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Shimoji and Watson (1998) prove that a strategy of an extensive game is ratio-

nalizable in the sense of Pearce if and only if it survives the maximal elimination

of conditionally dominated strategies. Briefly, this process iteratively eliminates

conditionally dominated strategies according to a specific order, which is also the

start of an order of elimination of weakly dominated strategies. Since the final

set of possible payoff profiles, or terminal nodes, surviving iterated elimination of

weakly dominated strategies may be order-dependent, one may suspect that the

same holds for conditional dominance.

We prove that, although the sets of strategy profiles surviving two arbitrary

elimination orders of conditional dominance may be very different from each

other, they are equivalent in the following sense: for each player i and each pair

of elimination orders, there exists a functionφi mapping each strategy of i surviv-

ing the first order to a strategy of i surviving the second order, such that, for every

strategy profile s surviving the first order, the profile (φi(si))i induces the same

terminal node as s does.

To prove our results, we put forward a new notion of dominance and an el-

ementary characterization of extensive-form rationalizability (EFR) that may be

of independent interest. We also establish connections between EFR and other

existing iterated dominance procedures, using our notion of dominance and our

characterization of EFR.
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1. Introduction

The notion of rationalizability was put forward by Bernheim (1984) and Pearce (1984)
for normal-form games. The extension of this notion to extensive games, extensive-
form rationalizability (EFR), was initially proposed by Pearce (1984) and then clarified
by Battigalli (1997).

Rationalizable and extensive-form rationalizable strategies (EFR strategies) possess
algorithmic characterizations. For normal-form games, if each player is allowed to be-
lieve that the other players’ strategies are correlated, then a player’s strategy is rationaliz-
able if and only if it survives the iterated elimination of strictly dominated strategies. It is
well known (see, e.g., the proofs in Gilboa et al. 1990 and Osborne and Rubinstein 1994)
that the order of elimination is irrelevant: no matter which order is used, the surviving
strategies are the same.1

For extensive games, the situation is more complex. EFR strategies by definition are
strategies surviving the process of maximal (iterated) elimination. According to this pro-
cess, at each step, all strategies that are “never a best response” (to the currently surviv-
ing ones) are simultaneously eliminated. The process stops when no such strategy can
be found. Assuming (as we do) perfect recall, Shimoji and Watson (1998) prove that the
EFR strategies can be obtained by the maximal elimination of conditionally dominated
strategies, whose definition is recalled in Section 5.

However, the maximal elimination order is not the only meaningful one,2 and dif-
ferent elimination orders of conditionally dominated strategies often yield vastly dif-
ferent sets of surviving strategies. Nonetheless, we show that all such sets are equiv-
alent in a very strong sense. We prove this equivalence in two steps. First, we estab-
lish a connection between conditional dominance and a new, auxiliary notion, distin-
guishable dominance. Then we prove an order-independence result for distinguishable
dominance.

A bridge lemma between distinguishable and conditional dominance

Our notion of distinguishable dominance can be summarized as follows. For every pro-
file s and every subset I of the players, call (si)i∈I a subprofile, and more simply denote
it by sI . Then a (pure) strategy a of player i is distinguishably dominated by another
(possibly mixed) strategy b of i if the following conditions hold.

(a) There exist strategy subprofiles s−i distinguishing a and b, that is, the (distribu-
tions of) terminal nodes reached by (a� s−i) and (b� s−i) do not coincide.

(b) For every subprofile s−i distinguishing a and b, i’s (expected) payoff is smaller for
(a� s−i) than for (b� s−i).

1We always consider finite games in this paper. But it is worth mentioning that for infinite games, the
order of iterated elimination of strictly dominated strategies may matter, as shown by Dufwenberg and
Stegeman (2002).

2For instance, in some extensive games, backward induction may be an elimination order of condition-
ally dominated strategies that is not maximal, as will be shown in Example 2.
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We prove that each elimination order of distinguishable dominance is also an elimi-
nation order of conditional dominance and vice versa. This bridge lemma leads to an
alternative characterization of EFR and enables us to extend our order-independence
theorem to conditional dominance as well.

Distinguishable dominance is formally presented in Section 4 and the bridge lemma
is formalized in Section 5.

Our order-independence theorem

We denote by ERi the set of EFR strategies of player i and denote by ER the Cartesian
product ×i∈NERi, whereN = {1� � � � � n} is the set of players.

In extensive games, whether using conditional or distinguishable dominance, dif-
ferent orders of elimination yield different sets of surviving strategy profiles. We prove,
however, that all such sets are equivalent to each other, and thus (via our bridge lemma)
to ER, in a very strong sense. This is best explained by considering—for simplicity only—
a product set R of surviving strategy profiles such that the cardinality of each Ri equals
that of ERi. In this case there exists a profile φ (depending on R and ER) of functions
such that

1. each φi is a bijection between ERi and Ri

2. for each profile s ∈ ER, both s and φ(s)� (φi(si))i∈N yield the same terminal node
(which of course implies that s and φ(s) are payoff-equivalent).

Accordingly, the players are totally indifferent between an execution of s and an execu-
tion of φ(s). (This implies that if the game is one of imperfect information, then each
player sees the same sequence of information sets.) In other words, although the sets
ER and R may consist of very different strategy profiles, when considering the terminal
nodes induced by them, it is as if they consisted of the same strategy profiles.

Our order-independence theorem and our bridge lemma together establish that the
iterated elimination of conditionally or distinguishably dominated strategies is essen-
tially as order-independent as that of strictly dominated strategies. Not only do these re-
sults make finding EFR outcomes easier, but they also show that EFR is actually a tighter
and less arbitrary concept than previously thought.

Our main theorem is presented in Section 6. A more general version of it is presented
in Section 7.

2. Connections with other works

A new connection between EFR and nice weak dominance

Our results help establish connections between EFR and other existing solution con-
cepts. For instance, Marx and Swinkels (1997) define nice weak dominance and
prove that the iterated elimination of nicely weakly dominated strategies is order-
independent, up to payoff equivalence. We note that (i) distinguishable dominance and
nice weak dominance coincide in games with generic payoffs, and (ii) distinguishable
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dominance always implies nice weak dominance. Because different orders of iterated
elimination of distinguishably dominated strategies yield the same set of histories, they
also yield the same set of payoff profiles. Thus, taken together, our bridge lemma and
the result of Marx and Swinkels (1997) imply that the set of payoff profiles generated by
EFR strategies always contains the set of payoff profiles generated by iterated elimina-
tion of nicely weakly dominated strategies. We flesh out this implication in Section 8. It
is also easy to see that this containment can be strict for some games.

Marx and Swinkels (1997) also identify a condition—the transference of decision-
maker indifference∗, TDI∗, condition—under which nice weak dominance coincides
with weak dominance. Therefore, in all games satisfying the TDI∗ condition, the set of
payoff profiles generated by iterated elimination of weakly dominated strategies is also
contained by that generated by EFR strategies.

We note that Brandenburger and Friedenberg (2011) show that in a game satisfying
no relevant convexities, a condition stronger than TDI∗, the set of strategies surviving
maximal elimination of weakly dominated strategies coincides with EFR.

Connection with Apt (2004)

Apt (2004) provides a unified method for proving order independence for various domi-
nance relations. His approach is clearly related to ours, in the sense that both use basic
tools from the literature of abstract reduction systems. The proof of our main order-
independence theorem is based on the strong Church–Rosser property, while Apt’s main
technique is a generalization of Newman’s lemma, which relies on the weak Church–
Rosser property. We note, however, that Apt did not prove or claim our result, and that
our main theorem does not directly follow from his.

Additional related work

A lot of previous work is devoted to elimination orders in games with generic payoffs. In
particular, Shimoji (2004) provides a proof of order independence for conditional dom-
inance for such games. When the game is, in addition, of perfect information, Gretlein
(1983) proves order independence for weak dominance, and Battigalli (1997) proves that
EFR and backward induction are history-equivalent. All these results can be viewed as
special cases of our work.3

Without dealing with different elimination orders, some payoff equivalence is ex-
plored by Moulin (1979) for voting games, but, as pointed out by Gretlein (1982), his ar-
gument is incomplete. A complete argument is provided by Rochet (1980) and Gretlein
(1983).

Also, Robles (2006), using a notion of dominance directly derived from Shimoji and
Watson’s notion of conditional dominance with strong replacements, explores the same
direction we do, but—as he kindly told us—without a satisfactory proof.

3In games with generic payoffs, distinguishable dominance and weak dominance coincide, and back-
ward induction is a particular elimination order of distinguishably dominated strategies.
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In an expanded version of this paper (Chen and Micali 2012), we further discuss a
new connection between EFR and backward induction, and the use of our notion of
dominance in mechanism design.

Finally, we wish to acknowledge the epistemic game theory literature on EFR (see, in
particular, Battigalli 1997 and Battigalli and Siniscalchi 2002), which provides a concep-
tual foundation for the solution concepts studied in our work.

3. Preliminaries

We consider finite extensive games of complete information with perfect recall and no
moves of nature. Such games can be defined via either “collections of terminal histories”
or “game trees,” and we prefer the latter approach. Recall that a finite directed tree is a
connected, directed, acyclic graph where each node has in-degree at most 1. The unique
node of in-degree 0 is referred to as the root and each node of out-degree 0 as a leaf.
A node that is not a leaf is referred to as an internal node. If there is an edge from node x
to node y, we refer to y as a child of x and to x as the parent of y.

Extensive games

An extensive game consists of the following components.

• A finite set,N = {1� � � � � n}, referred to as the set of players.

• A finite directed tree, referred to as the game tree, with each leaf referred to as a
terminal node and each internal node as a decision node.

• For each decision node x,

(i) a subset of players, P(x), referred to as the players (simultaneously) acting4

at x

(ii) for each i ∈ P(x), a finite set,Ai(x), referred to as the set of actions available
to i at x

(iii) a bijection χx between the set of x’s children and the Cartesian product
×i∈P(x)Ai(x).

• For each player i, a partition of all decision nodes x for which i ∈ P(x), Ii, such that
if x� y ∈ I ∈ Ii, thenAi(x)=Ai(y). If x ∈ I ∈ Ii, then we refer to I as an information
set of i and setAi(I)�Ai(x).

• For each player i and each terminal node z, a number ui(z), referred to as i’s payoff
at z.

(Pictorially, a play of an extensive game starts at the root and proceeds in a node-
to-child fashion, until a terminal node is reached. Specifically, if, at a decision node x,

4Traditionally, only one player acts at a decision node, but extensive games with simultaneous moves
have also been considered and our results apply to such games as well.
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each player i in P(x) chooses an action ai in Ai(x), then χx((ai)i∈P(x)) is the next node
reached.)

Basic notation

• The height of a node is the number of edges in the longest (directed) path from
it to a leaf. (Accordingly, a leaf has height 0.) The height of the game tree is the
height of its root.

• A pure strategy si of a player i is a function mapping each I in Ii to an action in
Ai(I). If x ∈ I ∈ Ii, then we set si(x)� si(I). We refer to si(x) as the action taken by
i at x according to si.

• We denote the set of all pure strategies of a player i by Si and set S � ×i∈NSi.

