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Private and Scalable Personal Data Analytics
using a Hybrid Edge-Cloud Deep Learning

Seyed Ali Osia, Ali Shahin Shamsabadi, Ali Taheri, Hamid R. Rabiee, Hamed Haddadi

Abstract—We are observing an increasing presence of cyber-physical systems and their associated data around us. While the ability
to collect, collate, and analyze the vast amount of rich information from smartphones, IoT devices, and urban sensors can be beneficial
to the users and the industry, this process has led to a number of challenges ranging from performing efficient and meaningful analytics
on the generated big data, to privacy challenges associated with the inferences made from these data due to ubiquitous nature of
connected devices. In this paper, we discuss novel edge-computing methods to improve the scalability and privacy of user-centered
analytics. We present a hybrid framework where edge devices and resources centered around the user can complement the cloud for
providing privacy-aware, yet accurate and efficient analytics. We present early evaluations of the proposed framework on a number of
exemplar applications, and discuss the broader implications of such approaches.

Index Terms—Deep Learning, Edge Computing, Privacy.
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1 INTRODUCTION

The rapid rise in the development and implementation of
cyber-physical systems and the Internet of Things (IoT)
devices are transforming our interaction with the physical
world. Today, smart devices and ambient sensors are per-
vasively and continuously collecting and transferring large
volumes of diverse user data for a variety of purposes
including security surveillance, health monitoring, and ur-
ban planning. Today, majority of IoT devices are constantly
online by default and rely on machine learning applications
over the cloud in order to gain insights from the collected
data. Sophisticated corporate cloud computing services pro-
vide on-demand high performance, efficient computational
power and considerable cost reduction.

Despite all its benefits, cloud computing comes with
certain challenges. Mobile and broadband bandwidth and
efficiency will be a major bottleneck as the smart home and
smart car of the next decade will be uploading vast volume
of data from hundreds of sensors to cloud processors. The
cloud-based models will also impose major energy con-
straints on the edge devices. Privacy issues are another
important threat posed by cloud-based systems; users risk
their potential ownership of sensitive data by sharing it
and allowing the service providers to harvest, analyze, or
monetize their data. for example, majority of cloud-based
mobile applications are free, relying on information harvest-
ing from their users’ personal data for targeted advertising.
This practice has a number of privacy implications and
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resource impacts for the users [16]. Preserving individuals’
privacy, versus detailed data analytics, face a dichotomy
in this space. Cloud-based machine learning algorithms
can provide beneficial or interesting services (e.g. , health
or image-based search mobile applications), albeit, their
reliance on excessive data collection from the users can have
consequences which are unknown to the user (e.g. , face
recognition for targeted social advertising).

Recently, Edge Computing has been proposed to tackle
these issues by locating the processing power in edge
nodes, or near to the end user in the similar context of
Fog Computing at the network edge. In this way, delay-
sensitive data can be analyzed on the edge nodes and cloud
services can be leveraged for more delay-tolerant tasks. Yet,
an analytics service or an app provider might not be keen
on sharing their valuable and highly-tuned data processing
models. Hence, it is not always possible to assume that
the feasibility of local processing (e.g. , a deployed deep
learning model on an edge device such as a smartphone
or a computer), is a viable solution even if the task duration,
memory and processing requirements are not important for
the user or tasks can be performed when the user is not
actively using their devices (e.g. , while the device is being
charged overnight).

One may suggest that fully cryptographic-based algo-
rithms are the ideal solution to these concern; however the
complexity of encryption methods can be high for many IoT
applications, specially the ones relying on machine learning
models, or modules that need to be continuously available
or online (e.g., multimedia applications or sensors in a self-
driving vehicle). This can be more severe for deep models
which are non-linear, complex functions; these are difficult
to estimate with polynomial functions which are an essential
component of homomorphic encryption based methods [9].

