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Abstract

In this thesis we establish a quantitative framework to measure and study the security of code

obfuscation, an effective software protection method that defends software against malicious reverse

engineering. Despite the recent positive result by Garg et al.[ GGH+13] that shows the possibility

of obfuscating using indistinguishability obfuscation definition, code obfuscation has two major

challenges: firstly, the lack of theoretical foundation that is necessary to define and reason about

code obfuscation security; secondly, it is an open problem whether there exists security metrics that

measure and certify the current state-of-the-art of code obfuscation techniques. To address these

challenges, we followed a research methodology that consists of the following main routes: a formal

approach to build a theory that captures, defines and measures the security of code obfuscation,

and an experimental approach that provides empirical evidence about the soundness and validity of

the proposed theory and metrics. To this end, we proposeAlgorithmic Information Theory, known

as Kolmogorov complexity, as a theoretical and practical model to define, study, and measure the

security of code obfuscation.

We introduce the notion of unintelligibility, an intuitive way to define code obfuscation, and

argue that it is not sufficient to capture the security of code obfuscation. We then present a more

powerful security definition that is based on the algorithmic mutual information, and show that is

able to effectively capture code obfuscation security. We apply our proposed definition to prove

the possibility of obtaining security in code obfuscation under reasonable assumptions. We model

adversaries with deobfuscation capabilities that explicitly realise the required properties for a

successful deobfuscation attack.

We build a quantitative model that comprises a set of security metrics, which are derived from

our proposed theory and based on lossless compression, aiming to measure the quality of code

obfuscation security. We propose normalised information distance NID as a metric to measure code

obfuscation resilience, and establish the relation between our security definition and the normalised
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information distance. We show that if the security conditions for code obfuscations are satisfied

(the extreme case) then the NID tends to be close to one, which is the maximum value that can be

achieved.

Finally, we provide an experimental evaluation to provide empirical validation for the proposed

metrics. Our results show that the proposed measures are positively correlated with the degree

of obfuscation resilience to an attacker using decompilers, i.e. the percentage of the clear code

that was not recovered by an attacker, which indicates a positive relationship with the obfuscation

resilience factor.
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1 Introduction

The usage of software applications has become one of the corner stones of our lives. Nowadays,

we are surrounded by software applications, like online payments applications, social networking,

games, etc, and we have become more and more dependent on software and cyberspace even for

our simple daily life tasks. Software often get distributed over the Internet; once distributed to a

client machine, the software owner loses control over the software, especially as more applications

and platforms become mobile. Many mobile wireless devices, including laptops, tablets, and smart

phones, are becoming part of our daily lives. Developing professional and specialised software

such as complex graphic processing applications and sensitive military software, require massive

investment and efforts in terms of cost and money. Therefore, they can be very expensive and of

great importance to their owners.

Attackers whether they are individuals, crime organisations or rogue regimes have great mo-

tivation and interest in stealing, reuse, tampering and reverse engineer such artefacts; often for

the purpose of extracting secret information and/or proprietary algorithms. This type of attack

is called a malicious host-based attack, which is conducted by malicious software or malicious

users. Malicious host-based attacks operate in a white-box model; in this model, the attacker has

full access to the system in which the software is running, and the attacker has a full privileged

access to the system. This means that the malicious user can execute the program at her/his will,

for example, s/he can observe the memory, processor, registers, and modify bytes during runtime.

Malicious reverse engineering is the most common type of malicious host-based attacks; it is used

to reconstruct the program’s source-code, and to conduct other host-based attacks, such as software

piracy, reusing and tampering [CN09]. There are legitimate reasons for reverse engineering, for

example software developers leverage reverse engineering to improve their own products, especially

in the undocumented applications. In general, the aim of reverse engineering is to aid the process

of understanding the inner working of software, and to obtain essential knowledge of the reversed
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software in order to reuse it in other software. This process is unlawful if it violates the intellectual

property rights of software owner such as extracting proprietary algorithms. Therefore, thwarting

malicious reverse engineering is vital inhibiting host-based attacks.

There are different strategies to defend against host-based attacks, and to protect the working of

software, such as both legal and technical countermeasures. Copyright and patent are two main

approaches to protect software against unlawful copying and stealing of algorithms. Despite the

fact that copyright protection defends against illegal copying, it does not help in protecting the

idea or the implemented algorithms. Software patents help to protect the computer programs

inventions including the idea and the algorithm; however, they do not provide solid protection as

they are not always enforceable. The major drawback of such patents is the cost. There are usually

very expensive to enforce, and therefore unaffordable for small companies. According to the US

Digital Millennium Copyright Act (DMCA) and EU Computer Programs Directive legislations,

reverse engineering is allowed for the purpose of interoperability between computer programs, if

the programs are obtained lawfully. Hence, it is very difficult under these regulations to prevent

reverse engineering for the understanding of the inner working of software. Because of these

shortcomings, legal protection mechanisms, in most cases, have a small impact on foiling malicious

host-based attacks.

Technical measures present a cheaper alternative to protect against malicious host attacks.

Technical protection increases the cost of extracting secret information and reverse engineering for

malicious purposes—even on the current open computing platforms, where software’s execution is

relatively easy to inspect and modify. This process is conducted by following one of two paths:

hardware and software protection. Hardware protection techniques leverage the hardware devices

capabilities to provide protection, such as secure coprocessors, Trusted Computing (TC), tamper

resistance, and smart cards, where secure computation is carried inside the protected hardware

despite deployment in a hostile computing environment. However, hardware protection techniques

do not provide a complete solution to the malicious host-based attacks, and their logistic challenges

(such as the difficulty of upgrading hardware) usually create difficulties in adapting them to

computing infrastructures. For example, if the hardware protection technique gets compromised by

an attacker, it would be very difficult to provide a quick response to patch and fix this problem. It

would require a full upgrade and replacement cycle to get the device secure again [Ird13]. Moreover,

hardware protection devices have a high cost and suffer from compatibility issues with other open
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computer platforms.

Software protection techniques, on the other hand, provide security by preventing inspections,

modifications, and reverse engineering. Software defence approaches are more flexible as they are

less platform dependent, and cheaper, than their hardware counterpart. There are different forms

of software protection, for example remote executions, encryption and authentication. Remote

execution, such as server-side execution, treats software as a service, so that the software is not

distributed but run as a service. These techniques stop the hostile host from having physical access

to the secure software by running it remotely, in a similar way to black-box model as the attacker

can only analyse the external behaviour of the software (input-output). However, they require

reliable network communication and are prone to performance degradation.

Encryption and authentication methods help to secure software and sensitive data, and decrypt

the software code on the fly during the execution process. Unfortunately, since the execution

requires decryption, the clear (decrypted) code is revealed in the memory during execution, and the

attacker can dump the memory and construct the code. Therefore, encryption and decryption have

to be conducted by trusted hardware devices, and thus it suffers from the same hardware protection

drawbacks.

Software-tamper resistance techniques help to shield software against modifications and tamper-

ing by creating checksums and hash-codes for detection in the protected code. Beside detection,

they take actions post the detection phase, which may include disabling, deleting, or making the

software generate invalid results, rendering it useless to the reverse engineering attacks.

If the tamper resistance process is circumvented, then the software is left without defence against

malicious host-based attacks. One of the defence methodologies that can be effectively used in

this case, which is the subject of this thesis, is code obfuscation. In essence, the purpose of code

obfuscation is to make the code difficult to read and understand, and hard to analyse by attackers,

while preserving the intended functionality of the original program. The basic premise being that if

the attacker cannot understand the outcome of the reverse engineering, then it is virtually impossible

to usefully alter the reversed engineered code.
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1.1 Code Obfuscation

Obfuscators attempt to manipulate code in such a way that it becomes unintelligible to human, and

automated program analysis tools that are used by malicious reverse engineers, while preserving the

functionality. Code obfuscation is a low-cost technique that does not cause a concern for portability

and is promising for defending mobile programs against malicious host-based attacks [CN09].

In general, code obfuscation helps shield the inner working of the code against analysis attacks.

We enumerate some cases of software protection scenarios, where code obfuscation can be useful

at making attacks economically infeasible.

Protection of intellectual property. Decompilation and reverse engineering allow attackers to

understand the code, extracting proprietary algorithms and data structures (e.g. cryptographic

keys) from software. Code obfuscation defends against malicious decompilation and reverse

engineering, by complicating the analysis phase in this process. Thus, this process should

become very costly and too expensive, in terms of the required time or resources.

Code lifting. In this type of attack, the adversary tries to identify the sections in the code of

interest, rather than understanding the overall code. Code obfuscation does not stop copying

the code or part of it; however it helps to make the process of identifying these parts more

difficult.

Hiding vulnerabilities. This idea is based on the assumption that making the process of analysis

and understanding of the inner workings of a program harder, using code obfuscation, helps

to prevent attackers from discovering vulnerabilities in the code.

Software watermarking. Software watermarking is used to prove the ownership of the software,

normally through embedding a unique identifier within software that binds the program to a

specific user. Software watermarking does not stop software privacy, however it discourages

software theft, by proving to authorities the ownership of stolen software. The typical attack

on software watermarking is to identify the watermark and destroy it; code obfuscation can

be one of the protection techniques to prevent this attack, in a similar way to code lifting, by

making it harder to recognise the watermark.

Software birthmark. One of the software protection areas that are related to code obfuscation is

software birthmark [CN09]. A software birthmark is one or a series of unique and inherent

23



characteristics that can be used to identify software theft, detect software piracy and identify

malware such as viruses and trojan horses. Code obfuscation applies many changes to the

code, which render detecting these birthmarks difficult.

Transform Private-Key Encryption to Public-Key Encryption. Obfuscation, when established

in a well-defined security, i.e. the possibility of having proven theoretical foundations for

security [BGI+01], could solve many problems which have not been addressed fully by

cryptography. Transforming a Private-Key Encryption (Symmetric Encryption) into Public-

Key Encryption is an example where Obfuscation can be used to transform Private-Key

encryption schemes by obfuscating a symmetric (private)-key encryption scheme. Given a

secret key k of a symmetric-key encryption scheme, one can publish an obfuscation of the

encryption algorithm Enck. Hence, everyone can encrypt, but only the one who possesses

the secret key k should be able to decrypt.

These are some legitimate usages of code obfuscation. However, code obfuscation is a double-

edge sword; it can be used also for malicious purposes, for example in malware design. Code

obfuscation1 is used in malware for the purpose of evading anti-malware tools. Most virus scanners

(AV) are signature based, and malware make these tools fail by using code obfuscation. Obfuscation

changes the structure and syntax of the malware while it preserves its behaviour, which makes

tracing, dissembling and detection analysis more difficult to perform.

1.2 Motivation and Objectives

As discussed above, code obfuscation provides a promising technical approach for protecting

software. However, most of the current state-of-the-art obfuscation techniques are not based on

well-defined security principles that help to certify their success in protecting software. In essence,

there are two related challenges that arise in code obfuscation security: the lack of a rigorous

theoretical foundation, and the difficulty of finding consistent and, theoretically and empirically,

valid measures of code obfuscation quality.

1Using different terminologies such as metamorphism and polymorphism.
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Lack of a theoretical background for code obfuscation

A major challenge in the field of code obfuscation is the lack of a rigorous theoretical basis. The

absence of a theoretical basis makes it difficult to formally analyse and certify the effectiveness of

these techniques in safeguarding against malicious host-based attacks [PG09]. In particular, it is

hard to compare different obfuscation transformations with respect to their resilience to attacks.

The impossibility result of finding a generic code obfuscation by Barak et al. [BGI+01] demon-

strates the theoretical impediment to establishing a robust framework with well-defined security

requirements, as in cryptography, for code obfuscation. Barak et al. [BGI+01] provide a formal

definition of perfect obfuscation in an attempt to achieve well-defined security that is based on the

black-box model. Intuitively, a program obfuscator O is called perfect if it transforms any program

P into a ’virtual black-box’ O(P ) in the sense that anything that can be efficiently computed from

O(P ), can be efficiently computed given just oracle access to P . They proved that the black-box

definition cannot be met by showing the existence of a set of functions that are impossible to

obfuscate.

On the other hand, a recent study by Garg et al. [GGH+13] has provided positive results,

using indistinguishability obfuscation, for which there are no known impossibility results. Two

programs P and Q of the same size that compute the same functionality are computationally

indistinguishable if no polynomial-time adversary can distinguish between the obfuscation of

O(P ) and the obfuscation of O(Q). However, as argued by [GR07] there is a disadvantage in

indistinguishability obfuscation: it does not give an intuitive guarantee about the security of code

obfuscation. Furthermore, indistinguishability obfuscation does not certify or reason about the

current state-of-the-art obfuscation techniques (practical obfuscation techniques).

The obfuscation definition that was proposed by Barak et al. is based on the virtual black-box

model, which is a very strong model for software protection, is an unrealistic expectation of

obfuscation for two main reasons. First, software run on an open computing platform, and for

this reason, any malicious host-based attacker has unlimited access to execute and modify the

protected code. Secondly, we cannot expect a defender to hide program’s functionality,2 as virtual

black-box model does for code obfuscation. Therefore, comparing any adversary who has access to

an obfuscated program based on the virtual black-box model is impractical, and hence, led to the

2People are not interested in buying software that they do not known what it does (the programs functionality).
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impossibility results.

The recent advances in code obfuscation theory by Garg et al. confirmed our argument; the

indistinguishability obfuscation definition showed the possibility to obfuscate securely. The success

behind indistinguishability obfuscation is based on eliminating the virtual black-box from the

definition of obfuscation. Nevertheless, this theoretical success has not yet conceived any practical

obfuscation algorithms. Consequently, the current state-of-the-art obfuscation techniques are

predominantly the only available techniques for code obfuscation; this necessitates a new direction

of research which allows to reason effectively over the security aspects of practical obfuscation

techniques.

To this end, we need a new formal approach and framework for modelling, designing, studying

and relating obfuscating transformations. Furthermore, a systematic methodology for deriving

program transformations is highly desirable in order to design obfuscating algorithms, which are

able to hide a desired property, and to defeat a given attacker. Toward achieving these goals, it

is crucial to provide new definitions for practical code obfuscation, in particular, and software

protection in general.

The problem of finding code obfuscation metrics

The current notion of code obfuscation is based on a fixed metric for program complexity, which

is usually defined in terms of syntactic program features, such as code length, number of nesting

levels and numbers of branching instructions. There is a need to practically examine and verify the

effectiveness of obfuscation transformation based on new quantitative means [PG09].

Most code obfuscation strategies are ad hoc and their metrics rely on software metrics that are

based on classical complexity metrics. Despite the usefulness of such metrics, they fall short of

achieving, quantitatively, the confidence and security trust level in code obfuscation.

Software similarity metrics could provide a way to reason about the amount of confusion added

by obfuscation transformation techniques. However, we believe, in their current state, they are not

adequate to measure the quality of code obfuscation. Two programs P and O(P ) can be similar or

dissimilar with a certain value v, but, that does not give any information on the code obfuscation

security, i.e. how difficult it is to comprehend the protected properties in the transformed program

O(P ). In order to evaluate the quality of software protection such as code obfuscation, we have

to capture quantitatively the security of code transformations, and study the code-obfuscation
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resilience against an adversary, taking into account the adversary’s capabilities, such as malicious

software reverse engineering, static and dynamic analysis techniques, etc.

1.3 Contributions

In an attempt to tackle these problems, we followed two research methodologies. The first formal

approach is used to build a theory that defines and reasons about code obfuscation security; the

approach is based on Algorithmic Information Theory, which is also known as Kolmogorov com-

plexity [Kol65]. The Kolmogorov complexity for a binary string s is defined as the length of the

shortest program that runs on a universal Turing machine and produces s. Kolmogorov complexity

measures the intrinsic information content and randomness in a given string. Kolmogorov com-

plexity is uncomputable; however, it can be approximated using lossless data compression [KY96].

In this thesis Kolmogorov complexity serves as a unified notion to define and provide proofs for

code obfuscation security, and to derive a theoretical and practical model that establishes a set of

quantitative metrics, which is used to measure the quality of code obfuscation.

The second approach is based on experimental evaluation; we provide empirical evidence to

assess and validate the soundness and effectiveness of the derived metrics measuring the security

of code obfuscation. We correlate the value of these metrics with a heuristic-based obfuscation

resilience factor using decompilation attacks (percentage of failing to retrieve the original clear

code).

Based on the outcome of applying these research methodologies, we make the following contri-

butions.

A new theoretic framework for practical code obfuscation security. We provide a theoret-

ical framework for code obfuscation in the context of Algorithmic Information Theory

(Kolmogorov complexity), to quantitatively capture the security of code obfuscation. Our

definition allows for a small amount of secret information to be revealed to an adversary, and

gives an intuitive guarantee about the security conditions that have to be met for practical

secure obfuscation. We argue that our model of security is fundamentally different from

the virtual black-box model of Barak et al. in which their impossibility result does not

apply. We assume the functionality of an obfuscated program to be almost completely known

and available to an adversary, and only require hiding the implementation rather than the
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functionality itself. This approach to obfuscation is very practical and pragmatic, especially

for software protection obfuscation. We show that our model is very similar to indistin-

guishability obfuscation, yet it has an advantage over the obfuscation indistinguishability

definition in the sense it is more intuitive, and is algorithmic rather than probabilistic. We

then show that under reasonable conditions we can have secure obfuscation. We investigate

the security of the two main approaches to obfuscated code in software, encoding and hiding,

at the subprogram level. Moreover, we study the effect of combining several obfuscation

techniques in the same program, and investigate their overall security.

Modelling deobfuscation adversaries. We model deobfuscation adversaries using Algorithmic

Information Theory, and define the security properties that characterise the conditions for

successful code obfuscation attack.

Metric theoretical evaluation for Kolmogorov complexity. We apply the Weyuker validation

framework [Wey88] to check whether Kolmogorov complexity is theoretically sound as

a software metric. The results show that Kolmogorov complexity is a suitable metric for

measuring complexity in binary programs, and code obfuscation in particular.

Quantitative metrics to measure the quality of code obfuscation. We propose a new quan-

titative framework to measure the quality of code obfuscation; we rely on lossless data-

compression algorithms to approximate Kolmogorov complexity, and to have a practical

means to measure the regularity (randomness) in code obfuscation. We show that software

similarity metrics such as information distance [LCL+04] that measures the similarity be-

tween two blocks of code, can provide a plausible way to reason about the amount of security

added by code obfuscation transformation. The aim of using information distance is to quan-

tify the amount of obscured code that remains or is lost when the program is debofuscated.

We formalise the notions of unintelligibility index (degree of confusion introduced) and rela-

tive Kolmogorov complexity, and show that information distance metric is a suitable measure

for code obfuscation resilience. We also apply a modified version of information distance to

define code obfuscation stealth, and propose a statistic model based on linear regression that

combines all the proposed metrics to estimate the total security of code obfuscation.

Empirical evaluation for the proposed metrics. The empirical validation results show that the

28



proposed metric are empirically valid for measuring the quality of code obfuscation. These

metrics outperforms the classical complexity measures in terms of being correlated with

the degree of code obfuscation’s resilience to decompilers. Moreover, the outcome of the

analysis of the results shed a light on the importance of taking into account the attack model

when measuring the quality of code obfuscation. Applying any quantitative measure without

parametrising it to a specific attacker can be misleading, in that it creates a false sense of

security.

1.4 Related Work

The first attempt to evaluate obfuscation was conducted by Collberg et al. [CTL97]; they relied

on classical software complexity metrics to evaluate obfuscation such as Cyclomatic Complexity,

and Nesting Complexity. Anckaert et al. [AMDS+07] suggested a framework of four program

properties that reflect the quality of code obfuscation: code, control flow, data and data flow. They

applied software complexity metrics to measure these properties; however they did not perform

any validation on the proposed metrics. Ceccato et al. [CPN+09] experimentally assessed one

obfuscation technique (identifier renaming) using statistical reasoning. They measured the success

and the efficiency of an attacker by considering the human factor in their threat model, without

introducing any new metrics.

In a recent study by Ceccato et al. [CCFB14], a set of software metrics (modularity, size and

complexity of code) were applied to a set of obfuscated programs to measure the complexity

and potency of obfuscated programs. Their results showed that a limited number of obfuscated

techniques, involved in their study, were effective in making code metrics change substantially

from original to obfuscated code. We apply a similar statistical validation methodology to evaluate

the proposed metrics, yet based it on non-parametric statistical techniques and regression analysis

[She07]. However, our approach differs substantially from their approach; they applied classical

complexity metrics, where we apply new quantitative metrics using Algorithmic Information Theory

and compression.

The most related work to our approach is the work that was conducted by Kirk et al.[KJ04] who

investigated the possibility of using information theory to measure code obfuscation through plain

Kolmogorov complexity and compression to measure the level of randomness in code obfuscation.
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However, their work lacks the theoretical and empirical evaluations that we provide in this thesis.

Jbara et al. [JF14] argued that most of the complexity metrics are syntactic program’s features

that ignore the program’s global structure. The global structure of a program may have an effect on

the understanding of that program, and they suggested the use of code regularity, which is estimated

by compression, to measure program comprehension, and conducted a controlled experiment

using cognitive tasks on a set of program functions. The results established a positive relation

between code regularity and program comprehension. The code regularity, according to Jbara

et al., is estimated by compression, which is also used to approximate Kolmogorov complexity

[KY96]. Their intuitions and results agree with our observation and theoretical treatments for code

obfuscation. However, our work differs from their work in two ways: we provide a sound theoretical

foundation and validation based on Algorithmic Information Theory (Kolmorgorov complexity) for

code regularity, and justify its use in code obfuscation security. They only used compression to

measure code comprehension in an empirical sense, without applying any theoretical validation.

Furthermore, they did not apply their experiment to study the effect of compression on obfuscated

code.

1.5 Thesis Layout

This thesis is organised in the following chapters:

Chapter 2. We provide the mathematical preliminaries that we are going to use in this thesis,

together with a brief introduction to computability theory, Turing machines, Information

Theory and Algorithmic Information Theory (Kolmogorov complexity).

Chapter 3. We present the current threats to software such as program analysis and malicious

reverse engineering, and present the untrusted host as an attack model for software. We

introduce the notion of code obfuscation as a potential defence method against such an

attack. We also provide some of the theoretical background in this domain, in particular,

the impossibility results of virtual black-box obfuscation, and the latest advances that are

based on a relaxed version of virtual black-box model, which provide positive results on

code obfuscation. We provide an overview of obfuscating techniques based on Collberg et

al.’s [CTL97] taxonomy on code obfuscation algorithms. We discuss some of deobfuscation
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methodologies that can be used to foil code obfuscation techniques. Finally, we present an

overview of metrics, which are currently employed to measure the quality of code obfuscation.

Chapter 4. We motivate the use of Algorithmic Information Theory in code obfuscation. We

introduce the notion of unintelligibility to define confusion in code obfuscation and argue that

this is not good enough. We then propose our notion of security that is based on algorithmic

mutual information, and compare both definitions, in particular, with the virtual black-box

model and indistinguisibility obfuscation. Then we apply our security definition to study the

security of the two main approaches to obfuscated code in software, encoding and hiding,

at the sub-program level. We also investigate the effect of combining multiple obfuscation

techniques and reason about their security.

Chapter 5. We propose a generic model of a code obfuscation adversary based on Algorithmic

Information Theory and Kolmogorov complexity. We present a formal grounding and a

new definition of a code obfuscation adversary that captures the adversary’s objectives and

capabilities.

Chapter 6. In this chapter we propose a model to measure code obfuscation quality that is based

on our theoretical investigation in Chapter 4 and Chapter 5. The model comprises of four

different metrics: unintelligibility index, normalised Kolmogorov complexity, normalised

information distance for resilience and code obfuscation stealth. We check whether Kol-

mogorov complexity is theoretically sound as a valid software metric based on Weyuker’s

validation framework [Wey88]. We show that information distance [LCL+04] can provide a

plausible way to reason about the amount of security added by code obfuscation transforma-

tion.

Chapter 7 We provide the experimental design and tool-sets that are necessary to conduct

and interpret the results of evaluating the metrics that were proposed in Chapter 6. The

experiment consists of a set of obfuscated Java jar files of SPECjvm2008 benchmark, using

two obfuscators: Sandmark, an open source suite, and Dasho, a commercial tool, and three

different decompilers as an attack model.

Chapter 8. In this chapter we focus on the experimental results and analysis. We present the

research questions, the formulated null hypotheses, and show the validation results of the

31



proposed metrics model, using statistical hypotheses testing, in addition to other statistical

tools. We also provide comparison with the classical complexity metrics. Finally, we examine

the impact of code obfuscation using the proposed metrics.

Chapter 9: We sum up the main contributions of this thesis and briefly describe the directions for

future work.
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2 Preliminaries

The goal of this chapter is to give a reasonably self-contained account of the basics, as well as some

of the mathematical tools we will need in this thesis.

2.1 Notations

We use the notation U as shorthand for a universal Turing machine, x for a finite-length binary

string and ∣x∣ for its length. For a set S, the count of its elements are denoted by #S. s̄ is used

to denote the complement of s ⊆ S such that s̄ = S/s. We use ε for a negligible value, p(n)

for a polynomial function with input n ∈ N, and O(1) for a constant. ∥ is used to denote the

concatenation between two programs or strings.

In this thesis, we are only using strings over a set of binaries i.e. {0,1}. The set of all finite

strings over {0,1} is denoted by {0,1}∗, which we use to represent the space of all possible strings

including the empty string, and can be formally defined as

{0,1}∗ =
∞
⋃

i=0
{0,1}i

where {0,1}0 = ε is an empty string, and {0,1}n+1 = {0S ∣ S ∈ {0,1}n} ∪ {1S ∣ S ∈ {0,1}n}.1

All objects, such as natural numbers and program code, are encoded as binary strings. For a

given string x ∈ {0,1}, ∣x∣ is measured in the number of symbols of that string. We also write

{0,1}+ = {0,1}∗/ε to denote the space of all possible strings excluding the empty string.

Following this, we may inductively create a rule that allows us to totally order all strings that are

possible in {0,1}∗ in a conventional way, according to their length. Then we associate each string

by a natural number 2, this number act as an index in the length-increasing lexicographic ordering.

1 The symbol ∗ refer to a closure of the set, i.e. {0,1}∗ is closed under the operation of concatenation; that is, if x and
y are belongs to {0,1}∗, then x ∥ y are in {0,1}∗ too.

2 This scheme will make the string easily decodable.
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In this case, every string in {0,1}∗, can be identified by its index in the ordering [LV08].

(ε,0), (0,1), (1,2), (00,3), (01,4), (10,5), (11,6), ....

The length of a string x, ∣x∣ is related to the index or position of x in the above relation, which

can be computed using logarithmic term such that: ∣x∣ = ⌈log(x + 1)⌉, where ⌈.⌉ denotes the ceiling

operation that returns the smallest integer not smaller than the argument [LV08].

P is a set of binary programs and Q is a set of binary obfuscated programs, L = {λn ∣ λn ∈

{0,1}+, n ∈ N} is a set of (secret) security parameters that is used in the obfuscation process.3 A =

{An ∣ n ∈ N} represents a set of adversaries (deobfuscators) where an adversary A ∈ A uses a set

of deobfuscation techniques (e.g. reverse engineering); the term adversary is used interchangeably

with deobfuscator. We say two binary programs P and Q have the same functionality (meaning)

if they produce the same output given an input and terminate, i.e. given an input set I , [[P ]] =

[[Q]] ⇐⇒ ∀i ∈ I.[P (i) = Q(i)].

2.2 Probability

Probability theory deals with predicting how likely it is that something will happen. For example,

if one tosses three coins, how likely is it that all will come up heads? The notion of the likelihood

of something is formalised through the concept of an experiment (or trial) - the process by which

an observation is made. In this technical sense, tossing three coins is an experiment.

Definition 2.1. The set of all possible experimental outcomes is called the sample space and is

denoted by Ω.

Sample spaces may either be discrete, having at most a countably infinite number of basic

outcomes, or continuous, having an uncountable number of basic outcomes.

The foundations of probability theory depend on the set of events F forming a σ-field, a set

with a maximal element Ω and arbitrary complements and unions. These requirements are trivially

satisfied by making the set of events, the event space, the power set of the sample space.

Definition 2.2. A set F ⊆ Ω is called a σ-field if:

3 The security parameter may include the obfuscation key, the obfuscation transformation algorithm or any necessary
information that the obfuscation function can use.
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1. ∅ ∈ F

2. if A1,A2, ... ∈ F then ⋃∞i=1Ai ∈ F

3. If A ∈ F then Ā ∈ F

Definition 2.3 ([Sti05]). A probability measure Pr on (Ω,F) is a function Pr ∶ F → [0,1]

satisfying

1. Pr(∅) = 0,

2. Pr(Ω) = 1,

3. If A1,A2, ...An is a collection of pairwise disjoint members of F , i.e. if Ai ∩Aj = ∅ for

j ≠ j where Ai,Aj ∈ F , then

Pr(
n

⋃

i=1
Ai) =

n

∑

i=1
Pr(Ai)

Pr is also called the probability distribution. The entire structure comprising Ω, with its event

space F , and probability function Pr, is called the probability space and is denoted by (Ω, F , Pr).

Lemma 2.4 (Basic Properties). For any events A,B ⊆ Ω, we have the basic properties:

1. Pr(Ā) = 1 −Pr(A), where Ā = Ω/A,

2. Pr(A ∪B) = Pr(A) +Pr(B) −Pr(A ∩B),

3. Pr(A) ≤ Pr(B), if A ⊆ B,

4. Pr(A ∪B) = Pr(A) +Pr(B) if A and B are disjoint.

Conditional Probability and Independence

Sometimes we have partial knowledge about the outcome of an experiment, which naturally

influences what other experimental outcomes are possible. We capture this knowledge through the

notion of conditional probability. The probability of an event before we consider our additional

knowledge is called the prior probability of the event, while the new probability that results from

using our additional knowledge is referred to as the posterior probability of the event [LG07].
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Definition 2.5 (Conditional Probability). The conditional probability of an event A given that an

event B occurs, if Pr(B) > 0, is defined by

Pr(A ∣B) =
Pr(A ∩B)

Pr(B)

In general, the occurrence of some eventB changes the probability that another eventA occurs,

the original probability Pr(A) will be replaced by Pr(A ∣B). If the probability remains unchanged,

then Pr(A ∣B) = Pr(A) and A, B are called independent.

Definition 2.6. Events A and B are called independent if

Pr(A ∩B) = Pr(A)Pr(B)

More generally, a family of events {Ai ∣ i ∈ I} is called independent if

Pr(⋂
i∈J
Ai) =∏

i∈J
Pr(Ai)

for all finite subsets J of I .

2.2.1 Random Variable

Rather than having to work with some irregular event space which differs with every problem, we

look at a random variable that allows us to talk about the probabilities of numerical values that are

related to the event space, without having to exhibit all the events in F .

Definition 2.7 (Random Variable [Sti05]). A random variable is a function X ∶ Ω → R with the

property that {ω ∈ Ω ∣X(ω) ≤ x} ∈ F for each x ∈ R.

Every random variable has a distribution function, which is the probability that the random

variable X does not exceed x.

Definition 2.8 (Discrete Random variable [Sti05]). The random variable X is called discrete if it

is taking some countable subset x1, x2, ... of R. The discrete random variable X has probability

function f ∶ R→ [0,1] given by f(x) = Pr(X = x).
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Definition 2.9. The expected value E of a discrete random variableX taking values x1, ..., xn is:

E[X] =
n

∑

i=1
xiPr(xi)

2.3 Information theory

The field of information theory was developed in the 1940s by Claude Shannon, with the initial

exposition reported in [Sha48]. Shannon was interested in the problem of maximizing the amount

of information that you can transmit over an imperfect communication channel such as a noisy

phone line (though actually many of his concerns stemmed from codebreaking in World War II).

For any source of ’information’ and any ’communication channel’ Shannon wanted to be able

to determine theoretical maxima for (i) data compression, which turns out to be given by the

Entropy H (or more fundamentally, by the Kolmogorov complexity K (see Section 2.7)), and (ii)

the transmission rate, which is given by the Channel Capacity [CT06]. Before 1948, people had

assumed that necessarily, if you send a message at a higher speed, then more errors must occur

during the transmission. But Shannon showed that provided that you transmit the information in

the message at a slower rate than the Channel Capacity, you can make the probability of errors in

the transmission of your message as small as you would like.

The initial questions treated by information theory lay in the area of data compression and

transmission. The answers are quantities such as entropy, mutual information, and relative en-

tropy [CT06], which are functions of the probability distributions that underlie the process of

communication.

2.3.1 Entropy

Given a discrete random variable X we cannot know for sure which of its values {x1, x2, ...} will

occur. Shannon introduced the concept of entropy which is a measure of the uncertainty of a

discrete random variable [CT06].4 It is the number of bits on average that are required to describe

the random variable.

Definition 2.10 (Entropy [CT06]). Let X be a discrete random variable over symbols (alphabet)

X = {x1, ..., xn} and probability function Pr(xi) = Pr(X = xi), xi ∈ X . The entropy H(X) of

4Entropy can be also defined for continuous random variables.
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the discrete random variable X is defined by :

H(X) = −
n

∑

i=1
Pr(xi) log Pr(xi).

The log is to the base 2 and it is measured in bits. Note that entropy is a function of the

distribution of X; it does not depend on the actual values taken by the random variable X , but only

on the probabilities.

2.4 Prefix Codes

A string x is called a proper-prefix of another string y, if for a string z ≠ ε, x = y ∥ z. A set

S ⊂ {0,1}∗ is prefix-free if no element is a proper-prefix of any other. A prefix-free set is used to

define a prefix-code. A function D ∶ {0,1}∗ → N defines a prefix-code if its domain, {0,1}∗, is

prefix-free; this function is called a decoding function.

A binary string y is a code-word (words of the code alphabet) for source-word (words from

the source alphabet) x if D(x) = y, and D is the decoding function. The set of all code-words

for a source-word x is the set E =D−1(x) = {y ∣D(y) = x}, and is called the encoding function

[LV08].

The interest in prefix-codes is motivated by the need for uniquely decodable codes. If no code-

word is the prefix of another code word, then each code sequence is uniquely decodable, since the

set of source words is infinite (N) and we would have to use variable-length codes.

Definition 2.11 (Prefix-code [CT06]). A code is a prefix-code or instantaneous code if the set of

code-words is prefix-free.

An example of prefix-free encoding for numbers, is to use a self-delimiting code; for a binary

string x such as 5

x̂ = 1∣x∣0x

In this case, the encoding function E(x) = x̂ = 1∣x∣0x, where 0 is the stop symbol. This is a type of

prefix-free code that is called a self-delimiting, since there is a fixed computer program linked to

this code, which determines where the code-word x̂ ends by reading it from left to right without

5Here x ∈ N which is represented by binaries so that x ∈ {0,1}∗.
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backing up. Using this encoding, we can construct a prefix-free set such as [LV08]

{x̂ ∣ x ∈ {0,1}∗}

Applying this method, the code can be parsed in its constituent code-words in one go by a computer

program. It is desirable to construct instantaneous codes of minimum expected length to describe

a given source; this is very crucial in data compression because we need to have code-words of

shortest possible length for encoding and decoding. It is obvious that we cannot assign short code-

words to all source symbols, for the purpose of unique encoding-decoding, and still be prefix-free.

The set of code-word lengths that are possible for instantaneous codes is restricted by the following

inequality, known as the Kraft inequality.

Theorem 2.12 (Kraft Inequality [Kra49]). Let l1, l2, .., ln be the code-word lengths for each of n

code-words in a binary prefix-free code. Then,

n

∑

i=1
2−li ≤ 1

2.5 Computability Theory

The notion of computability is a basic principle in computer science, as it defines what a computer

can do. The classical computability theory originated with the seminal work of Gödel, Church,

Turing, Kleene and Post in the 1930’s [Rob15]. Intuitively, computation is a process that produces

some output on certain input using a specific set of rules, which dictates how to perform the

computational operation. Computability theory is also known as recursion theory; it is concerned

with studying whether functions are computable or not. In essence, the classical computability

theory is the theory of functions on the integers that are computable by a finite procedure. The

computable functions are the fundamental object of study in computability theory. This includes

computability on many countable structures as they can be coded also by integers.

Models of computation are abstract specifications of how a computation can be performed,

which are expressed as the description of some kind of conceptual automaton. We need a model of

computation in order to abstract from implementation details using any programming language.

The most popular mathematical model for computability and computations is due to Alan Turing,
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who defined what is now known as Turing machines.

Different approaches to computability were introduced, using models that are based on recursive

functions, the first one by Gödel [Rob15] then advanced by Kleene [Kle64] and Church [Chu32]

using Lambda-Calculus, which expresses computation based on function abstraction. All the

proposed models of computations are equivalent in the sense that they express the same class of

computable functions. Church and Turing provided two equivalent theses for computable functions,

which later were merged into a well known Church-Turing Thesis. It states that any partial function

that is computable in any model is also computable by a Turing Machine6: these functions are

called Turing-computable. The Church-Turing Thesis is a statement that is believed to be true but

is not proven, based on the fact that many computation models are equivalent, and so far no one

has presented a formal proof to reject this statement [Rob15]. In the following, we give a formal

definition of recursive functions according to Gödel’s model.