• IfX is a finite set, then �(X) denotes the set of all probability distributions overX .

• For each player i, a mixed strategy of i is an element in �(Si). If σi ∈ �(Si) and
si ∈ Si, then σi(si) denotes the probability assigned to si by σi.

• A strategy or strategy profile is always pure if it is represented by a lowercase Latin
letter; it is mixed (maybe degenerated) if it is represented by a lowercase Greek
letter.

• Given a pure strategy profile s, ui(s) denotes the payoff of player i at the termi-
nal node determined by s. Given a mixed strategy profile σ , ui(σ) denotes the
expected payoff of i induced by σ .

• For all players i and all (different) information sets I and I ′ in Ii, I ′ follows I if there
exists a decision node x′ ∈ I ′ such that the path from the root to x′ goes through a
decision node in I.5

Histories

The history of a pure strategy profile s consists of the sequence of nodes in the game
tree reached in a play of the game according to s. We denote byH the function mapping
each pure strategy profile to its history. Thus, following standard conventions, if X is a
set of pure strategy profiles, then H(X)= {H(s) : s ∈X}. If σ is a mixed strategy profile,
then H(σ) is the distribution induced by σ over the histories of the strategy profiles in
the support of σ .

A pure strategy subprofile sP reaches a node x if there exists a pure strategy subprofile
s−P such that x ∈H(s), and sP reaches an information set I if there exists a decision node
x ∈ I such that sP reaches x. Letting I be an information set of a player i, the set of all
pure strategies of i reaching I is denoted by Si(I), the set of all pure strategy subprofiles
of −i reaching I is denoted by S−i(I), and the set of all pure strategy profiles reaching I
is denoted by S(I).

5Assuming perfect recall (as defined in Osborne and Rubinstein 1994, p. 203), I ′ follows I implies that
for each decision node x′ ∈ I ′, the path from the root to x′ goes through a decision node in I.
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A mixed strategy subprofile σP reaches a node x (respectively, an information set I) if
for every pure strategy subprofile aP in the support of σP , aP reaches x (respectively, I).
If a strategy profile σ reaches x (respectively, I), we may also say that H(σ) reaches x
(respectively, I)—adding “with probability 1” for emphasis. (Note that reachability by
mixed strategies has sometimes been defined differently in the literature.)

Two known facts

We mention without proof the following two facts about histories in extensive games
with perfect recall.

Fact 1. For all players i, nodes x, and pure strategy profiles s and t, if both H(s) and
H(t) reach x, thenH(ti� s−i) also reaches x.

Fact 2. For all players i, information sets I ∈ Ii, and pure strategy profiles s, H(s)
reaches I if and only if both si and s−i reach I. (Thus, S(I) = Si(I) × S−i(I).) More-
over, if two strategies ti and t ′i both reach I, then they coincide at every information set
of i followed by I, and for all strategy subprofiles t−i reaching I, H(ti� t−i) and H(t ′i� t−i)
reach the same decision node in I.

Sets of strategy subprofiles

Following tradition, when talking about a set of strategy subprofiles RJ , we always im-
plicitly mean that RJ is a Cartesian product, RJ = ×j∈JRj . Following tradition again,
the only exceptions in this paper are the already defined S−i(I) and S(I), where I ∈ Ii.
(Indeed, although S(I) = Si(I) × S−i(I), S−i(I) and thus S(I) may not be Cartesian
products.)

4. Distinguishable dominance

We break the notion of distinguishable dominance into simpler components.

Definition 1 (Distinguishability and indistinguishability). Let σi and σ ′
i be two differ-

ent strategies of player i and let R−i be a set of pure strategy subprofiles. A strategy
subprofile t−i ∈R−i distinguishes σi and σ ′

i (over R−i) if

H(σi� t−i) �=H(σ ′
i � t−i)�

The strategies σi and σ ′
i are distinguishable over R−i if there exists a strategy subprofile

t−i ∈R−i that distinguishes them; otherwise, they are indistinguishable (over R−i).

If σi and σ ′
i are distinguishable over R−i, we write σi �� σ ′

i over R−i or σi ��R−i σ
′
i ;

otherwise, we write σi � σ ′
i over R−i or σi �R−i σ

′
i .
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Notice that indistinguishability is a notion expressing history equivalence and is
much stronger than just payoff equivalence.6 Also notice that in a normal-form game,
as long as R−i �= ∅, every pair of different strategies of player i is distinguishable over
R−i.7

Definition 2 (Distinguishable dominance). Let i be a player and let R be a set of pure
strategy profiles. A strategy si ∈ Si is distinguishably dominated (DD) by σi ∈ �(Si) over
R−i, if

(i) si and σi are distinguishable over R−i

(ii) ui(si� t−i) < ui(σi� t−i) for every strategy subprofile t−i ∈ R−i that distinguishes si
and σi.

Further, si is distinguishably dominated by σi within R if si ∈Ri and σi ∈ �(Ri).
We write

• si ≺ σi over R−i or si ≺R−i σi if si is DD by σi over R−i

• si � σi over R−i or si �R−i σi if either si �R−i σi or si ≺R−i σi

• si ≺ σi within R or si ≺R σi if si is DD by σi within R.

Notice that si ≺R σi implies both si ∈ Ri and σi ∈ �(Ri), while si ≺R−i σi does not imply
any of them. Notice also that si �R−i σi if for all t−i ∈R−i, eitherH(si� t−i)=H(σi� t−i) or
ui(si� t−i) < ui(σi� t−i).

Example 1. Consider the following gameG1.

P1a

����������� b

�����������

P2c

��
��

� d

��
��

� P2e

��
��

� f

��
��

�

1�1 1�2 4�3 4�3

InG1, any two strategies ofP2 are distinguishable over S1. In particular, ce and de are dis-
tinguished by a: indeed, H(a� ce)= (a� c) �= (a�d)=H(a�de). However, letting R1 = {b},

6Beyond determining (together with the opponents’ strategies) a player’s payoff, a strategy also deter-
mines the terminal node causing that payoff and thus the history of the game. But beyond that, a strategy
has no further consequences. The fact that σi �R−i σ

′
i thus guarantees that, as long as player i is sure that

all other players will choose their strategies from R−i, σi and σ ′
i are de facto identical to him. In concrete

terms, if i were far away from the “strategy buttons,” but were able to observe the history of the game, and
had instructed one of her subordinates to push button σi , while he pushed σ ′

i instead, then she could not
tell the difference at all. Another notion, “outcome equivalence,” also appears in the literature. However,
sometimes (e.g., Battigalli and Friedenberg 2012) it is defined to mean payoff equivalence and sometimes
(e.g., Osborne and Rubinstein 1994) to mean history equivalence. Accordingly, to avoid confusion, we do
not use the term “outcome equivalence.”

7By definition, in a normal-form game, the history of a strategy profile σ coincides with σ itself, so that
any two different strategy profiles have different histories, and thus the notion of distinguishable domi-
nance coincides with strict dominance, and so do their corresponding notions of iterated elimination.
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the same strategies ce and de are indistinguishable over R1. Indeed H(b� ce) = (b� e) =
H(b�de). Note that strategies cf and df are indistinguishable overR1 too. GameG1 thus

illustrates that the notion of distinguishability is indeed dependent on the subprofile of

sets of strategies under consideration.

Now turning our attention to distinguishable dominance, note the following details.

• a is distinguishably dominated by b over S2. (Moreover, a is strictly dominated by

b in gameG1.)

• ce is distinguishably dominated by de over S1: the only strategy in S1 distinguish-

ing them is a, and P2’s payoff is 2 under (a�de) and only 1 under (a� ce). (However,

ce is not strictly dominated in gameG1.)

• ce is not distinguishably dominated by df over S1: although b distinguishes ce and

df over S1, P2’s payoff is the same under both (b� ce) and (b�df ). (However, ce is

weakly dominated by df in gameG1.)

GameG1 thus illustrates that the notion of distinguishable dominance is different from

both strict dominance and weak dominance. ♦

Definition 3 (Iterated elimination of DD strategies, and resilient solutions). A set of

pure strategy profiles R survives iterated elimination of DD strategies if there exists a

sequence R = (R0� � � � �RK) of sets of strategy profiles such that

(i) R0 = S and RK =R
(ii) for all k<K,

(a) there is a player i such that Rki \Rk+1
i �= ∅

(b) for all players j, Rk+1
j ⊆Rkj and every strategy in Rkj \Rk+1

j is DD within Rk

(iii) each RKi contains no strategy that is DD within RK .

We refer to R as an elimination order of DD strategies and refer to R as a resilient solu-

tion. Profile R is maximal if for all k and i, Rki \Rk+1
i includes all strategies that are DD

within Rk.

Example 2. The following gameG2, due to Reny (1992), is a classical example for illus-

trating different elimination orders.

P1
a

b
P2

c

d
P1

e

f

P2
g

h
(3�0)

(2�0) (0�1) (1�0) (0�2)
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In this game, one resilient solution corresponds to the maximal elimination of dis-
tinguishably dominated strategies: namely, R = {ae�af } × {dg}.8 Another resilient so-
lution essentially corresponds to backward induction: namely, T = {ae�af } × {cg� ch}.9

Yet, notice that bothR and T induce the same set of histories (namely, {(a)}). Our order-
independence theorem implies that this is actually true in general. ♦

5. Our bridge lemma

Let us recall conditional dominance in our terminology, so as to facilitate a comparison
with our notion.

Definition 4 (Conditional dominance). Let R be a set of strategy profiles and let i be a
player. A strategy si ∈Ri is conditionally dominated within R if there exists an informa-
tion set I ∈ Ii and a strategy σi ∈ �(Ri) satisfying the requirements

(i) si ∈ Si(I), σi ∈ �(Si(I)), and S−i(I)∩R−i �= ∅

(ii) for each t−i ∈ S−i(I)∩R−i, ui(σi� t−i) > ui(si� t−i).

Note that iterated elimination, elimination order, and maximal elimination order
are defined for conditional dominance exactly as for distinguishable dominance: just
replace “distinguishably” with “conditionally” in Definition 3. The set of strategy pro-
files surviving the maximal elimination order of conditionally dominated strategies co-
incides with ER, as proven by Shimoji and Watson (1998).

8Indeed, S1 = {ae�af�be�bf } and S2 = {cg� ch�dg�dh}, and the maximal elimination of DD strategies
works as follows:

1. Strategy be ≺S ae (distinguished by all strategies in S2), dh ≺S dg (distinguished by bf ), and nothing
else is distinguishably dominated. Therefore, R1

1 = {ae�af�bf } and R1
2 = {cg� ch�dg}.

2. Strategy bf ≺R1 ae (distinguished by all strategies in R1
2), cg ≺R1 dg and ch ≺R1 dg (distinguished by

bf ), and nothing else. Therefore, R2
1 = {ae�af } and R2

2 = {dg}.

3. No other strategy can be eliminated and thus R2 survives the maximal elimination of DD strategies.

9Indeed, a different elimination order of DD strategies is as follows:

1. Strategy dh is eliminated because dh ≺S dg (distinguished by bf ). Therefore, T 1
1 = S1 and T 1

2 =
{cg� ch�dg}.

