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Abstract—We address the problem of Electric Vehicle (EV)
drivers’ assistance through ITS. Drivers of EVs that are low
in battery may ask a navigation service for advice on which
charging station to use and which route to take. A rational
driver will follow the advice if there is no alternative choice
that lets her reach its destination in a shorter time, i.e., in
game-theory terms, if such advice corresponds to a Nash-
equilibrium strategy. Thus, we envision two game-theoretic
models, namely, a congestion game and a game with congestion-
averse utilities, both known to admit at least one pure-strategy
Nash equilibrium. The former represents a practical scenario
with a high level of realism, although at a high computational
price. The latter neglects some features of the real-world
scenario but it exhibits very low complexity, and is shown to be
an excellent approximation of the former. Importantly, we show
that the average per-EV trip time yielded by the Nash equilibria
is very close to the one attained by solving a centralized
optimization problem that minimizes such a quantity.

I. INTRODUCTION
It is conceivable that in ten years’ time Electric Vehicles

(EVs) will take over the streets. Old-fashioned gas pumps
will be gradually phased out by public charging stations,
with electric outlets popping up in places such as curbside
parking, parking lots and cab stands. Still, worries about
vehicle range and availability of charging stations may
persist and drivers will be forced to commute around such
availability, at least early on in charging station development.
Finally, it is not clear when the “time consuming” tag will
be removed from the task of car recharging.
Traditional navigation services could be integrated by

ICT and ITS (Intelligent Transportation Systems) with the
information provided by roadside network infrastructure and
on-board user terminals through wireless communication [1],
[2]. A Central Controller (CC) could collect information on
the vehicular traffic conditions and on the occupancy status
of the charging stations through ITS facilities. Then, EV
drivers that need to recharge their batteries could send a
request to the CC and ask for advice on the specific charging
station to choose and the route to take.
The key point in this scenario, however, is that drivers that

resort to such a navigation service will very likely behave as
self-interested users, who aim at reaching their destination
in the shortest possible time. Thus, they will follow the CC’s
advice only if they find it convenient to themselves.
This is an aspect that so far has been scarcely considered

in the literature. Indeed, existing works leave the burden of
selecting the charging station to the drivers and do not ac-
count for the trip time associated to different alternatives [3],
[4], or they focus on the EV consumption and its impact on

the power grid but neglect the time the EVs may have to
wait in line at the charging station or the fact that EVs may
act strategically [5], [6].
In this work, we aim at filling this gap. The advice

provided by the CC may not conform to the interests of
EV drivers when it is obtained by solving a centralized
optimization problem that, e.g., minimizes the average per-
EV trip time or the maximum EV expected trip time. We
demonstrate instead that the above requirement is satisfied
when the problem is modeled as a non-cooperative game.
Specifically, we resort to a congestion game [7] and a game
with congestion-averse utilities [8], where the players are the
EVs that need to recharge their batteries. In such games, the
decision to be made concerns the charging station that an
EV should use, along with the route to take passing through
such a station, so as to minimize the EV’s trip time. The
two game models exhibit a different level of realism and
complexity; however, for both of them, we show that, when
the CC uses the game solution to provide advice to the EVs,
the following facts hold.
(i) The navigation strategies suggested by the CC correspond
to Nash Equilibrium (NE) strategy profiles1, i.e., each EV
finds the suggestion by the CC convenient to itself and is
willing to adhere to it.
(ii) The advice provided by the CC leads to an average per-
EV trip time that is very close to the minimum obtained
by solving a centralized optimization problem, and much
shorter than the one EV drivers can obtain by adopting a
greedy approach (e.g., select the closest charging station).
This is highly desirable since the shortening of the average
per-EV trip time contributes to reducing road congestion and
energy consumption due to EVs.
The remainder of the paper is organized as follows. The

system scenario is introduced in Sec. II, along with the
statement of the problem under study. The game-theoretic
approach that we adopt can be found in Sec. III. In Sec. IV,
we show the benefits of the proposed method in terms of
per-EV trip time, using a realistic simulation scenario. We
draw our conclusions and discuss future work in Sec. V.

II. SYSTEM SCENARIO AND PROBLEM STATEMENT

We consider a road topology including a set of road
segments L and a set of charging stations C. Any ordered
sequence of adjacent segments l ∈ L is said to form a route.