On one hand, complete data offloading to cloud ser-
vices can have immediate or future scalability and privacy
risks; on the other hand, techniques relying on performing
complete analytics at the user end, or encryption-based
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Fig. 1. Hybrid edge-to-cloud framework for privacy-preserving machine
learning. User’s data is collected and processed locally on private edge
nodes in order to preserve sensitive information. The representation of
data which is independent of sensitive information is sent to cloud data
center for applying complex inferences.

methods, also come with their own resource constraints (e.g.
, storage and bandwidth constraints, energy limitations, or
computational costs) and user experience penalties.

In this paper, we design a hybrid edge-to-cloud ar-
chitecture, in which data processing is accomplished in
collaboration between private edge data processing units
and cloud services. In this way, we can augment the end
user to benefit from the cloud processing efficiency while
addressing the privacy concerns by leveraging edge pre-
processing. A schematic view of this framework is shown
in Fig. 1. We focus on achieving a compromise between
resource-hungry local analytics on a private edge node, ver-
sus data hungry and privacy-invasive cloud-based services.
The least necessary amount of processing will take place
in the edge node, which assures privacy preservation, while
the rest of processing occurs in the cloud. Our main objective
is to separate the feature extraction and the inference phase;
the former takes place locally, while the latter takes place
on the cloud. With this approach, while reducing the data
transmission rates to the cloud, sensitive information can be
removed from the data during the feature extraction phase
on the edge node. The extracted features are then transferred
to the cloud server for post-processing and finally the user
receives the results from the cloud.

2 REAL WORLD APPLICATIONS

Advances in computer vision, machine learning and cloud
computing techniques have provided new opportunities in
a large number of multimedia IoT services [3]. In this paper,
we explore the network bandwidth and privacy challenges
faced by these cloud-based multimedia IoT applications in
the following domains:

• Image Processing: The increasing quality of smart-
phone cameras and sensors, in addition to the rise in
popularity of image-centric social media, have all led
to a variety of image analytics applications, such as
scene tagging, image classification, face recognition,
facial attribute prediction, age estimation, gender
classification, and emotion detection.

• Video Processing: Excessive presence of CCTV cam-
era shows the importance of video recording, in-
dexing and processing. Many homes and outdoor
environments are equipped by video surveillance
systems to capture visual information for different
purposes. Smart cameras are used in care homes to
provide health care services and elderly monitoring.
Cameras in autonomous vehicles and monitoring
the vehicles in highways or parking lots is another
application of video processing in public places.

• Speech Processing: Speech is increasingly becoming
used in human-device interaction in the IoT domain.
Many smart televisions, phones, watches, ovens and
lights have voice command features. Increasingly,
devices like Google Home and Amazon Echo are
now entering the households as intelligent home
assistants. In the next few years, speech recognition
systems will become an integral part of our life.

All the above applications need sophisticated processing
of large volumes of data, usually achieved by machine
learning algorithms. As an example, consider a classification
problem such as face recognition. The classification model
should be trained with a large training dataset consisting
of face photos, each labeled with the person’s identity.
After training, the model is able to label a face photo with
its identity. In general, the machine learning problems are
categorized into supervised, unsupervised, and semi-supervised.
In supervised problems, true labels for training data is
available, and the goal is to predict the label of a test data,
similar to the aforementioned example. In this paper, we
focus on supervised applications, specially classification.
Interested readers can refer to [4] to obtain more knowledge
about machine learning. When true labels are not accessible,
the problem is referred to as unsupervised learning, e.g. ,
clustering. When a small number of labeled data and an
abundance of unlabeled data is available, semi-supervised
methods utilize the unlabeled data to enhance the result of
supervised classification based on the few labeled data.