2. Strategy bf is eliminated because bf ≺T 1 be (distinguished by dg). Therefore, T 2
1 = {ae�af�be} and

T 2
2 = T 1

2 .

3. Strategy dg is eliminated because dg ≺T 2 cg (distinguished by be). Therefore, T 3
1 = T 2

1 and T 3
2 =

{cg� ch}.

4. Strategy be is eliminated because be≺T 3 ae (distinguished by cg and ch). Therefore, T 4
1 = {ae�af } and

T 4
2 = T 3

2 .

5. No other strategy can be eliminated, and thus T 4 is a resilient solution.
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Differences between distinguishable and conditional dominance

The definitions of distinguishable and conditional dominance are of course different.
In particular, the notion of conditional dominance requires an additional component:
namely, the information set I. Further, it allows for the possibility of some “circularity”:
namely, a pure strategy si may be dominated by another pure strategy s′i within R (rela-
tive to an information set I), while s′i is itself dominated by si within the same R (relative
to a different information set I ′). In this case, both strategies are eliminated simulta-
neously in the maximal elimination order. However, this circularity is innocuous: it is
proved that it does not cause any problem to the notion of EFR. Such a circularity does
not arise for distinguishable dominance.

Let us now explain that distinguishable and conditional dominance are indeed dif-
ferent concepts: distinguishable dominance implies conditional dominance, but not
vice versa. To begin with, according to Definition 2, when si ≺R−i σi, we do not require
si ∈ Ri or σi ∈ �(Ri). When si /∈ Ri or σi /∈ �(Ri), distinguishable dominance is quite
unrelated to conditional dominance. However, we have the following proposition.

Proposition 1. For all sets of strategy profiles R, all players i, and all strategies si and
σi, si ≺ σi within R implies that si is conditionally dominated by σi within R.

Proof. Because si ��R−i σi, there exists t−i ∈ R−i such that H(si� t−i) �=H(σi� t−i). Con-
sidering one by one, starting with the root, the information sets of i reached byH(si� t−i),
let I be the first information set such that there exists ai in the support of σi with
ai(I) �= si(I). (Such an I exists, since otherwise H(si� t−i) = H(σi� t−i).) By definition,
we have

si ∈ Si(I) and S−i(I)∩R−i ⊇ {t−i} �= ∅�

For each information set I ′ ∈ Ii followed by I, H(si� t−i) reaches I ′, because the game is
with perfect recall. By the choice of I, for each ai in the support of σi we have ai(I ′) =
si(I

′). Accordingly, σi coincides with si at all information sets of i followed by I, which
implies thatH(σi� t−i) reaches I. Thus

σi ∈ �(Si(I))�
and requirement (i) of Definition 4 holds.

Because σi and si do not coincide at information set I, for each t ′−i ∈ S−i(I)∩R−i, we
have that t ′−i distinguishes si and σi, and thus ui(σi� t ′−i) > ui(si� t

′
−i). Therefore, require-

ment (ii) of Definition 4 also holds, and si is conditionally dominated by σi withinR.10 �
10Actually, one can verify that si ≺R σi if and only if the following two requirements are satisfied:

1. Strategy si is conditionally dominated by σi within R.

2. For all I ∈ Ii such that

2.1. si ∈ Si(I), σi ∈ �(Si(I)), S−i(I)∩R−i �= ∅

2.2. ai(I) �= si(I) for some ai in the support of σi ,

si is conditionally dominated by σi within R with respect to I.
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Let us now provide a simple counterexample proving that

si being conditionally dominated by σi within R does not imply si ≺ σi within R.

Example 3. In gameG1 of Example 1, lettingR= {a�b}× {cf�de}, the strategy cf is con-
ditionally dominated by de within R, with the desired information set being the deci-
sion node following a. However, cf is not distinguishably dominated by de, because
there exists s1 ∈ R1 (namely, strategy b) such that H(s1� cf ) �=H(s1� de) and u2(s1� cf ) =
u2(s1� de). Accordingly, cf is not DD by any strategy in �(R2) over R1 and thus is not DD
within R. ♦

Shimoji and Watson (1998) also put forward two variants of conditional dominance.
These notions also are different from distinguishable dominance.11

Bridging distinguishable and conditional dominance

As we have just seen, relative to a particular set of strategy profiles R, a strategy may be
conditionally dominated but not distinguishably dominated. However, for this to hap-
pen, we show that R must be chosen somewhat “arbitrarily.” That is, the two different
notions of dominance considered here coincide with respect to all “naturally” obtained
sets of strategy profiles R: namely, the set of all strategy profiles S and all sets derived
from S solely by iteratively eliminating some conditionally or distinguishably dominated
strategies. Indeed, in Example 3, the set R= {a�b} × {cf�de} cannot be obtained from S

by such iterated elimination. Let us now be more formal.

Lemma 1 (Bridge lemma). Each elimination order of conditionally dominated strategies
is also an elimination order of DD strategies and vice versa. Moreover, the maximal elimi-
nation order of conditionally dominated strategies is also the maximal elimination order
of DD strategies.

11The first variant is conditional dominance by replacements. For a strategy si to be dominated in this
sense within some set of strategy profilesR by another strategy σi, not only should it be conditionally dom-
inated by σi within R, as per Definition 4, but si and σi must also be payoff equivalent with respect to each
strategy subprofile s−i ∈ R−i \ S−i(I); that is, (uj(si� s−i))j∈N = (uj(σi� s−i))j∈N . The second variant is con-
ditional dominance by strong replacements. For si to be dominated in this sense within R by σi, in addition
to being conditionally dominated by σi within R, si and σi must be history equivalent with respect to each
s−i ∈ R−i \ S−i(I); that is, H(si� s−i) =H(σi� s−i). Among all three versions of conditional dominance, the
last one is the closest to distinguishable dominance. However, although both consider some form of history
equivalence, conditional dominance by strong replacements and distinguishable dominance are different.
The former allows si and σi to differ only at one information set I and every information set following I,
but forces si and σi to coincide at every other information set that is reachable. The latter has no such
restriction. In particular, if si is distinguishably dominated by σi, then it is very possible that there exist
two information sets I and I ′, neither following the other, such that si and σi differ at both of them and
coincide everywhere else. The key idea of all three versions of conditional dominance is that, conditioned
on a particular information set being reached, si is strictly dominated by σi. By contrast, distinguishable
dominance essentially compares si and σi wherever they differ (as reflected by item 2 of footnote 10). In a
sense, it is “unconditional dominance.”
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The proof of Lemma 1 is given in Appendix A. Notice that the vice versa part of
Lemma 1 is not necessary for proving that iterated elimination of conditionally domi-
nated strategies is order-independent. But it establishes a closer connection between
conditional dominance and distinguishable dominance. With this part, the lemma im-
mediately implies that the notion of a resilient solution does not depend on which of the
two notions of dominance is chosen. In light of the result of Shimoji and Watson, the sec-
ond half of the lemma immediately implies the following alternative characterization of
EFR.

Corollary 1 (ER is a resilient solution). If R is the set of strategy profiles surviving the
maximal elimination order of DD strategies, then R= ER.

The corollary can be illustrated by the same gameG1 of Example 1. In this game, the
maximal elimination order of DD strategies terminates after a single step, in which the
strategies a, ce, and cf are eliminated. Accordingly, the set of surviving strategy profiles
is {b} × {de�df }, and it is clear that (i) exactly the same set is obtained after one step of
maximal elimination of conditionally dominated strategies and (ii) the strategies b, de,
and df are not conditionally dominated.

6. Main result

To extend the equivalence relation between strategies induced by the notion of indistin-
guishability (i.e., �R−i for given R and player i) to sets of strategy profiles, we establish a
suitable notation that lets us deal with equivalent strategies simultaneously.

Notation. If R is a set of pure strategy profiles, then we can make the following defini-
tions.

• The set R
�R−i
i denotes the partition of Ri into equivalence classes under the rela-

tion �R−i , and R� denotes the profile of partitions (R
�R−1
1 � � � � �R

�R−n
n ).

• For all si ∈Ri, s�R−i
i denotes the equivalence class in R

�R−i
i to which si belongs.

• For all s ∈R, s�R denotes the profile of equivalence classes (s
�R−1
1 � � � � � s

�R−n
n ).

When the profile R under consideration is clear, we may omit the symbols R and R−i in
superscripts, and simply write R�

i , s�i , and s�.
Let us formally note that the history of a profile of equivalence classes is well defined.

Proposition 2. For all sets of strategy profiles R, s ∈ R, and s′ ∈ s�1 × · · · × s�n , we have
H(s′)=H(s).

The proof of Proposition 2 is a simple and standard argument: for completeness
sake, see Appendix B. According to this proposition, if R is a set of strategy profiles and
s ∈R, then we defineH(s�R) to beH(s), without causing any ambiguity.
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Definition 5 (Equivalence between sets of strategy profiles). Two sets of strategy pro-
files R and T are equivalent if there exists a profile φ of functions such that

• each φi is a bijection from R
�R−i
i to T

�T−i
i

• for all strategy profiles s ∈R,H(s)=H(φ1(s
�R−1
1 )� � � � �φn(s

�R−n
n )).

In this case, we further say that R and T are equivalent under φ.

Notice that if R and T are equivalent, thenH(R)=H(T).

Theorem 1. Any two sets of strategy profiles surviving iterated elimination of distin-
guishably dominated strategies are equivalent and thus equivalent to ER.

The proof of Theorem 1 is given in Appendix C. This theorem establishes a strong
connection between EFR and resilient solutions (i.e., sets of strategy profiles surviving
iterated elimination of distinguishably dominated strategies). This connection exists
even when, as shown by Example 2 and the following example (which is a game with
simultaneous moves), a player’s strategies in some resilient solution are totally disjoint
from his EFR strategies.

Example 4. Consider the following gameG3 introduced by Perea (2011).

P1

a

��
��

��
�� b

��
��

��
��

�����P1

P2 e f g

c 2�2 2�1 0�0
d 1�1 1�2 4�0

3�0

In this game, the decision node following P1’s action a has P1 and P2 acting simulta-
neously, and is of height 1 (although its children are not explicitly drawn). One resilient
solution corresponds to the maximal elimination of distinguishably (and by virtue of
Lemma 1, conditionally) dominated strategies: namely, ER = {bc�bd} × {f }.12 Accord-
ingly, the only EFR strategy of P2 is f . Another resilient solution is T = {bc�bd} × {e}.13

12Indeed, S1 = {ac�ad�bc�bd} and S2 = {e� f�g}, and the maximal elimination of DD strategies works as
follows:

1. Strategy ac ≺S bc (distinguished by e, f , and g), g ≺S e (distinguished by ac and ad), and nothing else
is distinguishably dominated. Therefore, R1

1 = {ad�bc�bd} and R1
2 = {e� f }.

2. Strategy ad ≺R1 bc (distinguished by e and f ), e≺R1 f (distinguished by ad), and nothing else. There-
fore, R2

1 = {bc�bd} and R2
2 = {f }.