Definition 2.13 (Primitive Recursive Functions [vB15]). The class of primitive recursive functions

FRr in Nk → N, for any k, is constructed by:

1. The initial functions

Z(x) = 0 (Zero)

S(x) = x + 1 (Successor)

Pn(x1, ..., xn) = xi (1 ≤ i ≤ n) (Projection)

2. Composition. If g1, ..., gm ∶ Nk → N, h ∶ Nm → N ∈ Fr, then f ∶ Nk → N defined by

f(x1, ..., xk) = h(g1(x1, ..., xk), ..., gm(x1, ..., xk))

is in Fr

3. Recursion. If g ∶ Nk → N, h ∶ Nk+2 → N ∈ Fr then f ∶ Nk+1 → N defined by

f(0, x1, ..., xk) = g(x1, ..., xk)

f(y + 1, x1, ..., xk) = h(y, f(y, x1, ..., xk), x1, ..., xk)

6The Turning machine term can be substituted with any equivalent model of computation.
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is in Fr

Using the above definition, we can define partial recursive functions.

Definition 2.14 (Partial Recursive Function [vB15]). The class of partial recursive functions

Fpr ∈ Nk → N (for any k) is defined as the set of primitive recursive functions with additional

condition:

4. µ-Operation. If f ∶ Nn+1 → N ∈ Fpr, then h ∶ Nn → N ∈ Fpr, where h is defined by:

h(x1, ..., xn) = µy(f(y, x1, ..., xn)) = 0

where µy expresses the least y ∈ N, which causes f(y, x1, ..., xn) to return 0.

That means y begin with 0 and goes upward, until y is found, i.e. stepping through

f(0, x1, ..., xn), f(1, x1, ..., xn), f(2, x1, ..., xn), ...

However, it might be the case that such argument does not exist, then the search might not terminate,

and therefore, h is not defined.

Definition 2.15 (Total Recursive Function). A function is called (total) recursive if it is partial

recursive and total, i.e. its domain is all of Nk.

Sets that can be algorithmically generated are called recursive (computably) enumerable.

Definition 2.16 (Recursive Enumerable Set [LV08]). A set S is recursively enumerable if it is

empty or in the range of some total recursive function f , so f effectively enumerates S.

The intuition that motivates this definition is that there exists a Turing machine which lists the

elements of S. For every element in S, the Turing machine halts in a distinguished accepting state,

and the elements that are not in S the machine either halts in a non-accepting state or computes

forever [LV08].

2.5.1 Turing Machines

A Turing machine is a kind of theoretical state machine. At any time, the machine is in any one

of a finite number of states. It has an infinite tape that consists of adjacent cells as its unlimited
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memory, with a tape head that reads and writes symbols and moves around on the tape, having the

ability to store information.

On each cell is written a symbol. The symbols that are allowed on the tape are finite in number

and include the blank symbol. Each Turing machine has its own alphabet, i.e. a finite set of symbols,

which determines the symbols that are allowed on the tape. A Turing machine has a finite number of

states and, at any point in time, the Turing machine is in one of these states. It begins its operation

in the start state, and it halts when it moves into one of the halt states. In the next definition, we

present a formal description of Turing machine.

Definition 2.17 (Turing Machine [Tur36, Sip13]). A Turing machine T is a 7-tuple (Q,Σ,Γ, δ, s0

, saccept, sreject) where Q,Σ,Γ and δ are all finite sets, and

• Q is the set of states.

• Σ is the input alphabet not containing the blank symbol ⊔.

• Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ

• δ ∶ Q×Γ→ Q×Γ×{L,R} is the transition function, where {L,R} is the direction of moving

(left or right) on the machine’s tape.

• s0 ∈ Q is the intial state.

• saccept ∈ Q is the accept state.

• sreject ∈ Q is the reject state, where sreject ≠ saccept .

Computing process: At the start of computation, the machine is in the initial state q0 and the

head is positioned over a designated cell of the tape, the head is scanning exactly one cell of the

tape.

• In a single step of computation, the machine looks up the symbol a ∈ Γ where the head points.

• Check the current machine’s state q and compute δ(q, a) = (q′, a′, d).

• Writes the symbol a′ on the tape where the head is positioned, and sets the internal state to

be q′.

• Moves the head one cell to the left or right according to the direction d.
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• The computation stops, or halts, if the machine reaches a final state (an accepting or rejecting

state), and is undefined if there is no valid transition and the current state is not final.

• The output is whatever is left on the tape, starting from the initial position and until the first

blank.

The above definition provides a description of Turing machines and how they perform com-

putation. We can obtain equivalent definitions if more tapes are added, with different operation

types such as read-only, write-only, bidirectional tapes, and using a different finite alphabet. These

equivalent definitions are variants of the basic model, i.e. a generalised model of the basic one,

which differs in their external configuration that makes this model robust and flexible, so we can

adapt a generalised version of Turing machines.

2.6 Universal Machines

An important consequence of computability theory is that the set of computable functions is

enumerable; each computable function can be assigned a natural number so that this number

uniquely represents that computable function. This is due to the existence of an effective method of

enumerating Turing machines, and that a Turing machine can compute these functions [CT06].

Turing machines can be enumerated by setting an encoding scheme that assign a unique identifier

called the Index. The encoding method is represented by associating words over some coding

alphabet.7 Each Turing machine, say T can be computed with other Turing machines by including

their indexes into T ’s input word. In essence, each Turing machine can have a tag m, which are

ordered lexicographically, and each tag assigned a unique index i, indicating its location in this

ordering. Using this idea of enumeration of his machines, Turing discovered an important fact

about Turing machines, which is stated in the following.

Theorem 2.18 (Universal Turing Machine [AB09]). Let Ti be the ith item in a lexicographically

ordered set of Turing machines such that Ti ∈ {T1, T2, ...}. There exists a Turing machine U such

that for every x ∈ {0,1}∗, U(x, i) = Ti(x).

This proposition gives rise to the notion of Universal Turing machine U , which solves the

problem of requiring different Turing machines, each one must be constructed for every new
7A suitable coding alphabet is {0,1}, because it is included in the input alphabet Σ of every Turing machine T [Rob15].
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computation, for every input-output relation. The Universal Turing machine can solve this problem

by having the ability to simulate any Turing machine.

The Universal Turing machine performs this simulation by set to receive a pair of inputs ⟨i, x⟩,

build a machine Ti using i and then simulates this machine on the input string x, such that

U(⟨i, x⟩) = Ti. Therefore, the Universal Turing machine can imitate the behaviour of any other

Turing machine. Based on the above; U can be viewed as a general-purpose computing device

which receives two inputs, P and x, where P is considered as a program for U and x the input data

for P [Pin07].

In this thesis we consider a type of Turing machines whose set of halting programs is prefix-free,

i.e. the set of such programs form a prefix code. One reason to look at this type of machines is

because no halting program is a prefix of another halting program.

Definition 2.19 (Prefix Turing machine [LV08]). A prefix Turing machine T is defined as a Turing

machine with one unidirectional input tape, one unidirectional output tape, and some bidirectional

work tapes. Input tapes are read only, output tapes are write only, and in the unidirectional tapes

the head can only move from left to right. The set of programs P on which halts on T forms a

prefix-code. These programs are also called self-delimiting programs.

We can define a Universal prefix Turing machine that simulates any Prefix Turing machine on an

input, in a similar way to the ordinary Universal Turing machine [LV08].

2.6.1 Asymptotic Notation

Asymptotic notation can be used to express the approximate behaviour of a function when the

argument tends towards a particular value or infinity with another function. In computational

complexity theory, it used to categorise algorithms by how they respond, in terms of (computational)

time and space resources, to different inputs. Instead of using the exact measuring of time and

space, it is convenient to focus on the asymptotic behaviour of resources as approximate functions

of the input size. There is a family of asymptotic notations with the same order of magnitude

symbols: O,o,Ω and Θ which are defined formally as follows.

Definition 2.20 (Asymptotic Notations [Sip13]). Let f and g be functions f, g ∶ N→ R, then:

• f(x) = O(g(x)) if there exists a constant c > 0 such that f(x) ≤ c.g(x), for sufficiently

large x,
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• f(x) = o(g(x)) if limx→∞
f(x)
g(x) = 0 i.e. for any constant c > 0, a number n0 such that for all

x ≥ n0 .f(x) < c.g(x),

• f(x) = Ω(g(x)) if there exists a constant c > 0 such that f(x) ≥ c.g(x), for sufficiently

large x,

• f(x) = Θ(g(x)) if both f(x) = O(g(x)) and f(x) = Ω(g(x)).

So, we use the notation O(f(x)) when we denote a function that does not exceed f(x) by more

than a fixed multiplicative factor. This is helpful whenever we want to simplify an expression by

eliminating unnecessary detail, but also in case we cannot precisely estimate this quantity explicitly.

2.7 Kolmogorov Complexity

Kolmogorov complexity (also known as Kolmogorov-Chaitin or Algorithmic complexity) is used

to describe the complexity or the degree of randomness of a binary string. It was independently

developed by A.N. Kolmogorov [Kol65], R. Solomonoff [Sol64], and G. Chaitin [Cha66]. Intu-

itively, Kolmogorov complexity of a binary string is the length of the shortest binary program that is

computed on a Universal Turing machine. Informally, it measures the information content, degree

of redundancy, or the degree of regularities of a binary string.

Kolmogorov complexity tries to provide an answer to a fundamental question about randomness.

Consider the following binary strings:

10101010101010101010101010101010101010101010101010

10011101001000101101101000101111010100100100110101

Comparing the above strings, it is easily to conclude that the second one is more random than the

other. Applying the law of probability, each string has an equal probability of (2−50) in being chosen

at random from the all binary sequences. Therefore, probability does not explain the intuitive notion

of randomness.

Kolmogorov complexity comes in handy at explaining the randomness or the level of pattern-

lessness in strings. The notion of randomness is highly related to patterns in strings and how to

describe these patterns. The first string in our example has a very short description e.g. (25 * 10) or
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1 in position n iff n is odd, whereas the second one is difficult to describe in comparison to the first

one. Kolmogorov complexity has advantages over the probabilistic based model when reasoning

about randomness in programs and strings, which makes it the right approach for determining string

complexity. Thus, given two strings, Kolmogorov complexity determines which string is more

complex. In comparing two strings, x1 and x2, if the Kolmogorov Complexity of x1 is less than

the Kolmogorov complexity of x2, then x2 is more complex than x1, because a larger program is

required to describe x2.

Unlike Shannon entropy (see Section 2.3.1), Kolmogorov complexity depends only on the string,

and not on the probability distribution from which it is sampled, that is Kolmogorov complexity

measures the intrinsic information and randomness of a given string [LV08]. Another important

difference between entropy and the Kolmogorov complexity is that entropy measures the amount

of information in the source regardless of the computational capabilities of the extractor. Despite

these major differences, they are also very similar: they are measured in bits, and have some

similar properties. It can even be shown that for a given distribution, the Kolmogorov complexity is

asymptotically equal to the entropy of that distribution [CT06] (see Section 2.11).

There is a major drawback of Kolmogorov complexity: it is not computable, that is undecidable

[CT06], even for using polynomial-time bounded Kolmogorov complexity, it takes an exponential

time; however, methods have been developed to approximate it. Essentially, the Kolmogorov

complexity of a binary string can be approximated using any (lossless) compression algorithm, and

is then close to, but greater than the length of the ultimate compressed version of that string. This

approximation corresponds to an upper-bound of the Kolmogorov complexity [LV08].

Definition 2.21 (Plain Kolmogorov Complexity [LV08]). Let T be a Turing machine and T (P )

the output of T when it is given a program P . The Kolmogorov complexity of a binary string x with

respect to T , CT , is defined as follows

CT (x) = min{∣P ∣ ∣ T (P ) = x}

CT (x) is the minimal length of a program for T to compute output x. Obviously, the Kolmogorov

complexity depends on the choice of the Turing machine T , and consequently that does not make

the model robust. The presence of a Universal Turing machine (see Section 2.6) can solve this

problem as the Invariance Theorem states; it basically shows the universality of Kolmogorov
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complexity using a Universal Turing machine.

Theorem 2.22 (Invariance Theorem [CT06]). Let U be a Universal Turing machine, for any other

Turing machine T and for all binary strings x, there exist a constant cT depending only on T , such

that:

CU(x) ≤ CT (x) + cT

This theorem helps to remove the dependence on a specific Turing machine and use instead a

universal Turing machine. Therefore, Definition 2.21 can be redefined, according to the Invariance

theorem, so the Turing machine T is replaced by a Universal Turing machine U . The Definition 2.21

can be extended to account for the case where an additional input is already available to the Universal

Turing machine, when describing a string x, this case can be referred to as the conditional plain

Kolmogorov complexity.

Definition 2.23 (Conditional Plain Kolmogorov Complexity [LV08]). Let U be a Universal Turing

machine. For any binary strings x, y, the Kolmogorov complexity of x given y:

CU(x ∣ y) = min{∣P ∣ ∣ U(P, y) = x}

2.8 Prefix Kolmogorov Complexity

Plain Kolmogorov complexity has some drawbacks. The plain complexity does not satisfy an

important property, namely the sub-additive property: for two strings x, y, CU(x, y) is the length of

the shortest program such that U computes both x and y, and in how many bits they differ, because

normally x and y are fed to U in a concatenated form, i.e. CU(x, y) = CU(⟨x, y⟩) = CU(x ∥ y).

In this case, it is desirable to have CU(x, y) ≤ CU(x) +CU(y) +O(1), but there is no information

to guide U in order to locate the beginning and end of x and y in x ∥ y with only O(1). Prefix

Kolmogorov complexity resolves this problem by using a prefix Universal Turing machine. As

shown by [LV08], having prefix code running on a prefix Universal Turing machine we can identify

x and y: CU(x, y) ≤ CU(x) + CU(y) + 2 log(min(CU(x),CU(y))), so the cost for U splitting

x ∥ y into a program for x and one for y is at most 2 log(min(CU(x),C(y)).

Definition 2.24. (Prefix Kolmogorov Complexity) The Prefix Kolmogorov complexity K(x) of a

47



binary string x with respect to a Universal prefix Turing machine U is defined as:

K(x) = min{∣P ∣ ∣ U(P ) = x}.

As we can see, the above definition is very similar to the plain Kolmogorov complexity in

Definition 2.21, with one main difference: the presence of a prefix Universal Turing machine. The

Invariance Theorem also holds for the prefix Kolmogorov complexity.

Similarly to the conditional plain Kolmogorov complexity, the conditional version of prefix

Kolmogorov complexity K(x ∣ y) of x given y is the length of a shortest program P that computes

x when y is given to P as input [GV04]. Formally, it is defined as follows.

Definition 2.25. (Conditional Prefix Kolmogorov complexity) Let U be the prefix Universal Turing

machine, and x, y binary strings. The prefix Kolmogorov complexity of x conditioned to y:

K(x ∣ y) = min{∣P ∣ ∣ U(P, y) = x}

Unconditional Kolmogorov complexity is exactly equal to the conditional Kolmogorov com-

plexity with an empty input such that K(x) =K(x ∣ ε), where U(P, ε) = U(P ). The conditional

Kolmogorov complexity of x with x itself, as an input, is equal to zero i.e. K(x ∣x) = 0 [LV08].

The sub-addivity is ensured in the prefix version of Kolmogorov complexity as we explained

earlier. Formally, the next theorem states this property.

Theorem 2.26 (Sub-additivity [LV08]). Let x, y be binary strings,

K(x, y) ≤K(x) +K(y) +O(1).

In the rest of the thesis, we will use the term Kolmogorov complexity and its notation K to refer

to prefix Kolmogorov complexity that only works for prefix sets.

In the following we will provide some important properties of basic prefix Kolmogorov com-

plexity. Prefix Kolmogorov complexity K(x) is less than the length of a binary string x, and

the conditional complexity K(x ∣ y) is less than the length of the original prefix Kolmogorov

complexity of x. The following theorem states this fact.
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Theorem 2.27 ([LV08]). For all binary strings x and y

K(x) ≤ ∣x∣ + 2 log ∣x∣ +O(1) and K(x ∣ y) ≤K(x) +O(1).

The algorithmic information content ( measured by Kolmogorov complexity) in an object such

as a binary string and its conditional version, cannot be increased by any deterministic algorithmic

method by more than a constant. The following two theorems illustrate this idea.

Theorem 2.28 (Information Non-Increase [She82, Tav11]). For any recursive computable function

f ∶ {0,1}∗ → {0,1}∗ and for any binary string x, the Kolmogorov complexity of f(x) is bounded

by:

K(f(x)) ≤K(x) +O(1)

Theorem 2.29 (Conditional Information Non-Increase [ SUV14]). Given a recursive computable

function f ∶ {0,1}∗×{0,1}∗ → {0,1}∗ and for any binary strings x, y, the Kolmogorov complexity

of f(x, y) is bounded by:

K(f(x, y) ∣ y) ≤K(x ∣ y) +O(1).

The next theorem, known as Muchnik’s theorem shows that there exists a shortest program P that

converts a binary string y to another binary string x such that ∣P ∣ =K(x ∣ y) and P is simple with

respect to x, i.e. the level of dependence on y is small O(logn) for strings of length n [Muc02].

Theorem 2.30 (Muchniks theorem [Muc02]). Let x, y be binary strings of length at mostn. Then

there exists a program p of length K(x ∣ y) such that K(p ∣ x) = O(logn) and K(x ∣ ⟨p, y⟩) =

O(logn).

There is a strong relation between random strings and Kolmogorov complexity. True ran-

dom strings are incompressible; however, how random are strings, we need to answer. We can

use Kolmogorov complexity to define randomness of strings, by introducing the notation of c-

incompressibility.

Definition 2.31 (Incompressiblity [LV08]). A binary string x is incompressible, if K(x) > ∣x∣.

Strings that are incompressible are patternless with lots of irregularities, because a patterned string

requires a shorter description length than patternless strings. Intuitively, patternless sequences are
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random, and random sequences can be used synonymously with incompressible sequence [LV08].

In the next section we quantify and measure the amount of randomness in binary string sets that are

enumerable recursive.

2.8.1 Two Part Description

If we are aware that x belongs to a subset S of binary strings, then it could be easier to describe

such strings. We do that by giving a description of S and then using the index of x in S, where the

elements of S follow some ordering. This is called two-part description, which is formally stated

as follows.

Lemma 2.32 (Two Part Description [LV08]). Let S be an enumerable set of binary programs and

x ∈ S, then:

K(x) ≤K(S) + log #S +O(1)

The first part, K(S), is the description of S; set S can be easily described. If S is a set of n bits

strings then its descriptive complexity, i.e. a minimum program that generate that set, is at most of

O(logn). The second part is the description of x’s position within S.

We can also provide a conditional version of two-part description according to the following

Lemma.

Lemma 2.33 (Conditional Two Part Description [Pin07]). Let S be an enumerable set of binary

programs and x ∈ S, for any binary string y we have:

K(y ∣x) ≤K(S ∣x) + log #S +O(1)

Also, we can measure the level of randomness (irregularities) using randomness deficiency.

Definition 2.34 (Randomness Deficiency [LV08]). The randomness deficiency of x with respect to

a finite set of binary strings S containing x, δ(x∣S), is defined as

δ(x∣S) = log #S −K(x ∣ S).

If δ(x∣S) is large, then there is a description of x with respect to a set S that is considerably

shorter than just giving x’s position or index in S. An element x of S with low randomness
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deficiency is said to be typical; the most efficient way to describe x using S is to find its exact

location in the set.

2.8.2 Algorithmic Mutual Information

Algorithmic mutual information [GV04] measures the information that one object gives about

another, i.e. the information that one sequence gives about another.

Definition 2.35 (Algorithmic Mutual information). Algorithmic mutual information of two binary

strings x and y, IK(x; y), is given by

IK(x; y) =K(y) −K(y ∣x).

Mutual algorithmic information is non-negative (∀x, y.IK(x; y) ≥ 0) and symmetric too [Gác74]

up to a logarithmic additive term, as the following theorem states. For any binary strings x, y, z we

write K(x, y ∣ z) =K(⟨x, y⟩ ∣ z), and K(x ∣ y, z) =K(x ∣ ⟨y, z⟩), where ⟨x, y⟩ means that x and

y are joint input.

Theorem 2.36 (Algorithmic Chain Rule [Gác74]). For all binary strings x, y, z

1. K(x, y) =K(x) +K(y ∣x) +O(logK(x, y))

2. K(x, y ∣ z) =K(x ∣ z) +K(y ∣ x, z) +O(logK(x, y, z))

3. K(x) − K(x ∣ y) = K(y) − K(y ∣x), i.e. IK(x; y) = IK(y;x), up to an additive term

O(logK(x, y)).

Logarithmic factors like the ones needed in the previous theorem are pervasive in the theory

of Kolmogorov complexity. As is done commonly in the literature, we mostly omit them in our

results, making a note in the theorem statements that they are there.

Definition 2.37 (Conditional Mutual Information [LV08]). The algorithmic mutual information of

two binary strings x and y conditioned to a binary string z is defined as:

IK(x; y ∣ z) =K(y ∣ z) +K(x ∣ z) −K(y, x ∣ z)
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2.9 Approximating Kolmogorov Complexity

Kolmogorov complexity is uncomputable due to undecidability of the halting program; however,

it can be approximated based on losseless data compression as it shown in [KY96] Theorem 2

and in [LV08]. Intuitively, the theorem states that K(x) is the lower bound [KY96] of all the

compressions of x; therefore, we say that every compression C(x) of x gives an estimation of

K(x).

Formally a decompression algorithm is considered as an algorithm D running on a Universal

Turing machine U , such that for any binary string x

U(D(C(x))) = x

We say that a compressor is Lossless if there exists a decompresser that reconstructs the source

message from the code message without losing any source-code data.

Many compression techniques can be used to approximate Kolmogorov complexity, such as

lempel Ziv 77 compression algorithm [ZL77], Deflate(gzip) [Sal06], Burrows-Wheeler transform

(implemented in bzip2) [BW94] and PPMD compression (7-Zip) [CIW84]. The most popular

compression technique among them is the Lempel-Ziv algorithm, which is dictionary-based scheme.

Each repeated occurrence of a string is replaced with a pointer to the original occurrence. The

pointer consumes less space than the string itself, provided that the matched string is sufficiently

long enough [JF14]; the literals that are not matched will be produced verbatim.

Definition 2.38 (Compressor [CV05]). A compressor is a lossless encoder mapping C ∶ {0,1}∗ →

{0,1}∗ such that the resulting code is a prefix code.

For convenience of notation we identify a compressor with a code-word length function C ∶

{0,1}∗ → N, where N is the set of non-negative integers, i.e. the compressed version of a file x has

length C(x). The compressors we refer to here are bounded by C(x) ≤ ∣x∣ +O(log ∣x∣), where the

logarithmic term is due to the compressed files being prefix code-words [CV05].

Cilibrasi et al. [CV05] proposed a set of axioms: Idempotency, Monotonicity, Symmetry, Dis-

tributivity, which defines the notion of a normal compressor. These axioms were used to ensure

the desired properties of normalised compression distance (NCD) [CV05], because the outcome

of NCD, i.e. how good is the measured distance result, greatly depends on how normal is the
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compressor. In the following we write xy to express the concatenation x ∥ y between two binary

strings x and y.

Definition 2.39 (Normal Compressor [CV05]). A compressor C is normal if for all binary strings

x, y, z ∈ {0,1}∗ it satisfies the following axioms:

• Idempotency: C(xx) = C(x), and C(λ) = 0, where λ is an empty string,

• Monotonicity: C(xy) ≥ C(x),

• Symmetry: C(xy) = C(yx),

• Distributivity: C(xy) +C(z) ≤ C(xz) +C(yz),

up to an additive term O(logn), where n is the maximum length of x, y and z.

A conditional version of compression was also defined in a similar way to Kolmogorov condi-

tional and joint complexities (chain rule), there exists a binary string y such that

C(x ∣ y) = C(xy) −C(y)

C(xy) can be expressed as the excess number of bits in the compressed versions of xy compared

to the compressed version of y. It was also shown, based on the distributivity property of normal

compressor that conditional compressed informationC(x ∣ y) satisfies the triangle inequality (see

Definition 2.42).

C(x ∣ y) ≤ C(x ∣ z) +C(z ∣ y)

An important property that can be added to the above, is the sub-additivity which was proven

too in [CV05]. It states that the sum of two compressed binary strings is lower bounded by the

compression of their concatenation as the following:

C(xy) ≥ C(x) +C(y)

2.10 Time-Bounded Kolmogorov Complexity

A way to make Kolmogorov complexity computable is the introduction of resource bounds. By

giving the Universal Turing machine a limit on the allowed time or the spaced, we can search for all
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programs within those bounds to describe a string x, and thereof, compute the resource-bounded

Kolmogorov complexity of x.

Definition 2.40 (Time-bounded Kolmogorov complexity [LV08]). Let U t(P, y) denote the output

of U running a program P on binary string input y for at most t(∣P ∣) steps, where t(n) is some

function suitable for representing time constraints.

1. The Time-bounded Kolmogorov complexityKt
(x) of a binary string x with respect toU is

defined as:

Kt
(x) = min{∣P ∣ ∣ U(P ) = x in less than t(∣P ∣) steps}.

2. The Conditional Time-bounded Kolmogorov complexity relative to y is defined as:

Kt
(x ∣ y) = min{∣P ∣ ∣ U(P, y) = x in less than t(∣P ∣) steps}.

Most of the the properties of K(x) of binary string x also hold for Kt
(x). In particular,

K(x ∣ y) ≤K(x) ≤ ∣x∣+2 log ∣x∣+O(1). Basically, Kt
(x) becomes close to K(x) as t(∣x∣) grows,

similarly, the conditional version of Kt
(x ∣ y) can be defined.

2.11 Kolmogorov Complexity and Shannon’s Entropy

There is a direct relation between entropy and Kolomrogov complexity, which was investigated

in [CT06] and [GV04]; these two notions turn out to be asymptotically the same. This is because

the expected value for a random variable in strings of the Kolmogorov complexity is close to the

Shannon entropy [LCL+04].

Theorem 2.41 ([GV04]). Let X be a discrete random variable over a sample space X = {0,1}∗.

For any computable probability distribution f over X , and entropy H(X) :

0 ≤ ∑
x∈X

f(x)K(x) −H(X) ≤ cf

where cf is a constant defined by cf =K(f) +O(1).8

8Note that f is a function instead of finite binary string, i.e. K(f) = mini{K(i) ∣ Turing machine Ti computes f}
[GV04].
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The expectation of K(x) differs from H(X) by a constant depending on f as we see from the

above theorem. However, Kolmogorov complexity, for a sufficiently large sequence, turns out to be

approximately equal to the entropy [LV08], such that H(X) ≈ ∑x∈X f(x)K(x).

2.12 Metrics and Measures

In mathematics, a number of concepts are defined using necessary and adequate sets of axioms.

One of these concepts is the metric, which is called measure of distance. Krantz et al. [KLST71]

show that a metric is a measure according to the representation theory of measurement.

Definition 2.42 (Distance Metric Axioms [KLST71]). A distance is a function d with non-negative

real values, defined on the Cartesian product X ×X of a set X i.e. d ∶X ×X → R+

d is a metric on X if for every x, y, z ∈X:

• d(x, y) = 0 iff x = y (identity axiom);

• d(x, y) + d(y, z) ≥ d(x, z) (The triangle inequality);

• d(x, y) = d(y, x) (the symmetry axiom)

If d is a metric, then (X,d) is called a metric space. A distance measure that satisfies the metric

axioms is by definition a valid measure if it is described by proximity structure [KSLT89].

Definition 2.43 (Proximity Structure Axioms [KSLT89]). A set X with quaternary ordering

relations ≤X ∶ ⟨X ×X,≤X⟩, =X ∶ ⟨X ×X,=X⟩, and >X ∶ ⟨X ×X,>X⟩ is a proximity structure if

and only if the following axioms holds, ∀x, y ∈X:

• ≤X is a weak ordering of X ×X;

• (x,x) >X (x, y) iff x ≠ y (positivity);

• (x,x) =X (y, y) (minimality);

• (x, y) =X (y, x) (symmetry).

If X is a proximity structure and (X,d) is a metric space, then according to the representation

theory of measurement, d is a measure of distance (i.e. homomorphism from ⟨X ×X,≤X⟩ and

⟨R,≤⟩), iff:

∀x, y,w, z ∈X ∶ (x, y) ≤X (w, z)⇐⇒ d(x, y) ≤ d(w, z)
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We use the term metric and measure interchangeably to refer to the same thing, although they

are different from a mathematical point of view. The measure is an outcome of the measurement

process where a number is assigned to characterise a specific attribute (a feature or property of an

entity).9 Formally, it is defined as follows.

Definition 2.44 (Measure [KLST71]). A measure µ is a mapping µ ∶ A→ B which yields for every

empirical object a ∈ A, a formal object (measurement value) µ(a) ∈ B.

9An entity may be an object, such as a person or a software specification, or an event, such as the testing phase of a
software project.
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3 Code Obfuscation

Code obfuscation is a software protection technique, which is used to obscure programs in order to

deter an attacker that is equipped with reverse engineering and program analysis tools. This chapter

will provide an overview of the current obfuscation definitions, threat model, the state-of-the-art

techiques, and the methods to evaluate the security of code obfuscation.

3.1 Introduction

Different program analysis methodologies and techniques have been developed in order to provide

automatic analysis of software behaviour. The main applications of program analysis are opti-

misation, correctness and determining the program properties. For example, optimisation allows

compilers to produce optimised code that reduce redundancy and provides relatively safe usage

of computation. As far as the correctness and type safety are concerned, the exact and absolute

program analysis is impossible to achieve, typically due to undecidability of the Halting problem

[Tur36] and Rice’s theorem [Ric53]. Furthermore, it was shown that reverse engineering binary

code using data disassembly and decompilation is undecidable [LD03]. Therefore, the ultimate

aim of program analysis techniques is to provide an approximation to software behaviour through

sound models, i.e. expecting program analysis to provide a larger set of possibilities than what will

happen during runtime execution of the program [NNH15].

Code obfuscation was advanced as a software protection method to deter malicious attackers who

are armed with program analysis tools and reverse engineering techniques. A determined attacker

can eventually break the protected code and reverse engineer it [CTL97]. This was confirmed

by Barak et al. [BGI+01] result, who showed that it is impossible, in general, to obfuscate.

They construct an idealistic general purpose obfuscator based on a virtual black-box model (the

obfuscated program should act as a black-box), then they showed that it is not possible for such
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an obfuscator to exist. Furthermore, Appel [App02] proved under certain assumptions, which are

related to how obfuscated programs behave, deobfuscation is NP-easy.1

Despite these results, the recent theoretical advances in code obfuscation theory by Garg et al.

[GGH+13] showed the possibility of obfuscating programs using indistinguishability obfuscation,

which is a relaxed version of virtual black-box obfuscation model. They construct Multilinear

Jigsaw Puzzles to obfuscate programs, and proved them secure with respect to their indistinguisha-

bility obfuscation definition. However, these advances in obfuscation theory were only theoretical;

so far, we have not seen any practical implementation of their proposed algorithm to obfuscate

programs [BOKP15]. Nevertheless, the usefulness of code obfuscation rises from its potentials of

delaying the exposure of software intellectual property for as long as possible time. The main aim

of the current code obfuscation techniques is to make the process of program analysis and reverse

engineering uneconomical for an attacker.

In this chapter we show the current threats to software such as program analysis and malicious

reverse engineering, and present the untrusted host as an attack model for software. We introduce

the notion of code obfuscation as the potential defence method against such attack. We also provide

some of the theoretical background in this domain, in particular, the impossibility results of virtual

black-box obfuscation and the latest advances that are based on a relaxed version of virtual black-box

model, which provide positive results on code obfuscation. We provide an overview of obfuscating

techniques based on Collberg et al. [CTL97] taxonomy on code obfuscation algorithms. We discuss

some of deobfuscation methodologies that can be used to foil code obfuscation techniques. Finally,

we present an overview of the current metrics, which are used to measure the quality of code

obfuscation.

Chapter Layout: Section 3.2 shows the current threats to software, and their attack model. In

Section 3.3 we provide the current advances in the theory of code obfuscation. Section 3.4 gives

an overview of code obfuscation transformation methods. Section 3.5 discusses the obfuscation

techniques according to their language paradigm. In Section 3.6 we provide an overview of the latest

advanced techniques for code obfuscation. In Section 3.7 we explore the current deobfuscation

techniques, which can be used to break code obfuscation algorithms. In Section 3.8 we discuss the

different evaluation methods that are used to measure the quality of code obfuscation.

1NP-easy is the set of function problems that are solvable in polynomial time by a deterministic Turing machine with
an oracle for some decision problem in NP [GJ90].
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3.2 Threats to Software

Many different types of threats for software can be found; among these we identify two major

threats to software: malicious reverse engineering and program analysis. Despite using reverse

engineering and program analysis for legitimate reasons, they also present major issues for software

security. Malicious reverse engineering and program analysis are considered the cornerstone for

many different types of attacks on software, including: software piracy, tampering, unauthorised

modifications, discovering vulnerabilities and exploit them.

3.2.1 Program Analysis

Program analysis tries to predict the dynamic behaviour of programs without running it. Precise

analysis of program behaviour is impossible to achieve as the program input is unknown. If we do

not know the value of the input, then it is very hard to identify which execution path it might take.

Therefore, the answer can be only approximate. Approximation is an attempt to find an answer as

close as possible to the precise behaviour of a program. Precision of an analysis is improved by

reducing the amount of information describing spurious behaviour of the program. Approximation

can be achieved through semantics-based static analysis which investigates the dynamic properties

of program behaviour. Program analysis can be performed using two different approaches: static

program analysis and dynamic program analysis.

Static program analysis. This type of analysis is conducted to examine and study the program

properties without executing the code. Typical static program analysis techniques are: data flow,

control flow, alias analysis, type analysis and abstract interpretations [NNH15]; in addition to

program slicing, disassemblers, and decompilers. Static analysis is conservative, that means the

properties that are found by static deobfuscating techniques are weaker than the ones that may

actually be true (over-approximation). This guarantees soundness, although the induced properties

may be so weak as to be useless.

Dynamic program analysis. Performed by testing the program on sample input data, since it is

infeasible to test all possible program execution paths due to combinatorial explosion. Dynamic

analysis precisely analyses only a subset of all possible execution paths or parts of a program, i.e.
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this corresponds to an under-approximation [Pre07], examples of dynamic program analysis are

dynamic testing such as fuzzing [SGA07], profiling, debugging and program tracing.

The Impossibility of Program Analysis

Some characteristics of program execution behaviour are difficult to model correctly [Ost77]. It is

not possible to construct a procedure or analyser that will always, accurately, determine whether a

specific path will be executed. The exact analysis is impossible due to the lack of knowledge of

input data values. So the analysis can, at best, hope to yield information about a set of possible

computations.

The difficulty of reasoning about program properties lies in the condition, that there are many

paths in a program. However, not all paths correspond to an execution [Lan92]. In essence, the

exact prediction of program behaviour requires an algorithm that terminates, which is the equivalent

to the halting problem. For example, consider the following code2, which is prone to ‘divide by

zero’ errors:

read(x);

if (x > 0) then Y := 1;

else (Y := 0; S); // S is some other statement

z := 2 / Y; // error??

The issue in the above code is what value Y may have and whether this code could trigger the

vulnerability, i.e. Y=0. Apparently Y may take 0 or 1, If S does not terminate, Y cannot be 0 and

the zero bug situation will not be detected. However, since it is undecidable whether S terminates

or not, we do not expect the analysis to detect this situation [NNH15].

3.2.2 Reverse Engineering

Reverse engineering techniques typically use program analysis tools, in order to perform the reverse

process of reconstructing the program source code. It can be perceived as a methodology, which

combines both static and dynamic program analysis tools.

The reverse engineering process consists of several stages that aim to produce the source code

from the binary code. It starts with disassembly phase, where the machine code is translated to
2The pseudo code is equivalent, with some modification, to the code taken from Principles of Program Analysis by

Flemming Nielson, Hanne Riis Nielson and Chris Hankin.
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assembly code, then it ends up with the decompilation phase,3 which rebuilds the higher level

representations of the program from the assembly code. Typically, during this process, static

program analysis techniques are employed first, followed as required by dynamic program analysis

tools.

3.2.3 Threat Model for Software: Untrusted Host

Program analysis and reverse engineering are the typical attacks on software that are running on an

untrusted host. This model of attack is widely known as white-box model, where the adversary or

attacker has the host or the system under her/his full control. Aucsmith [Auc96] characterises three

different levels for this model of attack :

1. The attacker uses standard debuggers and system diagnostic tools, no special analysis tools

are required.

2. Specialised software analysis tools involved, such as specialised debuggers and sophisticated

reverse engineering tools.

3. Specialised hardware analysis tools are employed, these tools include, for example, CPU

emulators, and bus logic analysers.