In all of the aforementioned applications, an operator
might be concerned about transferring the large volume of
IoT data produced at the edge on the broadband or mobile
network, and clients are concerned about disclosure of their
sensitive information. In many applications, significant part
of clients’ data does not need to be recognized by a service
provider [5]. In surveillance or analytic applications, the
individuals’ identity is the most sensitive information that
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Fig. 2. Modules of the proposed framework. The Analyzer in the cloud
server has access to reduced set of private features of the data, which
are provided by the Feature Extractor placed in the edge node.

has been collected. For example, an individual walking by
a number plate recognition camera in a car park should
not be identifiable, while classification or optical character
recognition techniques are being applied to the plate. In
other words, the individuals might want to be protected
against undesired face recognition models. Similarly, an
individual using an IoT device voice prompt might wish
to be unidentifiable through their voice sessions. Privacy
concerns also rise in health analytics, when the application
users might not wish to reveal their private information.

These privacy concerns show the value and importance
of a general framework that is capable of addressing the pri-
vacy issues which has a long history in machine learning ap-
plications. The privacy of training data has been addressed
with various aspects: Classic methods which consider public
database privacy, such as randomization and k-anonymity
are surveyed in [2]. In addition, much effort has been made
to apply differential privacy to learning models [8]. For
example, the authors in [14] and [1] attempt to make deep
models differentially private. Nevertheless, less attention
has been paid to user data privacy in the test phase which
is the main concern of this paper.

3 FRAMEWORK ABSTRACTION

Let us assume we wish to execute a primary task (e.g. ,
speech recognition or image analysis) via cloud services,
with constraints due to limited local processing capabili-
ties or conflicting commercial reasons. On the other hand,
we wish to preserve sensitive user information (e.g. , the
identity of the speaker which could be disclosed through
his voice, or an individual’s pictures in an urban CCTV im-
age). Hence, the data shared with the cloud service should
possess two important properties: (i) inferring the primary
task is possible; and (ii) deducing sensitive information is
not possible.

Sharing data on the cloud provides the probability of
further inferences made on sensitive information. Edge-
based pre-processing of the raw data can prevent revealing
undesired features of the data, however such a task needs
to have minimal burden due to various limitations in client
side. In order to achieve this, we propose a general hybrid
architecture which contains two main modules: a Feature
Extractor, and an Analyzer, where the former is constructed
in a private edge node (like a personal computer or home
set-top box), and the later is held in the cloud. These
modules and their interaction are shown in Fig. 2. The data
from client devices are collected on the private edge node
and sent to the Feature Extractor, which gets the input data,

applies a function on it, and outputs a set of new intermediate
features, which would be then transferred to the cloud for
performing the primary tasks. The Analyzer receives the
intermediate features, infers the primary information, and
if needed, returns back the result to the client side.

In this framework, designing a good Feature Extrac-
tor module is of the critical importance. The intermediate
features need to keep the necessary information about the
primary task, and on the other hand they should protect
the sensitive information. As the Feature Extractor operates
locally, it should not be a complex routine; hence designing
this module is a challenging and important task.

As a use case, we consider an image tagging cloud
service, in which the sensitive information is the identity of
the individuals in an image from a live video stream. In this
case, a simple Feature Extractor can just detect faces and re-
place them with shaded regions. The Analyzer receives this
censored image and performs the image tagging procedure
(e.g. , label the image with objects, places, pets, etc.). Another
common example is speech recognition, in which we might
be concerned about being identified through our voice tone.
One simple solutions is to simply pitch frequency of the
voice in the Feature Extractor to achieve anonymity. In these
two cases, designing the Feature Extractor is simple and will
not affect the Analyzer’s result; however, this is not always
the case.

In the above examples, we demonstrated simple ap-
proaches to remove a part of the data which contains sensi-
tive information, and then considered the remaining part as
intermediate features. However, this is not applicable when
the removing part contains important information about the
primary task. For example, facial attributes like emotion or
gender get disposed at the same time as removing sensitive
information (the identity) by blocking a face region. Hence
we can not use this method when our primary task, is for
example, facial attribute prediction.

