by the 
decisions taken by the FPGA and the control on the power 
islands is more efficient. The IC converter also includes a 
power save mode that can be either selected externally or 
automatically, depending on the load. This way, if most of the 
islands are switched off, the load is reduced and then the 
converter gets into power down mode. Apart from the ATtiny 
and the power supply module, the radio module should be also 
powered at all times. The radio module includes four different 
power modes as shown in Table 1. Every one of these modes 
has different power consumption that depends on whether the 

node is working either as a router or as a coordinator, or if the 
node is working as an end-device.  

Power Mode Router or Coordinator  End Device 

Awake 36 mA 9 mA 
Idle 32 mA 4.5 mA 

Asleep 1 0.7 mA 0.7 mA 
Asleep 2 0.7 µA 0.7 µA 

Table 1: Power modes in the ETRX2 module 

 
Depending on which power down mode is being used in the 

radio device, there are different ways to wake the module up. 
When the module is in Asleep 1, it can be woken up through 
AT commands sent by the ATtiny. However, the power 
consumption during this mode is not affordable in all cases. 
When the module is working in Asleep 2, which is the deepest 
power mode, it can be only woken up using an external 
interrupt which is also given by the ATtiny controller.  

It is important to highlight that even though the ATtiny is 
the element in charge of executing the power management 
tasks, the decision of which technique should be used is a 
competency of the FPGA. In this way, every time the FPGA 
enters into a sleep mode, it sends a command via SPI to the 
ATtiny microcontroller with the information of which 
methodology is going to be applied. Therefore, since the FPGA 
may be aware of the power consumption of the platform, the 
way these methodologies are handled can be determined by the 
application and improved.  

V. POWER MANAGEMENT TECHNIQUES 

Three different phases can be identified in the lifecycle on an 
SRAM FPGA based node, as shown in ¡Error! No se 
encuentra el origen de la referencia.. The methodologies to 
be implemented in every one of these periods are different, 
addressing different aspects in each phase. 

 

FIGURE 5: Power consumption profile of a typical application. 

 

During sleep period (1), current consumption must be 
reduced as much as possible and, in this case, the management 
of power islands and wake up possibilities is crucial. During 
the FPGA configuration period (2), current consumption is 
approximately constant, with small changes depending on the 
frequency of the configuration clock. Therefore, the main goal 
within this period will be reducing time which, as it will be 
shown, is directly related to the reduction in size of the 
bitstream file. Finally, the main constraint during the execution 
period (3) is the high current consumption during execution. 
The main idea in this stage is to compensate the high current 



with a very fast calculation, so that the energy is finally 
reduced. It is in this period where taking advantage of HW 
acceleration and parallel HW can make a huge difference 
compared to SW based solutions. 

A. Sleep Period. 

During this period, some sleep modes and wake up policies 
have been implemented to reduce power consumption during 
inactive periods of time. Even though there are a many 
different combinations, those ones listed here are the most 
representative. A summary is provided in the table. 

Sleep Mode 1: This is the deepest sleep mode. The ATtiny 
can be woken up using only its watchdog timer. Then, for 
example, it could power the communication module and the 
sensor layer together in case a message from the radio or any 
sensor threshold is reached. In case none of these events occur, 
the ATtiny can go back to power down mode. 

Sleep Mode 2: In this mode, the ATtiny is in power down 
mode, so only the watchdog timer can wake it up. 
Nevertheless, it is possible to be working in a very deep sleep 
mode while the sensor layer is not powered. Once the ATtiny is 
woken up by its timer, it can send an interruption to the 
communication module to wake it up or it can power the 
sensors island to check if a threshold value has been crossed. In 
this case, the communication module can be set also to be 
always powered.  

Sleep Mode 3:  In this mode, the ATtiny is also working in 
power down mode. When the timer wakes it up, it can change 
to idle mode in order to check if any sensor has crossed the 
threshold value. This mode only makes sense if the sensor 
response is critical due to a dangerous parameter where it is not 
possible to wake the sensor island up and wait until the sensor 
measurement is stable. A variation of this method is the same 
configuration but the ATtiny working in idle state in order to 
have instant response in case a measurement problem occurs. 

Sleep Mode 4:  This case is a combination of the previous 
two modes. So, it is possible to wake the system up using the 
sensors response or a possible message coming from the radio. 

Sleep Mode 5: This sleep mode can be useful if a faster 
response is required since it is not necessary to wake up the 
microcontroller. 

Once the system leaves the sleep mode there are many 
possibilities that depend on the application. At some point 
during the execution phase, the FPGA may send new sleep and 
wake up policies to the AtTiny. As it may be seen in the results 
table, a careful design and component selection, together with 
this variety of sleep modes may yield results regarding current 
consumption during sleep mode below 2 µA in most cases. For 
a 500 mAh thin flat battery, it would allow more than 28 years 
operation in this sleep mode. 