White-box attacks are a very powerful type of attack especially for open computing platforms

such as PCs. The attackers have unlimited access to program binaries; however, it is assumed that

the attackers have very limited knowledge about the software source-code. Having the attacker

operating in white-box model, does not rule out the possibility of subjecting the targeted software to

black-box attack. In black-box model attacks, the software is considered as an oracle, because the

attacker can only analysing the external behaviour of the software, where the internal knowledge of

software is not required, or the attacker does not examine it.

Collberg and Nagra [CN09] propose an attack methodology which resemble attackers’ behaviour

or strategy during the attack process. The attacker goes through five phases : black-box phase,

dynamic analysis phase, static analysis phase, editing phase, and scripting phase.

The attacker starts with black-box testing in order to reveal the external behaviour of the

software; however this stage can be skipped if the attacker has a comprehensive understanding of

3The decompilation phase is discussed in more details in Section 7.3.7.
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the software’s functionality. Then the attacker moves to the dynamic analysis phase in order to gain

more understanding of the internal working of the program. At this stage, the attacker has a high

level understanding of the software and how it works. In the static analysis phase, the executable

code is checked and investigated directly.

This covers the reverse engineering process that we discussed earlier. Now, the attacker is

assumed to have very detailed understanding and a complete picture of the whole software design

and its implementation. For example, the proprietary algorithms can be exposed, cryptography

keys are revealed and vulnerabilities are discovered at this stage; therefore, the confidentiality of

software is compromised. Reaching the editing phase, the adversary (attacker) uses the acquired

knowledge of the software’s inner work to modify its executable, or to integrate it with her/his own

software for interoperability purposes.

So far the four stages are conducted manually, in practice these phases are not followed in order,

they are interleaved with each other using a trial and error process, pattern matching, running and

testing the code multiple times. Finally, when the attacker has fulfill her/his own goals and has

enough confidence in the soundness of her/his work, a scripting code is written in order to automate

this process.

3.3 Obfuscation Theory

In the previous sections we present the common threats and attack model for software, in the rest of

the thesis we will focus on code obfuscation as a defence strategy to hamper the threats to software,

in general, and malicious software engineering, in particular.

An obfuscator is a program or algorithm that transforms a program to another program in such a

way that the transformed (obfuscated) code is functionally equivalent to the original one but more

difficult to understand. The first attempt to define the notion of obfuscation was introduced by

Collberg et al [CTL97], they define obfuscation in terms of semantics-preserving transformation

functions.

Definition 3.1 (Collberg et al definition [CTL97]). Let P
τ
→ P ′ be a transformation of a source

program P into a target program P ′. The transformation P
τ
→ P ′ is an obfuscating transformation,

if P and P ′ have the same observable behaviour. More precisely, in order for P
τ
→ P ′ to be an

obfuscating transformation the following conditions must hold:
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• If P fails to terminate or terminates with an error condition, then P ′ may or may not

terminate.

• Otherwise, P ′ must terminate and produce the same output as P .

3.3.1 The Impossibility of Obfuscation

Obfuscation aims to make the program or circuit unintelligible, while preserving its functionality.

Ideally, an obfuscated program should be a virtual black-box (VBB), a form of strongest notion for

code obfuscation security. In that sense, whatever an adversary can compute from an obfuscated

program, it could also be computed from the input-output (oracle access) behaviour of the program

[Had00], i.e. it should not leak information about the program except its input output behaviour.

Barak et al provided a formal definition of obfuscation in an attempt to achieve a well-defined

security [BGI+01]. However they found a counterexample which showed this definition cannot

always be met. They proved the existence of a set of programs or functions that are impossible to

obfuscate according to that definition.

Preliminaries: PPT is a shorthand for probabilistic polynomial time Turing machine. LetAM(x)

be the output of A when executed on input string x given oracle access to M where A and M are

algorithms. Consider that A and B are probabilistic algorithms.4 Given two inputs X and Y , we

denote by Pr[A(X )] ≃ Pr[B(Y)], that is, the probability distributions of outputs of A and B on

their inputs X and Y are the same with negligible difference. ∣A∣ is denoting the size of A, where

S
P
(1∣A∣), S is a (simulator) algorithm with input of length ∣A∣ and having an oracle access to a

program P 5. Let O be a probabilistic algorithm that takes an input x, and an additional input of

random bits r, independent of x. Then the output of O depends on input x and random bits r.

Definition 3.2 (Vitual Black-box Obfuscator [BGI+01]). Let O be an obfuscator and P a program,

O(P ) is an obfuscated program that must satisfy the following properties :

• Functionality: for any program P , O(P ) and P compute the same function as O(P ).

• Polynomial slowdown: for any Program P , the size and running time of O(P ) are at most

polynomially larger than the size and running time of P .
4Probabilistic algorithms, contrast to deterministic algorithms, takes a source of random numbers which helps to

produce random behaviour (random choices) for the algorithm, even for a fixed input.
5The oracle access toP , means we only have input-output access toP , rather than the P ’s internal or its source-code.
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• Virtual black-box: For any adversary A ∈ PPT (probabilistic polynomial time), there is a

simulator S ∈ PPT, such that:

Pr[A(O(P ))] ≃ Pr[SP (1)∣P ∣]

The last property, virtual black-box, simply states that anything which can be efficiently computed

from O(P ) can also be computed given an oracle access to P .

Barak et al. proved obfuscation is impossible, in general, according to virtual black-box definition.

They showed the existence of a set of functionsH that are inherently unobfuscatable. Let f ∈H be

one of these functions, randomly chosen inH, and has the property π on f such that: π ∶ f → {0,1}.

When given an oracle access to f , no algorithm exists that can efficiently compute π(f), it just gives

pseudo-random result. However given any algorithm A that computes f , π(f) can be efficiently

computed. This shows the virtual black-box property of perfect obfuscation is inherently flawed.

This is a generalisation of Barak et al’s result [BGI+01].

The significance of the Halting problem, in relation to program analysis and obfuscation, is

the impossibility of providing an exact analysis of whatever property can hold for a program.

However, this is not always the case in code obfuscation, as a program property can be found if the

deobfuscator has access to the obfuscating code according to Andrew Appel’s argument in [App02],

which makes deobfuscation an NP easy. This is confirmed too in Barak’s et al’s results.

3.3.2 Indistinguishablity Obfuscation

As a consequence of the negative results of general-purpose code obfuscator, a more relaxed

notion of obfuscation was proposed; Barak et al suggested another notion of program obfuscation

called indistinguishability obfuscation: an indistinguishability obfuscatoriO for a class of circuits

c guarantees that, given two equivalent circuits c1 and c2 of the same size, that compute the

same functionality, it is hard for a distinguisher D to differentiate between the distributions of

obfuscations iO(c1) and iO(c2), i.e. they should be computationally indistinguishable to D.

Definition 3.3. (Indistinguishability Obfuscator). A uniform PPT machine iO is called an indistin-

guishability obfuscator for a circuit class {C} if the following conditions are satisfied:
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• (Correctness). For all c ∈ C, for all inputs x, we have that

Pr[c(x) = iO(c(x))] = 1

• (Indistinguishability). For any PPT D, there is a negligible function α such that, for any two

circuits c1 and c2 that compute the same function and are of the same size k, it holds that:

Pr[D(iO(c1)) = 1] −Pr[D(iO(c2)) = 1] ≤ α(k)

The significance of using the indistinguishablity obfuscators, unlike the VBB (virtual black-box)

obfuscator, is its ability to avoid the impossibility results. Recently, Garg et al. [GGH+13] proved

the existence of general purpose obfuscation based on a candidate construction for indistinguisha-

bility obfuscation for all circuits. They proposed Multilinear Jigsaw Puzzles which are a simplified

variant of multilinear maps. Garg et al’s construction, and variants thereof, were shown to satisfy the

VBB guarantee in ideal algebraic oracle models [BGK+14]. However, none of the aforementioned

results proved possible in achieving VBB obfuscation in the plain model [BCC+14]. Moreover in

[AS15], the authors present a framework for proving meaningful negative results on the power of

indistinguishability obfuscation.

3.4 Code Obfuscation Transformation

This section gives a brief overview of some obfuscation transformation techniques, based, mostly

on Collberg et al. [CTL97]. We will also consider other techniques that have been developed

since then. We will start by discussing the main categories of obfuscation transformation: Lexical

transformation, Control flow transformation and Data transformation.

3.4.1 Lexical Transformation

Lexical obfuscations are aimed at making the code unreadable. They are concerned with changing

the layout of the program rather than its semantics. Lexical transformation is a one-way transforma-

tion, where the original formatting cannot be recovered. It alters the lexical structure of a program

source code. Lexical transformations can be conducted by different ways; the most well known

methods are: Remove Comments, Source Code Formatting and Scramble Identifiers.
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Remove Comments. It is considered the simplest form of obfuscation. Comments are, normally,

added by software developers as part of software’s documentation. Removing a program’s com-

ments apparently makes the program less readable, although comments and debugging information

are often removed during the compiling process.

Source-code Formatting. Changing the programs formatting by removing all the whitespace

and indentations [Dra10] makes the program’s source-code less informative to a reverse engineer.

Examples of formatting obfuscation are found in the Obfuscation C contest [Dra10].

Scramble Identifiers. Identifiers like variables (including classes, methods, fields etc.) are

changed in a confusing manner, for example ‘Sum’ variable is renamed as ‘average’. Also,

meaningful names such as ‘Sum’ or ‘Output’ are transformed into names such as ‘d34’ or ‘34g’.

3.4.2 Control Flow Transformation

This approach alters the flow of control within the program’s code. Collberg et al [CTL97]

provide an obfuscation catalogue for control flow transformation based on its potential effect. They

categorise it into three main groups:

Aggregation. It breaks up computation that logically belongs together or merges computation

that does not. Examples of aggregation transformation are inlining (replace method call with the

body of the method), outlining (replace sequence of statements with a method call), interleaving

(merge separate methods into one), cloning (create many copies of the same method) [CTL97] and

loop transformation [Wol95].

Figure 3.1: Inlining and outlining transformation [CTL97] .
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Figure 3.2: Code obfuscation by splitting a function into two functions [CN09].

Ordering. It can randomise the order in which the computations are carried out. For example,

change the locality of terms with expressions, statements within basic blocks, methods within

classes and classes within files. In some cases [CTL97] it is possible to reorder loops, for example by

running the loops backward, loop reversal [Wol95] or control flow flattening. Control flow flattening

removes the control flow structure that functions have, the nesting of loop and conditional statements,

by flattening the corresponding control flow graph. Fig. 3.3 shows a modular exponentiation

function commonly found in cryptographic algorithms, such as RSA. Each basic block is put as a

case inside a switch statement and the switch is wrapped inside an infinite loop.

Figure 3.3: An example of code obfuscation using control flow flattening [CN09].
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Computation. It makes algorithmic changes to the source code or inserts redundant, dead code or

redundant operands (using algebraic laws in arithmetic expressions [CTL97]). The parallelisation

of code is another important example of computational obfuscation: it obscures the actual flow of

control by creating dummy processes that do nothing. It also splits a sequential section of code into

multiple sections running in parallel. The significance of this obfuscating method is that the static

analysis of concurrent processes is very difficult. The possible execution paths through the program

grow exponentially with the number of executing processes or threads.

This form of obfuscation can be further sub-divided into two categories: dynamic dispatcher

model [WDHK01] and opaque predicate [MTD06].

Dynamic Dispatcher Model. Wang et al [WDHK01] defined the Dynamic Dispatcher model

based on the NP-Complete argument of determining the exact indirect addresses of dispatcher

through aliased pointers. Chow et al [CGJZ01] on the other hand transform a program into a

flat model; they proved their model to be PSPACE-Complete 6 to determine the reachability of a

flattened program dispatcher. Control flow flattening makes the basic blocks look like having the

same set of predecessors and successors [MTD06]. The actual control flow during execution is

determined through the dispatcher. Therefore the dispatcher module is a crucial part in the flattened

(obfuscated) program.

Figure 3.4: Examples of opaque predicate and fake paths [CN09].

Opaque Predicate. Opaque predicate is a conditional expression whose value is known to the

obfuscator but is extremely difficult for an adversary to deduce statically. A predicateφ is defined

to be opaque at a certain point p in a program, if its result is known at obfuscation time and

only determined during runtime execution. The predicate is denoted by φTp (φ
F
p ) when it always

evaluates to true (false) at program’s point p.

6PSPACE is the set of all decision problems which can be solved by a Turing machine using a polynomial amount of
space.
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Opaque predicates can be used to create bogus code in programs, and it is used heavily in control

flow obfuscations. There are several ways to create opaque predicates, such as Algebraic predicates,

which consist of invariants that are based on number theory, for example, the opaque predicate of

the mathematical expression: ∀x ∈ Z ∶ 2 ∣ (x2 + x) is always true, as 2 divides (x2 + x). More

complex examples are found in Fig. 3.5. Opaque predicates can also leverage the intractability

property of pointer aliasing to construct aliased opaque predicates as in [CTL97]. The basic idea is

to construct a dynamic data structure and maintain a set of pointers on this structure such as array.

Opaque predicates can then be constructed using these pointers.

∀x, y ∈ Z : 7y2 − 1 ≠ x2

∀x ∈ Z : 3 ∣ (x3 − x)
∀x ∈ N : 14 ∣ (3 ⋅ 74x+2 + 5 ⋅ 42x−1 − 5)
∀x ∈ Z : (2 ∣ x) ∨ (8∣(x2 − 1))

∀x ∈ N :2 ∣ ⌊x
2

2
⌋

Figure 3.5: Examples of number-theoretical true opaque predicates [Arb02]

3.4.3 Data Transformation

Data obfuscation targets the data structure in the program intending to obscure their usage and

confuse their operations [ZHZ10]. Collberg et al [CTL97] classify the data transformation into

storage and encoding, aggregation and data ordering. Drape [Dra10] provided a classification based

on Collberg et al.’s taxonomy; in addition, he introduced the abstract data-type for obfuscation.

Variable Encoding. The basic idea behind variable encoding is to replace the variable by an

expression, such that variable i is changed to i = d × i + e where d and e are constants. One of

the main requirements of variable encoding is to be invertible, in the sense that the correct value

of a variable can be obtained when it is required, especially once the variable output is needed

for another variable. In short, this type of obfuscation depends on arithmetic computation that is

equivalent to actual variable value. It is important to check the new value does not cause overflow

e.g. integer overflow [Dra10]. The significance of this type of transformation is its effectiveness

against program slicing [DMT07].

Merging and Splitting. In addition to obfuscating individual variables, two or more scalar

variables can be merged into one variable, provided that the range of mixed variables fits within the
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precision of the new obfuscated variable. For example, two 32-bit variables are merged into one

64-bit variable. Consider X and Y two 32-bit variables, merged into a 64-bit variable Z, then we

can define Z as follows: Z = N ⋅ Y +X where N is a constant such that 0 ≤ x < N .

Splitting, on the other hand, can break up one variable in two or more variables, provided they

are of fixed range such as boolean variables. Drape et al. [Dra10] demonstrates how an integer

variable x can be split into two variables a and b such that: a = x ÷ 10 and b = x mod 10.

Array Transformations. Arrays can be obfuscated by restructuring transformations such as

changing the array indices. It is possible to split an array into several sub-arrays, merging two or

more arrays into one, fold (increase the number of dimensions) or flattening an array (decrease the

number of dimensions).

Abstract Data-types. The idea of obfuscating abstract data-types was introduced in Drape’s PhD

thesis [Ste04]. The abstract data-type consists of a unit containing declaration of the data type and

the procedures that implement the data-type. This is in some sense similar to an object oriented

view of classes, method and constructor. According to Drape’s thesis the abstract data-types

were specified using a functional language and their obfuscation was described according to data

refinement [DREB98] principles.

A data obfuscation O can be specified by defining two functions: cf, the conversion function and

af, the abstraction function. The conversion function performs the obfuscation and the abstraction

function carries out the deobfuscation, which satisfycf ∶ af ≡ skip where ≡ denotes the equivalence

between the outcome of cf :af to Skip. For example, a block of statements B is obfuscated to obtain

O(B) using cf and af then B = cf ∶ O(B) ∶ af.

3.5 Language Paradigm Obfuscation

Object Oriented Transformations. Many objected oriented languages rely on calls to standard

libraries e.g. Java, however there is no way of obfuscating them [CTL97]. These library calls have

to be implemented in the program itself to be easily obfuscated. Collberg et al [ CTL97] provided

two basic techniques that obfuscate object oriented languages through modifying inheritance

relation among classes: splitting (refactoring) or inserting bogus classes. Refactoring is based on

finding common elements or components of classes and moving them to new classes. Another
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way of performing obfuscation is to use false refactoring on classes with no common behaviour or

elements.

Intermediate Language Transformation. Obfuscation can be done on Intermediate Languages

(IL) like Java byte-code and .Net CIL (Common Intermediate Language). The advantage of

obfuscation on IL level is the ability to perform transformations that are not allowed on source-code

level. For example jumps in loops are not possible in Java or C#, however it is allowed on IL level.

Adding jumps in IL is referred to as irreducible jumps since it cannot decompile to source-code.

Furthermore, many instructions in IL cannot directly decompile to a high-level language [ Dra10].

It is very complicated to obfuscate IL code manually, especially obfuscated loops. Creating loop

transformations at IL level is difficult, as we have to identify them in the code prior to obfuscation

transformation. It is necessary to identify the loop header, the body and the exits of the loop;

additionally it can be more complicated in the presence of nesting. Examples of obfuscation tools

that are used to automated IL are DashO for Java and DotFuscator for .Net.

Exceptions. Exceptions change the control flow of programs. The exception handler can be used

to obfuscate program; we can use opaque predicates with try-catch blocks. For example, if we have

code consisting of two statements: S1; S2; then we can use the false opaque predicate φF to

transform it into:

Try {if (φF) {throw error} else S1;}

Catch (error) {/*dead code*/} finally {S2;}

It is important to make sure that other uncaught exceptions are handled properly by different catch

blocks, otherwise it causes incorrect behaviours or it may crash ungracefully [Dra10].

Pointers. Inserting pointers to code makes the deobfuscation process much harder, since con-

ducting accurate alias analysis is considered NP-Hard [Hor97][BMRP09]. Wang et al [WDHK01]

support their control-flow flattening techniques by using pointers. Also, pointers can be used to

construct opaque predicates using complex dynamic pointer structures, such as double linked lists

or binary trees.
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3.6 Advanced Code Obfuscation Methods

In this section we present the most recent advances in code obfuscation techniques.

3.6.1 Preventive Obfuscation

Preventive obfuscation defends the obfuscated program against certain attack models [Ste04]

especially against automatic reverse engineering techniques. The main goal of this approach

is not to obscure readability and understanding of the program, instead to make the automatic

deobfuscation difficult to perform. For example, Drape et al. [Ste04] create artificial dependences

between program instructions in control-flow obfuscations to defend against attacks from program

slicers.7 Collberg et al [CTL97] described an interesting approach to preventive obfuscation by

leveraging known problems and vulnerabilities in the current deobfuscators and decompilers, they

called it Target Preventive Transformation.

3.6.2 Obfuscation Using Abstract Interpretation

Cousot and Cousot [CC77] formalise the relation between syntactic and semantic transformations

within abstract interpretation theory. Abstract interpretation is a general theory for approximating

the semantics of discrete dynamic systems [Cou96], where the program behaviour is seen as an

abstract, approximation, of a concrete program semantics. According to abstract interpretation

theory, given a concrete transformation it is always possible to find its abstract counterpart and vice

versa. Concrete and abstract domains i.e. the poset of mathematical objects which the program runs,

are related through a Galois connection (C,α, γ,D) where C is the concrete set of the programs,

α is the abstraction function, γ is the concretisation function and D is the abstract set. Galois

connection represents a particular correspondence (typically) between two partially ordered sets

(posets).

Cousot and Cousot [CC02] introduced a semantics-based approach to formalise program transfor-

mations based on abstract interpretation. They establish a relation between syntactic and semantic

transformation according to the abstract interpretation theory by mapping syntax to semantics

abstractions.

7A program slicer is a program analysis technique, which produces a set of program’s statements called slices. These
parts (slices) of the program potentially affect the values computed at some point of interest.
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Dalla Preda et al. [PG09] used Cousot and Cousot’s framework [CC02] to provide a formalisation

of program transformation to reason about obfuscation, by fixing a formal relation between syntactic

and semantic obfuscation transformation. They investigated the potential of deriving semantics-

based metrics for potency of code obfuscation. Shifting from the classic definition of code

obfuscation, which is just about preserving the input-output of denotational semantics of program,

they rely on preserving the code semantics in the hierarchy of abstract semantics [Cou97]. Potency

becomes associated with the rate of abstraction of concrete preserved semantics. This means the

transformed code is mapped to a lattice of abstract interpretation to measure the code potency.

3.6.3 Obfuscation Using Self-Modified Code

Self-modifying code is used to add additional layers of complexity to code obfuscation. However,

it does not guarantee a provable level of obfuscation [MKP11] due to the shortage of relevant

theoretical studies. The significance of self-modifying code for obfuscation is to reduce distinction

between data and code. Static code does follow the convention of one-to-one mapping between

instructions and memory addresses where self-modify code changes and mutates repeatedly during

runtime execution.

Self-modifying code is highly effective against current static-analysis techniques; according to

Bonfante et al. [BMRP09], this fact arises from the lack of thorough research on the theoretical

aspects of self-modifying code, especially from a semantic point of view. That is why malware

authors rely heavily on self-modifying code to avoid detection.

Self-modifying code has a long history of usage in software obfuscation. Early DOS programs

used it to conceal their functionalities [GCK05]. Also, it was exploited to prevent programs from

executing on competitor’s operating system [BMRP09] by obscuring the code format and properly

extracting and executing it at the runtime.

Self-modified code methods for obfuscation are usually guided by specific rules encoded by

templates, either static or dynamic templates such as Madou’s method [MAM+05]. Other techniques

overwrite program code by dummy instructions using hiding and restoration such as Kanzaki’s

method [KMNM03].
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3.6.4 Virtualisation-Obfuscated Software

Virtualisation-obfuscation implements a virtual environment and interpreter within which byte-code

programs are executed. In virtualisation-obfuscation the original program’s logic is inserted within

the byte-code for a (custom) virtual machine (VM) interpreter. The language accepted by the

interpreter is chosen at random at the time of protection. The interpreter itself is generated in

accordance with the choice of language, and is also typically heavily obfuscated.

It is known that this kind of code obfuscation is very hard to be deobfuscated, at least from a

practical point of view, due to the difficulty in recovering the logic of the original program. The

analysis of the executed code can only reveal the logic of the byte-code virtual machine instead of

the obfuscated program itself.

Virtualisation-obfuscators such as VMProtect8 and Code Virtualizer9 translate portions of the

program’s original x86 machine code into a custom language, which is then interpreted at run-time.

The language interpreted by a virtualisation obfuscator tends to be similar to RISC (Reduced

Instruction Set Computing). CISC (Complex Instruction Set Computer) x86 instruction can be

translated to multiple RISC-like virtual instructions. For example, for complex instructions such as

mov eax, [ebx+ecx*4+123456h]

the address calculation will be translated into several virtual instructions: one to get ecx, one to

multiply ecx by 4, one to fetch ebx, one to add these quantities together, one to add 123456h to the

result, and one to dereference the formed address [Rol09].

It is worth pointing out that this notion of obfuscation through virtualization is very similar

to the idea of control flow flattening by Wang et al. [WDHK01]. In control flow flattening, the

control flow of the program is altered in a two-step process. First, high-level control structures

are transformed into if-else-goto constructs. Next, the goto statements are replaced with

switch statements, where the switch variable is dynamically set within the if-else structure.

The effect on the code is that any basic block in the control flow graph may be a predecessor or

successor to any other basic block in the graph. The resulting analysis of the control flow then is

transformed into a data flow problem. That is, identifying the value of the switch variable at each

entry into the switch statement.

8http://vmpsoft.com/
9http://oreans.com/codevirtualizer.php
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Code Virtualizer, for example, can generate multiple types of virtual machines with a different

instruction set for each one. This means that a specific block of Intel x86 opcode can be transformed

into different instruction sets for each machine, preventing an attacker from recognising any

generated virtual opcode after converting from x86 instructions.

When an adversary attacks a block of obfuscated code by Virtualization obfuscation using

decompilation, s/he cannot get the original x86 instructions. Instead, s/he will see a totally new

instruction set which is not recognised by her/him or any other special decompiler. This will force

the attacker to conduct exhaustive search trying to identifying how each opcode is executed and

how each virtual machine works for each protected application. Which means that the attacker

needs to deobfuscate the virtual machine, and then tries to figure out the obfuscated code. This

approach is called outside-inside, which is extremely difficult, especially when the structure of

interpreter is unknown.

3.7 Code Deobfuscation

Code obfuscation cannot provide a complete protection against malicious host attacks: a competent

programmer, who is willing to invest enough time and effort, will always be able to reverse-engineer

any obfuscated program. The process of attacking and removing the obfuscation transformations is

called deobfuscation, it is considered as the reverse of code obfuscation transformation. Deobfusca-

tion may include the use of any reverse engineering or program analysis tools, that we discussed

in Section 3.2; in addition to any specialised tools to eliminate the obfuscated code and produce

the original code, or an equivalent representation of this program. It has been shown in [UDM05],

[CLD11a], and [YJWD15], that the combination of static and dynamic analyses, using a set of

heuristics can disclose some of the significant obfuscating techniques.

There are limited studies which investigate rigorously and formally code deobfuscation, in

a similar way to code obfuscation problem. One study by Della Preda et al. [Pre07] uses a

static program analysis method based on abstract interpretation theory as a deobfuscator to break

obfuscated code using opaque predicates. Kinder [Kin12] also applied abstract interpretation to

deobfuscate visualization-obfuscated binaries.

Intuitively, an adversary with deobfuscation capabilities can be considered as a transformation of
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an obscure program into a more intelligible program (easier to understand and work with), which is

functionally equivalent to the original program [BF07]. The importance of defining and specifying

a model for deobfuscation attacks, arises from the need to measure the quality of code obfuscation.

To check whether or not a certain obfuscation technique is good at protected a program, it has to be

certified against a certain attack model.

3.8 Obfuscation Evaluation

Evaluating the quality of code obfuscation necessitates the presence of robust metrics, in order

to measure the complexity of the code. There were several attempts to provide concrete metrics

for evaluating obfuscation [PAK98][AMDS+07]. Collberg et al. metrics [CTL97] are the most

comprehensive in terms of comparing and contrast obfuscation transformation techniques. Collberg

et al. used the software complexity metrics to evaluate obfuscation with respect to:

• Cyclomatic Complexity [McC76]. The complexity of a function increases with the number

of predicates in the function.

• Nesting Complexity [HM81]. The complexity of a function increases with the nesting level

of conditionals in the function.

• Data-Structure Complexity [MK93]. The complexity increases with the complexity of the

static data structures that are declared in a program. For example, the complexity of an array

increases with the number of dimensions and with the complexity of the element type.

These software complexity metrics allow us to formalise the concept of potency as a measure of

transformation usefulness.

• Potency. The potency of transformation measures how more difficult the obfuscated code is

to understand compared to the original code. Collberg et al [CTL97]l formalise it as follows:

PtCo(P ) =
Co(O(P ))

Co(P )
− 1

Where O(P ) is the obfuscated version of program P using O, Co(P ) is the complexity of

P , using a complexity metric Co. PtCo(P ), the potency of O(P ) with respect to P , using
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a complexity measure Co, is a measure of the extent that O changes the complexity of P .

PtCo(P ) is a potent obfuscating transformation if PtCo(P ) > 0.

• Resilience. measures how well a transformation survives deobfuscation attack. Resilience is

a qualitative measure reports on a scale of trivial, weak, strong, full and one-way, and takes

into account the amount of time required to construct a deobfuscator, and the execution time

and space actually required by the deobfuscator (polynomial time, exponential time).

• Execution Cost. measures the extra execution time and space for an obfuscated program

O(P ) compared with the original program P .

• Quality: combines potency, resilience and execution cost to give an overall measure.

• Stealth. an obfuscation is stealthy if it is not obvious in the obfuscated program, i.e. it

resembles the original code as much as possible. Stealth is context-sensitive, what is stealthy

in one program may not be in another one.

The first four properties are measured informally using qualitative scale: (for example, resilience

measured on the scale of trivial, weak, strong, full, one-way). Stealth is difficult to be measured

since it is context-sensitive, it depends on the whole program and also on the experience of the

programmer [Dra10].

Anckaert et al [AMDS+07] proposed a quantitative framework to compare and evaluate code

obfuscation techniques based on measuring four program’s properties: code, control flow, data and

data flow. This framework relied on the classical complexity measures, similarly to Collberg et al.’s

work [CTL97], to measure their proposed properties. Every element of these properties is measured

by using a specific classical complexity measure. Code property can be measured (depending

whether its source or binary code ) using the number of instructions, the number of operands, or

the registers’ values. Control flow, which resembles the possible execution sequences of program

instructions, can be measured using Cyclomatic complexity or Nesting complexity. In data flow,

which reflects the possible set of assigned numerical values at various points of program instructions,

can be estimated, for example, using fan-in/fan-out complexity metric [HK81]. Fan-in/fan-out

measures the information flow between program’s components. The fan-in of a procedure is the

number of modules or procedures that call this procedure; in addition to any data structures that are

used by this procedure. The fan-out of a procedure are the number of modules and procedures that
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are called by this procedure, and the data structures that are updated by the same procedure. Data

that are related to programs can be measured using data-structure Complexity.

Linn et al proposed confusion factor [LD03] to evaluate the efficiency of code obfuscation with

respect to disassemblers, i.e. measure the extent of disassembly’s errors. The confusion factor

measures the parts of the obfuscated program (instructions, basic blocks, or functions), which are

mistakenly identified by disassembler as legitimate parts of the original unobfuscated code. It

counts the number of instructions (also basic blocks, or functions) that are incorrectly disassembled,

by finding their diff (difference). Formally, letA be the set of actual instructions addresses andA′

is the set of disassembled instruction addresses. The confusion factor is computed as follows:

CF =
∣A −A′∣

A

∣A −A′∣ denotes the count of incorrectly disassembled instructions. The confusion factor for

functions and basic blocks are calculated similarly to the instructions addresses: a basic block or

function is considered as being inaccurately disassembled if any of their instructions are incorrectly

disassembled.

Tsai et al. [HW09] proposed a framework for quantitative analysis of control flow graph (CFG)

obfuscating transformations. Their framework was based on a distance metric between the original

and obfuscated program and code potency, and is restricted to control flow graph (CFG) obfuscation.

The distance metric that they proposed is based on computing the common sub-graphs (CS) of

the control flow graphs of two programs. Then, the number of edges in each common sub-graphs

is counted to reflect the possible execution paths. Formally, given two CFGs GP and GO(P ) of

programs P and its obfuscated O(P ) respectively, the graph distance is computed as follows:

d(GP ,GO(P )) = 1 −∑
i

2∣edge(CSi(GP ,GO(P )))∣

∣edge(GP )∣ + ∣edge(GO(P ))∣

Where CSi denotes the ith common sub-graph of GP and GO(P ), and edge(G) is the set of

edges in CFG G.
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3.9 Summary

Code obfuscation is one of the promising defence techniques for untrusted host based attacks.

In this chapter we provided an overview of the theoretical backgrounds of code obfuscation, the

impossibility results of virtual black-box obfuscation, and the positive results on code obfuscation

using indistinguishablity obfuscator. We provide an overview of the current state-of-the-art for

obfuscation techniques, deobfuscation techniques, and the current methods to measure the code

obfuscation security.
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4 Algorithmic Information Theory for

Obfuscation Security

In this chapter we undertake a theoretical investigation of code obfuscation security and its threat

model based on Kolmogorov complexity and algorithmic mutual information. We introduce a

new definition that requires the algorithmic mutual information between a code and its obfuscated

version to be minimum, allowing for a controlled amount of information to be leaked to an adversary.

We argue that our definition avoids the impossibility results of Barak et al. and has an advantage

over the obfuscation indistinguishability definition in the sense it is more intuitive and is algorithmic

rather than probabilistic.

4.1 Introduction

Software developers strive to produce structured and easy to comprehend code, their motivation is to

simplify maintenance. Code obfuscation, on the other hand, transforms code to a less structured and

unintelligible version. It produces more complex code that looks patternless, with little regularity

and is difficult to understand. We argue that irregularities and noise makes the obfuscated code

difficult to comprehend.

Kolmogorov complexity [LV08] is a well known theory that can be used to measure regularities

and randomness. Kolmogorov complexity is the basic concept of Algorithmic Information Theory,

that in many respects adapts the viewpoint of well-established Information Theory to focus on

individual instances rather than on random distributions. In general, Algorithmic Information

Theory replaces the notion of probability by that of intrinsic randomness of a string.

Kolmogorov complexity is uncomputable; however it can be approximated in practice by lossless

compression [KY96] [LV08], which helps to intuitively understand this notion and makes this

theory relevant for real world applications. Our aim in this chapter is to provide a theoretical
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framework for code obfuscation in the context of Algorithmic Information Theory: to quantitatively

capture the security of code obfuscation, to discuss its achievability and to investigate its limitations

and resilience against an adversary.

We introduce the notion of unintelligibility to define confusion in code obfuscation and argue

that this is not good enough. We then propose our notion of security and compare both definitions.

We argue that our model of security is fundamentally different from the virtual black-box model

of Barak et al., and that because the impossibility result does not apply. Then we show that

under reasonable conditions we can have secure obfuscation. We study the security of two main

approaches to obfuscated code in software,encoding and hiding, at the sub-program level. Finally,

we study the Kolmogorov complexity of applying multiple obfuscation transforms to a clear code,

and the security case using our proposed definition.

Chapter layout: In Section 4.2 we discuss the intuitions behind our approach and propose the

formal definitions of code obfuscation, and present positive results for secure code obfuscation

against passive attackers. Section 4.3 studies the security of two main approaches to code obfus-

cation at the sub-programs level. Section 4.4 investigates the security case of applying multiple

obfuscation to a clear code. Finally, we present a summary of the chapter.

4.2 Code Obfuscation using Kolmogorov Complexity

4.2.1 Motivation

The main purpose of code obfuscation is to confuse an adversary, making the task of reverse

engineering extremely difficult. Code obfuscation introduces noise and dummy instructions that

produce irregularities in the targeted obfuscated code. Classical complexity metrics have a limited

power for measuring and quantifying irregularities in obfuscated code, because most of these

metrics are designed to measure certain aspects of code attributes such as finding bugs and code

maintenance. Human comprehension is a key in this case; an adversary has to understand the

obfuscated code in order to recover the original; measuring code obfuscation has to take into

consideration this human factor. Although measuring code comprehension is very subjective,

there were some successful attempts to measure human cognitive reasoning based on Kolmogorov

complexity [GZD11].

Code regularity (and irregularity) can be quantified, as was suggested in [Lat97] and [JF14], using
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int n,i=0,x=0;
while(i<n)
i=i+1
x=x+i

(a) Sum code

int n, i=0; x=0; y=0;
while(i<n)
i=i+1

if (7*y*y-1==x*x) //false
y=x*i

else
x=x+4*i

if (7*y*y-1==x*x)
y=x*i

else
x=x-2*i;

if (7*y*y-1==x*x)
y=x*i

else
x=x-i;

(b) One opaque predicate

int n; i=0; x=0; y=0;
while(i<n)
i=i+1
if (7*y*y-1==x*x)//false
y=x*(i+1)

else
x=x+4*i

if (x*x-34*y*y==-1)//false
y=x*i

else
x=x-2*i

if ((x*x+x)mod 2==0)//true
x=x-i

else
y=x*(i-1)

(c) Three opaque predicates

Figure 4.1: Obfuscation example: (a) is the original code for the sum of n integers; (b) is an
obfuscated version of (a) with one opaque predicate and data encoding which has some
patterns and regularities; (c) is another obfuscated version of (a) with three opaque
predicates and data encoding, which has less patterns and regularities comparing to (b).

Kolmogorov complexity and compression. Code regularity means a certain structure is repeated

many times, and thus can be recognised. Conversely, irregularities in code can be explained as

the code exhibiting different types of structure over the code’s body. Regularities in programs

were introduced by Jbara et al. in [JF14] as a potential measure for code comprehension; they

experimentally showed using compression that long regular functions are less complex than the

conventional classical metrics such as LOC (Line of Code) and McCabe (Cyclomatic complexity)

could estimate.

The main intuition behind our approach is based on the following argument: if an adversary fails

to capture some patterns (regularities) in an obfuscated code, then the adversary will have difficulty

comprehending that code: s/he cannot provide a valid and brief, i.e. simple description. On the

other hand, if these regularities are simple to explain, then describing them becomes easier, and

consequently the code will not be difficult to understand.

We demonstrate our motivation using the example in Fig. 4.1. We obfuscate the program in

Fig. 4.1-(a) that calculates the sum of the first n positive integers, by adding opaque predicates with

bogus code and data encoding. If we apply Cyclomatic complexity (McCabe [McC76]), a classical

complexity measure, to Fig. 4.1-(b) the result will be 7. Cyclomatic complexity is based on control

flow graph (CFG), and is computed by: e−n+2 ⋅p, where e is the number of edges, n is the number
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of nodes in CFG and p the number of connected components in graph (in our example p = 1).