1An NE is a game solution, in which no player can gain anything by
unilaterally changing his own strategy.
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Among all vehicles that travel across the topology, we
identify the following two categories: (i) non-EVs or EVs
that are not interested in using a charging station; (ii) EVs
with low battery that use the navigation service to select a
charging station, and that, if they find it convenient, may
deviate from their original route to reach a charging station.
For the vehicles that stop at a charging station, it is

fair to assume that their battery is replaced with a fully-
charged one. Only in the unlikely case where no one is
available, is the EV battery recharged. This choice is due
to the charging times approaching half an hour, according
to today’s fast recharge technology [9]. Charging stations
may have a number of replacing stalls (hereinafter servers),
possibly varying from one station to another. At a charging
station, an EV will incur a waiting time that depends on the
occupancy of the station, the service time and the number
of available servers. We assume EV drivers to be that self-
interested users, i.e., to aim at minimizing the total trip time
toward their intended destination.
In the most general case, such EV drivers will ask the

advice of the CC to make a decision on the charging station
(among many) to use and which route to take, including
their current position and final destination in the request.
The CC provides advice leveraging its knowledge of the
road topology and traffic conditions, as well as of the
locations of the charging stations, their current occupancy
and availability of fully-charged batteries. All rational, self-
interested EVs will be willing to follow such suggestions if
they conform to their own interest.
A natural choice to solve the problem of selecting the

charging station for each EV, and the corresponding route,
would be to let the CC formulate an optimization prob-
lem that minimizes the average per-EV trip time. It is,
however, easy to show that in general such an approach
yields solutions that EV drivers may find not convenient to
themselves, hence to which they will not adhere. The same
observation holds in the case where the CC tries to minimize
the maximum EV expected trip time.
The approach we propose is different. We model the

problem of selecting the charging station, and the corre-
sponding route, as a non-cooperative game, in which the
players are the EV drivers that resort to the navigation
system for advice. Then, we look for a strategy profile
that is an NE and is convenient from the viewpoint of the
system performance, and we take this as a solution to the
problem. Being an NE, self-interested drivers will adhere to
it. It is clear, however, that a game-theoretic approach does
not ensure that the average per-EV trip time is minimized.
Nevertheless, in Sec. IV we show that, even in real-word
scenarios, the average per-EV trip time obtained through our
game-theoretic approach is remarkably close to the optimum.
Finally, though the game could be solved by the EVs

themselves if armed with the required information, we as-
sume it is the CC that collects all the information, processes
it and solves the game so as to provide the EV drivers
with the strategy to adopt. This implies that the proposed

Fig. 1. Abstract representation of the scenario where each EV may take
different routes to a given charging station and from there to its destination.

mechanism neither significantly increases the system over-
head (except for providing the strategy to EV drivers) nor
requires EV drivers to exchange sensitive information about
themselves, or make any computation to take a decision.

III. THE RECHARGING GAME
Assume that the CC processes the requests received from

EVs with low battery every T seconds. We denote the set of
EVs that ask for advice during a T -second time period by
N , and its cardinality by N . Consider the most general case
in which each of the N EVs may reach several charging
stations and take different routes to a given station, as well
from the station to its final destination. For clarity, we depict
an abstract representation of such a scenario in Fig. 1.
In the figure, lines connecting vehicles with charging

stations, and the latter with final destinations, represent the
possible road segments that EVs can take to or from the
charging station. Thicker lines correspond to more congested
(hence slower) road segments. We then consider the N EVs
to be the players of a congestion game [7], i.e., a non-
cooperative game, in which players strategically choose from
a set of facilities and derive utilities that depend (in an
arbitrary way) on the congestion level of each facility, i.e.,
on the number of players using it. Congestion games are of
particular interest to us since they have been proved [7] to
admit at least one pure-strategy2 NE.

A. The Congestion Game
A congestion game is defined by the 4-tuple

Γ = (N ,F , {Si}, {τl(nl), ηc(nc)}) , (1)

whose elements in our case are as follows.
(i) The set of players,N , which, as mentioned, correspond

to the EVs using the navigation service.
(ii) The set of facilities, F , which is composed of all

possible charging stations and road segments included in
the road topology, i.e., F = C∪L. Given F , for each player
i ∈ N , a subset Fi ⊆ F can be identified, including all
facilities that EV i can reach and use on its way to the
destination. Clearly, if the road topology is fully connected,
then Fi = F , ∀i ∈ N .
(iii) The set of viable strategies for EV i, i.e, all groups of

facilities that can be used by i, Si ⊆ P(Fi) (where P(Fi)
is the set of all possible partitions of Fi).