3. No other strategy can be eliminated and thus R2 survives the maximal elimination of DD strategies.

13Indeed, a different elimination order of DD strategies is as follows:
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Notice that ER and T generate the same histories: namely, H(ER) =H(T) = {(b)}.
In addition, bc �ER2 bd and bc �T2 bd. Thus, at least in this simple game, the profile φ
guaranteed by Theorem 1 can be easily found: φ1({bc�bd})= {bc�bd} and φ2({f })= {e}.
Therefore, ER is equivalent to T . ♦

In the above example, the strategies of the unique subgame-perfect equilibrium
(bc� e) survive some elimination order. However, Example 7 of Appendix B shows that if
a game has multiple subgame-perfect equilibria, then some of their strategies may not
survive any elimination order.

6.1 Some intuition behind our proof of Theorem 1

Our precise line of reasoning is, of course, reflected in the proof itself. However, since
the proof is of some complexity, in this subsection, we try to give the reader some (nec-
essarily incomplete) intuition on how we proceed.

We prove Theorem 1 via the strong Church–Rosser property (Church and Rosser
1936), often referred to as the diamond property. This property is perhaps the most basic
tool in the literature of abstract reduction systems (see, for instance, Klop 1992, Böhm
and Micali 1980, and Huet 1980), and is implicitly used in Gilboa et al. (1990). Letting
S be a finite set and R a binary relation over S , the pair (S�R) satisfies the diamond
property if, for all x� y� z ∈ S , xR y and xR z imply that there existsw ∈ S such that y Rw

and z R w. Pictorially,

x
R

����
��

��
�� R

��	
		

		
		

	

y

R ��	
		

		
		

	
z

R����
��

��
��

w

A well known consequence of the diamond property is “unique termination” (in the
formal parlance of reduction systems, “unique normal form”). Let R∗ be the reflexive
and transitive closure of R. Then, for all x� y� z ∈ S such that x R∗ y and x R∗ z, if both
y and z are “terminal,” that is, there does not exist any w ∈ S such that either y R w or

1. Strategy g is eliminated because g≺S e. Therefore, T 1
1 = S1 and T 1

2 = {e� f }.

2. Strategy ad is eliminated because ad ≺T 1 ac (distinguished by e and f ). Therefore, T 2
1 = {ac�bc�bd}

and T 2
2 = {e� f }.

3. Strategy f is eliminated because f ≺T 2 e (distinguished by ac). Therefore, T 3
1 = {ac�bc�bd} and T 3

2 =
{e}.

4. Strategy ac is eliminated because ac ≺T 3 bc (distinguished by e). Therefore, T 4
1 = {bc�bd} and T 4

2 = {e}.

5. No other strategy can be eliminated and thus T 4 is a resilient solution.
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z R w, we have y = z. A formal proof can be found, for instance, in Klop (1992), but all
the necessary intuition is contained in the following picture.
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Now let S be the set of all sets of pure strategy profiles, and let Rsim be the binary
relation over S such that, for allX and Y in S ,X Rsim Y if and only if Y can be obtained
from X by (simultaneously) eliminating one or more DD strategies. If this particular
pair (S�Rsim) satisfied the diamond property, then by starting from S (i.e., the set of all
strategy profiles) and traveling through S following the relation Rsim, one would always
terminate (because there are finitely many strategies to eliminate) and end up at the
same set of strategy profiles. This would actually prove that all resilient solutions are not
just equivalent to each other, but actually equal to each other. This, however, is too good
to be true.

The so-defined pair (S�Rsim) does not satisfy the diamond property. This can be
derived from the fact that, as already shown, the game in Example 2 has two distinct
resilient solutions. But a more detailed explanation is the following. Let X , Y , and Z be
sets in S such thatX RsimY andX RsimZ. In particular, Y could be obtained fromX by
eliminating a strategy si of player i because it is distinguishably dominated by (and only
by) a strategy ti, and Z could be obtained from X by eliminating sj of player j. Further,
assume that the only strategy subprofile that distinguishes si and ti over X−i has sj as
its jth component. Accordingly, si and ti become equivalent over Z−i, and si cannot be
eliminated fromZ, implying that there does not exist anyW ∈ S such thatY RsimW and
Z Rsim W .

The latter problem is actually exacerbated when Y and Z are obtained from X by
simultaneously eliminating multiple DD strategies. Accordingly, we restrict the relation
Rsim by disallowing simultaneous elimination. In other words, we consider the binary
relation R over S , such thatXRY if and only ifY can be obtained fromX by eliminating
a single DD strategy. At this point, Theorem 1 follows from the following two properties.

• For allX and Y in S ,X R∗
sim Y if and only ifX R∗ Y .
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• Relation R satisfies the diamond property.

Unfortunately, neither property holds. We do, however, enlarge the relation R to make
both of them hold. Essentially, we let X R Y mean that the set Y is obtained from X by
either

(1) eliminating a DD strategy as before

(2) eliminating a strategy indistinguishable to another one currently present

(3) replacing a strategy with an indistinguishable one (with respect to all other cur-
rently present strategies) that is not currently present.

With these changes, we “force” the desired properties to hold. However, with respect to
the enlarged relation R, unique termination is not well defined. This is so because, by
solely replacing equivalent strategies, it is possible to go from a set W to a different set
W ′ and back without ever terminating. Accordingly, the diamond property in our case
does not imply that all resilient solutions are equal, because some of them may not be
terminal with respect to R. But, together with some other properties of the enlarged
relation, it does imply that all resilient solutions are equivalent. In a sense, the slack-
ness forced in the relation R translates equality into equivalence. In other words, if two
resilient solutions are not equal outright, then we prove that it is possible to transform
one into the other by adding/removing/replacing indistinguishable strategies, that is,
via operations that produce only equivalent sets of strategy profiles.

6.2 The convenience of using distinguishable dominance for proving Theorem 1

Consider the following gameG4.

P1a

����������� b

�����������

P2c

��
��

� d

��
��

� P2e

��
��

� f

��
��

�

1�2 2�1 3�0 0�3

In this game, starting with the set of strategy profilesX = {a�b}×{ce�df } and eliminating
conditionally dominated strategies, one can get

Y = {a} × {df } and Z = {b} × {ce}�14

14On one hand, starting with X and eliminating ce (which is conditionally dominated within X by df ,
relative to the decision node following b), one obtains Y ′ = {a�b} × {df }. Then, by eliminating b (which is
conditionally dominated within Y ′ by a, relative to the root), one obtains Y . On the other hand, starting
with X and eliminating df (which is conditionally dominated within X by ce, relative to the decision node
following a), one obtainsZ′ = {a�b}×{ce}. Then, by eliminating a (which is conditionally dominated within
Z′ by b, relative to the root), one obtains Z.
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Notice that H(Y) = {(a�d)}, H(Z) = {(b� e)} and these two histories are not even
payoff-equivalent. Accordingly, Y and Z are not at all equivalent: in other words, if R̃
is the (properly enlarged15) relation corresponding to the elimination of conditionally
dominated strategies, then

X R̃∗ Y ∧X R̃∗ Z does not imply that there existsW such that Y R̃∗ W ∧Z R̃∗ W .

Note too, however, that it is not possible to obtain X in this game by eliminating
conditionally dominated strategies starting with S. This is, in general, the case. Indeed,
we say thatX is reachable from S if S R̃∗X . Following the bridge lemma and the fact that
our enlarged relation for distinguishable dominance satisfies the diamond property, we
have that

R̃ satisfies the diamond property for all sets of strategy profilesX reachable from S.

In the absence of our results, however, the above statement was not known to be true.
Further, any direct proof would have to leverage the hypothesis that “X is reachable
from S.” By contrast, distinguishable dominance satisfies the diamond property for all
X , thus allowing for a more abstract and uniform proof: the one intuitively sketched in
the previous subsection.

7. A more general order-independence result

As shown by the following example, when a game is played, if the players iteratively
eliminate DD strategies according to different orders and each player chooses strategies
from his own surviving set, then the resulting set of possible strategy profiles need not
be a resilient solution at all.

Example 5. Consider the following gameG5.

P1a











 b

�������

3�0�0 P2c









 d

��
��

��

1�2�0 P3e




f

���
���

4�1�1 1�1�2

In this game, there are (at least) the following three elimination orders of DD strategies.

1. Eliminating strategy e (dominated by f ) then d (dominated by c) and finally b
(dominated by a) yields a resilient solution R1 = {a} × {c} × {f }.

2. Eliminating strategy e and then b yields a resilient solution R2 = {a} × {c�d} × {f }.

15We do not know how to enlarge the elimination of conditionally dominated strategies without intro-
ducing our notion of distinguishable dominance, because the enlargement we have in mind is to allow
elimination and replacement of indistinguishable strategies as we see in the last paragraph of Section 6.1.
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3. Eliminating strategy d and then b yields a resilient solution R3 = {a} × {c} × {e� f }.

Accordingly,R1
1 ×R2

2 ×R3
3 = {a}×{c�d}×{e� f }. But this set of strategy profiles is not a re-

silient solution: indeed, one can verify that the strategies d and e never appear together
in any resilient solution.

Notice, however, that the product set R1
1 × R2

2 × R3
3 is equivalent to R1 (and thus to

every resilient solution ofG5). A consequence of Theorem 1, stated below without proof,
is that this is always the case for games with perfect recall. ♦

Theorem 2. For all resilient solutionsR1� � � � �Rn, the set of strategy profiles ×iR
i
i is equiv-

alent to every resilient solution (and thus to ER).

8. Connection between EFR and nice weak dominance

Letting U be the function mapping a strategy profile s to the payoff profile (u1(s)� � � � �

un(s)), below we recall the notion of nice weak dominance that Marx and Swinkels (1997)
propose.

Definition 6. Let R be a set of strategy profiles and let i be a player. A strategy si ∈ Ri
is nicely weakly dominated within R if there exists a strategy σi ∈ �(Ri) such that (i) for
all s−i ∈ R−i, either ui(si� s−i) < ui(σi� s−i) or U(si� s−i) = U(σi� s−i), and (ii) there exists
s−i ∈R−i such that ui(si� s−i) < ui(σi� s−i).

The notions of iterated elimination, elimination order, and maximal elimination or-
der are defined for nice weak dominance exactly in the same way as for distinguishable
dominance. As Marx and Swinkels (1997) prove, for each pair of elimination orders of
nicely weakly dominated strategies, letting R and T be the corresponding sets of surviv-
ing strategy profiles, we have

U(R)=U(T)�
Using this result and our bridge lemma, we can prove the following theorem.

Theorem 3. For every set of strategy profiles NW that survives some elimination order of
nicely weakly dominated strategies, we have

U(ER)⊇U(NW)�

Proof. By the definitions of distinguishable dominance and nice weak dominance, we
have that for all sets of strategy profiles T , players i, and strategies si ∈ Ti and σi ∈ �(Ti),

si ≺T σi implies that si is nicely weakly dominated by σi within T .

To see why this is true, assume si ≺T σi. By definition, the following two conditions
hold.

(i) For all s−i ∈ T−i, either ui(si� s−i) < ui(σi� s−i) orH(si� s−i)=H(σi� s−i).
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(ii) There exists s−i ∈ T−i such that ui(si� s−i) < ui(σi� s−i).

Because H(si� s−i) = H(σi� s−i) implies U(si� s−i) = U(σi� s−i), by definition si is nicely
weakly dominated by σi within T .