Fig. 4.1-(b) contains n = 8 nodes, e = 13 edges, then the Cyclomatic complexity is (13− 8+ 2) = 7.

We can see some regularity here: there is one opaque predicate repeated three times. Furthermore,

the variable y is repeated three times in the same place of the If-branch. We argue that we can find

the short description of the program in Fig. 4.1-(b), due to presence of regularity by using lossless

compression.

We take another obfuscated version in Fig. 4.1-(c) (of the same program); this code is obfuscated

by adding three different opaque predicates. The patterns are less in this version comparing to

Fig. 4.1-(b); where the Cyclomatic complexity is the same 7, and it does not account for the changes

that occurred in the code. Assuming the opaque predicates of Fig. 4.1-(c) are equally difficult to

break, attacking this code requires at least twice more effort than the code in Fig. 4.1-(b), as we

need to figure out the value of two more opaque predicates. Furthermore, in Fig. 4.1-(b) the code

can be compressed at higher rate than the code in Fig. 4.1-(c); again, this is due to the inherent

regularity in Fig. 4.1-(b).

We argue that an obfuscated program which is secure and confuses an adversary will exhibit a

high level of irregularity in its source-code and thus require a longer description to characterise

all its features. This can be captured by the notion of Kolmogorov Complexity, which quantifies

the amount of information in an object. An obfuscated program will have more non-essential

information, and thus higher complexity, than a non-obfuscated one. Thus, we can use Kolmogorov

complexity to quantify the level of confusion in obfuscated programs compared to the unobfuscated

one.

4.2.2 Applying Kolmogorov Complexity to Code Obfuscation

In this section we present a novel approach for code obfuscation based on notions from Algorithmic

Information Theory. We start with an intuitive definition that is inspired by practical uses of

obfuscation. The rationale behind this definition is that an obfuscated program must be more

difficult to understand than the original program. This uses the separate notion of c-unintelligibility:

Definition 4.1. A program Q is said to be c-unintelligible with respect to another program P if it

is c times more complex than P ,i.e. the added complexity is c times the original one, and thus more
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difficult to understand. Formally:

K(Q) ≥ (c + 1)K(P ),

for some constant c > 0.

Definition 4.2. A c-Obfuscator O ∶ P × L → Q is a mapping from programs with security

parameters L to their obfuscated versions such that for all P ∈ P , λ ∈ L . O(P,λ) ≠ P , where

(P,λ) is the input to O, and satisfies the following properties:

• Secrecy: Security parameters are secret, and contains all the knowledge to obtain P given

O(P,λ).

• Functionality: O(P,λ) and P compute the same function, such that [[P ]] = [[O(P,λ)]].

• Polynomial Slowdown: The size and running time of O(P,λ) are at most polynomially

larger than the size and running time of P , i.e. for some polynomial function p.∣O(P,λ)∣ ≤

p(∣P ∣), and if P halts in k steps on an input i, then O(P,λ) halts within p(k) steps on i.

• Unintelligibility: O(P,λ) is c-unintelligible with respect to P .

The security parameters L are the secret keys that are used to obfuscate programs, and contain all

the knowledge that is required to obtain the original program from the obfuscated version. This is

very similar to symmetric encryption, where the key is secret and is required for both encryption and

decryption process.1 On the other hand, this is different from public key encryption, the encryption

key is public, where the decryption process requires a private key (secret key).

Now, it is interesting to ask to what extent unintelligibility is related to the quality of the security

parameter λ. Is a large, i.e. long string, λ necessary for high unintelligibility? Is it sufficient?

We answer the first question in the positive by showing that c-unintelligibility sets a lower bound

on the size of λ.

Lemma 4.3. Consider a program P and an obfuscated version O(P,λ) with security parameter λ

such that O(P,λ) is c-unintelligible with respect to P . Then, ∣λ∣ ≥ cK(P ) −O(1).

1There is a major difference between encryption and obfuscation: an adversary does not necessarily need to know λ to
deobfuscate and obtain the original code.
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Proof.

K(O(P,λ)) ≤K(P,λ) +O(1) by Theorem 2.28

K(P,λ) +O(1) ≥K(O(P,λ))

K(P ) +K(λ ∣ P ) +O(1) ≥K(O(P,λ)) by Theorem 2.26

By assumption on c-unintelligiblity, K(O(P,λ)) > (c + 1)K(P ), we have:

K(P ) +K(λ ∣ P ) +O(1) ≥ (c + 1)K(P )

K(λ ∣ P ) ≥ cK(P ) −O(1).

By the basic property of Kolmogorov complexity: ∣λ∣ ≥K(λ), and by Theorem 2.27: K(λ) ≥

K(λ ∣P ). Therefore, ∣λ∣ ≥ cK(P ) −O(1).

To answer the second question, we show a counter-example. So far, we have not addressed

the nature of O and how well it uses its obfuscation parameter. It could well be the case that

O only uses some bits of λ to modify P . In an extreme case, it can ignore λ altogether and

simply return O(P,λ) = P . The result satisfies the first two properties of an obfuscator, but can

be considered unintelligible only in the degenerate case for c = 0 and surely we would not call

the resulting code obfuscated. Another extreme case is when λ = P , we would have at most

K(O(P,λ)) ≤K(P ) +K(O) +O(1) which again would lead to a very small c. These two cases,

although extreme, serve only to show that the quality of an obfuscator depends not only on λ but

also on the obfuscation algorithm itself, O. This is addressed later in Theorem 4.12.

Definition 4.2 is perhaps the first natural definition one can find, but it has one shortcoming.

Merely requiring the obfuscated program to be complex overall does not mean that it is complex in

all its parts, and in particular, that it hides the original program. To illustrate this point, consider the

following example.

Example 4.4. Consider an obfuscated program O(P,λ) = P ∥ λ, which is a simple concatenation

of P and λ. Define n = ∣O(P,λ)∣. We know K(P ∥ λ) ≃ K(P,λ) within logarithmic precision

(see [LV08] page 663). Then, by applying the chain rule of Theorem 2.36, K(O(P,λ)) =K(P ∥

λ) ≃ K(P ) + K(λ ∣P ) + O(logn). For large λ independent of P , this might signify a large

unintelligibility, but the original program can be extracted directly from the obfuscated version

requiring only O(logn) to indicate where P ends and λ starts.
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This leads us to our second definition, where we require not that the obfuscated program be more

complex than the original but rather, that it reveals almost no information about the original. This is

captured by the notion of algorithmic mutual information and can be stated formally as:

Definition 4.5. Consider a program P and its obfuscated programO(P,λ). We say O(P,λ) is a

γ-secure obfuscation ofP if the mutual information betweenP andO(P,λ) is at most γ, that is:

IK(P ;O(P,λ)) ≤ γ.

We say O(P,λ) is a secure obfuscation of P if is γ-secure and γ is negligible.

It is common, in the literature about Kolmogorov complexity, to consider logarithmic terms

negligible. Thus, if both P and O(P,λ) have lengths of order n, we might consider that O(P,λ)

would be a secure obfuscation for γ = logn. This intuition, however, is bound to fail in practice.

Programs are typically redundant, written in very well-defined and formal languages, with

common structures, design patterns, and even many helpful comments. It is expected that the

complexity of a non-obfuscated program be low, compared to its length. Consider then the case that

for a given P and n = ∣P ∣ we have K(P ) = O(logn), and a scenario similar to Example 4.4, where

the obfuscation reveals the original program, then the mutual information between both programs

is maximum, i.e.,

IK(P ;O(P,λ)) =K(P ) −O(logn) = O(logn).

Even though this obfuscation cannot be considered secure, the resulting mutual information is so

small that Definition 4.5 would declare it secure. We have two ways out of this:

• we do not consider programs with K(P ) = O(logn), since this is the error margin of the

important properties of Kolmogorov complexity (see Section 2.7), and at this level we can

not achieve significant results;

• or we consider a relative definition of security, requiring that the mutual information be only

at most a negligible fraction of the information in P .

The second option leads us to the following definition:

Definition 4.6. Consider a program P and its obfuscated program O(P,λ). We say O(P,λ) is

a ε-secure obfuscation of P if the mutual information between P and O(P,λ) is at most εK(P ),

86



that is:

IK(P ;O(P,λ)) ≤ εK(P ),

for 0 ≤ ε ≤ 1.

We say O(P,λ) is a secure obfuscation of P if it is ε-secure and ε is negligible in some

appropriate sense.

4.2.3 On the Impossibility of Obfuscation

There exist other definitions of obfuscation in the literature. Of particular importance to us is the

work of [BGI+12], due to its famous impossibility result. As the authors argue in that paper, the

black-box model they propose for obfuscation is too strong to be satisfiable in practice.

The black-box model considers a program 2 P obfuscated into O(P,λ) using λ if any property

that can be learned from O(P,λ) can also be obtained by a simulator with only oracle access to

O(P,λ).3 This essentially states that O(P,λ) does not give any particular information about that

property, since it is possible to learn it without having access to O(P,λ). Notice that this model

does not compare an obfuscated program with an original one, but rather with its functionality.

This is different from the definitions that we have proposed so far. Our definitions can be used to

capture this purpose, namely, measuring how much information a program O(P,λ) gives about the

function 4 it computes, which is denoted by [[O(P,λ)]].

It suffices to note that every function [[O(P,λ)]] has a minimal program for it, say, Q. Then,

its Kolmogorov complexity is the size of Q and for every other program O(P,λ) computing

[[O(P,λ)]] we have

K([[O(P,λ)]]) = ∣Q∣ ≤ ∣O(P,λ)∣.

For every program P it must be that K([[O(P,λ)]]) ≤ K(O(P,λ)) + O(1) by Theorem 2.28,

otherwise we could build a program R of size K(O(P,λ)) that produced O(P,λ) and then ran

in succession R and U(R).5 This composition of programs is itself a program with complexity

K(O(P,λ) +O(1) which would be smaller than the assumed minimal program [[O(P,λ)]], i.e. a

contradiction. Therefore, our definition can be changed to compare the obfuscated program with

2Or rather, a circuit or a Turing machine representation thereof.
3In oracle access we can only have access to the program’s input-output.
4We assume all the functions that a program P is computing are decidable.
5That is, we run R to produce O(P,λ) then we execute the result of this first execution, that is O(P,λ) itself.

87



the simplest (minimal) program computing the same function.

Definition 4.7. Consider an obfuscated programO(P,λ). We sayO(P,λ) is ε-securely obfuscated

if

IK([[O(P,λ)]],O(P,λ)) ≤ εK([[P ]])

for 0 ≤ ε ≤ 1.

We say O(P,λ) is a secure obfuscated program if it is ε-secure and ε is negligible.

We believe our definitions of obfuscation differ from the simulation black-box model in important

ways, and because of this they avoid the impossibility result of [BGI+12].

Our definition is a less stringent form of obfuscation rather than a weak form of black-box

obfuscation. We assume the functionality of an obfuscated program to be almost completely

known and available to an adversary, and only require hiding the implementation rather than the

functionality itself. This approach to obfuscation is very practical and pragmatic, especially for

software protection obfuscation, as usually the customer likes to know exactly what a product does,

although s/he might not care about how it was implemented.

In contrast, the black-box model definition requires that all properties of a given obfuscated

program O(P,λ) must be hidden from any adversary that ignores its source-code, but has access

to at most a polynomial number of points of O(P,λ). In the following we summarise the main

differences between the Algorithmic Information Theory approach to obfuscation and the black-box

approach.

1. We can see that in our case, the adversary knows more about the functionality. Since the

functionality is mostly public, this would be equivalent to giving the simulator in the black-

box model access to this extra knowledge, reducing the advantage of the adversary and

possibly making some functions obfuscatable.

2. On the other hand, our definition allows the leakage of a small, but non-zero, amount of

information. Compare this with the black-box model where a single-bit property that is

non-trivially computed by an adversary renders a function un-obfuscatable. Our definition

requires the adversary to be able to compute more than a few bits in order for obfuscation to

be broken.
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3. Our definition considers only deterministic adversaries, again making adversaries less power-

ful and reducing their advantage (see Chapter 5).

We can try to model the implications for our definition of a successful black-box adversary

against obfuscation. Consider an adversary AA attacking a predicate π in an obfuscated program

O(P,λ) by accessing an algorithm A, such that A(O(P,λ)) = 1 if and only O(P,λ) satisfies π.

In this case, AA is able to compute 1 bit of information about O(P,λ), and we want to measure

how much this helps AA in describing some simpler program P that implements the same function

[[O(P,λ)]].

Since the adversary knowsA, s/he can enumerate the set S, assuming S is a recursive enumerable

set, of all programs that satisfy A. Then, for some program P ∈ S, we can use two-part description

(see Section 2.8.1) and would have K(P ∣AA) ≤K(S ∣AA) + log #S.

Note that the set S may be infinite, and so enumeration is the best that can be done: we enumerate

all relevant programs and run A with each of them, noting the result. We could try to avoid this

infinity problem by noticing we are only interested in programs simpler than the original, and thus

satisfying K(P ) ≤ K(O(P,λ)) ≤ ∣O(P,λ)∣. This does not give absolute guarantees, since in

general there are programs with ∣P ∣ > ∣O(P,λ)∣ and K(P ) ≤ K(O(P,λ)), but our hope is that

these are few and far between as they increase in length. Thus, even if we make this assumption and

disregard a whole class of possibly relevant programs, we still have in the order of 2n specimens. If

A
A were a deterministic algorithm, we would have K(S ∣AA) = O(1), and if S has less than a

half of all possible programs, then indeed we would find that

K(P ∣AA) ≤K(S ∣AA) + log
#S

2

= O(1) + log
2n

2

≤ n − 1

However, AA is randomised, and in order to accurately produce S, for each program Q ∈ S,

A
A must be run with a set of random coins r such that AA(Q, r). One way to describe S from

A
A would need a polynomial number of bits for each program in S. Now, we no longer have the

comfort of a negligible K(S ∣AA) term, and we can no longer be sure that knowing this property

would in any way reduce the complexity of our target program.
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We can still try to go around this problem, by allowing our enumerator to list not only all

programs but also all possible random strings, and choosing the majority vote for each program.

The length, and therefore the number, of possible random strings is bounded by the running time of

the program, which in turn is bounded by a function of its length. Therefore, if we limit the length

of our programs, then we limit the number of random strings to search.6

This would eliminate the necessity of considering the extra information due to the random

coins, but on the other hand the running time would increase exponentially. Any successful

adversary would be very different to the PPT adversaries of [BGI+01], and although our definition

has been made, for ease of exposition, with unbounded Kolmogorov complexity (for unbounded

adversaries), it is easy to change it to consider polynomially-bounded adversaries by using an

alternative definition of mutual information (see Section 2.10):

I∗K(P ;O(P,λ)) =Kt()
(P ) −Kt()

(P ∣O(P,λ)),

where t() is a polynomial on the length of O(P,λ) that acts as a hard limit to the number of

steps the universal machine can be run for. We address adversaries and their capabilities using

Algorithmic Information Theory in Chapter 5.

With this definition of obfuscation, the above reasoning would lead to examples where non-

obfuscatability by the black-box model does not prevent obfuscatability in the Algorithmic

Information-Theoretic model. Our definition for security takes a program P (clear code), which

supposedly is an easy and smart implementation of functionality [[P ]], and compares it with

O(P,λ), which is a different and supposedly unintelligible implementation of [[P ]], so that the

original P cannot be perceived or obtained from O(P,λ). The defenders’ aim is not to prevent

an adversary from understanding or finding [[P ]], but to prevent her/him from finding their own

implementations P .

This intuition best matches the idea of best possible obfuscation which was advanced by Gold-

wasser and Rothblum [GR07]. According to [GR07] an obfuscatorO is considered as best possible

if it transforms a program P so that any property that can be computed from the obfuscated program

O(P,λ), can also be computed from any equivalent program of the same functionality. However,

despite the close intuitive correspondence, our definition also differs from best possible obfuscation,

6Conversely, if we really want to enumerate all programs, then we also have to enumerate an infinite number of random
strings.
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in the sense that their definition relies on some form of black-box simulation. It was proved in

[GR07] that best possible obfuscation has a strong relation with indistinguishability obfuscation

(see Section 3.3.2), if O is an efficient obfuscation i.e. run in polynomial time.

An indistinguishability obfuscator is considered insecure if an adversary can distinguish between

two obfuscated circuits (programs) (see Section 3.3.2). Indistinguishibility between two strings

(programs) was studied by Laplante et al. [LR96] in the context of Algorithmic Information Theory,

they proposed a modified version of Kolmogorov complexity that accounts for a distinguisher that

differentiates between two binary strings. However, it is not clear, and remains an open problem

whether their theoretical treatment can be used to model indistinguishability obfuscation, and under

which conditions.

Indistinguishability obfuscation, even if it can be defined using Algorithmic Information Theory,

is not very intuitive. Using indistinguishability obfuscation, it is very difficult to provide a guarantee

about what obfuscation hides (just only if the distinguisher succeed); for example, if O produces

a canonical representation of programs P1 and P2 without aiming to hide their implementation,

then the indistinguishability definition is trivially satisfied too. Therefore, it does not provide a

guarantee about what O can hide. On the other hand, our definition provides a security guarantee

about what is hidden, due to obfuscation process, by comparing the original code to its obfuscated

version using algorithmic mutual information.

4.2.4 Security and Unintelligibility

Our first attempt to characterise obfuscation was based on unintelligibility, and then we evolved

to a notion of security based on algorithmic mutual information. The first notion seemed more

immediately intuitive; traditional obfuscation techniques seem to rely only on making the code as

complex as possible in an attempt to hide its meaning. But precisely this notion of hiding meaning

is nothing more than reducing the information that the obfuscated program leaks about the original

one, and so we believe the second approach to be the correct one. However, we can ask the natural

question: is there any relation between these two concepts? Does high unintelligibility imply high

security, or vice-versa?

We give a partial answer to this question. In certain situations, high unintelligibility will imply

high security, as stated in the following theorem.
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\\ variable that holds authentication password
string user-Input = input();
string secure-password = ...;
if secure-password == user-Input
grant-access();

else
deny-access();

P : simple password checker

string O@ = x0();
string $F=...;
if O@== $F
x1();

else
x2();

O(P,λ) : obfuscating P

Figure 4.2: Obfuscating a password checker program

Theorem 4.8. Consider a program P of length m and its obfuscated version O(P,λ) of length

n >m (where n is at most polynomially larger than m), satisfying c-unintelligibility for c ≥ n
K(P ) .

Assuming that the obfuscation security parameter λ satisfies K(O(P,λ) ∣P ) ≥K(λ ∣P ) − α, for

some α ∈ N, then up to O(logn):

I(P ;O(P,λ)) ≤ α

Proof. K(O(P ;λ)) ≥ (c + 1)K(P ) by c-unintelligibility assumption, and by Theorem 2.28,

K(O(P,λ)) ≤K(P,λ) +O(1)7, we have:

K(P,λ) ≥ (c + 1)K(P )

K(P,λ) −K(P ) ≥ cK(P )

K(λ ∣P ) ≥ cK(P ) by Theorem 2.36

7The O(1) term is absorbed by the logarithmic additive term that we are not notating.
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Now, for mutual information, we have

I(P ;O(P,λ)) =K(O(P,λ)) −K(O(P,λ) ∣P ) by Definition 2.35

≤K(O(P,λ)) −K(λ ∣P ) + α by c-unintelligibility assumption

≤ n − cK(P ) + α

≤ n − n + α by assumption

= α

Intuitively, if we consider an optimal obfuscation security parameter (it has all the information

needed to produce O(P,λ) from P , but not much more than that), we can say that if O(P,λ) is

c-unintelligible for large enough c, then O(P,λ) is a secure obfuscation of P .

The above theorem shows when high c-unintelligibility implies security of code obfuscation. It

turns out that the reverse implication does not exist, as the following theorem illustrates.

Proposition 4.9. There exists an obfuscation functionO that produces arbitrarily secure programs,

according to Definition 4.6, and yet does not satisfy c-unintelligibility for c ≥ 0.

Proof. Consider first the case of program P of Fig. 4.2, that simply checks a password for access,

and its obfuscated version O(P,λ), which was computed using layout obfuscation [CTL97]:

variable and function renaming and comment deleting. The obfuscated variable and function names

are independent of the original ones and so the information thatO(P,λ) contains about P is limited

to the unchanging structure of the code: assignment, test and if branch. The complexity of the

original code can be computed from several independent parts of the program: the complexity of

comments: nc, the complexity of structure: ns, the complexity of variable and function names: nv,

and therefore we can write K(P ) = nc + ns + nv.

The only thing that O(P,λ) can give information about is the structure part, since all the other

information was irrevocably destroyed in the process: there is no data remaining that bears any

relation to the lost comment or the lost function names. Therefore,

IK(P ;O(P,λ)) ≤ ns =
ns

nc + ns + nv
K(P ).
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We can make the fraction ns

nc+ns+nv
as small as necessary by inserting large comments, long names

and representing structure as compactly as possible, for example, keeping names in a dictionary

block and indicating their use by pointers to this. However, the complexity ofO(P,λ) is less than

that of P , since there is less essential information to describe: the same structure, no comments

and the function names could be described by a simple algorithm. Therefore, we have that c-

unintelligibility can not be satisfied for any non-negative value of c. This shows that high ε-security

does not imply high unintelligibility.

The next theorem shows how we can obtain a certain level of security that depends on: how

complex is the obfuscated code and the obfuscation key (security parameter), and the level of

dependency between the original program and the obfuscation key.

Theorem 4.10. Let O(P,λ) be an obfuscated program for a program P of length n and λ be

independent and random obfuscation security parameter, satisfyingK(λ) ≥ n − α and K(P,λ) ≥

K(P )+K(λ)−β , for some α,β ∈ N. Suppose the obfuscationO(P,λ) satisfiesK(O(P,λ) ∣P ) ≥

K(λ ∣P ) −O(1). Then up to a logarithmic factor:

IK(P ;O(P,λ)) ≤ α + β

Proof.

IK(P ;O(P,λ)) =K(O(P,λ)) −K(O(P,λ) ∣P ) by Definition 2.35

≤K(O(P,λ)) −K(λ ∣P ) by assumption

≤K(O(P,λ)) −K(λ,P ) +K(P ) by Theorem 2.36

≤ n −K(P ) − n + α + β +K(P ) by assumptions

≤ α + β

The first two assumptions are natural: picking λ at random and independently of P will satisfy

high complexity and low mutual information with high probability, so we can simply assume those

properties at the start. The third assumption (K(O(P,λ) ∣P ) ≥K(λ ∣P ) −O(1)), however, is not

immediately obvious: it describes a situation where the obfuscation key λ is optimal, in the sense
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that it contains just the amount of information to go from P to O(P,λ), within a small constant

term. The following lemma shows how λ must have a minimum complexity to allow the derivation

of P to O(P,λ).

Lemma 4.11. K(λ ∣P ) ≥K(O(P,λ) ∣P ) −O(1)

Proof. Given the obfuscator O and any λ, construct the function qλ(⋅) = O(⋅, λ), and let Qλ be a

program that implements it. Then, clearly, U(Qλ, P ) = O(P,λ) and so ∣Qλ∣ ≥ K(O(P,λ) ∣P ).

To describe Qλ, we only need to specify λ and instructions to invoke O with the proper arguments,

but since P is already known, we only need to find a shorter description for λ. This gives

K(O(P,λ) ∣P ) ≤K(λ ∣P ) +O(1).

An optimal obfuscation key λ is then the one that uses as little information (minimum complexity)

as possible in the obfuscation function, to go from P to O(P,λ).

Obfuscation techniques can use randomness or not. In Proposition 4.9, we showed one case

where names could be obfuscated in a deterministic way, without any randomness. However, we

could equally have used instead random names, with the same effect on security but increasing

unintelligibility as well. We can as well consider that the set of obfuscation techniques is finite and

describe each of them by a unique number. This way, we can characterise a single application of

obfuscation by a key composed of the technique’s index and the randomness needed.

We now proceed to show that it is possible to achieve obfuscation security according to our

definitions, but restricted to a passive adversary, that is, one that does not realise transformations

over the intercepted code. The intuition is to use obfuscation techniques that behave as much as

possible as secure encryption functions, namely, using random keys (security parameters) that are

independent from the code and large enough that they obscure almost all original information.

The crucial difference that enables security is that because an obfuscation technique preserves

functionality, we do not need to deobfuscate the obfuscated code and so we do not need to hide the

key.

First, we prove the effect of obfuscating an elementary piece of code, by application of a single

obfuscation technique. Then, we reason about the case of a full program, composed of several of

these independent blocks.

Theorem 4.12. Let p represent a program block, O an obfuscation technique and λ ∈ L an

obfuscation key with a fixed length n. Let O(p, λ) be the obfuscated block. Assume O is such

95



that it produces an output with length ` ≤ n + γ, where γ is the extra length due to obfuscation,

and is “nearly-injective” in the following sense: for every p, any subset of L of keys with the

same behaviour for p has cardinality at most polynomial in n. That is, for all p and λ0 ∈ L,

∣{λ ∣ O(p, λ) = O(p, λ0)}∣ ≤ n
k, for some positive integer k.

Then, if the key is random, K(λ) ≥ n − α and independent from p, K(λ ∣p) ≥ K(λ) − β, for

some α,β ∈ N, the obfuscated code O(p, λ) is (α + β + γ)-secure up to a logarithmic term.

Proof. By symmetry of information Theorem 2.36, we can write

K(p ∣O(p, λ)) =K(O(p, λ) ∣p) +K(p) −K(O(p, λ)).

It is easy to see by Theorem 2.29 thatK(O(p, λ) ∣p) ≤K(λ ∣p) +O(1), since O(1) is a constant

independent of p, λ or O(p, λ) it can be ignored for a sufficient large size programs [CT06]. As

well, we can show the reverse inequality. To produceλ from p, we can first produceO(p, λ) from

p (with a program that takes at least K(O(p, λ) ∣p) bits) and then build the set,

Sp,O(p,λ) = {λ ∣ ∣λ∣ ≤ n, [[O(p, λ)]] = [[p]]} of all compatible λ, by a program whose length is

O(1). Finally, we just have to give the index of λ in this set, and so K(λ ∣p) ≤K(O(p, λ) ∣p) +

log #Sp,O(p,λ) by Lemma 2.33. Then,

K(O(p, λ) ∣p) ≥K(λ ∣p) − log #Sp,O(p,λ)

≥K(λ) − β − log #Sp,O(p,λ) by assumption

≥ n − α − β − log #Sp,O(p,λ) by assumptions on λ.

By assumption on the output of O,K(O(p, λ)) ≤ ∣O(p, λ)∣ ≤ n + γ, and by Theorem 2.36,

we have:

K(p ∣O(p, λ)) ≥K(p) + n − α − β −O(logn) −K(O(p, λ))

≥K(p) − α − β − γ −O(logn) (4.1)

Therefore,

IK(p;O(p, λ)) =K(p) −K(p ∣O(p, λ)) by Definition 2.35

≤K(p) −K(p) + α + β + γ +O(logn) by Eq. (4.1)

≤ α + β + γ +O(logn)
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The randomness and independence conditions for the keys are natural. The other two conditions

may seem harder to justify, but they ensure that O effectively mixes p with the randomness

provided by λ: the limit on the size of subsets of L implies a lower bound on the number of possible

obfuscations for p (the more the better); on the other hand, the limit on the length of the output ofO

forces the information contained in p to be scrambled with λ, since it can take only a few more bits

than those required to describe λ itself. The extreme case is similar to One-Time Pad encryption8,

when both the output and λ have the same size n, and O is injective for each p: there are 2n keys,

as well as possible obfuscations for each p. Furthermore, because the obfuscated code has the same

length as λ, the exact same obfuscated strings are possible for each p, maximizing security.

In general, a program is composed of several of these minimal blocks in sequence, regardless

of the execution flow (control flow). The above proof shows when the obfuscated block O(p0, λ)

gives no information about its original block, say p0. As well, O(p0, λ) cannot give any more

information about any other block p1, as there is no relation between p1 and O(p0, λ). At best,

there is some information in p1 about p0, but then the information given by O(p0, λ) about p1

should be at most that given by about p0. Therefore, we conclude that if all the sub-blocks in a

program are securely obfuscated, then the whole program is. The above theorem, hence, shows that

secure obfuscation is possible under very reasonable assumptions.

4.3 Individual Security of Code Obfuscation

Studying the security of individual instances of obfuscated code provides more granularity. Even

if the obfuscated program is considered secure according to our definition, it may have parts

(sub-programs) which can provide some information about other obfuscated parts, which reduces

the security of the obfuscated code. It could be that a program is obfuscated but some modules

are not: some part of the obfuscated code stays still in its original form. We can demonstrate this

relation by providing some bounds on the complexity of sub-programs in the same program.

We can view (obfuscated) programs as finite, and therefore recursively enumerable, sets of

sub-programs (blocks or modules) such that Q = {qi ∣ i ∈ N}. If Q is an obfuscated program then

it may consist of obfuscated and non-obfuscated (clear) modules, it could be the case that the

8Which is proved to be an unconditionally secure symmetric cypher.
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obfuscation process left some modules of code unobfuscated, that is: there are qj , qi in Q, where qi

is an obfuscated module and qj is a non-obfuscated module.

Theorem 4.10 demonstrates the effect of security parameters λ on the whole obfuscation process.

The following results show the effect of each individual security parameter on each obfuscated

sub-program. Choosing a good λ (with a good source of randomness) requires the minimum

amount of shared information with obfuscated code and the clear code. It is important to study

the relation between the security parameter and the original (clear) code, as it may influence the

outcome the obfuscation process. In the following theorem, we use a simple way to check the

independence between λ and P on the sub-program level.

Theorem 4.13. Let Q be a set of obfuscated sub-programs, λ a set of security parameters (ob-

fuscation keys) such that λ = {κ1, . . . , κn}, and P a set of clear sub-programs, such that each

sub-program q of Q has length at most n, and is the obfuscation of a corresponding block in P :

there are pi ∈ P,κi ∈ λ such that q is an obfuscated program of pi using security parameter κi. If

K(κi, pi) ≥K(pi) +K(κi) − α, for some α ∈ N, then (up to a logarithmic term):

IK(κi;pi) ≤ α

Proof.

K(pi, κi) ≤K(κi ∣pi) +K(pi) +O(logn) by Theorem 2.36

K(pi) +K(κi) − α ≤K(κi ∣pi) +K(pi) +O(logn) by assumption

K(κi) − α ≤K(κi ∣pi) +O(logn)

K(κi) −K(κi ∣pi) ≤ α +O(logn)

IK(κi, pi) ≤ α +O(logn) by Definition 2.35

The following two theorems address the security of two different forms of code obfuscation:

obfuscation-as-encoding and obfuscation-as-hiding. In the obfuscation-as-encoding technique,

the original program is transformed in such a way it changes the structure of original code, but

preserving the functionality, for example Data transformation techniques such as Array Splitting,
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Splitting Variables, Restructure Arrays and Merge Scalar Variables (see Section 3.4.3). The

encoding process is considered as the security parameter that dictates how the obfuscation should

be performed and where it should take place.

Encoding differs from encryption; if somebody knows the encoding process, then the original

code can be recovered. In encoding obfuscation, the clear program is not presented in the obfuscated

code; what still exists, but is hidden, is the encoding process. Reversing the encoded program

(obfuscated) requires finding and understanding the encoding process. For instance, we use a simple

encoding in Fig. 4.1: x=x+i is encoded as x=x+4*i;x=x-2*i;x=x-i; the encoding process

converts i to 4*i;-2*i;-i, to figure out x=x+i , we have to find and combine 4*i;-2*i;-i,

which is the security parameter in this case.

The next theorem addresses the security of obfuscation code when applying an encoding to P (as

a set of sub-programs); here the encoding process is presented as a part of security parameter. We

aim to check how much the obfuscated sub-program leaks about the encoding process (the security

parameter). It turns out that the security of obfuscation-as-encoding depends on the randomness

deficiency (see Definition 2.34) of the relevant security parameter of the obfuscated sub-program,

as the next theorem shows.

Theorem 4.14 (Encoding). Let Q be a collection of obfuscated sub-programs qi of length at most

n using κi ∈ λ, a set of security parameters such that λ = {κ1, . . . , κn}. Then,

IK(κi; qi) ≤ δκi −O(1),

for δκi = δ(κi ∣Q).

Proof. Since Q is a collection of sub-programs, we can assume that it contains all the information

in qi as well as that of all other sub-programs. Then, K(κi∣Q) = K(κi∣⟨q1, . . . , qi, . . . , qn⟩) ≤

K(κi∣qi), as adding more inputs reduces the overall complexity, and so

IK(κi; qi) =K(κi) −K(κi ∣ qi) by Definition 2.35

≤K(κi) −K(κi ∣Q)

≤K(κi) − (log #Q − δκi) by Definition 2.34

99



int n, i=0; x=0; y=0;
while(i<n)

i=i+1;
if(7*y*y-1==x*x) //false

y=x*i;
else

x=x+i;

Figure 4.3: Obfuscating x=x+i expression using opaque predicate with no encoding

Because each sub-program in Q has length at most n, then Q can contain at most 2n distinct

sub-programs. Assuming that each appears at most a constant number of times, we have that

#Q = O(2n) and log #Q = n +O(1). Then, by Definition 2.34

IK(κi;Qi) ≤ n − n + δκi −O(1) = δκi −O(1)

In obfuscation-as-hiding techniques, the original sub-program still exists in the obfuscated

program (set of obfuscated sub-programs), the security of such techniques depends on the degree

of hiding in the set of obfuscated sub-programs. An example is the Control-Flow obfuscations

such as Insert Dead basic-blocks, Loop Unrolling, Opaque Predicate and Flatten Control-Flow

(see Section 3.4.2). Normally these techniques are combined and used with encoding obfuscation

techniques, in order to make the code more resilient to reverse engineering techniques. For code

obfuscation, an opaque predicate is used as a guard predicate that cannot statically be computed

without running the code; however the original code still also exists in the obfuscated code, but

protected by the predicate. In Fig. 4.1 we used opaque predicates with a simple data encoding

technique. Consider the obfuscated code in Fig. 4.3 of the original code in Fig. 4.1-(a), where

the encoding has been removed. Obviously, x=x+i is still in the code, but is hidden under the

protection of opaque predicate. The security of obfuscation-as-hiding depends on the randomness

deficiency of the clear sub-program that is obfuscated, and still (hidden) exists in the set obfuscated

sub-programs. The next theorem states this case.

Theorem 4.15 (Hiding). Let Q be a collection of obfuscated sub-programs qi hiding original
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sub-programs pi, each of length at most n. Then,

IK(pi; qi) ≤ δpi −O(1),

for δpi = δ(pi ∣Q).

Proof. The proof is very similar to Theorem 4.14. The block pi is hidden in Q but in its original

form, due to the obfuscation. Since Q is a collection of sub-programs, we can assume that it

contains all the information in qi as well as that of all other sub-programs. Then, K(pi ∣Q) =

K(pi ∣⟨q1, . . . , qi, . . . , qn⟩) ≤K(pi ∣ qi)

IK(pi; qi) =K(pi) −K(pi ∣ qi)

≤K(pi) −K(pi ∣Q)

≤K(pi) − (log #Q − δpi) by Definition 2.34

Similarly to the proof of Theorem 4.14, #Q = O(2n) and log #Q = n +O(1). Then,

IK(pi; qi) ≤ n − n + δpi −O(1) = δpi −O(1)

4.4 Combining Obfuscation Transformation Functions

In this section we investigate the effect of combining different obfuscation techniques on a program.

Studying the effect of multiple obfuscation techniques is important. The general belief is: if we

apply more obfuscation then the obfuscated code becomes more complicated, complex and difficult

to analyse, especially for a malware writer and virtual machine obfuscation [FWWH11]. However,

that is assumed to hold with no formal or empirical evidence for support.

Investigating the effect of applying many obfuscation techniques is essential when using dynamic

obfuscation. Dynamic obfuscation is very similar to metamorphic malware and self-modifying

code; the code gets obfuscated during runtime, and each instance or version may be obfuscated

using different obfuscation techniques. Therefore, it is desirable to reason about the security of

combining many obfuscation transformations i.e. for such constructions to be secure, the original
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obfuscation has to be secure too under composition.

Let On(P,λ) denote an obfuscation function that is applied recursively n times to P such that:

On(P,λ) = O1
(O

n−1
(P,λ), λ), where O1

(P,λ) = O(P,λ). The next theorem states the effect

of multiple obfuscation on an obfuscated code using the same obfuscated technique and the same

security parameter.

Theorem 4.16.

K(On(P,λ)) ≤K(O(P,λ)) +
n

∑

i=1
K(λ ∣Oi−1(P,λ)) +O(1).