B. Configuration time 

As it was mentioned before, there are two different 
methodologies to decrease power consumption during this 
period: increasing the configuration clock frequency and 
reducing the size of the bitstream file. It is crucial for the 
system to include a fast configuration method to automatically 
load the bitstream into the FPGA every time the system is 
powered. The configuration method selected is the Master BPI 
configuration mode. It consists on a parallel connection 
between the FPGA and a Nor-Flash memory, which may be 
driven by the FPGA natively at boot-up or by a device installed 
later, for DPR.. In this way, every time the system is powered, 
the FPGA starts to generate addresses to read the bitstream file 
from the external memory. The configuration frequency is set 
to 1 MHz by default. Then, when the FPGA starts to read the 
bitstream file, this frequency can be changed by editing the 
header of the configuration file. The frequency can be selected 
between different values. The maximum frequency that has 
been tested within this work is 6 MHz. 

The second challenge consists of reducing the size of the 
configuration file. In order to optimize this reduction, the next 
three steps were followed: a) relocation of HW modules using 
the PlanAhead Tool in order to maximize the empty areas, b) 
compress the bitstream file using the commands given by 
Xilinx, C) reduce the bitstream file by erasing the empty areas, 
this is, extracting a partial-initial bitstream rather than using a 
complete one. Next paragraphs show these steps in more detail. 

 
Islands 

ATtiny ZigBee Power Supply Layer Average Current Consumption Wake up Possibilities 
1 2 3 4 5 6 7 

Mode 1 - - - - ● - - 
Power down 

 
OFF Power down 

0.1 µA ATtiny 

+ 1 µA Power 

Watchdog 

 

Mode 2 - - - - - - - 
Power down 

 
Asleep 2 Power down 

0.7 µA Radio 
+ 0.1 µA ATtiny 

+ 1 µA Power 

Watchdog 

Radio 

Mode 3 - ● - - - - - 
Power down/ 

Idle 
OFF Power down 

Sensor layer consumption 

+ 0.1/10 µA (ATtiny) 
+1 µA Power 

Watchdog 

Analog comparator 

 

Mode 4 - ● - - - - - Power down Asleep 2 Power down 

Sensor layer consumption 

+ 0.7 µA Radio 

+ 0.1 µA ATtiny 
+ 1 µA Power 

Watchdog 

Analog comparator 

Radio 

Mode 5 - - - - - - - Idle Asleep 2 Power down 

0.7 µA Radio 

+ 10 µA ATtiny 
+ 1 µA Power 

Watchdog 

Analog comparator 

Table 2: HiReCookie Sleep Modes



 

a) The more compact the desing is, the bigger the empty 
areas of the FPGA internal architecture. The default 
configuration of the FPGA is composed by zeros. Thus, since 
the extraction of the partial-initial bitstream consists of erasing 
those areas filled with zeros, the bigger these areas, the bigger 
the information to erase. 

b) Xilinx gives the possibility of reducing the bitstream size 
through the use of the –g compress command. This method 
consists of using the Multiframe Write register (MFW) to 
indicate that the same frame must be written along subsequent 
positions of the bitstream.  

c) In order to achieve an optimal reduction of the bitstream 
file, it is crucial to have a deep knowledge about its format and 
the internal architecture of the FPGA. The internal architecture 
of the Spartan 6 Lx150 is divided in 12 clock regions, 64 CLB 
columns, 6 BRAM columns, several I/O blocks in each bank, 4 
DSP columns, 1 DCM column, the Bus SCAN module, the 
ICAP module, MDM module, 2 MCBs, etc. In order to edit the 
bitstream file to erase the empty areas, a SW tool has been 
developed. The interface is shown in FIGURE 6. 

 
FIGURE 6: SW Tool to extract the Partial-Initial Bitstream 

 
Regarding the header section, the only edited fields are the 

configuration frequency and CRC errors. The configuration 
frequency will be set to 2 MHz or 6 MHz within the different 
tests, while the CRC errors are disabled in all of them. 

Regarding the CLBs and BRAM sections, this is where the 
maximum reduction is achieved. As it can be seen in FIGURE 
7, the idea is erasing the empty frames keeping the correct 
address values for the rest of non-empty parts. 

 
FIGURE 7: Extraction methodology 

C. Computing time 

In [paper sensors], the authors studied the improvement of 
HW acceleration compared to SW based solutions for the 
HiReCookie platform, where it was shown that, for high 
performance applications, HW acceleration may compensate 

the energy required for configuration or reconfiguration. 
Results were shown for new requirements such as encryption, 
and it was also shown that the tendency to more complex 
applications and higher performance are in favor of FPGA 
based architectures much better than more complex processors. 
So, for this paper, the contributions are then focused in the 
reduction of configuration time since it was demonstrated in 
the previous work that it is the most critical effect to the total 
power consumption, as it is shown in FIGURE 8, taken from 
[XX]. 