When the primary and sensitive information are inter-
locked, we encounter a complex situation. In this case,
unlike the previously discussed examples, we should also
consider the primary task in designing the Feature Extractor
module for sensitive information removal. In our frame-
work we present a method based on deep learning, which
considers both primary task and sensitive information in
the design procedure. Assuming the service provider knows
about the type of client sensitive information (e.g. , identity),
the following scenario occurs: The service provider hands
over a Feature Extractor module to the client, which is guar-
anteed to care about the primary task and the sensitive in-
formation, simultaneously. While the service provider does
not have to share the Analyzer, it must define a verification
method for the privacy preservation. This process defines a
privacy standard that the service providers should adopt.

4 DEEP LEARNING APPLICATIONS

Deep neural networks have become popular in machine
learning, specially in multimedia applications [10]. They
provide highly accurate classifiers that extract high level in-
formation from raw data. Deep networks consist of different
layers that follow each other. Each layer is a simple function
of its previous layer, representing a more sophisticated
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concept than its previous layers. The initial layer is the raw
input data and the final layer gives the result of inference.
All these layers together, form a complex function which
is applied to the input data and results in a perceptual
inference. The intermediate functions are learned during
the training phase, via applying optimization methods on
the training data. When the model is trained, it is ready to
perform inference on any input data.

Deep Convolutional Neural Networks (CNNs) and deep
Recurrent Neural Networks (RNNs) are the two most fa-
mous structures used for multimedia applications. The for-
mer is suitable for image and video processing, and the
latter is designed mainly for sequential data processing (e.g.
, text and streaming video). In this paper, we focus on
CNNs as the most popular structure for image and video
processing. Suppose inference about a primary task is done
with a pre-trained deep network (i.e., a ready to use network
with many layers). We address how to embed this trained
model in the proposed edge-to-cloud framework as follows.

4.1 Layer Separation
In deep models, the higher layers become more and more
specific to the primary task, while losing other irrelevant
information that contains the sensitive information that we
are concerned with. Based on this observation, we propose a
layer separation mechanism for a pre-trained deep network:

• First, choose an intermediate layer as the separation
point.

• Then, store the layers before the intermediate layer
on the edge node as the Feature Extractor.

• Finally, store the layers after the intermediate layer
on the cloud server as the Analyzer.

There is a trade-off on selecting the intermediate layer;
Choosing it from higher layers results in higher privacy for
sensitive information. However, this selection also increases
the computational costs on the client side. In [11], we
have provided a detailed analysis of the privacy-complexity
trade-offs for different layers, alongside the selection of
appropriate intermediate layer based on the edge device
resources and the user privacy constraints.

We refer to this simple separation of layers between the
edge and cloud as the simple embedding as shown in Figure 3.

4.2 Siamese Embedding
In order to increase the privacy when revealing the inter-
mediate feature to the server, we can fine-tune the existing
deep model for the primary task with a particular method.
Fine-tuning is a common task in training deep models.
We start from a pre-trained deep model and continue its
training to achieve a desired goal. As a result, we obtain an
updated model, which can be used in the layer separation
mechanism.

The main novelty of the proposed method relies on fine-
tuning the model of primary task by utilizing the Siamese
architecture [6], based on the chosen intermediate layer.
Siamese architecture is a common way of training learning
models, with a popular usage in face verification applica-
tions, where we are trying to decide whether two images
belongs to the same person or not. As a result, we construct

a feature space, where similar points group together. The
main idea behind the Siamese network is forcing the repre-
sentations of similar points (e.g. , different face images from
the same person) to become near to each other, and the
representations of dissimilar points (e.g. , face images from
different persons) to become far from each other.

To achieve this goal, our training dataset should consist
of pairs of points, which can be similar or dissimilar. For
a pair of points, one function is applied to both of them
and the distance of two outputs is computed. Optimization
is done based on a contrastive loss function. For this loss
function, the distance is maximized for two dissimilar points
and minimized for two similar points. This approach makes
the Feature Extractor more private and preserves the users’
privacy against inference attacks on the cloud. We refer to
this embedding as the Siamese embedding.