Proof. We proof this theorem using induction:

• Base case: we need to prove K(O(O(P,λ), λ)) ≤K(O(P,λ)) +K(λ ∣O(P,λ)) +O(1):

Applying Theorem 2.28 and using the chain rule of Theorem 2.36:

K(O(O(P,λ), λ)) ≤K(O(P,λ), λ) +O(1) =K(O(P,λ)) +K(λ ∣O(P,λ)) +O(1)

• Inductive case: let∀i ∈ N.K(Oi(P,λ)) ≤K(O(P,λ))+K(λ ∣O(P,λ))+...+K(λ ∣Oi−1(P,λ))+

O(1) holds, then we need to prove:

∀i ∈ N.K(Oi+1(P,λ)) ≤K(O(P,λ)) +K(λ ∣O(P,λ)) + ... +K(λ ∣Oi(P,λ)) +O(1)

K(Oi+1(P,λ)) =K(O(Oi(P,λ), λ)) ≤K(Oi(P,λ), λ) +O(1)

By chain rule of Theorem 2.36:

≤K(Oi(P,λ)) +K(λ ∣Oi(P,λ))

By Theorem 2.28 and the inductive case:

≤K(O(P,λ)) +K(λ ∣O(P,λ)) + ... +K(λ ∣Oi−1(P,λ))+

K(λ ∣Oi(P,λ)) +O(1)

Therefore, ∀n ∈ N. K(On(P,λ)) ≤ K(O(P,λ)) +K(λ ∣O(P,λ)) + ... +K(λ ∣On−1(P,λ)) +

O(1) holds.
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We can see the maximum effect of applying the same obfuscation technique many times on

obfuscated code complexity. The obfuscated program is maximized when each instance of the

obfuscated code (as a result of multiple obfuscation) has the minimum shared information with the

security parameters i.e. K(λ ∣On(P,λ)) = K(λ), the conditional input On(P,λ) has no effect

on computing λ; hence, the shortest program to compute λ is no less than λ itself. Furthermore,

the maximum complexity of multiple obfuscations can be increased linearly in the best possible

scenarios i.e. O(n).

Theorem 4.17. K(On(P,λ)) ≤K(O(P,λ)) + (n − 1)K(λ) +O(1).

Proof. According to Theorem 4.16,

K(On(P,λ)) ≤K(O(P,λ)) +K(λ ∣O(P,λ)) + ... +K(λ ∣On−1(P,λ)) +O(1),

using Theorem 2.27, then:

K(On(P,λ)) ≤K(O(P,λ)) +

n−1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

K(λ) + ... +K(λ)+O(1)

This theorem computes the maximum achievable Kolmogorov complexity by multiple obfusca-

tion repeating the same technique, but it does not guarantee any lower bound. We illustrate this in

the following example:

Example 4.18. Consider again the obfuscation of Example 4.4,O(P,λ) = P ∥ λ. If we apply this

obfuscation n times times to P using the same λ, we get:

K(On(P,λ)) ≤K(P ∥ λ) +
n−1
∑

i=1
K(λ ∣⟨P

i
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∥λ ∥ ... ∥ λ⟩) +O(1).

Let n denote the length of P . Then, K(λ ∣⟨P

i
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∥λ ∥ ... ∥ λ⟩) ≤ logn for any i ≥ 1: since λ appears

in the strings P

i
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∥λ ∥ ... ∥ λ, all we require to produce λ is to identify where it starts, which can be

given by the length of P . This takes O(logn) bits to describe.

Then, K(On(P,λ)) ≤K(P ∥ λ) +O(logn), and we can see that applying this obfuscation to

P more than one time is irrelevant.
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Now, let Ot⃗n(P, λ⃗n) stand for an obfuscation process that successively applies n different

obfuscation functions to P , using different security parameters such that:

Ot⃗n
(P, λ⃗n) = Ot⃗n−1.t1(P, λ⃗n−1.λ1) = Ot⃗n−1(Ot1(P,λ1), λ⃗n−1)

where Oti represents an obfuscation using transformation algorithm ti, and λ⃗n is a vector of

different security parameters. The next theorem examines the effect of this successive obfuscation

on complexity.

Theorem 4.19. K(Ot⃗n(P, λ⃗n)) ≤K(Ot1(P,λ1)) +∑
n
i=2K(λi−1 ∣Ot⃗i(P, λ⃗i)) +O(1)

Proof. The proof is very similar to that of Theorem 4.16.

From the above results, we can see the complexity of an obfuscated program as a result of

applying different obfuscation transformations greatly depends on the effect of a new obfuscation

function on the previous obfuscated instance, in particular the security parameter. The maximum

obfuscation level is achieved when each obfuscation parameter is independent of the corresponding

obfuscated instance, i.e. K(λi) =K(λi ∣Ot⃗i−1(P, λ⃗i−1)). Moreover, if each obfuscation function

in Ψ = {Otj ∣ j ∈ N} is applied independently to different modules or blocks of the original

program P = {pi ∣ i ∈ N}, i.e. each obfuscation function Oti ∈ Ψ is mapped (obfuscated) to one

module in pi ∈ P , then we localise a unique obfuscation transformation function to a particular

code block or module. In the following Lemma, we prove the optimality of the security parameters

in the obfuscation process, which involves applying different obfuscation techniques using different

security parameters, in a similar way to Lemma 4.11.

Lemma 4.20. Given Ot⃗n(P, λ⃗n) an obfuscation function that is applied recursively n times to P ,

using a set of different obfuscation functions: O⃗ = {Ot1 , . . . ,Otn} and a set of security parameters:

λ⃗ = {λ1, . . . , λn} such that: Ot⃗n(P, λ⃗n) = Ot⃗n−1.t1(P, λ⃗n−1.λ1) = Ot⃗n−1(Ot1(P,λ1), λ⃗n−1). Then,

K(Ot⃗n(P, λ⃗n) ∣P ) ≤K(λ⃗n ∣P ) up to a logarithmic term.

Proof. Construct a function F such that F (O⃗, λ⃗, .) = Ot⃗n(., λ⃗n), let QK be the program that

implements it. Similarly to the proof of Lemma 4.11, U(QK , P ) = F (< O⃗t⃗n , λ⃗n >, P ) and so

∣QK ∣ ≥K(F (< O⃗t⃗n , λ⃗n >, P ) ∣P ). To describe QK we need to describe every single instance of

λ⃗n and invoke a set of instruction to determine which obfuscation function to use and in which
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order. Since we haveP , we can use it to describe each instance of λ⃗n with a short description. We

still have to describe the obfuscation functions. Assume O⃗ is a recursive enumerable set, then by

Lemma 2.33 it is sufficient to pin-point the index of obfuscation function O in a set O⃗ so that

K(F (< O⃗, λ⃗ >, P ) ∣P ) ≤K(λ⃗n∣P ) + log #O⃗.

Therefore, K(Ot⃗n(P, λ⃗n) ∣P ) ≤K(λ⃗n ∣P ) +O(logn).

Having provided the optimality in cases of multiple obfuscation, we turn to provide security

results in the following theorem.

Theorem 4.21. Consider a set of obfuscation functions O⃗ = {Ot1 , . . . ,Otn} and a set of security

parameters: λ⃗ = {λ1, . . . , λn} as before. Let P represent a program of length m. Assume that the

keys (security parameters) are random, ∀λi ∈ λ⃗,∃αi.K(λi) ≥m − αi; the segments are mutually

independent even in the presence of P , ∣K(λ⃗n)−∑ni=1K(λi∣P )∣ ≤ O(logm); independent from P ,

∀λi ∈ λ⃗,∃βi.K(λi ∣P ) ≥K(λi)−βi; and satisfyingK(Ot⃗n(P, λ⃗n) ∣P ) ≥K(λ⃗n ∣P )−O(logm).

Then the obfuscated code Ot⃗n(P, λ⃗n) is ∑ni=1{αi + βi}-secure up to a logarithmic term on the size

of P .

Proof.

IK(P ;Ot⃗n(P, λ⃗n)) =K(Ot⃗n(P, λ⃗n)) −K(Ot⃗n(P, λ⃗n) ∣P )

≤K(Ot⃗n(P, λ⃗n)) −K(λ⃗n ∣P ) +O(logm) by Lemma 4.20

by the assumption on randomness and independence of λ⃗

≤K(Ot⃗n(P, λ⃗n)) −
n

∑

i=1
K(λi ∣P ) +O(logm)

By the assumption on K(λi ∣P ) and K(λi):

≤m −
n

∑

i=1
{K(λi) − βi} +O(logm)

≤m −
n

∑

i=1
{m − αi − βi} +O(logm)

≤

n

∑

i=1
{αi + βi} +O(logm)
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4.5 Summary

In this chapter we provided a theoretical investigation of code obfuscation security. We defined

code obfuscation using Kolmogorov complexity and algorithmic mutual information. Our definition

allows for a small amount of secret information to be revealed to an adversary, and it gives an

intuitive guarantee about the security conditions that have to be met for secure obfuscation. We

argued our definition is more lenient than the virtual black-box model of Barak et al. and that for

that reason the impossibility result does not apply. In contrast, we showed that under reasonable

assumptions we can have secure obfuscation according to our definition.
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5 Modeling Adversaries using Kolmogorov

Complexity

In this chapter we propose a generic model for a code obfuscation adversary based on Algorithmic

Information Theory and Kolmogorov complexity. We provide a formal grounding, a general

description and a new definition of code obfuscation adversary including the adversary’s objectives.

We explore its potential and the attacking process.

5.1 Introduction

In all different aspects of information security, the adversary model represents the corner stone

for understanding and defining security of any system. In the previous chapter, the adversary

model was implicit in our definition of security: the adversary knows the obfuscated code and

its objective is to produce the original code. However, the definition we have provided, which is

based on Algorithmic Information Theory (as with Classical Information Theory), only accounts

for an adversary with unbounded computational power. There are no limits being imposed on

the adversary’s computational power, which evidently presents a very powerful attacker. As with

cryptography, this type of adversary is impractical, and there is almost no defence mechanism that

can resist such an attacker.

In the practical cases of attacking code obfuscation, the adversary is equipped with a limited

number of reverse engineering tools at her/his disposal, besides the bounded time. It is very

beneficial to consider such cases, although the context in which the attacker is operating is fully

open. This type of attack is called Man-at-End (MATE), where the adversary has full access to

the computational resources, including physical access to the device. S/he can execute, tamper,

modify and inspect hardware and software freely without any restriction. Our definition for

obfuscation security, which is based on algorithmic mutual information, implicitly models such a
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powerful adversary through the conditional Kolmorgorov complexity. However, its very important

to explicitly define such adversary by providing a formal attack model, which can demonstrate

her/his capabilities, goals, the attack process, and its limitation; hence, we can provide a rigorous

meaning for code obfuscation security. Furthermore, the adversary model has to account for the

situations where the adversary has a limited resources to use in the attack.

To the best of our knowledge, this is the first attempt to provide a formal and mathematical model

for a code obfuscation adversary; we are not aware of any formal model for a generic adversary

model for code obfuscation, apart from the traditional static and dynamic program analysis tools.

The remainder of this chapter is organised as follows. Section 5.2 describes the obfuscation

adversary model. In Section 5.3 we define a legitimate adversary. Section 5.4 investigates the

security of an obfuscated program, using multiple obfuscation transformations, against an adversary.

5.2 Obfuscation Adversary Model

5.2.1 Adversary Capabilities

To properly define security we need to specify the capabilities of our attacker. The most basic

case we are trying to capture is that of a human who seeks to obtain some original code from

an obfuscated version thereof, without the assistance of any automated tools. The difficulty of

the adversary’s task is measured by the amount of information that s/he lacks to obtain the target

code. If the obfuscation is weak, this will be small. A good obfuscation will force the adversary to

obtain more information to reach its target, possibly some of the randomness used to execute the

obfuscation in the first place.

At the other extreme, we have an adversary with access to a complete range of analysis tools.

S/He can execute the obfuscated code (which we refer to as a challenge) as many times as required;

s/he can run any program on the challenge (that is, it can execute any computable function of

the obfuscated code) to obtain static analysis information on that code or, on the other hand, to

produce modifications and variations of the challenge code, which s/he can subsequently run as

many times as needed. The adversary is not restricted in how many times s/he runs these functions

or modified obfuscated programs nor in what order. Ultimately, with all the information gathered

from this process, the adversary will attempt to produce a deobfuscated version of the program,

that is, well-structured code which is very similar to the original program and has less noise.
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This model equally captures automated reverse-engineering analysis techniques such as static

program analysis and dynamic program analysis (see Section 3.2). A distinction commonly made

in the literature is whether the attacker is passive or active. The first kind of adversary is limited to

analysing the source code of the challenge, but cannot run it nor modify it. The second adversary

can execute the challenge code and the modified versions thereof. We model these two kinds of

adversary in the choice of computable functions that are available to the adversary.

5.2.2 Adversary Goals

On the other hand, there is also some lee-way in the adversary’s goal. The most strict victory

condition is to produce the original code. More relaxed conditions would allow the adversary

to win if it could produce code that was close enough to the original source and had the same

functionality. In our scenario, the adversary already knows the functionality to a large degree.

If s/he did not, an adequate victory condition would be simply to produce as simple as possible

an equivalent version of the obfuscated code, which would mean the adversary had understood

the functionality and found a more compact implementation for it. But this does not mean the

adversary’s implementation is better than the original in some practical terms, for example, more

efficient. Our aim is to represent a situation where the obfuscated implementation of a specific

functionality holds some value for the attacker; although the latter might know the full functionality,

the way in which this is implemented is not known, and might be better in some practical terms

than all the implementations the adversary currently knows. Given the above, it seems to us that the

adversary’s goal must be to recover code as close as possible to the original, and definitely with

similar practical properties. This last requirement is difficult to formalise, because the possible

criteria are so many, so it is easier to settle with the strict condition.

5.2.3 Adversary Definition

In this section we provide a definition for a generic attacker for code obfuscation and software

protection based on Kolmogorov complexity. We start by providing a new definition for an adversary

(deobfuscator), in a similar way to the code obfuscation definition (see Definition 4.2).

Intuitively, an adversary with deobfuscation capabilities can be considered as a transformation of

an obscure program into a more intelligible program, which is functionally equivalent to the original

program [BF07]. Kolmogorov complexity can be used to define intelligibility as it measures the
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level of regularity in programs.

Definition 5.1. (Deobfuscation Adversary) A deobfuscation adversaryA ∶ P ′ → P is a function that

maps an obfuscated program to an approximate version of the original program. The deobfuscation

outcome, D(P ) = A(O(P,λ)), has the following properties:

• Functionality: for an obfuscated program O(P,λ) and its original code P , applying the

deobfuscation gives a program with the same functionality, i.e. : [[P ]] = [[D(P )]].1

• Polynomial Slowdown: for any obfuscated program O(P,λ), the size and running time of

D(P ) are at most polynomially larger than the size and running time of P i.e.:

∣D(P )∣ ≤ p(∣P ∣).

• Proximity: The deobfuscation is δ-close if :

∣K(P ) −K(D(P ))∣ ≤ δK(P )

for 0 ≤ δ ≤ 1

• Intelligibility: Deobfuscation is c-intelligible if:

∃c > 0 . K(O(P,λ)) ≥ cK(D(P ))

Where ∣P ∣ and ∣O(P,λ)∣ are of O(n).

The proximity property explains the situation where the adversary is trying to recover a program

that is as close as possible to the original program complexity; alternatively it can be stated in a

less compact form as ∣K(P ) −K(D(P ))∣ ≤ δK(P ). Additionally, the result code should not be

significantly more complex than the true original code, which means they must have also similar

Kolmogorov complexity. This prevents cases where the adversary has not sufficiently reduced the

complexity of the code, and has returned something that is probably still rather obfuscated. This

does not mean the original and the candidate programs have high mutual information and can be

easily derived from each other, it only means that they have similar amounts of information.

1If this cannot be checked, e.g due to a large function domain, the adversary must provide a formal proof that the
functionality is the same.
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The intelligibility property sounds intuitive here, because most of deobfuscation strategies by

passive and active adversaries, whether static or dynamic, are aiming at producing less complex

code, in order to make it as simple as possible for understanding. However, reducing the complexity

of obfuscated code does not provide a guarantee about adversaries’ abilities. Take for example

the obfuscated code in Fig. 4.2, consider an active adversary A who constructs, successfully, an

intelligible versionD(P ) ofO(P,λ), by replacing all these variables by meaningful ones. However,

by using the same reasoning of Proposition 4.9, D(P ) can be of higher complexity compared to

O(P,λ), as there is more information to be described in D(P ). Therefore, c-intelligibility is not

satisfied by this attack, although A managed to produce an intelligible program from O(P,λ).

This leads us to consider a further definition to compute the adversary’s outcome, where the

adversary’s success is captured by the notion of algorithmic mutual information. We consider

the revealed information about the original code as the adversary’s advantage in attacking the

obfuscated code. It can be stated formally as:

Definition 5.2. Given an obfuscated code O(P,λ) and an active adversary A; the adversary’s

advantage is defined as:

Adv
P,O(P,λ)
A = IK(P ;O(P,λ))

If A has α, which contains some knowledge about P , then:

Adv
P,O(P,λ)
A (α) = IK(P ;O(P,λ) ∣α)

The above definition is very similar to Definition 4.5, the adversary is implicitly considered

using conditional Kolmogorov complexity, with one difference: it accounts for an adversary A

with additional knowledge about P . The notation AdvP,O(P,λ)A does not indicate a different mutual

information nor a restrictive version. It explicitly states the existence of an adversary A that is

trying to describe P given the knowledge of the obfuscated version O(P,λ).

Having a high advantage AdvP,O(P,λ) means the obfuscated code is less secure and shows a

high capability for that adversary, and vise versa. However, this definition as it is cannot be used

to measure the adversary’s success at attacking the obfuscated code; if the advantage is equal to

γ, then the adversary reveals no more than what the defender wants the adversary to learn i.e. the

allowed information to be leaked, γ (see Definition 4.5).

The next proposition provides an example of how to compute an adversary’s advantage that
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attacks an obfuscated program. It shows that the adversary’s advantage coincides with the amount

of retrieved information from obfuscated code with only up to logarithmic precision.

Proposition 5.3. Consider a clear program P of length n with K(P ) ≥ n−α, for some α > 0, and

A an adversary that extracts at least m ≤ n consecutive bits of P from O(P,λ) then:

1. K(P ∣O(P,λ)) ≤ n −m +O(logn).

2. AdvP,O(P,λ)A ≥m + α +O(logn)

Proof. We prove this proposition by building the following algorithm:

Algorithm:

• Run A(O(P,λ)); we obtain m ≤ n bits of P . Denote this by ω.

• Now, run a program β such that P = (s1, s2) = β(ω) which computes two blocks of bits:

those that come before and those that come after ω in P .

To produce P , β needs at most to produce the pair of two strings (s1, s2) with combined

length n −m. To describe the pair, we need at mostO(logn) bits saying where to divide s1

from s2. Thus, K(β) ≤ ∣β∣ ≤ n −m +O(logn).

By construction, K(P ∣O(P,λ)) + O(1) ≤ K(β) + O(1) ≤ n − m + O(logn). Using the

assumption aboutK(P ), it is straight forward to compute IK(P,O(P,λ)) ≥m+α+O(logn).

An adversary can fully obtain P , with only a logarithmic error, if s/he knows λ, the security

parameter (obfuscation key) that is used to obfuscate.

Lemma 5.4. Given an obfuscated programO(P,λ), for an adversaryA who knows λ, the security

parameter.

1. K(P ∣O(P,λ), λ) = O(logn).

2. AdvP,O(P,λ)A (λ) =K(P ∣λ) −O(logn).

where n is the length of P,A and λ.

Proof. By secrecy property of Definition 4.2, λ ∈ L contains all that A needs to obtain P

from O(P,λ). The shortest program for a Universal Turing machine U that describes P given

A,O(P,λ) and λ, is logarithmic; as it is sufficient for U to describe P from A,O(P,λ) and λ
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using just O(logn), which is the overhead cost required by U to combine A,O(P,λ) and λ and to

locate them on U tape. The advantage of A given λ is obtained as follows:

Adv
P,O(P,λ)
A (λ) = IK(P ;O(P,λ) ∣λ) by Definition 5.2

=K(P ∣λ) −K(P ∣O(P,λ), λ)

=K(P ∣λ) −O(logn)

These results are not surprising. Intuitively, an adversary can easily recover the original code

from the obfuscated version once the security parameter that is used for obfuscation is known. This

is an extreme case where the adversary has a possession of the security parameter, which it can be

used to fully deobfuscate the obfuscated code.

If the adversary has a prior information about the original code or the security parameters used

in the obfuscation process, then we can use the result of the next theorem to estimate its outcome,

based on the complexity of the clear code and the security parameter, which shows the amount of

resilience of code obfuscation against the adversary.

Theorem 5.5. For an adversary A:

Adv
P,O(P,λ)
A ≥K(P ) −min{K(P ),K(λ)} −O(logn)

Adv
P,O(P,λ)
A (α) ≥K(P ∣α) −min{K(λ ∣α),K(P ∣α)} −O(logn)

where n is the length of P,A, λ and α.

Proof. K(P ∣O(P,λ)) ≤ K(P ) by Theorem 2.27, and K(P ∣O(P,λ)) cannot exceed K(λ)

i.e. K(P ∣O(P,λ)) ≤ K(λ), as P can be recovered using O(P,λ) and λ by Lemma 5.4, and

Theorem 2.30. Therefore K(P ∣O(P,λ)) ≤ min{K(P ),K(λ)} +O(logn), since Kolmogorov

complexity require the shortest possible program.

The proof to the conditional part, is very similar to the above proof with a minor change, it just

requires adding α to both sides of inequality i.e. having K(P ∣O(P,λ), α).

The previous theorem sets the lower bound on adversary’s advantage. In Lemma 5.4 we provide

an extreme case where the adversary has the security parameter, which is used to fully deobfuscate
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the protected code. Intuitively, the adversary’s advantage, in this case, is the best result that the

adversary can achieve. The next theorem states these intuitions formally, by providing the upper

bound on the adversary capabilities.

Theorem 5.6. For an adversary A:

Adv
P,O(P,λ)
A ≤K(P ) −O(logn)

where n is the length of P,A and λ.

Proof. To prove this inequality, we follow the same methodology that was used to proof Muchnik’s

Theorem [Muc11], with changes that fit our theory. We constructO(P,λ) = P ⊗λ as an obfuscated

version of P using λ, where ⊗ is an operator used to obfuscate (encode or hide see Section 4.3).

Applying the results of Lemma 5.4, we obtain P = A(O(P,λ)) ⊗ λ, the outcome of attacking

O(P,λ) when λ is known to A. Using the conditional description of Theorem 2.30, we can

construct λ′ such that K(λ′ ∣λ) = O(logn), here λ′ is relatively simple compared to K(λ) with

only a logarithmic difference. Now, we have the following derivations, with only a logarithmic

term in each step:

K(P ∣O(P,λ)) =K(λ,O(P,λ) ∣O(P,λ)) +O(logn)

by Theorem 2.30

=K(λ,λ′,O(P,λ) ∣O(P,λ)) +O(logn)

from λ′ and O(P,λ), A can construct P , according to Lemma 5.4

=K(λ,P ∣O(P,λ)) +O(logn)

=K(λ,P,O(P,λ)) −K(O(P,λ)) +O(logn) by Theorem 2.36

≥K(λ,P ) −K(O(P,λ)) +O(logn)

≥K(λ,P ) −K(P,λ) +O(logn) by Theorem 2.28

By symmetry of information, Theorem 2.36, we have

≥ O(logn).
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Now, it is straightforward to compute the algorithmic mutual information:

Adv
P,O(P,λ)
A ≤K(P ) −O(logn).

The above result provides a upper bound on the adversary’s power, which shows that the

adversary’s advantage should not exceed the complexity of the original code. Intuitively, it shows

the maximum knowledge (the clear program) that an adversary hopes to extract from the obfuscated

program.

5.3 Legitimate Adversary

It is customary to first fix an adversary and then select the challenge at random, so that the adversary

cannot be tailored to a specific instance, i.e. the adversary has no information at all about the

messages that are used to construct the challenge. This then leads to a probabilistic analysis of the

success of the adversary.

Kolmogorov Complexity theory is used to analyse individual instances and avoid the analysis of

probabilistic ensembles, and this is the route we follow in our approach. We intend to guarantee

that the adversary holds no information about the plain code, but instead of requiring this to be

picked at random, we simply state that the mutual information between the plain code and the code

of a legitimate adversary must be very low.

Our model of security is focused on individual instances of an obfuscation process, instead of

considering at the same time all possibilities. This makes analysis much easier in a practical setting,

since we can choose a particular case of obfuscated code and analyse its security without having

to consider all other cases. This also shifts the focus of the security definition in the direction of

actual examples of obfuscated code, and away from the obfuscator algorithm per se.

Definition 5.7 (Legitimate Adversary). An adversary A is said to be legitimate if and only if:

IK(P ;A) = O(1).

IK(P ;A) = O(1) excludes the trivial case where a particular adversary already knows the

source code or a good deal of it, and could therefore win without having any ’intelligence’ to undo
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the obfuscation. For a particular obfuscates instance, it is always possible to find a deterministic

algorithm that trivially undoes the obfuscation: for example, an algorithm that simply ‘knows’ the

solution and prints it. Since A can print P even without knowledge of O(P,λ), K(P ∣A) = O(1)

and so I(P ;A) =K(P ) −O(1). This case is excluded by this mutual information requirement.

Another trivial algorithm is one that does not have any particular intelligence for a general

obfuscated program: it just has a hard-coded list of changes that revertO(P,λ) to P , for example,

a list of the steps in obfuscation process detailing the state before and after that step. But then, this

means A already contains in its code parts that are specific to P : some attacker can look into A

and thus reconstruct these parts of P even without knowing O(P,λ). The complexity of these

parts is the information contained in A about P and if P and O(P,λ) are reasonably different, the

complexity of this list will be larger than O(1).

This case is subtly different from one where the obfuscation process is so weak; it is possible

to write a simple reversal algorithm, say, R, that simply undoes each step of O. In this case, A

would use R as a list of steps to turn O(P,λ) into P , much like in the previous case, but with the

difference that these can be applied to any obfuscated instance O(P,λ) of this obfuscator. For

example, containing instructions that convert a particular structure into another, or add or remove

specific letters to a variable name. In this case, A knows R, but this does not have any information

about a specific P , which makes A a legal adversary, giving evidence that O is a bad obfuscator

and instances computed from it are weak.

5.4 The Case of Multiple Obfuscation Transformations

So far we have studied the adversary’s advantage for a single obfuscation transformation. In this

section we investigate the advantage of an adversary attacking an obfuscated program, which

is obfuscated by applying rounds of different obfuscation algorithms in an iterative way. The

following theorem shows the resilience against an attacker.

Theorem 5.8. Given Ot⃗n(P, λ⃗n) an obfuscation function that is applied recursively n times to P ,

using a set of different obfuscation functions: O⃗ = {Ot1 , . . . ,Otn} and a set of security parameters:

λ⃗ = {λ1, . . . , λn} such that: Ot⃗n(P, λ⃗n) = Ot⃗n−1.t1(P, λ⃗n−1.λ1) = Ot⃗n−1(Ot1(P,λ1), λ⃗n−1), for
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an adversary A with knowledge α:

Adv
P,Ot⃗n

(P,λ)
A (α) ≥K(P ) −min{K(P ∣α),K(λ1 ∣α), ...,K(λn ∣α)} −O(logn)

where n is the length of P,A(O(P,λ)) and α.

Proof. We use induction to proof this theorem:

• Base case: using Theorem 5.6

K(P ∣Ot1(P,λ1), α) ≤ min{K(P ∣α),K(λ1 ∣α)} +O(logn)

• Inductive case: let

∀i ∈ N.K(P ∣Ot⃗i(P, λ⃗i), α) ≤ min{K(P ∣α),K(λ1 ∣α), ...,K(λi ∣α)} +O(logn)

then we need to prove:

∀i ∈ N.K(P ∣Ot⃗i+1(P, λ⃗i+1), α) ≤ min{K(P ∣α),K(λ1 ∣α), ...,K(λi+1 ∣α)} +O(logn)

K(P ∣Ot⃗i+1(P, λ⃗i+1), α) =K(P ∣Oti+1(Ot⃗i(P, λ⃗i), λi+1), α)

By Theorem 5.6 and inductive case:

≤ min{K(P ∣α),K(λ1 ∣α), ...,K(λi ∣α),K(λi+1 ∣α)} +O(logn)

Then, by Definition 5.2 we compute:

Adv
P,Ot⃗n

(P,λ)
A (α) ≥K(P ) −min{K(P ∣α),K(λ1∣α), ...,K(λn∣α)} −O(logn)

The previous results demonstrate the effect of different obfuscation techniques with different

security parameters, applied to clear code. The next theorem shows the adversary’s advantage

when the same obfuscation technique, with the same security parameter, is applied iteratively to the

original code.
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Theorem 5.9. Let On(P,λ)) denote an obfuscation function that is applied recursively n times to

P such that : On(P,λ) = O1
(O

n−1
(P,λ), λ), where O1

(P,λ) = O(P,λ), for an adversary A:

Adv
P,On(P,λ)
A ≥K(P ) −min{K(P ),K(λ)} −O(logn)

where n is the length of P , and A.

Proof. Similarly to the proof of Theorem 5.8,

Adv
P,On(P,λ)
A ≥K(P ) −min{K(P ),

n
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

K(λ) + ... +K(λ)} −O(logn)

Then, by Definition 5.2 : AdvP,O
n(P,λ)

A ≥K(P ) −min{K(P ),K(λ)} −O(logn).

From the above results, we conclude that the resilience of obfuscated code, which is measured

by adversary’s advantage AdvP,O
n(P,λ), does not improve as the results of multiple obfuscation

using the same security parameters, and the same obfuscation technique. On the other hand, the

resilience of applying different obfuscation techniques with different security parameters depends

on the Kolmogorov complexity of the security parameters used by different obfuscation techniques.

If the security parameters have a high level of independence, i.e. have no shared information with

the original code, then they guarantee a high level of security.

5.5 Summary

In this chapter we introduced a new generic model for code obfuscation based on algorithmic

information theory. We provided a new definition for an obfuscation adversary and provide the

security properties that characterise the success conditions for code obfuscation adversary. We

investigated the security of an obfuscated program, using multiple obfuscation transformations,

against an adversary.
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6 A Theoretical Framework to Measure Code

Obfuscation

The purpose of this chapter is to introduce quantitative metrics for software obfuscation. We propose

a mathematical framework to measure the quality of code obfuscation, by providing metrics based

on Kolmogorov complexity, information distance and compression.

6.1 Introduction

Many obfuscation transformation techniques were proposed in the past, which intuitively can make

the program difficult to understand and harder to attack; however, there are no practical security

metrics, justified theoretically and empirically, to measure the effectiveness of these obfuscation

transformation techniques.

Several attempts were made to provide concrete metrics for evaluating obfuscation [CTL97,

AMDS+07], using classical complexity measures. However, most of these metrics are still context

dependent and differ among development platform, and therefore it is very hard to standardise

them. There is a need to evaluate how obfuscating and deobfuscating transformations affect

the understanding of the program, and measure the strength of seemingly resilient obfuscating

transformations against reverse engineering and program analysis attacks. This reason and the fact

that there are currently no provable security metrics to measure the quality of the code obfuscation

leads to the following questions:

1. Can we derive from Algorithmic Information Theory quantitative metrics, with practical

relevance, which can be used to measure the protection level in code obfuscation?

2. How to evaluate the usefulness of these metrics?
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In this chapter we are aiming to answer these questions. First, we propose a novel metric for code

obfuscation that is based on Kolmogorov complexity and compression. Then we apply the Weyuker

validation framework [Wey88] to check whether Kolmogorov complexity is theoretically sound

as software metric. We also show that software-similarity metrics, such as information distance

[LCL+04] that measures the similarity between two blocks of code, can provide a plausible way to

reason about the amount of security of code obfuscation.

In order to evaluate the quality of code obfuscation using similarity metrics, we have to capture

quantitatively the degree of confusion in code transformations, taking into account the attacker’s

capabilities. The aim of using information distance is to quantify the amount of obscured code that

remains or is lost when the program is debofuscated.

Similarity metrics are used to determine the diversity of the generated code; however, it does not

mean anything in terms of security. We have to establish a way to relate the level of confusion in

code obfuscation to the degree of difference in infomation distance between obfuscated code and

its original code.

We adapt the work of Li et al. [LCL+04] on the notion of information distance, and extend their

theoretical work to reason about the quality of code obfuscation by relating information distance to

the security in code obfuscation that was established in the previous chapters.

We formalise the notion of unintelligibility index (degree of confusion introduced) and normalised

Kolmogorov complexity, and show that information distance metric is a suitable measure for code

obfuscation security. In particular, we demonstrate that the information distance between a program

and its obfuscated version tends to be bigger if the level of confusion used is higher.

Chapter layout: In Section 6.2 we provide an overview of algorithmic information distance.

Section 6.3 provides a theoretical metric validation for Kolmogorov complexity based on Weyuker’s

complexity axioms. In Section 6.4, we propose a quantitative model to measure code obfuscation

based on algorithmic information theory, which comprises a set of metrics : unintelligibility index,

normalised Kolmogorov complexity and compression, normalised compression distance, and code

obfuscation stealth.
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6.2 Information Distance

Li et al. [LCL+04] formalised the notion of information distance, a similarity measure, using Kol-

mogorov complexity and compression. They showed that the information distance satisfies metric

axioms [BGM+98] and can be used as a measure of distance; their work was used successfully

in the context of bioinformatics measuring the similarities among mitochondrial DNA genomes,

also in pattern recognition, data mining, phylogeny [CV05], malware clustering and classification

[ABCD15].

The informational distance or similarity distance between two binary strings, x and y, is the

quantity of information sufficient to translate between x and y, generating either string effectively

from the other. Formally, it is defined as follows.

Definition 6.1 (Information Distance [BGM+98]). The information distance DK(x, y) is defined

as the shortest binary program that computes both x from y and y from x, such that

DK(x, y) = max{K(x ∣ y),K(y ∣x)}.

The maximum distance is the shortest program (shortest length of a binary program) that

computes a maximum amount of information to get from x to y and from y to x, i.e. to measure

the absolute quantity of the shared information between x and y.

We can define a conditional version of information distance, which intuitively explains the

situation where the information distance supplied by extra information that contributes to the

translation between two binary strings x and y. This auxiliary information contributes to the

information distance by providing extra to compute x from y, and vice versa.

Definition 6.2 (Conditional Information Distance). The conditional information distanceDK(x, y ∣ z)

is defined as the shortest binary program that computes both x from y and y from x, conditioned to

z, such that

DK(x, y ∣ z) = max{K(x ∣ y, z),K(y ∣x, z)}

The conditional version of information distance computes the information content that goes from

x to y and the information from y to x relative to an auxiliary information z.

The relative quantity of shared information between two binary strings x and y is measured by

the normalised information distance (NID), which was introduced by Li et al. [LCL+04].
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Definition 6.3 (Normalised Information Distance [LCL+04]). The normalised information distance

NIDK is defined as

NIDK(x, y) =
max{K(x ∣ y),K(y ∣x)}

max{K(x),K(y)}
.

Dividing by max{K(x),K(y)} normalises the information distance to take a real value between

0 and 1. In the next definition, we extend the normalised information distance and propose a

conditional version of it.

Definition 6.4 (Conditional Normalised Information Distance). The normalised information dis-

tance conditioned to string z is defined as

NIDK(x, y ∣ z) =
max{K(x ∣ y, z),K(y ∣x, z)}

max{K(x ∣ z),K(y ∣ z)}
.

The normalised version of information distance was proved to satisfy the metric axioms in

[LCL+04]; however, we need to make sure that the conditional version we introduced above also

satisfies the axiom metrics, see Definition 2.42. We proceed by considering the following Lemma,

which is similar to the directed triangle inequality in [GTV01], but only for the conditional version.

Lemma 6.5. (Conditional triangle inequality) Let x, y, z and u be strings.

K(x ∣ y, z) ≤K(x,u ∣ y, z) ≤K(x ∣u, z) +K(u ∣ y, z)

up to a logarithmic term.

Proof. Let p be a minimal program that produces x given u, z, and q a minimal program that

produces u given y, z. That is, ∣p∣ =K(x ∣u, z) and ∣q∣ =K(u ∣ y, z).

Then, we can produce a program r that takes inputs y, z and computes

⟨x,u⟩ = ⟨p(q(y, z), z), q(y, z)⟩,

using programs p, q. A description of r includes a description of p and q plus some negligible code

to sequence them (a logarithmic term), and so K(x,u ∣ y, z) ≤K(x ∣u, z) +K(u ∣ y, z).

Finally, by basic properties of Kolmogorov complexity, K(x ∣ y, z) ≤K(x,u ∣ y, z).
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Lemma 6.6. For string x, y and z, if K(x ∣ z) ≥K(y ∣ z), then K(x ∣ y, z) ≥K(y ∣x, z), up to an

logarithmic term.

Proof. By Definition 2.37 and symmetry of mutual information (Theorem 2.36), we have, up to a

logarithmic term:

IK(x, y ∣ z) =K(y ∣ z) −K(y ∣x, z) =K(x ∣ z) −K(x ∣ y, z).

Then, K(x ∣ z) −K(y ∣ z) =K(x ∣ y, z) −K(y ∣x, z) ≥ 0, which proves the lemma.

Theorem 6.7. Given three strings x, y and z, the conditional normalised information distance

NIDK(x, y ∣ z) satisfies the metric axioms (Definition 2.42) up to a logarithmic term.