 
FIGURE 8: Typical application energy profile 

VI. TESTS AND RESULTS 

Intensive tests have been carried out in order to evaluate the 
effect of the reduction of the bitstream files and the frequency 
of configuration. In this work, the result of four of these tests 
are shown and compared to see the reduction in terms of time, 
which is translated in a reduction in the energy consumed by 
the FPGA core at the beginning of every cycle. In this case, the 
HW block contained in the bitstream is a Microblaze controller 
executing a simple task, since it is not the aim of this test to 
show the advantages of using HW calculations. 

A. Case 1: Total bitstream with no optimization in area and 

no compression. Configuration clock running at 2 MHz. 

As it can be seen in Figure 9, if no changes are done to 
reduce the size of the bitstream file, configuration time, 1.04 s, 
is much bigger than the average computing time of a normal 
application that can be approximately running for 50 ms. In 
this way, taking into account that the normal current 
consumption of the FPGA core during configuration is around 
50 mA, this time is the biggest contribution to the total 
consumption. Due to this reason, reducing this time is a must to 
achieve an efficient solution. 

B. Case 2: Partial-Initial bitstream included the optimization 

in area. Configuration clock running at 2 MHz. 

In this second case, even though the configuration 
frequency is still 2 MHz by creating the partial- initial 
bitstream which is 8.4 times smaller than the total one, a 
reduction of 88% of current consumption is achieved.  

 



 
Figure 9: FPGA Core consumption in case 1 

 

 
Figure 10: FPGA Core consumption in case 2 

C. Case 3: Compressed bitstream but not partial, including 

optimization in area. Configuration clock running at 6 

MHz. 

This case analysis is the best case that could be achieved 
using the tools provided by Xilinx. The result is shown in 
Figure 11. In this case the bitstream is compressed using the – 
g compress command and configuration is done at 6 MHz. 
Measurements show that the current is increased just 3MHz, so 
it shows that it is worth to accelerate as much as possible. 

 
Figure 11: FPGA Core consumption in case 3 

D. Case 4: Partial-Initial bitstream with the optimization in 

area. Configuration clock running at 6 MHz. 

The last result shown in Figure 12 represents the best case 
combining both the increment of configuration frequency and 
the creation of the Partial-Initial bitstream. In this case, keeping 
the same frequency value as in case 3, a reduction of 58% of 
power consumption is achieved. So, it can be summarized that 
a 95 % reduction can be achieved compared to a non-carefully 

analysed reconfiguration However, for the sake of correctness, 
it is fair to say that the contribution of the tool presented in this 
paper reduces 58% compared with what just can be achieved 
using only the Xilinx Tools. 

 
Figure 12: FPGA Core consumption in case 4 

 
Table 3 shows the results of the previous tests, and a 

calculation of the charge required for every case. With a flat 
profile 500 mAh battery, there would be sufficient energy for 
almost 725,000 reconfiguration cycles for the best case. 

 

Tests 
Bitstream 
size (kB) 

Freq. 
(MHz) 

Time 
(ms) 

Config. 
Current 

(mA) 

Computing 
Current 

(mA) 

Config. 
Charge 
(µAh) 

1 4122 2 1040 47 98 13.57 

2 490 2 130 47 82 1.69 

3 1352 6 120 50 100 1.66 

4 490 6 50 50 80 0.69 

Table 3: Final Results 

VII. CONCLUSIONS AND FUTURE WORK 

We have presented an architecture and a set of power 
management policies that let a wireless sensor node overcome 
the consumption problems posed by the use of an SRAM based 
FPGA as the main processing element of the node. This is 
achieved by a carefully designed set of sleep modes which let 
the node to consume negligible energy during sleep modes, and 
by minimizing reconfiguration energy, mostly by making it as 
fast as possible, and reducing bitstream size. DPR has been 
used to minimize the bitstream size using a custom tool that 
produces smaller partial bitstreams. Also, it opens the 
possibility of achieving small energy full boot-up sequences by 
using multi-stage boot sequences. 

DPR is also an opportunity to improve HW execution of 
modules, with the same flexibility of SW applications, but with 
better energy utilization, as it has been shown in previous 
works. It also opens the gate for further research like the 
incorporation of self-repairing capabilities, self-adaptation, 
evolvable HW, as well as a very high flexibility for 
deployment and commissioning of WSN systems with nodes 
that may change both their HW and SW.  

We claim this architecture to be considered as a single-
device FPGA-based board because, even though there is an 
external ultra-low energy microcontroller, the ATtiny, it does 



not participate in any processing.  Actually, we consider that 
the System on Programmable Chip approach (SoPC), 
combined with an internal architecture that lets DPR be used to 
exchange HW blocks at run-time is a promising technology for 
High Performance Applications. 
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