2A pure-strategy NE is a deterministic solution, as opposed to a prob-
abilistic one (e.g., go to charging station cx, rather than go to cx with
probability 0.5).



In our context, each strategy in Si is composed of: (a) one
of the charging stations that EV i can reach, along with (b)
the road segments forming a route that allows i to go from
its current position to the selected charging station, and from
there to its final destination.
For each strategy, the associated utility is the sum of the
utilities of each selected facility (either a charging station
or a road segment). The utility of a facility is its negated
cost. Such a cost is defined as a function mapping the
number nf of players selecting the facility onto a time
delay in R. Note that the cost of a facility does not depend
on the player identity, but only on the number of vehicles
using the facility. The cost of a strategy is thus the sum
of 1) the expected waiting time and the service time at
the corresponding charging station, and of 2) the travel
time on the associated route, from current road segment to
destination, via the charging station. We denote the former
by ηc(nc), with c ∈ C and nc being the number of players
selecting station c. We denote the latter by

∑
l τl(nl), with

the l’s being the road segments in the chosen route and n l

the number of players taking segment l.
Furthermore, in accordance with the scenario detailed in

Sec. II, we write ηc(nc) so as to account for (a) the number
of servers at station c, Kc, (b) the service time, (c) the
number of fully-charged batteries currently available at c,
Bc, and (d) the waiting time before an EV can be served.
Specifically, we write ηc(nc) as:

ηc(nc) =






σ if wc < Kc

σ + σ
2 if Kc ≤ wc < 2Kc

σ + σ
2 +

⌊
wc−Kc

Kc

⌋
σ if 2Kc ≤ wc < Bc

ρ if wc ≥ Bc

(2)
with wc being the expected number of EVs that the generic
player finds at the charging station upon its arrival. Such a
value is given by: wc = mc+nc/2, where mc is the number
of non-player EVs that the CC estimates to be already at the
station upon the arrival of the generic player, and n c/2 is the
expected number of other players that have already reached
c, if nc players decide to use such a station. Note that wc

does not account for the precise order of arrival of the single
players since the cost cannot depend on the player identity.
In (2) the first line corresponds to the case where the

generic player finds an idle server, hence its stopping time at
c coincides with the time necessary for battery replacement,
σ, which is assumed to be constant. The second line, instead,
represents the case where all servers are busy but the player
finds a server with nobody else waiting to be served (the
expected remaining service time of the EV that is currently
under service is σ/2). The third line refers to all servers at
c being busy, with EVs already waiting there to be served.
Thus, assuming a balanced load, the expression includes the
expected time that the generic player has to spend in line.
Finally, the last line applies when no more fully-charged
batteries are available at the station, and the generic player
has to recharge its battery, in a time that is assumed to be

Fig. 2. Abstract representation of the scenario with only one possible route
for each EV to a given charging station, and from there to its destination.

constant and equal to ρ.

B. Game Model with Congestion-averse Utilities
Let us now consider the same scenario as above, but

assume that, for every EV-charging station pair, there exists
only one possible route to take, as depicted in Fig. 2.
We stress that, although simpler, such a model is still
realistic if the CC associates to the EV-charging station pair
the route deemed to be the fastest one, according to the
road information collected in the previous T seconds. As
confirmed by our results derived in real-world scenarios (see
Sec. IV), such a simplification is unlikely to significantly
impair the performance.
Under the above assumption, the system can be modeled

as a game with congestion-averse utilities (CAG), for which
NEs are pure-strategies and can be found in polynomial
time [8]. The game is defined as a 4-uple similar to Γ, as
in (1), however, two main differences exist between CAGs
and congestion games:
(a) in CAGs, it must hold that Si = P(Fi) , ∀i ∈ N , i.e.,

all partitions of Fi are possible strategies, and
(b) the facilities cost can depend on player identities.
The first difference implies that, for each player i, the

CC has to consider as viable strategies not a subset but all
possible partitions of Fi. A set F defined as in the case
of the congestion game would force the CC to consider
non-meaningful strategies where an EV stops at more than
one charging station, located either on the same route or on
different routes. In order to overcome this issue, as a first step
we redefine the set of facilities as F = C, i.e., we remove
the road segments and consider only the charging stations.
It follows that the set of facilities that the generic player
i can use, Fi, is now given by just the charging stations
that the EV can reach. This is a viable choice since, per
the initial assumption in this subsection, each EV-charging
station pairs is implicitly, and univocally, associated to one
route only. As a second step, we prove the lemma below.
Lemma 1: Consider the game with congestion-averse util-

ities introduced above, in which each facility has a cost
greater than 0. Then, in order to identify a pure-strategy
NE, for any player i ∈ N it is sufficient to examine the
subset of viable strategies S i ⊆ Si, such that each strategy
in S i includes one facility only.