Proof. we need to show that NIDK(x, y ∣ z) satisfies the following distance metric axioms:

(Identity). We have: K(x ∣x, z) = O(1) andK(x ∣ z) ≥ 0, implying NIDK(x,x ∣ z) = O(
1

K(x ∣ z)).

(Symmetry). This is obvious by definition of NIDK : NIDK(x, y ∣ z) = NIDK(y, x ∣ z).

(Triangle inequality). By Lemma 6.5,

max{K(x ∣ y, z),K(y ∣x, z)} ≤max{K(x ∣u, z) +K(u ∣ y, z),K(y ∣u, z) +K(u ∣x, z)}

≤max{K(x ∣u, z),K(u ∣x, z)} +max{K(y ∣u, z),K(u ∣ y, z)}

and so

NIDK(x, y ∣ z) ≤
max{K(x ∣u, z),K(u ∣x, z)}

max{K(x ∣ z),K(y ∣ z)}
+

max{K(y ∣u, z),K(u ∣ y, z)}
max{K(x ∣ z),K(y ∣ z)}

We proceed by considering the following two cases for the denominator:

Case 1: K(u ∣ z) ≤ max{K(x ∣ z),K(y ∣ z)}. This implies:

max{K(x ∣ z),K(y ∣ z)} ≥ max{K(x ∣ z),K(u ∣ z)} and

max{K(x ∣ z),K(y ∣ z)} ≥ max{K(y ∣ z),K(u ∣ z)}

then,

NIDK(x, y ∣ z) ≤
max{K(x ∣u, z),K(u ∣x, z)}

max{K(x ∣ z),K(u ∣ z)}
+

max{K(y ∣u, z),K(u ∣ y, z)}
max{K(y ∣ z),K(u ∣ z)}

≤ NIDK(x,u ∣ z) +NIDK(u, y ∣ z).
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Case 2: K(u ∣ z) ≥ max{K(x ∣ z),K(y ∣ z)}.

Assume without loss of generality that K(x ∣ z) ≥K(y ∣ z). Using Lemma 6.6, we can solve

the max terms and reduce the proof to:

K(x ∣ y, z)

K(x ∣ z)
≤

K(u ∣x, z)

K(u ∣ z)
+

K(u ∣ y, z)

K(u ∣ z)
(6.1)

Dividing the triangle inequality of Lemma 6.5 by K(x ∣ z), we have:

K(x ∣ y, z)

K(x ∣ z)
≤

K(x ∣u, z) +K(u ∣ y, z)

K(x ∣ z)

Let K(u ∣ z) =K(x ∣ z)+δ, and by symmetry of information (see Theorem 2.36): K(u ∣ z)+

K(x ∣u, z) =K(x ∣ z) +K(u ∣x, z), thus K(u ∣x, z) =K(x ∣u, z) + δ.

Again we have two sub-cases:

If K(x ∣u,z)+K(u ∣y,z)K(x ∣ z) ≤ 1, then

K(x ∣ y, z)

K(x ∣ z)
≤

K(x ∣u, z) +K(u ∣ y, z)

K(x ∣ z)

≤

K(x ∣u, z) +K(u ∣ y, z) + δ

K(x ∣ z) + δ

=

K(u ∣x, z) +K(u ∣ y, z)

K(u ∣ z)
.

If on the other hand K(x ∣u,z)+K(u ∣y,z)
K(x ∣ z) ≥ 1, then we observe that K(x ∣y,z)K(x ∣ z) ≤ 1 and whatever

the value of δ ≥ 0, we will always have

K(u ∣x, z) +K(u ∣ y, z)

K(u ∣ z)
=

K(x ∣u, z) +K(u ∣ y, z) + δ

K(x ∣ z) + δ
≥ 1.

In either case, inequality 6.1 is proven, and so is the theorem.

NIDK is mathematically exact and dimensionless [Arb11], but cannot be calculated effectively,

since the Kolmogorov complexity in general is non-computable [CT06], we can only hope to

calculate an approximation. As was shown in [LCL+04], it is possible to approximate Kolmogorov

complexity using a lossless compressor, and subsequently, approximate information distance using
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lossless compression. First, we simplify the information distance and compute its conditional

complexity, using the following definitions.

Definition 6.8 (Information Distance[LCL+04]). The information distance DK(x, y) based on

Kolmogorov complexity can be redefined as:

DK(x, y) =K(x, y) −min{K(x),K(y)}

up to an additive logarithmic term O(logK(x, y)).

Similarly, we can redefine the conditional information distance.

Definition 6.9 (Conditional Information Distance). The information distance DK(x, y) condi-

tioned to a string z, based on Kolmogorov complexity, can be redefined as:

DK(x, y ∣ z) =K(x, y ∣ z) −min{K(x ∣ z),K(y ∣ z)}

up to an additive logarithmic term O(logK(x, y ∣ z)).

The above definition can be further simplified as per the following proposition.

Proposition 6.10. For all binary strings x, y and z.

DK(x, y ∣ z) =K(x, y, z) −min{K(xz),K(yz)}

Proof. Using Theorem 2.36 we can write K(x, y ∣ z) = K(x, y, z) −K(z), K(x ∣ z) = K(xz) −

K(z) and K(y ∣ z) =K(yz) −K(z). The conditioned information distance becomes:

DK(x, y ∣ z) =K(x, y, z) −K(z) −min{K(xz) −K(z),K(xz) −K(z)}

=K(x, y, z) −K(z) −min{K(xz),K(xz)} +K(z)

=K(x, y, z) −min{K(xz),K(yz)}

Based on the above and Kolmogorov complexity approximation using real compression mecha-

nisms, NIDK can be expressed as a normalised compression distance (NCD).
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Definition 6.11 (Normalised Compression Distance [LCL+04]). The normalised compression

distance (NCD) of two binary strings x and y is defined by

NCD(x, y) =
C(xy) −min(C(x),C(y))

max(C(x),C(y))
.

NCD(x, y) is a nonnegative number belonging to {r ∈ R ∣0 ≤ r ≤ 1} that represents how different

the two binary strings are. Smaller numbers represent more similar binary strings; ifx = y and the

compressor (C) is normal, then:

NCD(x,x) =
C(xx) −C(x)

C(x)

= O(
log ∣x∣)

C(x)
) by the idempotency property of Definition 2.39

Ð→ 0 as ∣x∣→∞

Therefore, if the binary sequence is large enough and the idempotency property holds up to a

logarithmic term, then the identity property is preserved [CAO05]. Moreover, Cilibrasi et al.

[CV05] shows that using a normal compressor (see Definition 2.39) to approximate the normalised

information distance, NCD is a valid distance measure as it satisfies the metrics axioms.

Similarly, the conditional version of NIDK can be approximated using real compression mecha-

nisms, as a conditional normalised compression distance.

Definition 6.12 ( Conditional Normalised Compression Distance). The normalised compression

distance (NCD) of two binary strings x and y conditioned to z is defined by

NCD(x, y ∣ z) =
C(xyz) −min(C(xz),C(yz))
max(C(xz),C(yz)) −C(z)

.

The conditional normalised compression trivially satisfies the identity and symmetric axioms, in

a similar way to Theorem 6.7; however, it is not clear whether it satisfies the triangle inequality

axiom, which will be reserved for future work.
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6.3 Theoretical Metric Validation

Obfuscated programs are software in the first place. Measuring obfuscation means that, we are

quantifying some software properties that may reflect the code’s security. Although the security

property is captured ’partially’1 using unintelligibility according to Definition 4.1, Kolmogorov

complexity requires validation to ensure its acceptance, usefulness and soundness as a software

metric. Theoretical validation is considered as a necessary step before empirical validation. Several

properties have been suggested for theoretical validating of software complexity measures such as

Weyuker [Wey88] and Briand et al. [BMB96]. Among the proposed models, Weyuker’s validation

properties, despite the criticisms that were received [TZ92], have been broadly applied to certify

many complexity measures, and are still an important basis and general approach to certify a

complexity measure [BMB96].

Weyuker proposed nine properties or axioms for complexity validation; we will apply these prop-

erties to validate Kolmogorov complexity.2 There are some concepts in Weyuker’s properties that

require some clarification in the context of Kolmogorov complexity such as functional equivalence,

composition of any two programs, permutation of statements order, and renaming.

• Functional equivalence: Two programs P and Q, which belong to a set of binary strings

{0,1}+, are said to have the same functionality if they are semantically equivalent i.e. given

identical input, the output of the two programs are the same, i.e. [[P ]] = [[Q]].

• Composition : Although Weyuker did not include any formal relation to identify the composi-

tion of two programs, we consider the composition in the context of Kolmogorov complexity

as the joint Kolmogorov complexity, which can be expressed as the concatenation of two

programs P and Q that belong to a set of binary strings, before applying the complexity

measure. K(P,Q) = K(⟨P,Q⟩) = K(P ∥Q) up to a logarithmic term,3 where ∥ is the

concatenation between programs.

• Permutation: A program P ∈ {0,1}+ can be composed of concatenated sub-binary strings

pi ⊂ P ; for example, it may represent program instructions, such that: P = p1 ∥ ... ∥ pn. The

1There are other related definition for code obfuscation based on algorithmic mutual information (see Definition 4.6).
2Kolmogorov complexity is approximated using compression. The validation can be, also, conducted using lossless

compression instead, which yields approximately the same result.
3The logarithmic term is required in order to account for the computational cost finding the beginning and the end of

each program.
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permutation involves changes in the order or the structure of how these binary sub-strings are

represented in P .4

• Renaming: Renaming refers to syntactic modification of a program’s identifiers, variables

and modules names.

Weyuker’s validation properties are presented in the following.

Definition 6.13 (Weyuker’s Validation Properties [Wey88]). A complexity measure Co ∶ P → R is

a mapping from a program body to a non-negative real number and has the following properties:

1. Not constant: ∃P,Q. Co(P ) ≠ Co(Q). This property ensure the complexity measure is not

constant.

2. Non-coarse: Given a non-negative number c, there are only a finite number of programs

such that Co(P ) = c.

3. Non-uniqueness: ∃P,Q. P ≠ Q ∧ Co(P ) = Co(Q). This property ensures that there are

multiple programs of the same size.

4. Functionality: ∃P,Q. [[P ]] = [[Q]] ∧Co(P ) ≠ Co(Q). It expresses that there are function-

ally equivalent programs with different complexities.

5. Monotonicity: ∀P,Q. Co(P ) ≤ Co(P ∥Q)∧Co(Q) ≤ Co(P ∥Q). This property checks for

monotonic measures. It states that adding to a program increases its complexity.

6. Interaction matters (a): ∃P,Q,R. Co(P ) = Co(Q)∧Co(P ∥R) ≠ Co(Q∥R). This property

explains the interaction of two programs of equal complexity with an auxiliary concatenated

program. It states that a program R may produce different complexity measure when

composed with two programs P and Q of equal complexity.

Interaction matters (b): ∃P,Q,R. Co(P ) = Co(Q)∧ Co(R∥P ) ≠ Co(R∥Q). This property

is similar to the previous except that the identical code (R) is added at the beginning of the

programs P and Q.

7. Permutation is significant: Let π(P ) be a permutation ofP ’s statements. Then ∃P. Co(P ) ≠

Co(π(P )). This expresses that changing the order of statements may change the complexity

of the program.
4The permutations in the order of these binary sub-strings, may or may not change the semantics of the program.
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8. Renaming: If P is a renaming ofQ, P = Rename(Q), then Co(P ) = Co(Q). This property

asserts that uniformly renaming variable names should not change a program’s complexity.

9. Interaction may increase complexity: ∃P,Q. Co(P ) +Co(Q) ≤ Co(P ∥Q). This property

states that a merged program of two programs can be more complex than its component

parts.

The Renaming property as suggested by Weyuker is not desirable for code obfuscation. Function-

ally it is true, a renaming of variables does not in any way alter the structure of the code. However,

it is easy to see that it can make human understanding much more difficult. A good programming

practice is to use clear names for variables and methods, that explain accurately what they do

and go a long way towards reducing the necessity of comments in the code. Conversely, long

random names obscure their meaning by which forcing the analyst to follow the program’s logic to

understand their functionality. From a Kolmogorov point of view, meaningful names have a smaller

complexity than long random ones, and thus a program with renamed variables might well have a

different complexity than the original one. We consider this property no further.

Weyuker argued that property 9 helps to account for a situation in which a program’s complexity

increases as more additional components are introduced, due to the potential interaction among

these parts. Briand et al. [BMB96] provided a modified version of this property (a stronger

version) called Disjoint Module Additivity, which establishes a relation between a program and

the complexity of its parts. Given two disjoint modules m1, m2 such that P = m1 ∥m2 and

m1 ∩m2 = ∅ where P is the whole program, then Co(m1) +Co(m2) = Co(P ).

Below we check whether these properties are satisfied by Kolmogorov complexity.

Proposition 6.14 (Not constant). ∃P,Q.K(P ) ≠K(Q).

Proof. By simple counting, there are at most 2n programs with Kolmogorov complexity at most n.

Therefore, there must be programs with Kolmogorov complexity larger than n and so there must be

programs with distinct complexities.

Proposition 6.15 (Non-coarse). Given a non-negative number c, there are only a finite number of

programs such that K(P ) = c, i.e.

∃d ∈ N.∣{P ∈ {0,1}+∣K(P ) = c} ∣ ≤ d.
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Proof. According to Theorem 4.2.4 in [CT06] the number of strings, and so programs as they are

binary strings too, of Kolmogorov complexity that are less than or equal toc, is upper bounded by

2c, i.e. ∣S = {P ∈ {0,1}+ ∣K(P ) ≤ c}∣ ≤ 2c, which means the set S is finite.

Proposition 6.16 (Non-uniqueness). ∃P,Q.P ≠ Q ∧K(P ) =K(Q).

Proof. Construct a set Q of prefix-free code with 2n strings of length up to n, namely, Q composed

only of all the strings of length n. By basic properties of Kolmogorov complexity (Theorem 2.27)

the elements of Q have complexity at most n +O(1) such that ∀q ∈ Q.K(p) ≤ n. Therefore, by

the pigeon-hole principle there must be strings with the same complexity.

Proposition 6.17 (Functionality). ∃P,Q.[[P ]] = [[Q]] ∧K(P ) ≠K(Q).

Proof. In general, one same function can be produced by several different implementations that

might bear little resemblance (e.g. different sorting algorithms, all producing the same result).

Therefore, in general their complexities will be different. For an extreme example, consider a

program P and let Q = P ∥ R, where R is an added program that does not touch on any of

the variables, memory or other resources of P and does not return results. It takes resources

and does work, but ultimately Q just returns what P returns. Then, [[P ]] = [[Q]] and K(Q) =

K(P ) +K(Q ∣P ) ≥ K(P ). And because Q has to be independent from P in order to use other

resources, it must be that K(Q ∣P ) =K(Q) and the inequality is strict.

Proposition 6.18 (Monotonicity). ∀P,Q. K(P ) ≤K(P ∥Q) ∧ K(Q) ≤K(P ∥Q).

Proof. We need to prove that K(P ∥ Q) is greater than K(P ) and K(Q). By Theorem 2.36,

K(P,Q) = K(P ) +K(Q ∥ P ). Up to a logarithmic term (see [LV08] page 663), K(P ∣Q) =

K(P,Q) =K(P )+K(Q ∣P ). By definition, K(Q ∣P ) ≥ 0 and so K(P ) ≤K(P ∥Q). The proof

is similar for K(Q).

Proposition 6.19 (Interaction matters). (a) ∃P,Q,R. K(P ) = K(Q) ∧K(P ∥R) ≠ K(Q ∥R)

and (b) ∃P,Q,R. K(P ) =K(Q) ∧K(R ∥ P ) ≠K(R ∥Q).

Proof. Assume the existence of two binary programsP,Q such thatK(P ) =K(Q) and IK(P ;Q) =

O(1). Let R = P then, we have that up to a small logarithmic factor (see [LV08] page 663) and by

Theorem 2.36: K(P ∥R) = K(P,R) = K(P ) +K(R ∣P ) = K(P ) +O(1). On the other hand,
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K(Q ∥R) =K(Q,R) =K(Q)+K(R ∣Q) =K(P )+K(R) where the last equality follows from

the definition of mutual information (see Definition 2.35). IfR must be different from both P and

Q, then we can repeat the same proof by picking a program R that has high IK(P ;R) but small

IK(Q;R), for example.

Proposition 6.20 (Permutation). Given a permutation π, ∃P. K(P ) ≠K(π(P )).

Proof. Fix a program P with n distinct lines, each at mostm bits long. There are n! permutations

of P , and because the lines are all distinct these lead to n! different permuted programs. We

show that there must be a program Q corresponding to some permutation π, Q = π(P ), such that

K(Q) >K(P ). By construction, ∣P ∣ ≤mn and so there are at most 2mn strings with complexity

smaller or equal to P . By Stirling’s formula 5, lnn! = n ⋅ lnn − n + O(lnn). Pick n such that

lnn > ln(2) ⋅m + 1, which implies n ⋅ lnn − n > ln(2) ⋅mn so n! > 2mn. Then there are more

permuted programs more complex than P , and at least one permutation leads to a program more

complex than P .

Proposition 6.21 (Disjoint Module Additivity). ∃P,Q.K(P ) +K(Q) =K(P ∥Q).

Proof. K(P,Q) = K(P ) +K(Q ∣P ) by Theorem 2.36. Assume P ∩Q = ∅, then K(Q ∣P ) =

K(Q) since the two programs are fully independent; therefore, K(P,Q) =K(P ∥Q) =K(P ) +

K(Q) up to logarithmic precision.

The above results show that Kolmogorov complexity satisfies all Weyuker’s properties in defi-

nition Definition 6.13, with two weak exceptions that have been addressed above. Therefore, we

conclude Kolmogorov complexity is a suitable complexity measure for software, based on Weyuker

validation framework. The below table provides a comparison, in terms of Weyuker’s validation

properties, between Kolmogorov complexity and the classical complexity metrics.

6.4 Measuring the Quality of Code Obfuscation

Measuring the quality of code obfuscation requires the presence of metrics that can quantify the

complexity of the code. Our model evaluates the robustness of obfuscation using quantitative

security metrics based on Kolmogorov complexity and information distance, which calculates how

5Stirling’s formula is a powerful approximation for factorials.

131



Property H.E. LOC V(G) K
1. Not constant

√ √ √ √
2. Non-coarse

√ √ × √
3. Non-uniqueness

√ √ √ √
4. Functionality

√ √ √ √
5. Monotonicity × √ √ √
6. Interaction

√ × × √
7. Permutation × × × √
8. Renaming

√ √ √
9. Disjoint Module Additivity

√ × × √

Table 6.1: Kolmogorov complexity against classical complexity measures: H.E (Halstead Effort),
LOC (Lines of Code) and V(G) (Cyclomatic complexity) using Weyuker’s properties

many changes to the obfuscated program a set of obfuscation transformations make, and the degree

of incomprehensibility or confusion.

6.4.1 Unintelligibility Index for Code Obfuscation Incomprehensibility

In Definition 4.1 we proposed an intuitive definition for code obfuscation based on the notion of

unintelligibility. Unintelligibility can be used as a metric, which measures the degree of obscurity

that is introduced by a given obfuscation transformation comparing to the original code. It aims to

estimate how much more difficult to understand the obfuscated code in comparison to the original

code, and to which extent code obfuscation transforms the complexity of the original code. In the

next definition we provide a metric for code obfuscation obscurity based on c−unintelligibility

property of Definition 4.1 called algorithmic unintelligibility Index.

Definition 6.22. The algorithmic unintelligibility Index πU of an obfuscated codeO(P,λ) is given

by:

πU(O(P,λ), P ) =
K(O(P,λ))

K(P )
− 1

It turns out that πU is very similar to the potency metric for code obfuscation by Collberg et

al. [CTL97], which used classical complexity measures to estimated code obfuscation obscurity,

whereas in our case we formalise it in the context of Kolmogorov complexity using lossless

compression. The approximation version of πU is calculated using a lossless compressor C such as

πU(O(P,λ), P ) =
C(O(P,λ))

C(P )
− 1

The algorithmic unintelligibility index of unintelligible obfuscated code is always positive as the
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following proposition illustrates.

Proposition 6.23. For any c−unintelligible obfuscated program O(P,λ):

πU(O(P,λ), P ) > 0.

Proof. By the c−unintelligible of Definition 4.1, K(O(P,λ)) ≥ (c+1)K(P ), it is straightforward

to see that πU(O(P,λ), P ) ≥ 0 for K(O(P,λ)) >K(P ).

Although πU is always positive for unintelligible obfuscated programs, an upper bound sets

a limit on πU , which depends on the complexity of the security parameter that is used in the

obfuscation process.

Proposition 6.24. For any c−unintelligible obfuscated program O(P,λ):

πU(O(P,λ), P ) ≤
K(λ ∣P )

K(P )
+O(1)

Proof. By Definition 6.22

πU(O(P,λ), P ) =
K(O(P,λ))

K(P )
− 1

Using the non-information increase rule of Theorem 2.28

≤

K(P ) +K(λ ∣P ) +O(1)

K(P )
− 1

≤

K(λ ∣P ) +O(1)

K(P )

≤

K(λ ∣P )

K(P )
+O(

1

K(P )
)

6.4.2 Normalised Kolmogorov Complexity

Kolmogorov Complexity, approximated by compression, is an absolute measure, which leads to

a difficulty when we want to compare two programs with different sizes. For example, consider

a program P of 1000 bits size that can be compressed to 500 bits6, and another program Q of

106 bits size, which is compressed to 1000 bits. By using the absolute measure of Kolmogorov
6Kolmogorov complexity can be seen as the length of the best compression for a given object.
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complexity, Q is more complex than P . However, P can be compressed to almost half of its

size, where Q can be compressed to 1
1000 of its size, which clearly indicates that Q has more

regularities than P , and hence that makes P more complex than Q. In order to overcome this

issue, we suggest a normalised version of Kolmogorov Complexity that is relativised by the upper

bound of Kolmogorov complexity i.e. the maximum complexity a certain program can achieve.

Kolmogorov complexity is upper bounded by the length of a program, the subject of measure,

according to Theorem 2.27; this bound can be used as the maximum Kolmogorov complexity.

Furthermore, in most cases of code obfuscation, the source code of the original program is

absent, which makes the process of evaluation by comparing an obfuscated code against the original

code unfeasible. Therefore, normalised Kolmogorov complexity can be useful to demonstrate the

divergence of obfuscated code complexity, in terms of information content (high variability of

string content), from the maximum value of that complexity, without considering the clear original

code as a reference point (see Section 6.4.1 and Section 6.4.3).

Definition 6.25. The normalised Kolmogorov complexity NK of an obfuscated code O(P,λ) is

defined as:

NK(O(P,λ)) =
K(O(P,λ))

∣O(P,λ)∣ + 2 log(∣O(P,λ)∣)

Where ∣O(P,λ)∣ is the length of O(P,λ).

NK is normalised to take a value between 0 and 1 by dividing the Kolmogorov complexity

of obfuscated code with the upper bound (maximum value that can be achieved by Kolmogorov

complexity) in Theorem 2.27. A high value of NK means that there is a high variability of program

content structure, i.e. high complexity. A low value of NK means high redundancy, i.e. the ratio of

repeating fragments, operators and operands in obfuscated code. As before,NK is estimated using

compression; an approximate version of NK is denoted by NC:

NC(O(P,λ)) =
C(O(P,λ))

∣O(P,λ)∣ + 2 log(∣O(P,λ)∣)

NC is non-negative number that belongs to {r ∈ R ∣ 0 ≤ r ≤ 1}. We assume that if the size of

compressed obfuscated code is equal to the size of obfuscated code itself, then the obfuscated code

is highly random, and is difficult to comprehend by an attacker. This can be justified in light of our

discussion of code regularity in Section 4.2.
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This is particularly true, as argued in [STZDG14], for relatively large programs (binary strings

of large length), since for very small programs the overhead necessary to encode the regularities of

a program could make the result larger than the original. Given that regularities can be encoded by

a relatively small piece of code, the larger the number and size of these regularities the greater the

savings of the compressed form will be.

6.4.3 Information Distance for Code Obfuscation Resilience

The unintelligibility index πU suffers from the same problem we discussed in Example 4.4. A

high unintelligibility index does not always imply secure code obfuscation, it really depends

on how the security parameter is blended with the original code. In this section we introduce

information distance as a potential solution for this problem, and establish a link with our definition

of obfuscation security in Definition 4.6.

The information distance metric can serve as a basis to quantify the level of protection that

is provided by obfuscating programs. Intuitively, the deobfuscated program should be obscure

enough compared to the original program, which gives a general indication of the resilience of

the obfuscation method against an adversary equipped with deobfuscation tools, and the level of

confusion an obfuscated technique added.

What makes information distance an interesting approach to measure software, in general, and

code obfuscation, in particular, is that it has a solid mathematical foundation. In mathematics a

metric is called a measure of distance if it satisfies the metric axioms (see Definition 2.42). Despite

the fact that the information distance is a metric, it does not provide a straightforward intuition for

measuring the security in obfuscated programs. There are many issues that need to be resolved

in order to consider information distance a valid measure for code obfuscation i.e. we need to

establish a logical and theoretical link between our definitions for code obfuscation security and

information distance, and need to specify under which conditions we can use it.

First, we observe that we can use a simplified definition for NIDK when the obfuscated code

adds even a modest amount of complexity.

Lemma 6.26. For an obfuscated codeO(P,λ), satisfying unintelligibility property of Definition 4.2,
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K(O(P,λ) ∣P ) >K(P ∣O(P,λ)) up to an additive constant, and

NIDK(P,O(P,λ)) =
K(O(P,λ)∣P )

K(O(P,λ))

Proof. By the chain rule of Theorem 2.36 up to a logarithmic term,

K(P ) −K(P ∣O(P,λ)) =K(O(P,λ)) −K(O(P,λ) ∣P )

By c-unintelligibility, K(O(P,λ)) >K(P ), so

K(O(P,λ)) −K(P ∣O(P,λ)) >K(O(P,λ)) −K(O(P,λ) ∣P )

Therefore,

K(O(P,λ) ∣P ) >K(P ∣O(P,λ)) (6.2)

It is straightforward to compute the NIDK

NIDK(P,O(P,λ)) =
max{K(O(P,λ) ∣P ),K(P ∣O(P,λ))}

K(O(P,λ))
by Definition 6.3

=

K(O(P,λ) ∣P )

K(O(P,λ))
by Eq. (6.2)

We proceed by illustrating the relation between secure obfuscated code and normalised informa-

tion distance as a quantitative metric for code obfuscation resilience. We give an upper bound to

this metric, and show that it is closely met by a secure code obfuscation, by providing the following

theorem.

Theorem 6.27. Let O(P,λ) be a c−unintelligible obfuscated program for c > 0. Then, the

normalised information distance between P and O(P,λ) is upper bounded by 1 −
IK(P ;O(P,λ))
K(O(P,λ)) .

Furthermore, if O(P,λ) is ε-secure according to Definition 4.6, then the normalised information

distance approaches 1 as ε approaches 0.

136



Proof. By Lemma 6.26 and Definition 4.1

NIDK(P,O(P,λ)) =
K(O(P,λ) ∣P )

K(O(P,λ))

=

K(O(P,λ)) −K(O(P,λ)) +K(O(P,λ) ∣P )

K(O(P,λ))

By Definition 2.35

= 1 −
IK(P ;O(P,λ))

K(O(P,λ))

which proves the upper bound. Now consider the assumptions: IK(P ;O(P,λ)) ≤ εK(P ) and

K(O(P,λ)) ≥ (c + 1)K(P ). These lead to

IK(P ;O(P,λ))

K(O(P,λ))
≤

εK(P )

K(O(P,λ))

≤

εK(O(P,λ))

(c + 1)K(O(P,λ))

=

ε

c + 1

Ð→ 0 As εÐ→ 0.

Given that ε is a small number lesser than 1, NIDK is approximately equal to one, which is the

maximum distance.

So far, we established the relation between our security definition and the normalised information

distance. We showed that if the security conditions for code obfuscations are satisfied (the extreme

case) then the normalised information distance tends to be close to one, which is the maximum

value that can be achieved, which also shows that the obfuscated code is totally different than the

original unobfuscated version.

In the following we are presenting some bounds on the value of normalised information distance

for obfuscated code. We can derive an upper bound based on the complexity of the obfuscation

parameter and its relation to the obfuscated code, as we see in the next theorem.

Theorem 6.28. For an obfuscated c-unintelligible programO(P,λ), where c > 0, the normalised

information distance is upper bounded:

NIDK(P,O(P,λ)) ≤
K(λ)

K(O(P,λ))
+O(

1

K(O(P,λ))
)
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Proof.

NIDK(P,O(P,λ)) =
K(O(P,λ) ∣P )

K(O(P,λ))
by Lemma 6.26

≤

K(λ ∣P ) +O(1)

K(O(P,λ))
by Lemma 4.11

≤

K(λ) +O(1)

K(O(P,λ))
by Theorem 2.27.

We notice from the above theorem that normalised information distance for an obfuscated

program depends on the amount of information is the security parameter (complexity). If the

security parameter is available to an adversary A, then clearly the normalised information distance

can be the minimum as the next theorem shows.

Theorem 6.29. Let O(P,λ) be an obfuscated program, for an adversary A satisfying the intelligi-

bility property of Definition 5.1, the normalised information distance conditioned on the security

parameter λ is :

NIDK(P,O(P,λ)) ∣λ) = O(
logn

K(P ∣λ)
)

where n is the length of P and λ.

Proof.

NIDK(P,O(P,λ)∣λ) =
max{K(P ∣O(P,λ), λ),K(O(P,λ) ∣P,λ)}

max{K(P ∣λ),K(O(P,λ) ∣λ)}
by Definition 6.4

=

K(P,O(P,λ) ∣λ) −min{K(P ∣λ),K(O(P,λ) ∣λ)}
max{K(P ∣λ),K(O(P,λ) ∣λ)}

by Definition 6.9

=

K(P,O(P,λ) ∣λ) −K(O(P,λ) ∣λ)

K(P ∣λ)
by Theorem 2.29

=

K(P ∣λ) −K(P ∣λ) +K(P,O(P,λ) ∣λ) −K(O(P,λ) ∣λ)

K(P ∣λ)

=

K(P ∣λ) − IK(P,O(P,λ) ∣λ)

K(P ∣λ)
by Definition 2.35

=

K(P ∣λ) −K(P ∣λ) +O(logn)

K(P ∣λ)
by Lemma 5.4

= O(
logn

K(P ∣λ)
)
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So far we established an upper bound on the normalised information distance; in the next theorem

we proceed with investigating the existence of a lower bound, which sets a threshold on obfuscated

code security using NIDK .

Theorem 6.30. For an obfuscated programO(P,λ), assume λ is optimal such that: K(O(P,λ) ∣P ) ≥

K(λ ∣P ) − α, for some α ∈ N. Then the normalised information distance has a lower bound:

NIDK(P,O(P,λ)) ≥
K(λ ∣P ) − α

K(O(P,λ))

Proof. By Lemma 6.26

NIDK(P,O(P,λ)) =
K(O(P,λ) ∣P )

K(O(P,λ))

It follows from the assumption of the optimality of λ that

NIDK(P,O(P,λ)) ≥
K(λ∣P ) − α

K(O(P,λ))

The intuition behind the optimality assumption was justified in Lemma 4.11, where we showed

that λ must have the minimum algorithmic information content to go from O(P,λ) to P .

6.4.4 Normalised Information Distance for Individual Security

In Section 4.3 we identified two main types of code obfuscation (Encoding and Hiding) and studied

their security based on individual security level i.e. the security of obfuscated sub-programs. We

further extend these results by studying the effect of NIDK when the obfuscator employs encoding

and hiding techniques to obfuscate.

It is interesting to ask the following question: can we reason about the security of the obfuscated

program as a whole set of subprograms, and its NIDK? In order to check the total security of

each individual obfuscated subprogram in the set Q, we turn to a notion borrowed from classical

information theory called Channel Capacity [CT06], which computes the maximum capacity a

channel can have over all source distributions. Since the channel is the mutual information in

Classical Information Theory and we use algorithmic version of mutual information in our theory,

139



we find it is natural and intuitive to require a maximization over all the individual sub-programs

of original code for algorithmic mutual information. That helps to capture the maximum possible

leakage (insecurity) of clear subprogams from the obfuscated ones. The following definitions

capture these intuitions.

Definition 6.31 (Total Hiding). Let Q be a collection of obfuscated subprograms O(pi, κi), where

pi ∈ P and κi ∈ λ, we define the total hiding security of Q as the maximum algorithmic mutual

information among all clear code such that:

InSecH(Q) = maxpi∈P,O(pi,κi)∈Q{IK(pi;O(pi, κi))}

Similarly, we can define the total security in case of obfuscation encoding.

Definition 6.32 (Total Encoding). Let Q be a collection of obfuscated subprograms O(pi, κi),

where pi ∈ P and κi ∈ λ, we define the total encoding security of Q such that:

InSecE(Q) = maxκi∈λ,O(pi,κi)∈Q{IK(κi;O(pi, κi))}

In the above definitions we are looking at the maximum leakage (insecurity) in obfuscated code

with respect to the original code i.e. we are checking the worst-case scenario to reason about all

obfuscated subprograms in a obfuscated set that resembles the whole obfuscated program. The

obfuscated sub-program that leaks the most about the original one, among all other obfuscated

subprograms, is the weakest link in the security chain. The following lemma is a direct result of

applying Theorem 4.15 and Theorem 4.14 on the individual security level.

Lemma 6.33. Let Q be a collection of obfuscated subprogramsO(pi, κi), where pi ∈ P and κi ∈ λ,

then:

InSecH(Q) ≤ maxpi∈Q{δPi} −O(1) and

InSecE(Q) ≤ maxκi∈Q{δκi} −O(1)
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Proof. It can be proved directly by :

InSecH(Q) ≤ maxpi∈P,O(pi,κi)∈Q{IK(pi;O(pi, κi))} by Definition 6.31

since pi is hidden in Q but in its original form, and by Theorem 4.15

≤ maxpi∈Q{δPi −O(1)}

≤ maxpi∈Q{δPi} −O(1)

Similarly,

InSecE(Q) ≤ maxκi∈λ,O(pi,κi)∈Q{IK(κi;O(pi, κi))} by Definition 6.32

the subkey κi is hidden in Q (κi contains the encoding rules), and by Theorem 4.14

≤ maxκi∈Q{δκi −O(1)}

≤ maxκi∈Q{δκi} −O(1)

In Theorem 6.27 we established a relation between algorithmic mutual information for code

obfuscation security and the normalised information distance. Intuitively, this relation states that a

reduction in the algorithmic mutual information produces an increase in the normalised information

distance between a program and its obfuscated version. Now, the question that can be raised here is:

whether can we establish the same relation, as in Theorem 6.27, based on the security of individual

level, i.e. sub-programs? In order to answer this question, we need first to compute the overall

information distance of all distances of clear sub-programs and their obfuscated versions on the

individual security level; secondly, we have to check for the existence of such a relation.

The overall normalised information distance, in case of individual sub-programs, is computed by

finding the minimum value among all distances between clear and obfuscated sub-programs. Using

the same reasoning as in Definition 6.31 and Definition 6.32 of the worst case scenario for overall

obfuscation security, we require the overall distance to be minimum. The smallest distance among

all clear sub-programs and their obfuscated versions indicates the weakest chain in the security of

the whole obfuscated sub-programs.

Definition 6.34 (Total Hiding Distance). The overall distance HNIDK between a set of subpro-
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grams pi ∈ P and their obfuscated versions O(pi, κi) ∈ Q is defined as

HNIDK(Q) = minpi∈P,O(pi,κi)∈Q{NIDK(pi,O(pi, κi))}

The above definition addresses the total hiding distance in an obfuscated program consisting of a

collection of sub-programs, where the original code still exists in the obfuscated version but in a

hidden state (see Section 4.3). The next definition is similar, but it tackles the total encoding distance

where the encoding process (security parameter) is hidden, instead of the original sub-program, in

the obfuscated set of sub-programs.

Definition 6.35 (Total Encoding Distance). The overall distance ENIDK between a set obfuscated

subprograms O(pi, κi) ∈ Q and their security parameters κi ∈ λ is defined as

ENIDK(Q) = minκi∈λ,O(pi,κi)∈Q{NIDK(κi,O(pi, κi))}

In the next stage we investigate the relation between overall obfuscation security on the individual

level and the total distance for hiding and encoding obfuscation techniques.