Accordingly, letting R0 = S�R1� � � � �RK be the maximal elimination order of dis-
tinguishably dominated strategies, we have that for each k < K and each player i,
the strategies in Rki \ Rk+1

i are all nicely weakly dominated within Rk. Therefore,
R0�R1� � � � �RK is the start of some particular elimination order R0�R1� � � � �RK� � � � �RL

of nicely weakly dominated strategies, whereL≥K. (AlthoughRK does not contain any
strategy that is DD within RK , it may still contain some strategies that are nicely weakly
dominated within RK , and thus L may be greater than K.) Notice that R0� � � � �RL may
not be the elimination order that leads to NW. But according to Marx and Swinkels
(1997), we have

U(RL)=U(NW)�

By Lemma 1, RK = ER. Because RK ⊇ RL, we finally have U(ER) = U(RK) ⊇ U(RL) =
U(NW) and Theorem 3 holds. �

Because distinguishable dominance coincides with strict dominance in normal-
form games, and it is well known that iterated elimination of nicely weakly dominated
strategies can lead to a smaller set of surviving payoff profiles than iterated elimination
of strictly dominated strategies, we immediately have that the inclusion in Theorem 3
can be strict. The following example shows that this continues to be the case even for
extensive games (of height greater than 1).

Example 6. Consider the following gameG6.

P1a

����������� b

�����������

P2c

��
��

� d

��
��

� P2e

��
��

� f

��
��

�

1�0 0�0 1�0 1�0

In this game, on one hand, no strategy is distinguishably dominated, which implies that
ER = S and U(ER) = {(1�0)� (0�0)}. On the other hand, the strategy a of P1 is nicely
weakly dominated by bwithin S: indeed, for s2 ∈ {ce� cf },U(a� s2)=U(b� s2)= (1�0), and
for s2 ∈ {de�df }, u1(a� s2) = 0 < 1 = u1(b� s2). After a is eliminated, no strategy is nicely
weakly dominated, and the set of surviving strategy profiles is NW = {b}×{ce� cf�de�df }.
Therefore, U(NW)= {(1�0)} �U(ER). ♦

Appendix A: Proof of Lemma 1

We start by proving the following lemma, which also is used later in proving other
theorems.
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Lemma 2. Let X and Y be two sets of strategy profiles such that Y � X , and for each
player i and each si ∈Xi \ Yi, si is distinguishably dominated within X . Then, for each
player i and each si ∈Xi \Yi, there exists σi ∈ �(Yi) such that si ≺X−i σi.

Proof. Consider an arbitrary player i. Without loss of generality, assume that
Xi \Yi �= ∅. Let k= |Xi \Yi| andXi \Yi = {si�1� � � � � si�k}. To prove Lemma 2, it suffices to
show that

for each �≤ k, there exists a strategy σi�� ∈ �(Yi) such that si�� ≺X−i σi��. (	)

To prove statement (	), notice that by hypothesis, for each � ≤ k, there exists τi�� ∈
�(Xi) such that si�� ≺X−i τi��. If all those τi�� are in �(Yi), then letting σi�� = τi�� for each
�, we are done immediately. Otherwise, we construct σi�1� � � � �σi�k explicitly, and in k
steps.

For j = 1� � � � �k, the goal of the jth step is to construct σji�1� � � � �σ
j
i�k, such that for

each �≤ k, si�� ≺X−i σ
j
i�� and σji�� ∈ �(Xi \ {si�1� � � � � si�j}). (Intuitively, we want to gradually

remove si�1� � � � � si�k from the support of each τi��, while preserving the corresponding
distinguishable dominance relation.) Notice that once all k steps are done successfully,
we obtain σki�1� � � � �σ

k
i�k such that (by the goal of the kth step) for each � ≤ k, si�� ≺X−i

σki�� and σki�� ∈ �(Xi \ {si�1� � � � � si�k}) = �(Yi). Thus by taking σi�� = σki�� for each � ≤ k,
statement (	) holds, and so does Lemma 2.

Now we implement the above proposed k-steps. In the first step, we construct
σ1
i�1� � � � �σ

1
i�k based on τi�1� � � � � τi�k. We start from σ1

i�1. Notice that τi�1 �= si�1 (in other

words, τi�1(si�1) �= 1), because si�1 ��X−i τi�1. Therefore, we take σ1
i�1 to be τi�1 conditioned

on si�1 not occurring, that is,

σ1
i�1(si)= τi�1(si)

1 − τi�1(si�1) for all si �= si�1�

In particular, if τi�1(si�1)= 0, then σ1
i�1 = τi�1. By construction, σ1

i�1 ∈ �(Xi \ {si�1}): indeed,

∑
si∈Xi\{si�1}

σ1
i�1(si)= 1

1 − τi�1(si�1)
∑

si∈Xi\{si�1}
τi�1(si)= 1 − τi�1(si�1)

1 − τi�1(si�1) = 1�

Also by construction, for each strategy subprofile t−i, t−i distinguishes si�1 and σ1
i�1 if and

only if it distinguishes si�1 and τi�1. Because si�1 ��X−i τi�1, we have si�1 ��X−i σ
1
i�1. Further,

because for all distinguishing strategy subprofiles t−i ∈X−i,

ui(si�1� t−i) < ui(τi�1� t−i)= (1 − τi�1(si�1))ui(σ1
i�1� t−i)+ τi�1(si�1)ui(si�1� t−i)�

we have ui(si�1� t−i) < ui(σ1
i�1� t−i). Accordingly, si�1 ≺X−i σ

1
i�1.

Now for each � �= 1, we construct σ1
i�� based on τi�� and σ1

i�1. To do so, for each si ∈
Xi \ {si�1}, let

σ1
i��(si)= τi��(si)+ τi��(si�1) · σ1

i�1(si)�
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That is, σ1
i�� is obtained from τi�� by replacing si�1 with σ1

i�1. By construction, we have

σ1
i�� ∈ �(Xi \ {si�1}): indeed,

∑
si∈Xi\{si�1}

σ1
i��(si) =

∑
si∈Xi\{si�1}

τi��(si)+ τi��(si�1) ·
∑

si∈Xi\{si�1}
σ1
i�1(si)

= (1 − τi��(si�1))+ τi��(si�1)= 1�

Next we prove that si�� ≺X−i σ
1
i��, given the hypothesis si�� ≺X−i τi��. To do so, notice that

when τi��(si�1) = 0, we have τi�� = σ1
i��, which together with the hypothesis clearly im-

plies si�� ≺X−i σ
1
i��. When τi��(si�1) > 0, we have τi�� �= σ1

i��, and that for each t−i, t−i dis-

tinguishes τi�� and σ1
i�� if and only if it distinguishes si�1 and σ1

i�1. Because si�1 ≺X−i σ
1
i�1,

when τi��(si�1) > 0, we have (i) there exists t−i ∈X−i distinguishing τi�� and σ1
i��, and (ii)

for all such t−i,

ui(τi��� t−i) =
∑

si∈Xi\{si�1}
τi��(si)ui(si� t−i)+ τi��(si�1)ui(si�1� t−i)

<
∑

si∈Xi\{si�1}
τi��(si)ui(si� t−i)+ τi��(si�1)ui(σ1

i�1� t−i)= ui(σ1
i��� t−i)�

Accordingly, when τi��(si�1) > 0, we have τi�� ≺X−i σ
1
i��. Because the ≺X−i relation is tran-

sitive, together with the hypothesis we have si�� ≺X−i σ
1
i�� and we are done with the first

step.
The remaining steps are very similar. In particular, in the jth step for each j > 1, we

construct σji�1� � � � �σ
j
i�k based on σj−1

i�1 � � � � �σ
j−1
i�k . We start from σ

j
i�j , and take it to be σj−1

i�j

conditioned on si�j not occurring. For each � �= j, σji�� is obtained from σ
j−1
i�� by replacing

si�j with σji�j . By similar analysis, we have that for each � ≤ k, σji�� ∈ �(Xi \ {si�1� � � � � si�j})
and si�� ≺X−i σ

j
i��, as desired.

As already mentioned, after the kth step, we have σki�1� � � � �σ
k
i�k such that for each

� ≤ k, si�� ≺X−i σ
k
i�� and σki�� ∈ �(Xi \ {si�1� � � � � si�k}) = �(Yi). Taking σi�� = σki�� for each

�≤ k, statement (	) holds, and so does Lemma 2. �

We now proceed to prove Lemma 1. The proof consists of three parts. In the first
part, which is the most complicated one, we prove that each elimination order of con-
ditionally dominated strategies is also an elimination order of DD strategies. To do so,
letting S0 = S�S1� � � � � SK be an arbitrary elimination order of conditionally dominated
strategies, we prove the following statement:

For all k≤K, all i, and all si ∈ Ski � si is conditionally dominated within Sk

(∗)
if and only if it is distinguishably dominated within Sk.

Indeed, statement (∗) implies that for all k < K and all players i, every strategy in
Ski \ Sk+1

i is distinguishably dominated with Sk. Further, because each SKi contains no
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strategy that is conditionally dominated within SK , statement (∗) further implies that
each SKi contains no strategy that is distinguishably dominated within SK . Since S0 = S,
by definition S0� S1� � � � � SK is an elimination order of distinguishably dominated strate-
gies, as desired.

Let us now prove statement (∗) by induction on k.
Base Case: k = 0. Assume that si is conditionally dominated within S by strategy

σi. Then there exists an information set I ∈ Ii together with which si and σi satisfy
Definition 4. In particular, we have si ∈ Si(I), σi ∈ �(Si(I)), S−i(I) �= ∅, and ∀t−i ∈
S−i(I)ui(si� t−i) < ui(σi� t−i).

We construct a mixed strategy σ ′
i as follows. For each pure strategy ai in the support

of σi, let a′
i be the pure strategy such that

(i) a′
i(I)= ai(I)

(ii) a′
i(I

′)= ai(I ′) for all information sets I ′ ∈ Ii following I

(iii) a′
i(I

′)= si(I ′) for all other information sets I ′ ∈ Ii.

Notice that a′
i is a well defined pure strategy because the game is with perfect recall. Let

σ ′
i (a

′
i)= σi(ai).

We prove si ≺S σ ′
i . First consider an arbitrary t−i in S−i \S−i(I). By Fact 2 of Section 3,

neither H(si� t−i) nor any H(a′
i� t−i) with a′

i in the support of σ ′
i reaches I. Accordingly,

H(si� t−i) =H(a′
i� t−i) for each a′

i, which implies that H(si� t−i) =H(σ ′
i � t−i). Therefore,

such a t−i does not distinguish si and σ ′
i .

Now consider an arbitrary t−i in S−i(I). (Because S−i(I) �= ∅, such a t−i always ex-
ists.) Because σi is in �(Si(I)), by construction so is σ ′

i . Accordingly, Fact 2 of Section 3
implies that the three (distributions of) historiesH(si� t−i),H(σi� t−i), andH(σ ′

i � t−i) not
only all reach I, but actually all reach the same decision node in I. For each ai in the
support of σi, because ai and the corresponding a′

i coincide at I and at every informa-
tion set following I, we have H(ai� t−i)=H(a′

i� t−i). Thus H(σi� t−i)=H(σ ′
i � t−i), which

further implies ui(σi� t−i)= ui(σ
′
i � t−i). Since ui(σi� t−i) > ui(si� t−i) (by the definition of

conditional dominance), we have ui(σ ′
i � t−i) > ui(si� t−i), which of course implies that

t−i distinguishes si and σ ′
i .