4.3 The Siamese Architecture Privacy
How can we relate the Siamese architecture to privacy?
Without loss of generality, we answer this question with a
clarifying example, which shows how we can indirectly use
the Siamese contrastive to obtain more privacy.

Suppose our primary task is gender recognition through
face portraits, accomplished by a pre-trained deep model.
The sensitive information is our identity which should not
be disclosed by using the intermediate data (e.g. , by a face
recognition system). In this scenario, the only thing we care
about is gender of the face portrait and not its identity.
We can model this fact by defining a new similarity crite-
rion and then fine-tune our model with a contrastive loss
function. Considering all identities with the same gender
as similar, not only makes the gender recognition model
more robust, but also eliminates more identity information
from the intermediate features. After fine-tuning with this
method, men representations are very close to each other
while being far from the women representations, which are
also close to each other.

Fine-tuning structure for privacy preservation is shown
in Figure 4. We can apply this idea to any application by
appropriately defining the similarity criterion. Experiments
show that using the Siamese embedding improves the pri-
vacy preservation while maintaining the accuracy of the
primary task.

4.4 Dimensionality Reduction
An important issue about all cloud-based services is their
communication cost which is usually too high. We are going
to address this concern by reducing the dimensionality of
the intermediate features.

Dimensionality reduction has a long range of applica-
tions in statistics and machine learning; from visualization
to feature extraction. The dimensionality of data can be
reduced by linear or nonlinear transformations of a high
dimensional space to a lower one. One of the most popular
dimensionality reduction methods is the Principal Com-
ponent Analysis (PCA). PCA uses a linear transformation
and the reduction and reconstruction procedures can be
achieved by matrix multiplication.

The Siamese fine-tuning makes feature space much more
robust in a way that applying PCA on the fine-tuned space



MOBILE AND EMBEDDED DEEP LEARNING 5

Fig. 3. Layer Separation mechanism. Primary layers of the deep network correspond to Feature Extractor and the rest of the model is considered
as Analyzer.

Fig. 4. Siamese fine-tuning of primary task deep model. Intermediate
features of two male face images are extracted via two identical CNNs.
They should be close to each other because they are considered as
similar.

does not significantly decrease the accuracy of the primary
task. Using dimensionality reduction on the intermediate
feature space brings us two advantages without a significant
reduction in primary task accuracy: (i) it highly reduces
the edge-to-cloud communication cost, and (ii) it highly
increases the privacy based on the nature of reduction-
reconstruction procedure.

The process of applying PCA on the intermediate fea-
ture is as follows. The service provider adds the PCA
projection and reconstruction at the end of the Feature
Extractor and start of the Analyzer, respectively. Hence the
extracted intermediate feature would be a low dimensional

vector which can be easily transferred to the cloud with
low communication cost. By using these two methods, we
introduce Advanced embedding, in which Siamese fine-tuning
is added as a pre-process and PCA projection is applied on
the intermediate feature.

5 PRELIMINARY EVALUATIONS

We have performed extensive experiments on face images,
corresponding to the aforementioned gender classification
problem as the primary task, and identity of the participated
person as the sensitive information to be preserved. For each
of the suggested embeddings, we evaluated the amount of
information that the intermediate feature has about gender
and identity. We used an intuitive visualization technique,
which demonstrates to what extent it is possible to recon-
struct the original image from the intermediate data repre-
sentation. We have also employed more rigorous analysis
of our proposed approach in [11], where we proposed a
privacy measure in order to formally quantifying the ability
of this framework to preserve sensitive information.

In order to compare different deep embeddings, we used
the gender classification model proposed by Rothe et al.
[12]. This model is a 16-layer CNN with the popular VGG-16
structure [15]. They collected a large face dataset, containing
age and gender attributes from IMDB and Wikipedia. Their
model achieved 93% accuracy on the Wikipedia images.
To provide a fair comparison, we have also performed our
experiments on this dataset.