Theorem 6.36 (Maximum Hiding Distance). ConsiderQ a set of obfuscated subprogramsO(pi, κi)

of pi ∈ P using security parameters κi ∈ λ, then:

HNIDK(Q) ≥ 1 −
maxpi∈Q{δpi}

minO(pi,κi)∈Q{K(O(pi, κi))}

Proof. By Definition 6.35:

HNIDK(Q) = minpi∈P,O(pi,κi)∈Q{NIDK(pi,O(pi, κi))}

By Lemma 6.26, and Definition 4.2

= minpi∈P,O(pi,κi)∈Q{
K(O(pi, κi) ∣pi)

K(O(pi, κi))
}

By Definition 2.35

= minpi∈P,O(pi,κi)∈Q{1 −
IK(pi;O(pi, κi))

K(O(pi, κi))
}
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= 1 −maxpi∈P,O(pi,κi)∈Q{
IK(pi;O(pi, κi))

K(O(pi, κi))
}

= 1 −
maxpi∈P,O(pi,κi)∈Q{IK(pi;O(pi, κi))}

minpi∈Q,O(pi,κi)∈Q{K(O(pi, κi))}

by Definition 6.32 and Lemma 6.33-hiding

≥ 1 −
maxpi∈Q{δpi}

minO(pi,κi)∈Q{K(O(pi, κi))}

Theorem 6.37 (Maximum Encoding Distance). Consider Q a set of obfuscated subprograms

O(pi, κi) of pi ∈ P using random security parameters κi ∈ λ, then:

ENIDK(Q) ≥ 1 −
maxκi∈λ{δκi}

minκi∈Q{K(κi)}

Proof. By assumption on security parameters randomness, K(O(pi, κi)) ≤ K(κi)7. Then we

follow the same proof steps as with Theorem 6.36.

6.4.5 Stealth of Code obfuscation

A typical software application can be very large, often millions of lines of code. For this reason an

initial step in any attack against software is to attempt to isolate code-segments that are more likely

than others to contain security-sensitive code. This classification can be based on the location of

the code, the order in which it is being executed (code executed early on is more likely to contain

security checks), whether it contains unusual code sequences, etc. It is therefore essential that an

obfuscated code, which is inserted into an application is stealthy, so that it does not arouse any

attention. For example, an algorithm that using a number of xor instructions to obfuscate a program

would likely be obvious, since most real programs contain very few, if any, xors. An obfuscated

code needs to be stealthy in two ways:

1. Intrinsic Stealth: The obfuscated code should be similar to the code that surrounds it.

2. Extrinsic Stealth: The obfuscated code should be similar to the code that occurs in a typical

application.

7The obfuscated programs are not as random as the (secret) security parameters (keys) that are used to obfuscate.
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The first condition makes it difficult for the attacker to select some particular methods in which

there is more chance of occurrence of the obfuscated code. The later condition ensures that the

obfuscated application, in its entirety, is less likely to throw suspicion of a presence of obfuscation.

Both the conditions makes its difficult to carry out manual, as well as automated attacks, in order to

determine the presence and the specific location(s) of the obfuscated code.

Stealth defines how well the obfuscated code fuses with the rest of the program. Stealth of

obfuscated code, intuitively, is related to the attacker’s ability to distinguish the obfuscated code that

is located in a given entity. The stealth of interest here, is self-stealth (intrinsic) of the obfuscated

code to the surrounding code where it is located i.e. how well an obfuscated code is hidden. If an

obfuscation transformation introduces code that stands out from the rest of the program, it may

be difficult for an automatic deobfuscator to spot it, but it can easily spotted by a reverse engineer.

Obvious obfuscation offers reverse engineers a clue to identify which obfuscation technique is

applied to the original code, because each technique has special characteristics. For example,

inserting ’junk’ bytes introduces many invalid instructions observed rarely in a normal binary,

and encrypting the original code introduces many data bytes observed rarely in an executable

binary. This measure is an important factor for code obfuscation security; stealthy obfuscated code

can enhance the protection level so that attackers should put more effort to figure out the used

obfuscation techniques and where the obfuscated parts are located in the code.

It is intuitive and natural to think about some sort of similarity measures to estimate and measure

the stealth in code obfuscation. Checking whether an obfuscated code is stealthy is very similar

to detecting malware. Similarity distance was used extensively to detect malware [LXX+09]

[ABCD15] [CX12] including information distance and its approximation (NCD). Therefore, it

could be possible to use NIDK and NCD to measure the stealth of obfuscated code. However, Zhang

et al demonstrate in [ZHZ+07], that the conventional information distance, and its normalised

version (NIDK) has a problem. It can account for irrelevant information that overwhelm the

similarity result. This irrelevant information is an issue when perform ’partial pattern’ matching

between two objects. Measuring the stealth of obfuscating code is based on finding any matched

code in the surrounding programs with the obfuscated code, without including all the irrelevant

information; therefore, NIDK and NCD cannot be very helpful to detect which part of software is

obfuscated. We highlight this problem by providing the following example:
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Example 6.38. Consider an obfuscated sub-program q in a set of sub-programs Q, which contains

similar sub-programs to q, and also have some other sub-programs that are different to q. We

need to check whether q is stealthy with respect to Q. We expect the similarity distance measure to

answer this question. Intuitively, q is similar to some sub-programs in Q by definition, so we expect

the similarity distance to report that q is stealthy with respect to Q.

For convenience, we compute the similarity version instead, denoted by SNID, by subtracting

NIDK from 1. Given two binary string x, y ∈ {0,1}+:

SNIDk(x, y) = 1 −
max{K(x ∣ y),K(y ∣x)}

max{K(x),K(y)}

We compute the similarity distance to measure the degree of stealth of q in Q.

SNIDk(q,Q) = 1 −
max{K(q ∣Q),K(Q ∣ q)}

max{K(q),K(Q)}

Since q ∈ Q then by Theorem 2.36 K(q) ≤K(Q),

and by Lemma 6.26 K(q ∣Q) ≤K(Q ∣ q), then

= 1 −
K(Q ∣ q)

K(Q)

=

K(Q) −K(Q, q) +K(q)

K(Q)
by Theorem 2.36-1

K(q,Q) =K(Q) as q ∈ Q and by Theorem 2.36-1, then we have

=

K(q)

K(Q)

The similarity distance, according to our derivations, depends on K(Q); it shows that the result

is far less than 1, as K(Q) is much bigger than K(q) (q is a sub-program belongs to the set Q).

However, this contradicts our assumption that q is an obfuscated program similar to other sub-

programs in Q, which means SNIDk failed to report the right value; it must report a high value

close to 1 (normalised). Furthermore, ifQ contains irrelevant information (other sub-programs that

are different from q), then it makes SNIDk accounts for these information. This could indicate that

q is unstealthy with respect to Q. However, an attacker would not be able to tell if q is obfuscated

or not, because by comparing q to Q s/he might find a similar chunks of code in Q that makes q

looks unsuspicious (stealthy).

We conclude from the above example that the conventional information distance NIDK and its

145



approximated version NCD could be inefficient measuring the stealth of obfuscated code, this is

apparently due to the potential existence of irrelevant information in the surrounding code that

could overwhelm the results. In order to go around this problem, we need to only consider the

information that is relevant for our stealth matching i.e. we need to minimise measuring the amount

of information in the surrounding code that is normally ignored by attacker, when s/he performs

partial matching attack.

In [ZHZ+07] the authors introduced and justified an extension to NIDK that solves the problem

of partial pattern matching, It only requires the minimum amount of irrelevant information for

comparison. The new distance is defined and normalised as follows:

Definition 6.39 (Normalised Minimum Information Distance [ZHZ+07]). The normalised mini-

mum information distance is defined as

NIDmin(x, y) =
min{K(x ∣ y),K(y ∣x)}

min{K(x),K(y)}

In order to minimize the irrelevant information between obfuscated code and the surrounding

code, and to measure the degree of stealthiness, we will rely on NIDmin to obtain such a result. We

can also derive a similarity version of NIDmin by subtracting from 1.

Definition 6.40. The similarity version of normalised minimum information distance is defined as

SNIDmin(x, y) = 1 −
min{K(x ∣ y),K(y ∣x)}

min{K(x),K(y)}

Using SNIDmin, we can solve the problem we discussed in Example 6.38, using the same

derivation steps:

SNIDmin(x, y) = 1 −
min{K(q ∣Q),K(Q ∣ q)}

min{K(q),K(Q)}

= 1 −
K(q ∣Q)

K(q)

=

K(q) −K(Q, q) +K(Q)

K(q)

K(q,Q) =K(Q) as q ∈ Q, then

=

K(q)

K(q)
= 1.
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NIDmin can be approximated in a similar way to NID using compression, such that:

NCDmin =
C(xy) −max(C(x),C(y))

min(C(x),C(y))
.

Similarly, we can derive a similarity distance version of NCDmin:

SNCDmin = 1 −
C(xy) −max(C(x),C(y))

min(C(x),C(y))

=

min((C(x),C(y)) −C(xy) +max(C(x),C(y))
min(C(x),C(y))

=

C(x) +C(y) −C(xy)

min(C(x),C(y))

We notice that NIDmin minimises the effect of irrelevant information by taking the minimum

difference between the two objects. The main aim of introducing NIDmin is to solve the problem

of irrelevant information between two objects; however, this measure is not a full metric as it does

not satisfy the triangle inequality axiom. Li et al in [ZHZ+07] and Fagin and Stockmeyer in [FS98]

argued using two different examples that in many cases for similarity measure, especially for partial

pattern matching, it is not necessarily must for triangle inequality to hold.

The above reasoning and discussion leads us to provide a new definition for code obfuscation

stealth based on the modified version of information distance. Intuitively, it means that the stealth

of a given obfuscated code (whether intrinsic or extrinsic) requires the similarity between the

obfuscated code and its surrounding code to not go beyond a certain threshold.

Definition 6.41. An obfuscated program q is δ-stealth with respect to a set of programsQ and an

adversary A, if SNIDmin is lower bounded by δ:

SNIDmin(q,Q) ≥ δ

Where 0 < δ ≤ 1.

6.4.6 A Statistical Model for Code Obfusction Metrics

As has been discussed, measuring code obfuscation presents a serious challenge. We argue that

no single metric can provide a powerful enough predictive model to estimate the total protection
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provided by code obfuscation. We are aiming to derive a minimal set of easily calculated metrics

that can produce a single value, which quantifies and measures the quality of code obfuscation. The

proposed metrics are by no means complete to compute the robustness of code obfuscation, and we

do not claim it is the best overall. It presents an important milestone toward building a sufficient

and complete metrics to quantify code obfuscation.

A Regression model [KKM88], which is a statistical method for estimating the relationships

among variables (discussed in Section 7.5 and in more details in Section 8.2.4), can be used to

produce a polynomial equation (linear regression equation) which takes our metrics as independent

variables that contribute to overall code obfuscation robustness, i.e. the proposed metrics are used

as factors (variables) which impact the security of obfuscated software, and then a regression model

is built to calculate the security level.

The security of code obfuscation can be quantified and measured using this list of proposed

measures : normalised information distance, unintelligibility index, normalised Kolmogorov

complexity and distance stealth measure.

Definition 6.42. Given an obfuscated program O(P,λ), the Total Security quantity, SP,O(P,λ)q is

defined as:

SP,O(P,λ)q = (NIDK(P,O(P,λ));πU(P,O(P,λ)); NK(O(P,λ)); SNIDmin(P,O(P,λ)))

NIDK represents the information distance (based on normalised compression distance) (Defi-

nition 6.3), πU is the unintelligibility index measure (Definition 6.22) and NK is the normalised

Kolmogorov complexity (Definition 6.25), where SNIDmin (Definition 6.40) is the distance stealth

measure.

Having the above metrics, we can turn the quadruple values into a linear regression equation

[She07], which can predict the security of code obfuscation:

SP,O(P,λ)z ≜ a0 + a1 ∗NIDK + a2 ∗ πU + a3 ∗NK + a4 ∗ SNIDmin

Where a0 is the regression intercept, and a1, a2 and a3 are the regression coefficient or parameters

(weight of the effect factor). The intercept value can be interpreted as the value of SP,O(P,λ)q when

a1, a2 and a3 are zeros. The regression coefficient a1 can be explained as for every unit changes
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(increase or decrease) in NIDK , we expect a1 change in SP,O(P,λ)q , holding all other variables

constant.

This equation provides a way to measure and reason about the security of different obfuscation

techniques. All the independent variables in Sq are based on uncomputable version of Kolmogorov

complexity which can be approximated using lossless compression. The new estimated version of

Sq is denoted by Ŝq and is computed as follow:

ŜP,O(P,λ)q = â0 + â1 ∗NCD + â2 ∗ πU + â3 ∗NC + â4 ∗ SNCDmin

All these parameters are estimated empirically. In the next chapter, we conduct an experiment on

a set of Java bytecode programs using a wide range of code obfuscation techniques, to calculate the

proposed metrics and derive the regression model coefficients.

6.5 Summary

In this chapter we proposed a theoretical model for measuring the quality of code obfuscation.

We provided a theoretical evaluation for Kolmogorov complexity based on Weyuker’s validation

properties. We showed that Kolmogorov complexity is a suitable metric for measuring complexity

in binary programs, and code obfuscation in particular. We also adapt the work of Li et al. on

the notion of information distance for measuring similarity between clear code and its obfuscated

version. We extend their theoretical work to reason about the quality of code obfuscation by relating

information distance to the security in code obfuscation. We formalise the notion of unintelligibility

index (degree of confusion introduced) and the relative Kolmogorov complexity, and showed that

information distance metrics is a suitable measure for code obfuscation. We also used a modified

version of information distance to define code obfuscation stealth, and propose a statistic model to

measure the total security of obfuscation based on linear regression model.
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7 Experimental Design and Tool-sets

In this chapter we present our experimental design and tool-sets that we used in the evaluation

of our metrics. We followed Wohline et al.’s framework [WRH+00] on experimental software

engineering to design and analyse the findings. The aim is to provide detailed and comprehensive

information about the experiment’s design and the tools which are necessary to conduct and

interpret the obtained results. We applied the experiment on a set of obfuscated Java jar files

of the SPECjvm2008 benchmark, using two obfuscators: Sandmark, an open source suite, and

Dasho, a commercial tool. We choose three different decompilers as an attack model, to assess the

level of resilience of obfuscated programs. We present the research problem as a set of research

questions, each question is formulated with a null hypothesis, which will be answered by using a

set of statistical methods.

7.1 Introduction

Recent empirical results [JF14] show that data compression is a promising software metric technique

to estimate human comprehension in software. So far, we have presented a theoretical validation

that complements this result, and we proposed a formal definition that reflects the natural intuition

of code obfuscation’s unintelligibility. We further advanced on the unintelligibility notion to define

the security of code obfuscation based on algorithmic mutual information (see Definition 4.6) with

respect to a specific adversary model (see Definition 5.1). Then, based on the proposed theoretical

foundation, we derived a set of metrics to quantitatively measure the quality of code obfuscation,

including: normalised compression distance, unintelligibility index and normalised compression

measure.

Despite the importance theoretical validation for metrics, in general, and code obfuscation

metrics, in particular, the measure is meant to reflect the empirical characteristic of the software’s
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properties. For example, if an obfuscated code P is more secure than other obfuscated code Q,

then the measure has to reflect this security. Therefore, it is necessary to validate any proposed

measure empirically. The measure is validated by showing that it correlates with some other

corresponding factors or other existing measure. The corresponding factor is chosen based on

the wide, intuitive acceptance or on reasonable assumptions, which makes the validation factor

itself ’valid’ by definition. Although it is always advantageous to use the validation factor directly,

it is normally not feasible to do so or expensive to conduct it. Therefore, the proposed measure

represents an easy and effective way.

To provide the empirical validation we conducted an experiment, using the proposed metrics, on

obfuscated Java jar files of SPECjvm2008 benchmark suite by applying a number of most widely

used obfuscation techniques. Specifically, we investigate the quality of obfuscation techniques

in two obfuscators: Sandmark, an open source suite, and Dasho, a commercial tool. Moreover,

we employed three decompilers as a model of attack to study the resilience of code obfuscation.

The experimental work is spread over two chapters; in this chapter we show how we design the

experiment, and what tool-sets are used. We state the research questions and what methodology

to apply in order to answer these questions. The next chapter is concerned with presenting and

interpreting the experimental results.

The remainder of this chapter is structured as follows. In Section 7.2, we present the scope of

the experiment, which includes the experiments objectives. Section 7.3 provides the experimental

design and set-up, experimental process, and the analysis methodology.

7.2 Scope of the experiment

The experimental design and empirical evaluation was adapted from Wohline et al.’s framework on

experimental software engineering [WRH+00]. The goal of this experiment is to provide empirical

evidence that our metrics are suitable for measuring the quality of code obfuscation.

7.2.1 Objectives

In general, the experiment is concerned with measuring the obfuscation resilience against a set of

deobfuscators (decompilers). The main aim of conducting this experiment is two-fold: the first goal

is to study and validate the usefulness of our proposed model, as an appropriate quantitative measure
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for code obfuscation quality against a certain attack. Secondly, to evaluate the effectiveness of code

obfuscation using the proposed metric, i.e. analyse the effect of code obfuscation on security using

the proposed metrics.

In the next chapter we show the research questions that meet our goals, and we intended to

answer. They are divided into two groups: the first group is concerned with evaluating the proposed

metrics as valid measures for code obfuscation security; the second group of questions investigate

the effectiveness of code obfuscation using the proposed metrics.

Results of this experiment can be interpreted from multiple perspectives as follows:

• a researcher interested in empirical validation for code obfuscation;

• a software developer or project manager who wants to ensure a high resilience of obfuscated

programs to deobfuscation attacks before delivering it to the customers [CCFB14].

We obfuscated 11 real-world applications of the SPECjvm2008 benchmark suite, ranging in

size from medium to large, and containing several real life applications and benchmarks, focusing

on core Java functionality. Each one was written in the Java source language and compiled with

javac to Java byte-code, and the obfuscation took place on this level. In Section 7.3.5 we provide

a comprehensive description of SPECjvm2008 suite, in Section 7.3.5 we provide an overview of

SPECjvm2008’s programs; the full documentation can be found on the benchmark’s webpage

[Spe08].

7.3 Experiment Planning

7.3.1 Tool-sets and Context

There are two kinds of variables in an experiment, independent and dependent variables [WRH+00].

The independent variables (predictor variables) are those variables that we can control and change

in the experiment. We investigate the effect of the changes in the independent variables (proposed

metrics) against the dependent variable (or outcome variable),1 which is the security factor for

obfuscated code (see Section 7.3.4). That is we aim to check if the independent variables reflect the

level of security in obfuscated code using the dependent variable.

1 Often there is only one dependent variable in an experiment.
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7.3.2 Independent Variables Metrics

The set of independent variables, in this experiment, are based on selecting the following metrics

for evaluation purposes.

Algorithmic Complexity Measures

We use four algorithmic complexity measures, which are proposed in Chapter 6:

Compression. Using compression we can approximate Kolmogorov complexity and then calcu-

late the length of the compressed code using a normal compressor, see Section 2.9.

Normalised information distance. This metric is introduced in Definition 6.11. It measures the

level of confusion (level of dissimilarity) in the obfuscated code. It is a normalised measure

that takes a value between 0 and 1, where 0 indicates a complete similarity, meaning the

obfuscation has not added any confusion to the clear code, and 1 means that the obfuscated

code is totally dissimilar to the original code.

Unintelligibility Index. We present this measure in Definition 6.22. It aims to estimate how

much more difficult to understand the obfuscated code in comparison to the original code,

and to which extent code obfuscation transforms the complexity of the original code.

Normalised compression. This measure is proposed in Definition 6.25. It is an approximation of

Kolmogorov complexity using compression, then normalised by dividing it with the upper

bound of Kolmogorov complexity (size of the code); it is a non-negative number ranging

from 0 to 1 and expresses the compressibility ratio of a certain code (in our case, a binary

string).

Classical Complexity Measures

The purpose of including classical complexity measures are of two-fold. First, we need to compare

our proposed measure to the most widely used complexity in code obfuscation. Secondly, we need

to validate them to check if they are good candidates for measuring code obfuscation. All the

classical complexity measures are computed using Testwell CMTJava, a commercial tool for Java

code quality assurance [CMT15]. We will now provide an overview of the most commonly used

classical complexity measures in code obfuscation.
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MacCabe Cyclomatic complexity. McCabe Cyclomatic complexity [McC76] is a classical

complexity measure, based on Control Flow Graphs (CFG). It measures the number of

linearly-independent paths in the CFG of a program. McCabe’s measure is an example of

control flow metrics. The McCabe Cyclomatic complexity is computed as follows:

V(G) = e − n + 2 ⋅ p

where V(G) denotes the McCabe Cyclomatic complexity, e the number of edges in a graph,

n the number of nodes in the graph, and p the number of connected components in the graph.

Halstead complexity measures. These metrics were proposed by Halstead [Hal77] to measure

software complexity attributes based on what it called software science. Halstead’s metrics

are based on some program statistics that considers the source-code a sequence of tokens, and

classifying them either as an operator or an operand token. These tokens are then counted

and categorised as follows

• η1 the number of unique operators.

• η2 the number of unique operands.

• N1 the total number of operators.

• N2 the total number of operands.

• η1 + η2 the vocabulary of the program.

All Halstead’s measures are derived from these four quantities with certain fixed formulas as

described below.

Halstead Volume (V). A metric that describes the size of the programs implementation. It

measures the information content of the program in bits;2 it is calculated as the program

length times the logarithm (base 2) of the program’s vocabulary, such that:

V = (N1 +N2) ⋅ log2(η1 + η2)

Halstead Difficulty (D). This metric describes the difficulty level of the program; it is

2The number of bits that are required to store a program of length N , provided that the operands and operators are
encoded as binary strings of a uniform length.
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proportional to the number of unique operators in the program.

D =
η1
2
⋅

N2

η2

Halstead Effort (E). This metric describes the effort to implement or understand the

program, it is proportional to the volume and the difficulty level of the program.

E = V ⋅D

Maintenance Index (MI). [CALO94] This is a composite metric that incorporates a number of

traditional source-code metrics into a single number, formed by a linear regression equation

(see Section 6.4.6 and Section 8.2.4), which indicates relative maintainability. MI comprises

of weighted Halstead metrics (effort or volume), McCabes Cyclomatic Complexity, and the

number of lines of code (LOC).

MI = 171 − 3.42 ⋅ ln(E) − 0.23 ⋅ V(G) − 16.2 ⋅ ln(LOC)

7.3.3 Potency

We use the Potency (PtE) measure that is presented in Section 3.8; it measures how complex the

obfuscated code in comparison to the original code, using classical complexity measures. We use

this measure to study the effect of obfuscation using the above classical complexity before and after

obfuscation. This measure is very similar to the unintelligibility measure (see Section 6.4.1).

7.3.4 Experimental Assumptions and Choice of Dependent Variable

As discussed in Chapter 5, the evaluation criteria for successful deobfuscation attacks are whether

it is possible to produce the original code from the obfuscated version. The result of deobfuscation

process has to satisfy, in addition to the functionality, proximity, and the amount of information

needed by the deobfuscator, a set of properties that the original program satisfies. Determining

these properties brings a challenge to the experiment. We assume that the main property which the

attackers are interested in, and the defender is trying to secure, is the original code itself. Therefore,

our success criteria for deobfuscation is to obtain the original code from the obfuscated one. In this
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case, we can state that the deobfuscation is a successful attack. However, this is an extreme case

and might sound unrealistic because the adversary may be satisfied with only partial information

about the original code. To account for such conditions, we compute the percentage of successfully

retrieving of any part of the original program from its obfuscated version. We can also assume that

the attacker is hoping to construct a source-code, which is very similar to the original one, but not

necessarily the same.

Normally determining whether obfuscated code is successfully deobfuscated (in our case de-

compiled), requires a human subject to check. However, involving human subjects brings a lot

of challenges in terms of time and cost. To alleviate these challenges, we turn into an alternative

method. Ultimately, as we discussed in Chapter 4, the aim of obfuscation is to protect the clear

code by obscuring its implementation, we argued this point in Chapter 5, so an attacker should

not easily retrieve that code. We made an assumption, here, we take advantage of the presence of

unobfuscated source-code in our hands: we assume that the unobfuscated code is fairly easy to

attack (reverse) comparing to the obfuscated code. Therefore, the decompiled code (deobfuscated)

that is close to (or matches) the unobfuscated code, will provide an indication of the effectiveness

of the decompilers at producing an easily understandable code. Hence, we use this assumption to

obtain the dependent variable: the percentage of code obfuscation resilience to decompilation.

Dependent Variable

Now the question is how to establish a method to compare the decompiled code with the original

clear code without involving human subjects, i.e. aiming to reduce the effect of human subjects in

obfuscation process, we hold constant the individuals that perform deobfuscation; so to determine

the level of the attack result, we compare the decompiled obfuscated source-code to the original

clear source-code using a plagiarism detection tool. The role of the plagiarism detection tool,

here, is to measure the percentage of retrieved unobfuscated clear code in the decompiled code

(deobfuscated code). For convenience, we report the percentage of dissimilarity of decompiled code

(deobfuscated) to the original one. We use a plagiarism detection and file comparison tool (diff)

called Sherlock [she15] which is used as a part of BOSS online submission system at Warwick

university. It aids in estimating the percentage of inferred clear code from the obfuscated decompiled

jar file. The dependent variable that we want to validate against is the percentage of retrieved code

after conducting a decompilation attack. We discuss the choice of threat model in Section 7.3.7.
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7.3.5 Context: Benchmark

We used SPECjvm2008 (Java Virtual Machine Benchmark) programs as a subject of our experiment

and to evaluate the proposed metrics. We applied 11 real-world applications of the benchmark

suite, containing several real life applications and benchmarks focusing on core Java functionality.3

Each one was written in Java source language and compiled with javac to Java byte-code; the

obfuscation took place on this level. The following is a brief description of each program in the

benchmark as provided by the SPECjvm2008 documentation webpage.

Check. A program that checks JVM and Java features and tests if the Java platform is suitable to

run the benchmarks.

Compiler. This is a Java decompiler that uses the OpenJDK (JDK 7 alpha) front-end compiler

to compile .java files. The code compiled is javac itself and the sunflow sub-benchmark

from SPECjvm2008.

Compress. Compresses data, using a modified Lempel-Ziv method (LZW). It basically finds

common substrings and replaces them with a variable size code. This is deterministic, and

can be done on the fly.

Crypto. It provides three different ciphers (AES, RSA, and signverify) to encrypt data:

• aes. Encrypt and decrypt using the AES and DES protocols, using CBC/PKCS5Padding

and CBC/NoPadding.

• rsa. Encrypt and decrypt using the RSA protocol.

• signverify. Sign and verify using MD5withRSA, SHA1withRSA, SHA1withDSA

and SHA256withRSA protocols.

Derby. An open-source database written in pure Java. The focus of this benchmark is on

BigDecimal computations (based on the telco benchmark) and database logic, especially on

locks behaviour.

MPEGaudio. MPEG-3 audio stream decoder, from Fraunhofer Institut fuer Integrierte Schal-

tungen. Its mp3 library leverage JLayer, an LGPL mp3 library, with heavy floating-point

calculations and a good test of mp3 decoding.
3http://www.spec.org/jvm2008/
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Scimark. This benchmark was developed by NIST and is widely used by the industry as a floating

point benchmark. It consists of five subtest (fft, lu, monte-carlo, sor, sparse).

Serial. This benchmark serializes and deserializes primitives and objects, using data from the

JBoss benchmark. The benchmark has a producer-consumer scenario where serialized

objects are sent via sockets and deserialized by a consumer on the same system.

Startup. This benchmark starts each benchmark for one operation. A new JVM is launched and

time is measured from start to end. The start-up benchmark is single-threaded. This allows

multi-threaded JVM optimizations at start-up time.

Sunflow. Tests graphics visualization using an open source, internally multi-threaded global

illumination rendering system. The sunflow library is threaded internally, i.e. it is possible to

run several bundles of dependent threads to render an image.

XML. This benchmark has two sub-benchmarks: XML.transform and XML.validation. XML.

transform exercises the JRE’s implementation of javax.xml.transform (and associated

APIs) by applying style sheets (.xsl files) to XML documents. XML.validation exercises the

JRE’s implementation of javax.xml.validation (and associated APIs) by validating XML

instance documents against XML schemata (.xsd files).

7.3.6 Obfuscators

Two obfuscators were used: one commercial DashO [das15] evaluation copy and a free source

version of SandMark [san15]. The original benchmarks jar files were obfuscated by using 44

different obfuscation techniques of the DashO and Sandmark obfuscators.

Sandmark. A state-of-the-art code obfuscation suite developed at the University of Arizona. It

has an advantage over other available open-source obfuscation suites for Java byte-code; despite

being around for a long time, it has a high level of flexibility, customisation with a large number of

obfuscation techniques. Besides obfuscation, it provides a list of watermarking algorithms, a set of

static code analyzers, performance evaluation, a set of software engineering metrics and other static

code statistics.

All the obfuscation techniques in Sandmark are clustered into three groups: application, class,

and method obfuscation levels. Application level obfuscation techniques apply obfuscation over
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all the program’s components, where method and class obfuscations allow users to specify which

method or class to choose for obfuscation i.e. it provides a fine-grained flexibility over application

level obfuscation. This way Sandmark can deliver obfuscation for only essential parts of targeted

programs, which helps to improve the performance of obfuscated program, as obfuscation, in most

cases, penalises the performance. The complete list of Sandmark obfuscations and their description

is provided in Table 7.3, 7.2 and 7.4 .

Dasho. The second obfuscation tool, Dasho, is a closed-source commercial obfuscator tool devel-

oped by PreEmptive Solutions. It provides obfuscation for DotNet, Java and Android applications

including tamper notification and detection techniques. It uses obfuscation algorithms based on

control flow obfuscation, patented overload induction methods for renaming and code encryption;

in addition to exception handling obfuscations, optimisation and compacting techniques. Dasho has

an advantage among commercial and open-source obfuscators; it indirectly applies optimisation

techniques, which reduces the size of the code, making the obfuscated code smaller and faster to

run. The complete list of Dasho obfuscations and their description is provided in Table 7.1.

Technique Type Abbr Description

ControlFlow Control-Flow DH-C-CF This process synthesizes branch-

ing, conditional, and iterative con-

structs that produce valid forward

(executable) logic, but yield non-

deterministic semantic results and

produces spaghetti logic when de-

compilation is attempted.

Optimisation Data DH-D-OP Performs algebraic identity,

strength reduction, Constant

folding and other peephole

optimizations.

Continued on next page
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Technique Type Abbr Description

Synthetic Data DH-D-SY This is an obfuscation technique

that marks methods and fields as

a special ’synthetic’, generated by

the Java compiler that links a local

inner class to a block’s local vari-

able or reference type parameter. It

helps confusing some decompilers.

Rename FlattenHierarchy OverIn-

duction

Control-Flow DH-C-RFO A patented algorithm devised by

PreEmptive Solutions. Overload

Induction will rename as many

methods as possible to the same

name, in addition to flattening the

structure of package hierarchy by

putting all the renamed classes into

the default package.

Rename FlattenHierarchy Simple Layout DH-L-RFS Assigns a random name to each

identifier in the program, where all

the renamed classes are put into the

default package

Rename OverInduction Maintain-

hierarchy

Layout DH-L-ROM Similar to Rename FlattenHierar-

chy OverInduction; however, the

package naming hierarchy is re-

tained.

TryCatch10 Control-Flow DH-C-TC Try/Catch handlers are added to

methods to further confuse de-

compilers, on a scale of 1-10.

Table 7.1: Dasho obfuscation techniques.
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Technique Type Abbr Description

Constant Pool Reordering Layout SM-L-CPR Reorders the constants in the constant-

pool and assigns random indices to

them. The constants are randomly as-

signed some unique index within the

length of constantpool.

Objectify Layout SM-L-OB Replaces all the fields in a class with

fields of the same name with a type

Object.

Rename Register Layout SM-L-RR Renames local variables to random

identifiers.

Table 7.2: Sandmark Layout obfuscation techniques

Technique Type Abbr Description

Array Folding Data SM-D-AF Folds one-dimensional array into a

multi-dimensional array.

Block Marker Data SM-D-BM Used to hide a watermark and diver-

sify the byte-code, by randomly mark-

ing all basic byte-code blocks in the

program with either 0 or 1.

Bludgeon Signatures Data SM-D-BS Confusing the signatures of methods,

by making all of the static method sig-

natures the same, and convert all the

parameters to the type object.

False Refactor Data SM-D-FR It can be applied on two classes that

have no common behaviour. If both

classes have instance variables of the

same type, these can be moved into

a new parent class, whose methods

can be buggy versions of some of the

methods from the original classes.

Continued on next page
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Technique Type Abbr Description

Field Assignment Data SM-D-FA Inserting a bogus field into a class and

then making assignments to that field

in specific locations throughout the

code.

Integer Array Splitter Data SM-D-AS Splits a single array of integers into

two arrays and modifies all the ar-

ray initialization, read, write, and ar-

raylength references consistently of

the two arrays.

Merge Local Integers Data SM-D-MLI Combines two int variables into a

single long variable.

Overload Names Data SM-D-ON Change methods names to similar

names. Method overriding relation-

ships remain intact, whereas existing

overloaded methods may be destroyed,

and the new ones created.

Param Alias Data SM-D-PA Tries to find a (non-initializer, non-

abstract, non-native) method in a

class that takes some object type as

a parameter. It then aliases that

parameter within the method using

Thread Local Storage (the Thread-

Local class). Every load of the pa-

rameter is replaced with ThreadLo-

cal.get(), and every store is replaced

with ThreadLocal.set (Object).

Promote Primitive Register Data SM-D-PPR Replaces all the local int vari-

ables in a function with local

java.lang.Integer.

Promote Primitive Types Data SM-D-PPT Changes all primitives in every

method into instances of the respec-

tive wrapper classes.

Continued on next page
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Technique Type Abbr Description

Publicise Fields Data SM-D-PF Makes the fields of a class public.

Reorder Parameters Data SM-D-RP An obfuscator that shuffles the argu-

ment orders for all methods.

Static Method Bodies Data SM-D-SMB Static Method Bodies splits all of the

nonstatic methods into a static helper

method and a nonstatic stub that calls

it.

String Encoder Data SM-D-SE It obfuscates the literal strings of a

program. Each string is ’encrypted’

and any string reference is replaced by

a call to a method that ’decrypts’ it.

Variable Reassigner Data SM-D-VR Reallocates the local variables in a

method, in order to try to minimize the

number of local variable slots used.

Duplicate Register Layout SM-D-DR This algorithm creates an additional

variable that has its value changed

in coordination with an original local

variable. Each reference to that vari-

able value may have been changed to

reference the new variable instead.

Table 7.3: Sandmark Data obfuscation techniques

Technique Type Abbr Description

Branch Inverter Control-Flow SM-C-BI Exchanges the if and the else

part of an if-else statement. It

also negates the if instruction, for

example IFGE JVM instruction is

followed by IFLT another JVM in-

struction which negates the effect

of if, so that the semantics is pre-

served.

Continued on next page
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Technique Type Abbr Description

Buggy Code Control-Flow SM-C-BC Selects a random method from

the class file, and a random basic

block in the method: a copy of

the basic block is made and some

additional bug codes are also in-

troduced in this new basic block

which changes the local variable

values.

Class Splitter Control-Flow SM-C-CS Adds several spurious classes

by splitting the original, non-

obfuscated code, into several ob-

fuscated ones.

Duplicate Register Control-Flow SM-D-DR This algorithm creates an addi-

tional variable that has its value

changed in coordination with an

original local variable. Each ref-

erence to that variable value will

be changed to reference the new

variable instead.

Dynamic Inliner Control-Flow SM-C-DI Dynamically inlines (replacing

method invocations) method

bodies at the runtime using

instanceof.

Inliner Control-Flow SM-C-IN Inlines static method bodies by re-

placing method invocations.

Irreducibility Control-Flow SM-C-IR Adds conditional branches to a

method via opaque predicates so

that the control flow graph of the

resulting method is irreducible.

Continued on next page
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Technique Type Abbr Description

Method Merger Control-Flow SM-C-MM Merges all of the public static meth-

ods that have the same signature

in each class into one large master

method.

Opaque Branch Insertion Control-Flow SM-C-OBI Randomly inserts branches into a

method using a library of opaque

predicates.

Random Dead Code Control-Flow SM-C-RDC Adds bogus statements onto the

end of a java method. The ap-

pended code may include a vari-

ety of other instructions including

return instructions. Methods not

ending in a return statements will

impede reverse engineering tools.

Simple Opaque Predicate Control-Flow SM-C-SOP Implements simple boolean

opaque predicate (see Sec-

tion 3.4.2) and adds them to the

user’s code. The aim is to embed

opaquely true constructs which

should be stealthy.

Split Classes Control-Flow SM-L-SC This is a Node Splitting obfusca-

tion algorithm which obfuscates a

class file by splitting a node into

two. Some of the fields from the

class are moved into a newly cre-

ated class and all references to

those fields in the given class are

modified to reflect the changes.

Continued on next page
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Technique Type Abbr Description

Transparent Branch Insertion Control-Flow SM-C-TBI Randomly inserts branches into a

method. The branch will test to see

if an Object field of the class is null,

and if so it will branch.

Table 7.4: Sandmark Control-Flow obfuscation techniques

P Q Obfuscation

Q'P'

DecompilationDecompilation

Metrics

ByteCode

SourceCode

Compression-Based Measures
Classical Complexity Measures

Matching

(JAD,JD,Jode)(JAD,JD,Jode)

Figure 7.1: Schematic overview of how we applied decompilation and the metrics in the experiment.