Since apparently σ ′
i ∈ �(Si), we have si ≺S σ ′

i as we wanted to show.
The other direction is quite easy. Indeed, if si ≺S σi, then by Proposition 1, si is con-

ditionally dominated by σi within S.
Induction Step: k > 0. Assume that si is conditionally dominated within Sk by σi ∈

�(Ski ). We prove si ≺Sk−i σ̄i for some σ̄i ∈ �(Ski ). To do so, let I ∈ Ii be the information set

as per Definition 4. Constructing the mixed strategy σ ′
i from σi as in the base case, we

have

si ≺Sk−i σ
′
i �

The remaining question is where the support of σ ′
i lies. If σ ′

i ∈ �(Ski ), then we are done.
If σ ′

i /∈ �(Ski ), then we construct the desired strategy σ̄i ∈ �(Ski ) from σ ′
i , as follows.

Because σ ′
i ∈ �(S0

i ) and σ ′
i /∈ �(Ski ), there exists an integer � < k such that σ ′

i ∈ �(S�i )
and σ ′

i /∈ �(S�+1
i ). Accordingly, there exists a′

i in the support of σ ′
i such that a′

i ∈ S�i \ S�+1
i .
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By definition, a′
i is conditionally dominated within S�. Without loss of generality, assume

that there is only one such a′
i; that is, S�i \ S�+1

i = {a′
i}. By the induction hypothesis, a′

i is
distinguishably dominated within S� and thus there exists τi ∈ �(S�i ) such that a′

i ≺S�−i τi.
According to Lemma 2, again without loss of generality, we can assume τi ∈ �(S�+1

i ); that
is, τi(a′

i)= 0. Because � < k, we have Sk−i ⊆ S�−i and thus

a′
i �Sk−i τi�

We construct a new mixed strategy σ̂i from σ ′
i as follows: for all ti ∈ S�+1

i ,

σ̂i(ti)= σ ′
i (ti)+ σ ′

i (a
′
i) · τi(ti);

that is, σ̂i is obtained from σ ′
i by replacing a′

i with τi, as we have done in the proof of
Lemma 2. Notice that σ̂i is a well defined mixed strategy in �(S�+1

i ): indeed,

∑
ti∈S�+1

i

σ̂i(ti)=
∑
ti∈S�+1

i

σ ′
i (ti)+ σ ′

i (a
′
i) ·

∑
ti∈S�+1

i

τi(ti)=
∑
ti∈S�+1

i

σ ′
i (ti)+ σ ′

i (a
′
i)=

∑
ti∈S�i

σ ′
i (ti)= 1�

Because a′
i �Sk−i τi, and by the construction of σ̂i, we have σ ′

i �Sk−i σ̂i, as we have seen in

the proof of Lemma 2. Because si ≺Sk−i σ
′
i , we finally have

si ≺Sk−i σ̂i�

Comparing with σ ′
i , we have brought the support of σ̂i from S�i to S�+1

i .
Repeat the above procedure, with the role of σ ′

i replaced by σ̂i, and we finally get a
mixed strategy σ̄i ∈ �(Ski ) such that si ≺Sk−i σ̄i, as we wanted to do.

Again by Proposition 1 it is easy to see that the other direction is true; that is, if si
is distinguishably dominated within Sk (by σi), then si is also conditionally dominated
within Sk (by the same σi). Therefore, statement (∗) holds, concluding the first part of
our proof of Lemma 1.

In the second part, we prove that any elimination order of DD strategies is also
an elimination order of conditionally dominated strategies. To do so, letting R0 =
S�R1� � � � �RK be an arbitrary elimination order of DD strategies, following Proposition 1,
we already have that for all k < K and all players i, every strategy in Rki \Rk+1

i is condi-
tionally dominated withinRk. Accordingly, the first part of the proof of Lemma 1 implies
that any strategy that is conditionally dominated within RK must be distinguishably
dominated within RK . Because each RKi contains no strategy that is distinguishably
dominated within RK , each RKi contains no strategy that is conditionally dominated

within RK either. Therefore, R0� � � � �RK is an elimination order of conditionally domi-
nated strategies, concluding the second part of our proof of Lemma 1.

In the last part, we prove that the maximal elimination of conditionally dominated
strategies, denoted by the sequence M0 = S�M1� � � � �MK , is also the maximal elimina-
tion of DD strategies. This follows almost directly from the first part. Indeed, the conclu-
sion of the first part guarantees thatM0� � � � �MK is an elimination order of DD strategies.
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Moreover, because for each k<K and each player i,Mk
i \Mk+1

i consists of all strategies
that are conditionally dominated within Mk, statement (∗) implies that Mk

i \Mk+1
i also

consists of all strategies that are distinguishably dominated within Mk, which means
thatM0� � � � �MK is the maximal elimination of DD strategies, as desired.

In sum, Lemma 1 holds. �

Appendix B: Proof of Proposition 2 and Example 7

Proof of Proposition 2. For each player i, because s′i ∈ s�i , we have si �R−i s
′
i by defi-

nition. Therefore,

H(s′{1�����i−1}� s{i�����n}) =H(s′{1�����i−1}� si� s{i+1�����n})

=H(s′{1�����i−1}� s
′
i� s{i+1�����n})=H(s′{1�����i}� s{i+1�����n})�

Applying this equation repeatedly, from i= 1 to i= n, we have

H(s)=H(s′1� s−1)=H(s′{1�2}� s−{1�2})= · · · =H(s′{1�����n−1}� sn)=H(s′)�

and Proposition 2 holds. �

Example 7. Consider the following gameG7.

P1a

����� b

��
��

�

3�0 P2c

��
��

� d

��
��

�

P1e

����� f

��
��

� 2�3

2�1 P2g

��
��

� h

��
��

�

0�4 4�4

In this game, P2’s strategy dg is part of a subgame-perfect equilibrium: namely,
(ae�dg). However, dg is not part of any resilient solution.16 (Note that the game above
is of perfect information. The same phenomenon can also be illustrated by a classical
game with simultaneous moves: namely, the Battle-of-the-Sexes game with an outside
option.) ♦

16There are precisely three elimination orders of DD strategies, namely,

1. be, followed by dg, followed by dh

2. be, followed by dh, followed by dg

3. be, followed by a simultaneous elimination of dh and dg.

Accordingly, there is only one resilient solution, namely, R= {ae�af�bf } × {cg� ch}, and dg /∈R2.
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Appendix C: Proof of Theorem 1

C.1 Important relations between sets of strategy profiles

Recall that if R is a binary relation between sets of strategy profiles, then R∗ denotes the
reflexive and transitive closure of R. We first define a particular binary relation between
sets of strategy profiles, which expresses the operation of eliminating precisely one DD
strategy.

Definition 7. Among sets of strategy profiles, the strict elimination relation, denoted

by
e

≺
�� , is defined as R

e

≺
�� T if there exists a player i such that

(i) T−i =R−i

(ii) Ti =Ri \ {si}, where si ∈Ri and si ≺R−i τi for some τi ∈ �(Ti).

To emphasize the role of si and τi, we may write R
e

si≺τi
�� T .

If R is a set of strategy profiles, then R is strict-elimination-free if there exists no T

such that R
e

≺
�� T .

Notice that if R is a resilient solution, then it is strict-elimination-free. Before defin-
ing the enlarged relation, below we briefly discuss what properties we want it to satisfy.

Properties wanted for the enlarged relation. As mentioned in Section 6.1, to prove that

any two resilient solutions R and T are equivalent, we enlarge the relation
e

≺
�� to a

relation �� such that the set S of all sets of strategy profiles together with the re-
lation �� satisfies the diamond property. But also recall from Section 6.1 that the
relation �� has to satisfy some other properties. In particular, if R and T are resilient
solutions, then we want

1. S
∗
�� R and S

∗
�� T

2. from the relationships in item 1 and the diamond property, we can deduce that

2.1. R
∗
�� W and T

∗
�� W for someW , and more importantly

2.2. the paths from R toW and T toW are both “equivalence-preserving.”

Toward the above desired properties, we define two equivalence-preserving rela-
tions between sets of strategy profiles, and the desired relation �� is obtained by

combining them together with the relation
e

≺
�� . The first relation expresses the oper-

ation of eliminating precisely one strategy because it is indistinguishable from another
one that is currently present.

Definition 8. Among sets of strategy profiles, we define two relations.
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• The indistinguishable elimination relation, denoted by
e

�
�� , is defined as

R
e

�
�� T if there exists a player i such that

(i) T−i =R−i

(ii) Ti =Ri \ {si}, where si ∈Ri and si �R−i ti for some ti ∈ Ti.

To emphasize the role of si and ti, we may write R
e

si�ti
�� T .17

• The elimination relation, denoted by
e

�� , encompasses the
e

≺
�� and

e

�
��

relations as follows:

R
e

�� T if and only if either R
e

si≺τi
�� T or R

e

si�τi
�� T .

To emphasize the role of si and τi in
e

�� , we may write R
e

si�τi
�� T or simply

R
e

si�τi

�� T .

The second equivalence-preserving relation expresses the operation of replacing
one strategy with an indistinguishable one that is not currently present.

Definition 9. Among sets of strategy profiles, the replacement relation, denoted by
r

�� , is defined as R
r

�� T if either (i) R= T or (ii) there exists a player i such that

(ii.a) T−i =R−i

(ii.b) Ri \ Ti = {si} and Ti \Ri = {ti}, where si �R−i ti.

We may write R
r

ε
�� T to emphasize that we are in case (i) and R

r

si�ti

�� T that we are

in case (ii).

The relation
�

�� is defined as R
�

�� T if either R
e

�
�� T or R

r
�� T .

The relation �� is defined as R �� T if either R
e

�� T or R
r

�� T .

Notice that the replacement relation requires that both si and ti be pure strategies.

As we prove later, for all sets of strategy profiles R and T , if R
� ∗

�� T , then R and T are
equivalent.

17Note that one could define si �R−i τi, where τi ∈ �(Ti). Indeed, si �R−i τi if and only if si �R−i ti for
every ti in the support of τi.
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Remark. Our results can certainly be proved without relying on the (sub)relation
r

ε
�� . Our reason for introducing the “empty-replacement” relation is ensuring unifor-

mity in our proofs. Without it, the diamond property may sometimes become a “triangle
property”: pictorially,

X
e

����
��

��
� r

���
��

��
��

Y Z
e

��

whereY is obtained fromX by eliminating some strategy si dominated by ti, andZ is ob-
tained from X by replacing ti with an equivalent strategy t ′i . (Recall that we are defining
the diamond property for a relation R, not for its reflexive and transitive closure R∗.)

C.2 Useful lemmas

Having defined proper relations, we now have the following lemma.