Proof: Please see [10].
Based on the above result, we can limit our attention to the
set of strategies Si, which includes only partitions of Fi

with cardinality equal to 1, and each of them corresponding
to only one of the charging stations that EV i can reach.



Next, we leverage the second difference between CAGs
and congestion games, i.e., the fact that in CAGs utilities
can depend on the player identity. In particular, we define
the cost of a charging station c, which can be used by player
i, as the total trip time i would incur, and we write it as:

ηi,c(n(i)
c ) + τi,c . (3)

In (3), the first term is the sum of the delay due to the
expected waiting time and the charging time at station c,
while the second term is the travel time through the route
associated to the EV-charging station pair (i, c). Note that
both terms depend on the player identity i; furthermore, the
following remarks hold.
(a) ηi,c(n

(i)
c ) can be obtained from (2) by replacing w c

with m(i)
c + n(i)

c , and ρ with ρi. Indeed, now the CC can
account for the number m(i)

c of non-player EVs that it
estimates to be at the station upon the arrival of player i.
Similarly, n(i)

c is the number of players that the CC estimates
to arrive at c before player i does. Finally, the recharging
time ρi may be different from one player to another, and
depend on the remaining battery charge of the EV.
(b) The travel time τi,c, associated to the EV-charging

station pair (i, c), does not depend on n(i)
c , as it now

accounts for the vehicular traffic intensity due to all non-
player vehicles only (i.e., the contribution of the players
is neglected). Indeed, the CAG model cannot track the
contribution to the traffic intensity due to players selecting
different charging stations but whose route partially overlap.
The impact of such an approximation is very limited since
typically the number of players is much smaller than the
number of all other vehicles traveling over the road topology
(see also the results in Sec. IV).
As mentioned, in the case of CAGs, pure-strategy NEs

can be found in polynomial time [8], thus the CC can
solve the game with low complexity. In the following, we
show how good the solutions of such games are from the
system performance viewpoint, and that, in spite of its low
complexity, the CAG model approximates very well the
previous (most general) scenario where multiple routes may
exist for any EV-charging station pair.

IV. RESULTS
We evaluate our game-theoretic approach on a real-world

road topology representing a 3×2 km2 section of the urban
area of Ingolstadt, Germany, depicted in Fig. 3. The vehicle
mobility has been synthetically generated using the SUMO
simulator, with a time granularity of 0.1 s. The mobility
trace is representative of 30-minute-long road traffic and of
average traffic intensity in the area. The use of synthetic
trace over real-world ones allows us to tweak number of
vehicles simultaneously present in our road topology and to
reroute them when needed.
The scenario includes 6 charging stations on the main

arteries of the road topology (red dots in Fig. 3). Two
stations have 2 servers, other two have 6 servers and the
remaining ones have 4 and 10 servers each. We assume that

Fig. 3. Road topology: red dots highlight the six charging stations.

fully-charged batteries are always available at the charging
stations, thus the service time is considered to be constant
and equal to 3 minutes.
Without loss of generality, all vehicles are assumed to

be electric. The average number of EVs that resort to the
navigation service is a varying parameter in our simulations.
The time instant at which an EV enters the low-battery status
and asks the CC for advice is uniformly distributed over its
trip time. Also we assume that all EV drivers are rational.
We consider that the CC receives information on the

number of EVs currently waiting at a charging station to be
served, as well as on the traffic conditions, every 10 seconds.
The requests for the navigation service sent by the EVs are
instead processed by the CC every T = 60 s. All information
is exchanged over the cellular network.
In order to derive the results, we proceed as follows. Every