We chose the fifth convolutional layer as our inter-
mediate feature to build the feature extractor module. In
comparisons with local device-based solutions, on average,
our approach lowers the memory usage by 50%, and the
loading to less than 20% on a smartphone, which proves the
efficiency of the proposed hybrid solution.

Simple embedding needs nothing more than layer sepa-
ration. Siamese embedding is done by fine-tuning the pre-
trained model and then doing the layer separation. Ad-
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Original Image 

Simple Embedding 

Siamese Embedding 

Advanced Embedding 

Fig. 5. Comparison of different deep embeddings for privacy preservation by using visualization. All methods had similar gender classification
accuracy of 93%. The first row shows the original images and the others show the reconstructed ones from intermediate representations. In all
reconstructed images, the gender of the individuals is recognised to be the same as the originals. In addition, From simple to advanced embedding,
the identity of the individuals is increasingly removed, illustrating that the advanced embedding has the best privacy-preservation performance.

vanced embedding has also the same procedure with an
additional process for applying PCA. We reduced the di-
mensions of the intermediate feature to eight. We analyzed
the tradeoff between the accuracy of the gender classifica-
tion (primary task) and the privacy of identity (sensitive
information). Surprisingly, all these embeddings reached
almost the same 93% accuracy of gender classification on
average. Therefore, they all had similar performances in
satisfying the primary task. Hence, the only critical issue for
comparison is their ability to maintain more privacy through
their identity preservation capability.

We compared the ability of these methods in privacy
preservation by using a visualization technique. Visualiza-
tion tries to answer a key question: Having just the interme-
diate layer of a deep network, what is the best recognition
possibility for the original input image? The authors in [7]
have answered this question by training a decoder by using
the intermediate layer as its input and the generating image
as its desired output. We used their method and compared
the results for different deep embeddings (although it can
not be considered as a rigorous proof for superior perfor-
mance, it is highly intuitive).

The restored original images from intermediate features
are illustrated in Fig. 5 for different methods. It can be
observed that the genders of all images in the simple and
Siamese embeddings remain the same as the original ones.
This is also the case for the advanced embedding because of
the accuracy of gender classification, although it is harder
to distinguish it from the reconstructed images. The original
images are almost restored in the simple embedding. There-
fore, just separating layers of a deep network can not as-
sure acceptable privacy preservation performance. Siamese
embedding performs better than the simple embedding by
distorting the identity due to intrinsic characteristics of the
face (e.g. , the skeleton). Finally, the Advanced Embedding
provides the best results, because the decoder was not
trainable and nothing can be deduced from intermediate
images, including the person’s identity. As an advantage
of this method, the communication cost is really negligible
compared to other cases, because we needed to upload only
8 real numbers to the cloud. Further detailed analysis are
presented in [11].

6 CONCLUSIONS

In this paper, we presented a new hybrid edge-to-cloud
framework for efficient, privacy preserving analytics on
multimedia or IoT applications. Our framework consists of
a Feature Extractor and an Analyzer module, where the
former is placed on the edge device and the latter on the
cloud. We described how to use this framework in various
IoT multimedia applications and studied deep learning as a
popular special case. We embedded deep neural networks,
specially convolutional neural networks in this framework
to benefit from their accuracy and layered architecture. In
order to protect the data privacy against unauthorized tasks,
we used the Siamese architecture, creating a feature specific
to the desired task. This is in contrast to today’s ordinary
deep networks in which the created features are generic
and can be used for different tasks. Removing the undesired
information from the extracted feature results in achieving
privacy preservation for the user.

Our framework is currently designed for pre-trained
machine learning inferences. In ongoing work we aim to
extend our method by designing a framework for Learning-
as-a-Service [13], in which users could share their data, in
a privacy-preserving manner, for training a new learning
model in the cloud server. Another potential extension to
our framework will be providing support for other kinds of
neural networks such as recurrent neural network which is
useful for temporal and sequential data processing.
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