Lemma 3. For all sets of strategy profilesX , Y , andZ, if X �� Y and X �� Z , then
there exists a set of strategy profilesW such that Y �� W and Z �� W . In a picture,

X

����
��

��
�

���
��

��
��

Y

���
��

��
��

Z

����
��

��
��

W

Proof. By symmetry, we need to analyze only three cases.

Case 1: Y X
e

si�σi
��

e

tj�τj
�� Z . If i �= j, then we have Yi =Xi \ {si} =Zi \ {si}, Zj =Xj \ {tj} =

Yj \ {tj}, and Y−{i�j} =X−{i�j} =Z−{i�j}. LetW be the set of strategy profiles whereWi = Yi,
Wj =Zj , andW−{i�j} =X−{i�j}. We prove

Y
e

tj�τj
�� W Z

e

si�σi
�� �

To do so, we focus on the Y
e

tj�τj
�� W part (the other part is by symmetry). Since tj ∈Xj

and τj ∈ �(Zj), we have tj ∈ Yj and τj ∈ �(Wj). Since tj �X−j τj and Y−j ⊆X−j , we have
that for all s−j ∈ Y−j ,

either H(tj� s−j)=H(τj� s−j) or uj(tj� s−j) < uj(τj� s−j)�
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Therefore, tj �Y−j τj and Y
e

tj�τj
�� W as desired. (From the analysis, one can see that the

choice ofW is actually inevitable.)
If i= j and si = ti, then Y =Z, and lettingW = Y , we have

Y
r

ε
�� W Z

r

ε
�� �

If i= j, si �= ti, and si �X−i ti, then we haveY−i =Z−i =X−i,Yi \Zi = {ti},Zi \Yi = {si},
and si �Y−i ti. Therefore lettingW =Z, we have

Y
r

ti�si

�� W Z
r

ε
�� �

(The case before and this case differ only at the relations betweenY andW : one is doing
nothing and the other is replacement.)

If i = j, si �= ti, and si ��X−i ti, then we have Y−i = Z−i = X−i, Yi = Xi \ {si}, Zi =
Xi \ {ti}, ti �Y−i τi, and si �Z−i σi. LettingW be such thatWi =Xi \ {si� ti} andW−i =X−i,
we prove that there exists τ′

i ∈ �(Wi) and σ ′
i ∈ �(Wi) such that

Y
e

ti�τ′
i

�� W Z
e

si�σ ′
i

�� �

To do so, we focus on the Y
e

ti�τ′
i

�� W part (the other part is by symmetry). Indeed,

if τi(si)= 0, then τi ∈ �(Zi \ {si})= �(Xi \ {si� ti})= �(Yi \ {ti})= �(Wi). Take τ′
i = τi and

we are done. If τi(si) > 0, then τi /∈ �(Yi), and we construct a strategy τ′′
i based on τi, by

replacing si with σi, as we have done in the proof of Lemma 2. Indeed,

∀s′i �= si τ′′
i (s

′
i)� τi(s′i)+ τi(si) · σi(s′i)�

Because τi ∈ �(Zi)= �(Xi \ {ti})= �((Yi ∪ {si}) \ {ti}), we have τi ∈ �(Yi ∪ {si}). Further
because σi ∈ �(Yi), the so constructed τ′′

i is in �(Yi). Because si �Y−i σi, we have τi �Y−i
τ′′
i . Because ti �X−i τi andX−i = Y−i, we have

ti �Y−i τ
′′
i �

If τ′′
i (ti)= 0, then τ′′

i ∈ �(Yi \ {ti})= �(Wi) and we are done by taking τ′
i = τ′′

i . Otherwise,
notice that τ′′

i (ti) < 1; indeed, assuming τ′′
i = ti, we have τ′′

i (ti)= 1 = τi(ti)+ τi(si) ·σi(ti),
which together with the fact τi(ti)= 0 implies that τi = si and σi = ti, which together with
the facts si �X−i σi and ti �X−i τi further imply si �X−i ti, contradicting the hypothesis.
Accordingly, τ′′

i (ti) < 1, and by taking τ′
i to be τ′′

i conditioned on ti not occurring, we have
τ′
i ∈ �(Yi \ {ti})= �(Wi) and ti �Y−i τ

′
i, and we are done as well.
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Case 2: Y X
e

si�σi
��

r
�� Z . In this case, if X

r

ε
�� Z then letting W = Y , we have

Y
r

ε
�� W Z

e

si�σi
�� .

Now assume X
r

tj�t
′
j

�� Z , that is,

Y X
e

si�σi
��

r

tj�t
′
j

�� Z�

We consider three subcases.

Subcase 2.1: i �= j. In this case, we have tj ∈ Yj , t ′j /∈ Yj , and tj �Y−j t
′
j (becauseY−j �X−j).

LettingW beY with tj replaced by t ′j , that is,Wj = (Yj \{tj})∪{t ′j} andW−j = Y−j , we have

Y
r

tj�t
′
j

�� W . We now show that Z
e

si�σi
�� W . To see why this is true, notice that (i) Wi =

Yi = Xi \ {si} = Zi \ {si}, (ii) Wj = (Yj \ {tj}) ∪ {t ′j} = (Xj \ {tj}) ∪ {t ′j} = Zj , (iii) W−{i�j} =
Y−{i�j} =X−{i�j} =Z−{i�j}, (iv) si ∈Zi (=Xi), and (v) σi ∈ �(Wi) (= �(Yi)).

Therefore, it suffices to show that si �Z−i σi. To do so, notice that for all y−i ∈ Z−i, if
yj �= t ′j , then y−i ∈X−i as well, and thus

either H(si� y−i)=H(σi� y−i) or ui(si� y−i) < ui(σi� y−i)�

because si �X−i σi. If yj = t ′j , then

H(si� t
′
j� y−{i�j})=H(si� tj� y−{i�j}) and H(σi� t

′
j� y−{i�j})=H(σi� tj� y−{i�j})�

because tj �X−j t
′
j . Since (tj� y−{i�j}) ∈X−i, we have

either H(si� tj� y−{i�j})=H(σi� tj� y−{i�j}) or ui(si� tj� y−{i�j}) < ui(σi� tj� y−{i�j})�

which together with the two equations above imply that

either H(si� t
′
j� y−{i�j})=H(σi� t ′j� y−{i�j}) or ui(si� t

′
j� y−{i�j}) < ui(σi� t ′j� y−{i�j})�

that is,

either H(si� y−i)=H(σi� y−i) or ui(si� y−i) < ui(σi� y−i)�

Therefore, si �Z−i σi and Z
e

si�σi
�� W as desired. Accordingly, we have

Y
r

tj�t
′
j

�� W Z
e

si�σi
�� �
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Subcase 2.2: i= j but si �= ti. In this case, lettingW beY with ti replaced by t ′i , with similar

analysis we have that there exists σ ′
i ∈ �(Wi) such that Y

r

ti�t
′
i

�� W Z
e

si�σ ′
i

�� . Indeed, σ ′
i =

σi if σi(ti)= 0, and σ ′
i is obtained from σi by replacing ti with t ′i otherwise.

Subcase 2.3: i= j and si = ti. In this case, Yi =Zi \ {t ′i}, Y−i =Z−i, σi ∈ �(Yi), and t ′i �Z−i
σi. Accordingly, lettingW = Y , we have Y

r

ε
�� W Z

e

t ′i�σi
�� .

Case 3: Y X
r

��
r

�� Z . In this case, letting W = X , we have Y
r

�� W Z
r

�� ,
because the replacement relation is clearly symmetric.

Thus Lemma 3 holds in all cases. �

Lemma 3 guarantees that the set of all sets of strategy profiles and the relation
�� together satisfy the diamond property. To use this lemma, we need to show that

S
∗
�� R for all resilient solutions R. Notice that this is not directly implied by the def-

inition of resilient solutions, because iterated elimination of DD strategies allows simul-
taneous elimination of multiple strategies in each step, while the relation �� does
not allow such operation.18 Fortunately we have the following lemma.

Lemma 4. For all resilient solutions R, S
e ∗

�� R .

Proof. Let R0 = S�R1� � � � �RK = R be the elimination order of DD strategies corre-

sponding to R. To prove Lemma 4, it suffices to prove that Rk
e ∗

�� Rk+1 for each
k<K. We actually prove a more general result, namely:

for all sets of strategy profilesX and Y , if Y is obtained fromX by simultaneously

eliminating several strategies that are distinguishably dominated withinX,

then X
e ∗

�� Y .

To see why this is true, assume that � pure strategies are eliminated from X so as to
get Y , and denote them by si1� � � � � si� . (Notice that these strategies, respectively, belong
to players i1� � � � � i�, some of which may be the same one.) Let τi1� � � � � τi� be the mixed
strategies “responsible for these eliminations,” that is, sij ≺X−ij τij and τij ∈ �(Xij ) for j =
1� � � � � �. According to Lemma 2, we can assume that τij ∈ �(Yij ) for each j. We prove that
Y can be obtained from X by eliminating si1� � � � � si� one by one, that is, in � steps, and
in that order. More specifically, lettingX1 =X andX�+1 = Y , and for each j ∈ {2� � � � � �},
letting Xj be the set of strategy profiles obtained from X by eliminating si1� � � � � sij−1 , we
prove that for each j ≤ �,

Xj
e

sij�τij
�� Xj+1 �

18In principle, problems may arise when eliminating strategies simultaneously. For instance, when a
player i eliminates si from Ri because si ≺R σi and there exists a unique t−i ∈ R−i distinguishing the two,
another player j may simultaneously eliminate tj , causing the elimination of si to be problematic.
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To see why this is true, notice that for each j ≤ �, Yij ⊆ X
j+1
ij

and thus τij ∈ �(Xj+1
ij
).

Because sij ≺X−ij τij andXj
−ij ⊆X−ij , we have sij �

X
j
−ij
τij . Therefore, Xj

e

sij�τij
�� Xj+1 for

each j ≤ �, which implies that X
e ∗

�� Y .

Applying this rule to Rk and Rk+1 for each k<K, we have S
e ∗

�� R as desired. �

Lemmas 3 and 4 together are enough for us to deduce that for all resilient solutionsR

and T , there exists a set of strategy profilesW such that R
∗
�� W and T

∗
�� W . But

to further deduce that R and T are equivalent, we need three additional properties for

relations
e

≺
�� ,

e

�
�� , and

r
�� , as stated and proved in the following three lemmas.

Lemma 5. For all sets of strategy profiles R and X , if R
r

�� X and R is strict-
elimination-free, thenX is strict-elimination-free.

Proof. We proceed by contradiction. Assume that R
r

�� X and R is strict-elimina-

tion-free, yetX is not strict-elimination-free, that is, there exists T such that X
e

tj≺τj
�� T .

We derive a contradiction by proving that there exists W such that R
e

≺
�� W

r
�� T ,

which implies that R is not strict-elimination-free.

If R
r

ε
�� X , then lettingW = T , we are done immediately, with R

e

tj≺τj
�� W

r

ε
�� T .

Therefore, we assume R
r

si�s
′
i

�� X , that is,

R
r

si�s
′
i

�� X
e

tj≺τj
�� T �

Because the replacement relation is symmetric, we have

R X
r

s′i�si
��

e

tj≺τj
�� T �

which is what we see in Case 2 of Lemma 3, with notations changed (in particular, Z
becomes R, Y becomes T , � becomes ≺, and i and j are exchanged). We consider three
cases here.