time interval T , the CC solves the game considering as
players the EVs from which it has received a request. To
do so, the CC starts from a random strategy profile, i.e., a
random assignment of the facilities to the players. Player
payoffs (i.e., trip times) are then computed through SUMO
in the scenario described above. Given the current strategy
profile and player payoffs, the CC examines other strategies
according to the solution algorithm in [8] for the CAG, and
to the one in [11, Ch.7] for the congestion game. For every
strategy, player payoffs are computed via SUMO as before.
If a more convenient strategy is found for any of the players,
then the new strategy is adopted and the whole procedure is
repeated until an NE is reached. Unless otherwise specified,
we consider that the CC takes the first NE it finds as the
solution of the game. For both the CAG and the congestion
game, we calculate the per-player trip time associated to
such a solution. All results are averaged over 10 runs. We
compare such values with the trip time obtained through the
techniques described below.
Optimal: the solution that the CC can obtain by minimizing
the trip time averaged over all EVs that ask for advice. This
solution in general is not an NE, thus it may not be followed
by rational drivers.
Greedy: the CC only disseminates information on the road
travel time, and on the occupancy and the charging time at
the stations. Based on this knowledge, each EV indepen-
dently selects the charging station and the route that are
deemed to minimize its own trip time. In this case, the
CC just informs the EVs without providing any advice, and
the EV decision is taken disregarding the presence of other
vehicles looking for a charging station.
First, one may wonder whether the solution obtained
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Fig. 4. Average per-EV trip time as a function of the number of players,
when they represent 20% (left) and 60% (right) of all vehicles. CAG and
congestion game (CG) are compared against the optimal.
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Fig. 5. Average per-player trip time vs. number of players, when they
represent 20% (left) and 60% (right) of all vehicles. Comparison among CAG,
congestion game, optimal, and greedy. CAG-10 refers to the CC taking as a
solution the best among the first 10 NEs it finds.

through the CAG is as good as the one of the congestion
game, or if the gain in complexity we have with the CAG
takes a high toll in terms of system performance. To answer
this question, in Fig. 4 we show the average vehicle trip time,
for both player and non-player EVs, again as the number of
players is 20% and 60% of the total number of vehicles. The
performance corresponding to the solutions of the two games
are also compared to that of the centralized optimal solution.
The figure shows that the average trip times of player and
non-player EVs have the same qualitative behavior, with the
former clearly being higher than the latter since players stop
at a charging station during their trip. As for the comparison
among the CAG, the congestion game and the optimal, the
difference in performance can be barely noticed when the
players are 20% of the total number of EVs (left plot). When
the percentage of players is large (right plot), the difference
with respect to the optimal is limited in the case of the CAG,
and it is again unnoticeable for the congestion game. This
indicates that neglecting the contribution of player EVs to the
travel time makes the CAG model less precise only when
the players asking for advice in a given T -second period
represent the majority of vehicles on the road topology.
Next, we investigate the benefit of our approach with

respect to the greedy scheme. In spite of EVs receiving
periodically updated information, Fig. 5 clearly shows that
a greedy approach cannot cope with the other techniques
in terms of performance, succumbing to a problem similar
to the well-known route-flapping effect. Fig. 5 also depicts
the performance of the CAG when the CC does not solve
the game using the first NE that is reached, but the NE
that minimizes the average per-player trip time among the
first 10 it finds. In the plots, we label this curve by CAG-
10. Interestingly, such a simple enhancement to the solution
procedure makes the CAG approach as effective as the
congestion game and the optimal, without impairing its
scalability.

V. CONCLUSIONS AND FUTURE WORK

Leveraging the use of ITS, we envisioned the availability
of a navigation service that provides electric vehicles (EVs)
that are low in battery with advice on the charging station to
use and the route to take. We focused on how to determine
such advice so that rational EV drivers find it convenient to
themselves and they are willing to follow it.

After highlighting that traditional optimization approaches
fail to achieve the above goal, we considered a realistic
scenario and modeled the problem as a congestion game,
for which at least one pure-strategy Nash equilibrium exists
(i.e., a solution that all EVs find it satisfactory). Then, in
order to lower the complexity, we introduced a game with
congestion-averse utilities (CAG) that applies to a slightly
simpler scenario but for which an NE can be found in
polynomial time. Simulation results show that using CAGs,
not only is viable, but the model solution also leads to a
performance that is remarkably close to the optimum and
much better than that attained with a greedy scheme.
Future work will consider other road topologies as well

as vehicular traffic scenarios. It will also address the cases
where not all EV drivers are rational and where the infor-
mation collected through ITS and available at the CC may
be partial or not fully accurate.
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