Case 1: i �= j. In this case, following Subcase 2.1 of the proof of Lemma 3 and lettingW be

R with tj removed, we have R
e

tj�τj
�� W T

r

s′i�si
�� . We prove that tj ��R−j τj , that is, there

exists t−j ∈R−j such that

H(tj� t−j) �=H(τj� t−j)�
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To do so, recall that tj ≺X−j τj , which implies that there exists t̂−j ∈ X−j such that

H(tj� t̂−j) �=H(τj� t̂−j). If t̂i �= s′i, then t̂−j ∈ R−j , because X−{i�j} = R−{i�j} and Xi \ {s′i} =
Ri \ {si} ⊆Ri. Letting t−j = t̂−j , we are done. Otherwise, we have t̂i = s′i and

H(tj� s
′
i� t̂−{i�j}) �=H(τj� s′i� t̂−{i�j})�

Let ti = si and t−{i�j} = t̂−{i�j}. On one hand, we have t−j ∈ R−j . On the other hand, we

have si �R−i s
′
i, which implies that

H(tj� si� t−{i�j})=H(tj� s′i� t−{i�j}) and H(τj� si� t−{i�j})=H(τj� s′i� t−{i�j})�

Because the right-hand sides of the two equations are not equal, the left-hand sides are

not equal either. That is, H(tj� si� t−{i�j}) �= H(τj� si� t−{i�j}) or, equivalently, H(tj� t−j) �=
H(τj� t−j) as desired.

Thus R
e

tj≺τj
�� W T

r

s′i�si
�� . Again because the replacement relation is symmetric, we

have

R
e

tj≺τj
�� W

r

si�s
′
i

�� T �

Case 2: i = j, s′i �= ti. In this case, following Subcase 2.2 of the proof of Lemma 3 and

letting W be R with ti removed, we have R
e

ti�τ′
i

�� W T
r

s′i�si
�� . In particular, τ′

i = τi if

τi(s
′
i)= 0, and τ′

i is obtained from τi by replacing s′i with si otherwise.

Again we prove that ti ��R−i τ
′
i. To do so, notice that τ′

i is either τi itself or obtained

from τi by replacing s′i with si such that si �R−i s
′
i. Therefore, we have τ′

i �R−i τi. Because

ti ��X−i τi and R−i =X−i, we have ti ��R−i τ
′
i and thus R

e

ti≺τ′
i

�� W T
r

s′i�si
�� . By symmetry

we have

R
e

ti≺τ′
i

�� W
r

si�s
′
i

�� T �

Case 3: i = j and s′i = ti. In this case, T is obtained from R by first replacing si with

s′i, and then eliminating s′i because s′i ≺X τi. Therefore, the elimination can be done

directly without any replacement. That is, letting W = T , W can be obtained from R by

eliminating si, because si ≺R τi. Accordingly, R
e

si≺τi
�� W

r

ε
�� T .

In sum, Lemma 5 follows. �

Lemma 6. For all sets of strategy profiles R and X , if R
e

�
�� X and R is strict-

elimination-free, thenX is strict-elimination-free.
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Proof. We actually prove a more general result, namely,

if T ,W , and Y are sets of strategy profiles such that T
e

si�s′i
�� W

e

tj≺τj
�� Y ,

then there exists a set of strategy profiles Z such that T
e

tj≺τj
�� Z

e

si�σ ′
i

�� Y .

That is, if an indistinguishable elimination is followed by a strict elimination, then we
can exchange these two eliminations.

To see why this is true, notice that, by definition, we have si �T−i s
′
i and tj ≺W−j τj .

Because the only change from W to T is that a strategy si (which is equivalent to some
present ones) is added, we have tj ≺T−j τj . Because τj ∈ �(Yj) andYj =Wj \{tj} ⊆ Tj \{tj},
we have τj ∈ �(Tj \ {tj}). Accordingly, letting Z be the set of strategy profiles obtained
from T by removing tj , we have

T
e

tj≺τj
�� Z

and that Y is obtained from Z by removing si.
Now we construct σ ′

i as follows. If j �= i or if j = i but ti �= s′i, then letting σ ′
i = s′i, we

have σ ′
i ∈ �(Zi \ {si}) and si �Z−i σ

′
i . Otherwise (that is, j = i and ti = s′i), letting σ ′

i = τi,

we have σ ′
i ∈ �(Zi \ {si}) and si ≺Z−i σ

′
i . Accordingly, we have Z

e

si�σ ′
i

�� Y .

Given this general result, Lemma 6 follows easily. Indeed, if X is not strict-

elimination-free, then there exists W such that R
e

�
�� X

e

≺
�� W , which implies that

there exists Z such that R
e

≺
�� Z

e
�� W , contradicting the fact that R is strict-

elimination-free. �

Lemma 7. For all sets of strategy profiles R and X , if R
�

�� X , more generally if

R
� ∗

�� X , then R andX are equivalent.

Proof. Since equivalence between sets of strategy profiles is clearly reflexive, symmet-

ric, and transitive, it suffices to prove that R
�

�� X implies that R and X are equiva-

lent. To do so, we first prove that R
r

�� X implies thatR andX are equivalent. To this

end, notice that if R
r

ε
�� X , thenR andX are trivially equivalent (since they are equal).

Now let R
r

si�ti

�� X . Then the profile of functions required by the equivalence relation

is simply the profile φ such that φi(s
�R−i
i )= t

�X−i
i , φi(a

�R−i
i )= a

�X−i
i for each ai ��R−i si,

and for each j �= i and each strategy sj , φj(s
�R−j
j )= s

�X−j
j . To prove that R

e

�
�� X im-

plies that R andX are equivalent, we can construct a similar profile of functions. �
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Figure 1. Proof of Theorem 1.

C.3 Proof of Theorem 1

At this point we can easily prove our main theorem. Let R and T be two resilient solu-

tions. According to Lemma 4, we have S
e ∗

�� R and S
e ∗

�� T . Pictorially, we have

Figure 1(a).19 By applying Lemma 3 repeatedly, starting from S, there exists a set of strat-

egy profiles W such that R
∗
�� W and T

∗
�� W . Pictorially, we have Figure 1(b).

Since R is strict-elimination-free, we have R
�

�� R1 . Then Lemmas 5 and 6 imply

that R1 is also strict-elimination-free. By continued usage of Lemmas 5 and 6, we have

R
� ∗

�� W and T
� ∗

�� W , as illustrated by Figure 1(c).

19Without loss of generality, in Figure 1, we assume that there are at least two steps from S to R and to T .
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Finally, accordingly to Lemma 7, R and W are equivalent, and so are T and W . Be-
cause the equivalence relation between sets of strategy profiles is reflexive, symmetric,
and transitive, R and T are equivalent, as desired. �

Appendix D: Additional properties

Below we prove two additional properties of the equivalence relation between sets of
strategy profiles. Proposition 3 guarantees that the required profile φ in the definition
of equivalence between sets of strategy profiles R and T , if it exists, is unique, and that
φmaps each strategy that appears in both R and T to itself.

Proposition 3. For all sets of strategy profiles R and T , and all profiles of functions φ
andψ, ifR and T are equivalent under bothφ andψ, thenφ=ψ. Moreover, for all players

i and strategies si ∈Ri ∩ Ti, φi(s�R−i
i )= s�T−i

i .

Proof. Proving φ = ψ is equivalent to proving that for all i and si ∈ Ri, φi(s�R−i
i ) =

ψi(s
�R−i
i ). Arbitrarily fixing i and si, and arbitrarily fixing ai ∈ φi(s�R−i

i ) and bi ∈
ψi(s

�R−i
i ), it suffices to prove that ai �T−i bi. To do so, ∀t−i ∈ T−i, let the strategy subpro-

file s−i ∈ R−i be such that sj ∈ φ−1
j (t

�T−j
j ) ∀j �= i and let the strategy subprofile t ′−i ∈ T−i

be such that t ′j ∈ψj(s
�R−j
j ) ∀j �= i. Because R and T are equivalent under φ, we have

H(si� s−i)=H(ai� t−i)�

Because R and T are equivalent under ψ, we have

H(si� s−i)=H(bi� t ′−i)�

Accordingly, we have H(ai� t−i) = H(bi� t
′
−i), which implies that H(ai� t−i) = H(bi� t−i)

by Fact 1 of Section 3 (for games with perfect recall). Therefore, ai �T−i bi and we have
φ=ψ.

To prove the remaining part, arbitrarily fixing i, si ∈ Ri ∩ Ti, and ti ∈ φi(s�R−i
i ), it

suffices to prove that si �T−i ti. Again ∀t−i ∈ T−i, let s−i be such that sj ∈φ−1
j (t

�T−j
j ) ∀j �= i.

Because R and T are equivalent under φ, we have H(si� s−i) = H(ti� t−i). By Fact 1 of

Section 3, this implies that H(si� t−i) = H(ti� t−i). Therefore, si �T−i ti and φi(s
�R−i
i ) =

s
�T−i
i . �

Proposition 4 guarantees that the union of two equivalent sets of strategy profiles is
still equivalent to each one of them, with the desired profile of functions being naturally
defined. This property helps to establish another connection between resilient solutions
and EFR.

Proposition 4. For all sets of strategy profiles R and T , and all profiles of functions φ
such thatR and T are equivalent underφ, lettingR∪T = (R1 ∪T1� � � � �Rn ∪Tn), we have



Theoretical Economics 8 (2013) Dominance in extensive games 161

that R ∪ T and T are equivalent under a profile of functions ψ. Moreover, for each player

i, (Ri ∪ Ti)�(R∪T)−i = {s�R−i
i ∪φi(s�R−i

i ) : si ∈ Ri} and ψi(s
�R−i
i ∪φi(s�R−i

i ))= φi(s
�R−i
i ) for

each si ∈Ri.

The proof is done by repeatedly applying the definition of equivalence between R
and T and Fact 1 of Section 3, so it is omitted here.

Definition 10. We denote by SR the set of strategy profiles such that, for all strategies
si of a player i, si ∈ SRi if and only if there exists a resilient solution R such that si ∈Ri.

In a sense, SR is the union of all resilient solutions. Theorem 1 and Proposition 4
together immediately imply the following connection between resilient solutions and
ER, whose proof is omitted.

Corollary 2. The set SR is equivalent to every resilient solution (and thus to ER).

Let us emphasize that SR may happen to be a resilient solution, but need not be
one. Recall the game G3 of Example 4, where ER = {bc�bd} × {f } and T = {bc�bd} ×
{e} are two distinct resilient solutions. For G3, it is easy to verify that the only resilient
solution different from the above two is R = {bc�bd} × {e� f }; that is, the strategies ac,
ad, and g never survives any elimination order. (For instance, another elimination order
is g followed by a simultaneous elimination of ac and ad, yielding R.) Therefore, SR =
{bc�bd} × {e� f } = R. Recall now game G5 of Example 5. For G5, it is easy to verify that
SR = {a}× {c�d}× {e� f }, which is not a resilient solution itself. Yet it is also easy to verify
that ER = {a} × {c} × {f } and that SR is equivalent to ER.
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