7.3.7 Decompilation as Threat Model

In this experiment we evaluate the resilience of obfuscation algorithms by using the static analysis

techniques leveraged in decompilers. The purpose of decompilation, in this experiment, is to

produce code that is easy to comprehend i.e. to be able to understand the program. The strict

syntactic correctness is not fully required, as partially decompiled code may be sufficient for

understanding. We do not expected decompilers to produce a perfect code or a source-code exactly

similar to the original code. Dagenais and Hendren in [DH08] demonstrated the possibility of

constructing Java code from partially correct decompiled Java code.
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Java decompilation process. Decompilation can be used as a reverse-engineering tool in Java

byte-code, which consists of low-level stack-based byte-code instructions; the decompiler trans-

forms these low level instructions to high-level Java source-code. Generally the task of decompiling

Java byte-code is relatively simpler than other binary code decompilers, as Java byte-code contains

extensive meta-data, such as method names and their signature, class names and types, which

makes the task of decompilation much easier. More specifically, the Java decompilation process

involves the following analysis phases:

• Local variable typing inference. Java byte-code generally preserves the type information

for fields, method returns and parameters, however it does not have type information for local

variables.

• Merging stack-based instructions into expressions and variables. Stack variables in Java

byte-code, are mostly due to the optimisation process; they are kept on the stack to enhance

byte-code performance. It requires identifying such variables by decompilers in order to

translate them to local variables and expressions.

• Arbitrary control flow construction analysis. This is the process of reconstructing the

unstructured and arbitrary control flow of byte-code into readable high level source-code.

• Exceptions and synchronisation handling. This recovers all the exception handlers and

synchronized() statements from the Java byte-code instruction and the meta-data.

We evaluate our proposed metrics using three Java decompilers, JD [JD15], JAD [JAD15] and Jode

[Jod15], to investigate the resilience, and assess to which extend the applied obfuscation techniques

can resist decompilation attacks. Our choice was based on a study by Hamilton and Danicic [HD09],

who investigated the effectiveness of Java decompilers using an empirical evaluation on a group of

currently available Java byte-code decompilers. We selected, based on that experiment, three Java

decompilers that score the best among all decompilers in terms of effectiveness and correctness,

JD, JAD and Jode.

JD. (Java Decompiler) A freeware Java decompiler, provided as a GUI tool and command-

line version, as well as in the form of plug-ins for the Eclipse (JD-Eclipse) and IntelliJ IDEA

(JD-IntelliJ). It targets Java 5 byte-code and later versions.
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JAD. A freeware and a popular decompiler for non-commercial use, with no source-code avail-

able, and is no longer maintained. It is written in C++, and is relatively fast compared to other

Java decompliers. Jad is used as the back-end by many decompiler GUIs including an Eclipse IDE

plug-in (JadClipse).

Jode. (Java optimise and decompile environment) is an open source decompiler and obfusca-

tor/optimiser. Jode has a verifier, in a similar way to the Java runtime verifier, which tries to find

type data from byte-code class files. Jode is able to correctly infer types of local variables, and is

able to transform code into a more readable format, closer to the way Java code is naturally written.

7.3.8 Choice of Compressor

Most of the available compressors are ’Normal’ according to [CV05] (see Section 2.9), and

subsequently any of them can be used to approximate the proposed metrics. However, we had to

make the choice amongst the most effective and accurate ones. Better compression which has a

high compression rate4 is an important factor to have an effective approximation for Kolmogorov

complexity, but this statement is not always true for NCD [CV05]. In a study by Cebrián et el.

[CAO05], using three different compressors bzip2, gzip, and PPMZ, NCD did not satisfy the

idempotent property (see Definition 2.39) in some cases, it shows that the compression skewed

according to the size of measured file. However, PPMZ showed more resilience comparing to the

rest of compressors with an average error of 0.1043%. A most recent study by Alshahwan et al.

[ABCD15], in the context of malware detection using NCD, a comparison was made among three

compressor winzip, gzip, and 7zip (PPMZ) using the same testing technique as in [CAO05]. 7zip

performed better than the other compressors. It scores an idempotent result close to zero in most

files size, with a window size of a maximum 4GB. Based on these two studies we decided to use

PPMZ for the experiment, which is implemented as a python library.

7.4 Experimental Process

For each version of a jar file obfuscated under a certain obfuscation technique, NCD, NC, and πU

were calculated. All the obfuscated programs are subjected to an automatic decompilation process.

4Data compression rate is a ratio that is calculated by dividing the uncompressed size of a (binary) program or file by
its compression size.
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Additionally, we applied the decompilation process to the clear original programs, which helps in

assessing the difference between the original source-code and obfuscated source-code decompiled

using the same decompiler. The difference was calculated by computing the percentage of original

code extracted from the deobfuscated one using Sherlock (see Section 7.3.4). The code matching

(using Sherlock) was calculated between the decompiled jar file and the original file, to estimate

the percentage of the retrieved code from the decompiled jar file.

We build a python tool to compute the proposed metrics (NCD, πU ,NC,C). We automate the

whole testing process, using a python script to glue the command line versions of Sandmark, Dasho

obfuscation, decompilation, classical complexity measures and the tool that compute the proposed

metrics. The results were saved in a repository (.mat), and all data analysis and statistical testing

were conducted in Matlab [Mat15]. All of the above components are integrated into our prototype,

Fig. 7.2 shows an overview of the tool-sets and the experimental procedure.

SPECjvm2008 
Bechmark

DashO

SandMark

Prototype 
measuring 

Engine

JD, JAD, Jode
Decompilers

P' :Obfuscated

P' :Obfuscated

Deobfuscation 
Attack

Evaluation & 
Analysis

Results

Figure 7.2: High level overview of the experimental procedure

7.5 Analysis Methodology

We apply statistical methods to verify and analyse our results. Descriptive statistics are applied in

order to present the numerical processing of a data set, and to graphically present important aspects

of the experiment data set (the collected numerical data results) and how it is distributed.

We use three types of descriptive statistics: measures of central tendency, dependency, and
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graphical visualization. In measures of central tendency we use the mean which indicates the

middle of a data set. This midpoint is normally called the average and is interpreted as an estimation

of the expectation of the stochastic variable from which the data sets are sampled [She07]. The

mean of a given sample of data points x1...xn, is denoted by x̃:

x̃ =
1

n

n

∑

i=1
xi

To measure the dependency between variables we used two types of statistical measurements:

correlation and regression analysis. Correlation is a number that quantifies how much two data sets

vary. We use the Spearman rank correlation coefficient to express this relation.

Spearman rank correlation ρ [She07]. This is a ranked version of Pearson’s correlation coef-

ficient and belongs to non-parametric statistics, denoted by ρ. Non-parametric statistics do not

make any assumptions about the data distribution from which the sample was drawn [She07].

The Spearman rank correlation is used as an effect size, and estimates the magnitude of effect or

association between two or more variables [SL93] when paired quantitative data are available; it

helps to relate dependent variables (Decompilers efficiency) to independent variables (NCD and

NC). Given two sets of data samples, x1...xn and y1...yn.

ρ =
∑
n
i=1(xi − x̃)(yi − ỹ)

√

∑
n
i=1(xi − x̃)

2
(yi − ỹ)2

Spearman’s ρ can vary in magnitude from -1 to 1, with -1 indicating a perfect negative linear

relation, 1 indicating a perfect positive linear relation, and 0 indicating no linear relation between

two variables.

To further assess the relationship among the different variables (decompilation metrics), a

regression model was investigated as another method to check for dependency.

Regression analysis. This is a statistical technique for studying the relationships between the

independent and dependent variables (see Section 7.3.4 and Section 7.3.2). It provides a method

to predict changes of dependent variable(s) by looking at independent variable(s). The outcome

of regression analysis is normally a regression equation (see also Section 6.4.6). The main

difference between a regression analysis and a correlation coefficient is that regression looks for
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prediction, whereas the correlation coefficient only compares the level of dependency of two

variables. However, they are strongly related as higher correlation among variables indicates more

accurate and precise prediction of the dependent variable from independent variables. The linear

regression method is used to construct the regression equations. The coefficient of Determination

(R2) [She07] value is used as a guideline to measure the accuracy of the data model, i.e. how well

data points fit a statistical model.

Hypothesis testing. A statistical hypothesis test is a form of statistical inference, which allows

one to investigate evidence that supports some claims based on data taken from controlled ex-

periment or an observational study [She07]. The methods of inference used to support or reject

claims based on sample data are known as Tests of significance. Tests of significance are conducted

by applying what is called the null hypothesis, which represents a theory or a general statement

that has been put forward, either that there is no relationship between two measured variables, or

it is to be used as a basis for argument, but has not been proved. The null hypothesis describes

some properties of the distribution from which the sample is drawn; the aim is to reject that these

properties are true with a given statistical significance. Therefore, the null hypothesis should be

formulated negatively. An alternative hypothesis is the hypothesis that is chosen when the null

hypothesis is rejected. The aim of hypothesis testing is to investigate if it is possible to reject a

certain null hypothesis H0.

For hypotheses validation, we applied p-values drawn from Spearman rank correlation ρ, and

Mann-Whitney test [WRH+00], which is a non-parametric alternative to the t-test [WRH+00], as we

do not make any assumption about the normality of distributions in the test samples. The p-value is

used to measure the probability of the statistical significance of evidence under test i.e. representing

the probability that obtained test results are due to a Type I error :

Pr(type I error) = Pr(Reject H0 ∣H0 true)

This can be explained as the probability of falsely rejecting H0, the null hypothesis. This test

allows for checking the presence of significant differences in the paired data, and hence to weigh

the strength of the evidence. The null hypothesis is rejected if the calculated p-value turns out to

be less than a predetermined significance level (α). In this experiment, the p-value should be less
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than 0.05 to reject the null hypothesis [She07]. In all of the statistical tests, we consider 95% as a

significance level, i.e. we accept 5% probability of committing a type I error.

In the Mann-Whitney test, similarly to the Spearman rank correlation, the p-value threshold is set

at 0.05 to reject the null hypothesis. Given two independent samples: x1, ..., xn and y1, ..., ym. We

rank all samples and calculate Uw.

Uw = NA ⋅NB −
NA ⋅ (NB + 1)

2
− T and U ′w = NA ⋅NB −Uw

where NA = min(n;m),NB = max(n,m), and T is the sum of the ranks of the smallest sample.

So we can reject the null hypothesis if min(Uw, U ′w) is less than or equal to a criterion value

[WRH+00].

7.6 Summary

We provide a detailed description of the key elements in the design of an experiment, for the purpose

of evaluating a set of proposed metrics for measuring the quality of code obfuscation. The aim of

this experiment is to complement the previous theoretical results, to provide empirical evidence,

and to show the usefulness of algorithm information theoretical metrics reflecting the quality and

security in obfuscated code.

We based the experimentation design and methodology of analysis on Wohline et al.’s framework

on experimental software engineering. A comprehensive description of the tool-sets and experi-

mental context are given, which includes two obfuscators: Sandmark, an open source suite, and

Dasho, a commercial tool, applied to SPECjvm2008 suite. We choose three different decompilers

(JD, JAD, and Jode) as the model of the adversary.
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8 Experimental Results and Analysis

In this chapter we report the outcome of our experiments, and state formally the research questions

and formulate their null hypotheses; then we provide the analysis and interpretations of the obtained

results. We test the null hypotheses and evaluate the relation between our proposed metrics, the

classical complexity metrics and the percentage of code obfuscation resilience to decompilation

attacks, by providing evidence based on statistical analysis. We also use the proposed metrics

to analyse and study the effect of code obfuscation techniques on programs, and quantify their

resilience to decompilers.

8.1 Introduction

In the previous chapters we provided all the design requirements to set up, implement, and conduct

experiments on a set of obfuscated SPECjvm2008 programs. In this chapter we proceed by stating

the research questions, and their null hypotheses. Then we conduct a statistical analysis, which

investigates the null hypothesis for each of the posed question by providing empirical validations

based on Spearman rank correlation and Mann-Whitney test. We first check if the proposed metrics,

normalised compression distance (NCD), unintelligibility Index (πU ) and normalised compression

(NC), are measuring the code obfuscation resilience. Secondly, we compare the metrics with other

classical complexity metrics, Cyclomatic complexity (V(G)), Halstead Difficulty (D), Halstead

Effort (E), and Maintenance Index (MI). Then we apply the validated metrics to answer the rest of

the questions. In particular, we examine if the obfuscation techniques produce any changes in the

Kolmogorov complexity (measured by compression), and whether these changes are positive, i.e. if

obfuscation techniques increase the complexity of the clear unobfuscated programs. Additionally,

we investigate if the obfuscation process produces any changes in the unobfuscated programs

of the SPECjvm2008. We also fit a multi-linear regression model aiming to produce a single
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quantitative value on a percentage scale, which predicts the resilience of Java code obfuscation

against decompilers. We proceed to provide a deep analysis of Dasho and Sandmark’s obfuscation

techniques using the proposed metrics, followed by studying the impact of decompilers on each

obfuscation technique.

The overall results shows that our proposed metrics are empirically valid to measure the quality

of code obfuscation. These metrics outperform the classical complexity measures in terms of

being correlated with the degree of code obfuscation’s resilience to decompilers. However, there is

only one exception that is related to NC: this measure shows a weak correlation comparing to the

other metrics involved in the study. The outcome of the analysis of the results sheds a light on the

importance of taking into account the attack model when measuring the quality of code obfuscation.

Applying any quantitative measure without parametrising it to a specific attacker can be misleading,

and creates a false sense of security. We show that by comparing the values of the metrics of each

obfuscated program, before and after decompilation attacks.

The remainder of this chapter is structured as follows. In Section 8.2, we present the research

questions, their formulated null hypotheses, and provide the validation results of the proposed

metrics model, using statistical hypotheses testing. Section 8.2.3 provides the statistical comparison

with the classical complexity metrics. In Section 8.3.2 we analyse the impact of code obfuscation

using the proposed metrics. Section 8.4 presents the potential threats and limitations that may affect

the validity of the experimental results.

8.2 The Validation Results for the Proposed Model

In this section we will empirically verify whether the proposed measures: (NCD, πU and NC)

are valid metrics to quantify the security in code obfuscation. Specifically, we try to answer the

following two questions:

(RQ1) Do the proposed metrics (NCD, πU and NC) reflect the amount of confusion added due to

the obfuscation process?

(RQ2) Do the classical complexity metrics reflect the same amount of confusion as the proposed

metrics?
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8.2.1 Hypotheses Formulation

We formulate the statistical hypothesis for each of the aforementioned research questions. An

important aspect of the experiment is to formally state clearly what is going to be evaluated in the

experiment, which leads to the formulation of the hypotheses below.

For each of the research questions, we formulate the subsequent null hypotheses groups to be

tested: For the first research question RQ1 we established the following null hypotheses:

• Null hypothesis, H10a: NCD does not measure the decrease in the efficiency of an attacker

using JD, JAD and Jode decompilers, trying to construct a Java source-code similar to the

decompiled original code.

Alternative hypothesis, H11a (not H10a): NCD does measure the decrease in the efficiency

of an attacker using JD, JAD and Jode decompilers, trying to construct a Java source-code

similar to the decompiled original code.

• Null hypothesis, H01b: NC does not measure the decrease in the efficiency of an attacker

using JD, Jad and Jode decompilers, trying to construct a Java source-code similar to the

decompiled original code.

Alternative hypothesis, H11b (not H01b): NC does measure the decrease in the efficiency

of an attacker using JD, JAD and Jode decompilers, trying to construct a Java source-code

similar to the decompiled original code.

• Null hypothesis, H01c: πU does not measure the decrease in the efficiency of an attacker

using JD, JAD and Jode decompilers, trying to construct a Java source-code similar to the

decompiled original code.

Alternative hypothesis, H11c (not H01c): πU does measure the decrease in the efficiency of an

attacker using JD, JAD and Jode decompilers, trying to construct a Java source-code similar

to the decompiled original code.

Effectively, there are nine null hypotheses that can be constructed from the above hypotheses,

i.e. three null hypotheses for NCD against JD, Jode and JAD decompilers, and similarly three

null hypotheses for NC and πU respectively. For convenience, we grouped them into one main

hypotheses according to the used measure. The above hypotheses are one tailed [She07], also known
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as a directional hypothesis, which is a test of significance to determine if there is a relationship

between the variables in one direction. We apply one-tailed hypotheses testing since we are only

interested in one direction of analysing the validity of the proposed measure against the resistance

to attacks using decompilation.

The null hypotheses suggest the presence of one main dependent variable, the resilience variable

that measures the efficiency resisting decompilation (see Section 7.3.4). The independent variables

involved in this experiment are the NCD, πU and NC values.

For the second question RQ2, we construct the following null hypothesis:

• Null hypothesis, H02: The proposed measures do not perform better than the classical

complexity metrics in measuring the quality of code obfuscation against decompilers attacks.

Alternative hypothesis, H12 (not H02): The proposed measures do perform better than the

classical complexity metrics in measuring the quality of code obfuscation against decompilers

attacks.

We will start by investigating the question in RQ1 and its formulated hypotheses in Section 8.2.1,

then we will address RQ2, which shows how well the classical complexity metrics are performing

comparing to our proposed model.

The non-negative unintelligibility index πU indicates a higher complexity of obfuscated code

and less code comprehensibility (unintelligible) with respect to the original benchmark files, where

a negative value indicates less potent code (see Section 6.4.1). NCD reports the dissimilarity

between obfuscated programs and the original clear code. NCD values are ranged from 0 (exact

similarity), which means the obfuscation did not add any confusion to the original code, and 1

(totally dissimilar) which indicates the maximum level of confusion added to the original code

(see Theorem 6.27). Similarly, NC reports values between 0 and 1; NC = 0 for empty strings, this

value cannot to occur in this experiment, as all the programs are non-empty. NC = 1 indicates the

highest complexity of obfuscated code that can be achieved with respect to the maximum degree of

compression of obfuscated code (see Section 6.4.2).

Each of the proposed metrics is applied to each obfuscated program of the SPECjvm2008;

then we check if this metric is correlated with the amount of retrieved code due to the different

decompilers, i.e. the degree of code obfuscation resilience (see Section 7.3.4).
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8.2.2 Validation Analysis using Correlation and Hypothesis Testing

In this section we investigate the association and the linearity between NCD, πU and NC and the

degree of resilience of obfuscated programs, i.e. the average percentage of failure to retrieve the

original code from decompiled obfuscated code; this value is denoted, in the reported results (tables

and graphs), by a notation Gdecomp, according to the name of used decompiler, or GAllDec, which

refers to all decompilers involved in this experiment 1 (see Fig. 7.1).

We test this relation by relying on statistical methods such the Spearman rank coefficient

correlation (see Section 7.5). We calculate the Spearman rank coefficient correlation ρ between

NCD, πU , and NC and the resilience of obfuscated programs in Fig. 8.1: each entry in the tables (the

figure) corresponds to the Spearman rank coefficient correlation ρ between the proposed metrics

(row) and the percentage of resilience to decompilers (column); for example, the entry (NCDJAD

versus GJAD) of Fig. 8.1-(a), which is equal to 0.88, corresponds to the correlation between NCD

measure after decompiling the obfuscated programs (the benchmark) with JAD and the percentage

of resilience to JAD (GJAD). The overall correlation between NCD and all inferred programs (due

to decompilation) achieves a result close to 0.89 (strong correlation). Similarly, we can notice the

same correlation with respect to each decompiler. In the case of the πU measure, the Spearman rank

coefficient correlation ρ scores an overall result of around 0.48 (moderate correlation). On the other

hand, NC obtains a weak correlation of around 0.11. We further check for the correlation in the case

of simple compression (C);2 we find also a positive correlation, surprisingly (see Section 6.4.2),

performing much better than NC.

GJAD

NCDJAD 0.88
πUJAD 0.51
NCJAD 0.23
CJAD 0.24

GJD

NCDJD 0.90
πUJD 0.48
NCJD 0.14
CJD 0.32

GJode

NCDJode 0.85
πUJode 0.39
NCJode 0.18
C 0.25

GAllDec

NCDAllDec 0.89
πUAllDec 0.48
NCAllDec 0.11
CAllDec 0.22

(a) (b) (c) (d)

Figure 8.1: The Spearman rank coefficient correlation ρ between the proposed metrics and the
resilience of obfuscated programs (percentage of the clear code that was not recovered)
using decompilers (JD, JAD, and Jode).

In general, the correlations are positive; this indicates a strong positive direction of association.

1For convenience and the ease of reading, we indicate the inferred program from the deobfuscated code with G subscript
with the name of decompiler GJAD,GJD and GJode, i.e. the average retrieved data are due to decompiling an
obfuscated code.

2C is used as the main building block in the all of the proposed metrics.
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NCD tends to increase as GAllDec increases. This can, indeed, provide evidence that NCD can

measure the impact of code obfuscation resilience to attacks (decompilers). Similarly,πU and NC

show a positive correlation; however, much lower than the NCD correlation.

We also perform a significance test to decide whether based upon the experimental results, there

is any or no evidence to suggest the existence of a linear correlation between the proposed metrics

(NCD, πU ,NC) and GAllDec, in general, and according to each decompiler, GJAD,GJD,GJode. To

achieve this, we test the null hypothesis (see Section 8.2.1) H10a against the alternative (research)

hypothesis H11a .

GJAD

NCDJAD ≪ 0.05
πUJAD ≪ 0.05
NCJAD ≪ 0.05
CJAD ≪ 0.05

GJD

NCDJD ≪ 0.05
πUJD ≪ 0.05
NCJD 0.008
CJD ≪ 0.05

GJode

NCDJode ≪ 0.05
πUJode ≪ 0.05
NCJode ≪ 0.05
CJode ≪ 0.05

GAllDec

NCDAllDec ≪ 0.05
πUAllDec ≪ 0.05
NCAllDec ≪ 0.05
CAllDec ≪ 0.05

(a) (b) (c) (d)

Figure 8.2: The p-values of the Spearman rank coefficient correlation ρ between the proposed
metrics and the resilience of obfuscated programs using decompilers (JD, JAD, and
Jode).

We conduct the hypothesis testing by computing the p-value (see Section 7.5) in Fig. 8.2: each

entry in the tables (the figure) shows the p-value of testing a null hypothesis; for example, in

Fig. 8.2-(a) the p-value of testing the null hypothesis of whether the value ofNCAllDec, i.e. NC is

applied to the decompiled version of the obfuscated programs (the benchmark) with all decompilers,

correlates with GAllDec (NCAllDec versus GAllDec) is 0.008, which is significant because it is lower

than 0.05 threshold.

All the p-values that are used to test H10a, (NCD, πU ,NC) versus (GAllDec,GJAD ,GJD,GJode),

are below the significant levels, i.e. p-value < 0.05, as we see in Fig. 8.2. Therefore, we can

reject the null hypotheses of H10a group (see Section 7.5) and accept the alternative hypotheses

H11b group. This implies that the correlation of (NCD, πU ,NC) versus (GAllDec,GJAD,GJD, and

GJode) are indeed significant.

8.2.3 Comparison with Classical Metrics

In this section we try to answer the second question RQ2, which is about comparing classical

complexity metrics with our proposed metrics, namely NCD, πU and NC, in addition to the simple
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compression length (C).3 We answer this question by investigating the null hypothesis in H02

using the same analysis methodology as with the proposed metrics. We have five different classical

complexity measures: Cyclomatic complexity (V(G)), Halstead Difficulty (D), Halstead Effort (E),

and Maintenance Index (MI); all these measures are discussed in Section 7.3.2. We investigate the

potency (see Section 3.8) of each of these metrics for the same purpose of comparison with the

proposed metrics.

GJAD

LOCJAD 0.25
V(G)JAD 0.21
DJAD 0.18
EJAD 0.22
MIJAD 0.19

GJD

LOCJD 0.28
V(G)JD 0.26
DJD 0.14
EJD 0.13
MIJD 0.31

GJode

LOCJode 0.04
V(G)Jode 0.03
DJode 0.05
EJode 0.1
MIJode 0.20

GAllDec

LOCAllDec 0.21
V(G)AllDec 0.19
DAllDec 0.13
EAllDec 0.16
MIAllDec 0.03

(a) (b) (c) (d)

Figure 8.3: Spearman rank coefficient correlation ρ between the classical metrics and the resilience
of obfuscated programs using all decompilers (JD, JAD, and Jode).

Overall, the Spearman rank correlation of the classical measures versus GAllDec are positive, and

all the p-values are below 0.05, which means the correlations are significant. However, observing

the correlation per individual decompiler, we notice a very small correlation in GJode of 0.04. We

checked for significance in Fig. 8.4, and we found that the p-value are above 0.05 threshold, apart

from the Halstead effort metric (E), which scores exactly 0.05. We conclude, based on this analysis

that the classical complexity metrics, LOC,V(G),D,E and MI do not correlate with the percentage

of code obfuscation resilience based on Jode decompiler, GJode. We investigate this matter in more

detail, and find the main reason for this decrease in complexity: Jode fails to produce a complete

decompilation when it decompiles obfuscated programs of SPECjvm2008 with arbitrary byte-code,

such as BuggyCode (SM-C-BC) (see Table 7.4).

GJAD

LOCJAD ≪ 0.05
V(G)JAD ≪ 0.05
DJAD ≪ 0.05
EJAD ≪ 0.05
MIJAD ≪ 0.05

GJD

LOCJD ≪ 0.05
V(G)JD ≪ 0.05
DJD 0.01
EJD 0.012
MIJD ≪ 0.05

GJode

LOCJode 0.46
V(G)Jode 0.54
DJode 0.33
EJode 0.05
MIJode 0.54

GAllDec

LOCAllDec ≪ 0.05
V(G)AllDec ≪ 0.05
DAllDec ≪ 0.05
EAllDec ≪ 0.05
MIAllDec ≪ 0.05

(a) (b) (c) (d)

Figure 8.4: The p-value of each Spearman rank coefficient correlation between the classical metrics
and the resilience of obfuscated programs using all decompilers (JD, JAD, and Jode).

3 Although, NC is a normalised measure of C, we are also interested in comparing compression length measure (C), as
an absolute measure, with other classical complexity metrics.
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GJAD

PtLOCJAD 0.20
PtV(G)JAD

0.20
PtDJAD 0.23
PtEJAD 0.26
PtMIJAD 0.12

GJD

PtLOCJD 0.19
PtV(G)JD

0.19
PtDJD 0.15
PtEJD 0.14
PtMIJD 0.16

GJode

PtLOCJode -0.02
PtV(G)Jode

-0.06
PtDJAD -0.03
PtEJAD 0.1
PtMIJAD -0.18

GAllDec

PtLOCAllDec 0.15
PtV(G)AllDec

0.12
PtDAllDec 0.13
PtEAllDec 0.18
PtMIAllDec 0.07

(a) (b) (c) (d)

Figure 8.5: Spearman rank coefficient correlation ρ of each classical metric potency (Pt) and the
resilience of obfuscated programs using all decompilers (JD, JAD, and Jode).

In the potency measure, using classical complexity metrics (Section 7.3.3), the overall Spearman

rank correlation obtains a positive value with p-values below the 0.05 threshold (significant).

The Spearman rank correlations, in case of Jode, produce negative values; however, they are not

significant (see Fig. 8.6) as their p-values are above 0.05, with only one exception in PtMI versus

GJode (see Fig. 8.6).

GJAD

PtLOCJAD ≪ 0.05
PtV(G)JAD

≪ 0.05
PtDJAD ≪ 0.05
PtEJAD ≪ 0.05
PtMIJAD 0.02

GJD

PtLOCJD ≪ 0.05
PtV(G)JD

≪ 0.05
PtDJD ≪ 0.05
PtEJD 0.01
PtMIJD 0.02

GJode

PtLOCJode 0.68
PtV(G)Jode

0.28
PtDJAD 0.64
PtEJAD 0.1
PtMIJAD 0.02

GAllDec

PtLOCAllDec ≪ 0.05
PtV(G)AllDec

≪ 0.05
PtDAllDec ≪ 0.05
PtEAllDec ≪ 0.05
PtMIAllDec 0.02

(a) (b) (c) (d)

Figure 8.6: The p-value of Spearman’s rank coefficient correlation between of each classical metric
potency (Pt) and the resilience of obfuscated programs using all decompilers (JD, JAD,
and Jode).

We answer H02 by comparing Spearman rank correlations between the proposed metrics and the

classical complexity measures. We can observe that the p-values of Spearman rank correlation in

the sets of measurements, after decompiling with all decompilers: (NCD, πU , NC , C), (LOC, V(G),

D, E and MI) and (PtLOC, PtV(G), PtD,PtE and PtMI) against GAllDec are below 0.05. We then move

on and use the correlations to perform the comparison; we see that all the proposed metrics, apart

from NC, outperform the classical complexity metrics and their potency measures. Therefore, we

reject the null hypothesis H02 and accept the alternative hypothesis H12, with only one exception

for NC, as it scores less than all of the classical complexity metrics.

8.2.4 Generic Linear Regression Model for Code Obfuscation Security

So far, we present the empirical evaluation of the proposed metrics. The analysis of the results in

Section 8.2.2 shows the usefulness of these metrics to reflect the degree of resilience of obfuscation
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techniques. We now construct a multi-linear regression model to produce a single quantitative value

from all of the proposed metrics, and investigate how well the data fits this model. The multi-linear

regression equation has the following form:

Y = b + a1X1 + a2X2 + a2X3

a1, a2 and a3 are the coefficient or the slopes, b normally referred to as the intercept or constant,4

X1,X2 and X3 are the independent variables (our proposed metrics) and Y is the dependent

variable that we are aiming to predict using the independent variables.

In Section 6.4.6 we proposed that model, discussed also in Section 7.5, for estimating the security

of code obfuscation using a multi-linear regression model. This model is useful to express the

quality of obfuscated code using a single quantitative value S. We used our proposed metrics as

independent variables to estimate S. This model is only designed for Java programs (the subject of

the study) attacked by decompilation.

We established the best-fitting multi-linear regression model in Fig. 8.7 by computing a regression

equation, providing a mathematical relation between NCD, πU ,NC and GAllDec. The outcome of

estimated multi-linear regression model is given by the following equation based on the regression

analysis:

S = 73.26 + 41.32 ⋅NCD + 0.77 ⋅ πU − 26 ⋅NC

Coefficient Standard Error p-Value R Square Adjusted R Square
Intercept 73.26 1.53 ≪ 0.05

0.71 0.71
NCD 41.32 0.8 ≪ 0.05
πU 0.77 0.54 0.152
NC -26 2.24 ≪ 0.05

Figure 8.7: Regression analysis for the combined proposed metrics with versus all GAllDec.

In Fig. 8.7 we report the regression analysis of the proposed metrics; the coefficient field shows

all the slope values that are used to construct the regression equation. The standard error field

assesses the precision of the predictions, i.e. the confidence interval of predication. The p-value

field reports if the coefficients are significant. R2(R-Square) measures how close the actual data

are to the fitted regression line (estimated data). Intuitively, it can be explained as the percentage

4It represents the value of a regression equation if all other variable are zeros.
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of variation in the dependent variable, GAllDec, with respect to the data that is accounted for by

the regression model (the proposed metrics). Formally, given a data sample of n observed values,

y1, ..., yn, each associated with a predicated (fitted) value ŷ1, ..., ŷn, where ỹ is the mean (average)

[KKM88].

R2
=
∑
n
i=1(ŷi − ỹ)

∑
n
i=1(yi − ỹ)

The adjusted version of R2 (R2
adj) adjusts the statistic based on the number of independent

variables in the model that significantly affect the dependent variable. It is defined in terms of R2 as

follows, where n is the number of observations in the data set, andp is the number of independent

variables.

R2
adj = 1 − (1 −R2

) ⋅

n − 1

n − p − 1

Having the regression equation, we can predict the dependent variable (GAllDec) using the

independent variables (NCD, πU ,NC); however, we need a mechanism to test how the data fits

this model. Generally, the regression model fits the data properly if the differences between the

observed values and the model’s predicted values are minimal.

The outcome of R2 and its adjusted version shows that the regression model is able to estimate

over 71% of the variation in the dependent variable GAllDec (observed data); it is considered as

adequate estimate, because we do not expect the model to predicate 100% of variations in dependent

variable.

The estimated regression model is fitted using a cross validation technique to avoid overfit-

ting [SL12] in the predicted data.5 The goal of a cross-validation is to measure the predictive

performance (ability to predict) of the regression model as a high R2 value may not necessarily

means the model is good. We use the K-Fold [SL12] cross-validation technique to perform the

validity checking, which randomly breaks the dataset into K partitions and performs the analysis,

by calculating the sum of errors using Mean Square Error (MSE) and Root Mean Square Error

(RSME) i.e. RMSE =
√

MSE. In the context of regression analysis, the mean square error measures

the average squares of error variances or deviations of the predictor estimation from the correct

5Overfitting generally occurs when a model is excessively complex relative to the amount of data available. An
overfitted model performs much worse (more errors) on the test dataset than on the training dataset, resulting in poor
predictive performance.
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values, i.e. it measures how close a fitted line (the regression model) is to the data points. The

squared is done so that the negative values do not cancel the positive values. Given a data sample

of n observed values, y1, ..., yn, and their (predicated) fitted values ŷ1, ..., ŷn.

MSE =
1

n

n

∑

i=1
(ŷi − yi)

2

We conduct the cross validation usingK = 10 folds 6. The outcome of the analysis is presented

in Fig. 8.8; it shows that RMSE scores on average around 10.39 ± 1.12 for all the tested folds.

This can be interpreted as the model miss-predicts the dependent variable (the code obfuscation

resilience to decompilers) by 10.39% (the dependent variable is a percentage too).

K MSE RMSE
1 86.12 9.28
2 117.56 10.84
3 132.18 11.49
4 122.61 11.07
5 72.48 8.51
6 118.26 10.87
7 83.62 9.14
8 141.7 11.9
9 96.56 9.82
10 120.65 10.98

Figure 8.8: Cross validation results on the adjusted regression model.

Investigating the standard error of regression shows 1.53% of errors occur for the intercept (the

constant), 0.8% of errors on average for the estimated coefficient for NCD, and 0.54% for πU . In

NC, we observe a relatively high score of errors for the coefficients: 2.24% comparing to NCD and

πU .

We check the p-value for each of the estimated coefficients, which are computed using t-statistic

[She07]. It tests the null hypothesis that the regression coefficients are not equal to zero. The results

in Fig. 8.7 shows that the p-value of the coefficients for NCD and NC are satisfactory, as they score

below the 0.05 threshold of the significant level; apart from πU which achieves 0.15 above the

threshold, providing evidence that πU does not contribute significantly to the regression model.

We adjust the above equation to find the predictors (independent variables) that contribute

significantly to the model. We reduce independent variables into two by eliminating πU using

Stepwise regression analysis [She07]; this type of statistical analysis is conducted by sequentially

adding predictors to the model, based on their significance until a satisfactory model is found. The
6K = 10 folds is commonly used in the most of cases in linear regression model cross-validation.
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results of the stepwise regression analysis are in Fig. 8.9, the modified regression equation is given

below

S = 73 + 41.56 ⋅NCD − 26 ⋅NC

Coefficient Standard Error p-Value R Square Adjusted R Square
Intercept 73 1.52 ≪ 0.05

0.71 0.71NCD 41.56 0.78 ≪ 0.05
NC -26 2.23 ≪ 0.05

Figure 8.9: Stepwise regression analysis results for adjusting the regression model of proposed
metrics with versus all GAllDec.

We notice that eliminating πU does not reduce the values of R2, nor the standard error, for

all coefficients. Furthermore, we present diagnostic plots of the residuals, the value of errors

miss-predicting the correct data i.e. Residual = Observed value - Predicted value, to confirm that

the model is indeed satisfactory, (see Fig. 8.10).

Figure 8.10: Plot of residual versus the fitted values

Analysing the residuals helps to confirm that the model is also satisfactory. If the residuals

appear to behave randomly, it suggests that the model fits the data well. The residuals should

approximately fall into a symmetrical pattern and have a constant spread throughout the range

[She07]. We find that around 90% of residuals have constant variance at around the mean 0 using a

scatter-plot of residuals in Fig. 8.10. Despite that, we notice some bias in the residuals for a part

of fitted values. This suggests that we may expect some advantages using non-linear regression

models [KKM88], which may help to improve the accuracy of data predication; although given

the distribution of the residual (see Fig. 8.10), the improvement is possibly limited. This requires
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further study which we reserved for future work.

8.3 Measuring the Quality of code obfuscation

In the previous sections we have provided statistical evidence to evaluate (NCD, πU , and NC) as

valid metrics to measure the quality of code obfuscation, and proposed a multi-linear regression

model to provide a quantitative single value for the quality of code obfuscation. In this section,

we apply these metrics to answer the following set of the research questions. These questions are

concerned with measuring the quality of code obfuscation, per individual obfuscation and according

to their types (Section 7.3.6), in addition to their resilience to decompilation attacks.

(RQ3) Is there any change in the Kolmogorov (compression) complexity measures between a clear

code and its obfuscated version using different obfuscation algorithms? Does that change, if

it occurs, implies an increase in complexity measure, and in which magnitude?

(RQ4) Does the obfuscation process produce any changes (measured using NCD) in the clear

unobfuscated code, and in which magnitude?

(RQ5) What is the effectiveness of obfuscation algorithms using the proposed measure, by type:

Control-Flow, Data and Layout obfuscation?

(RQ6) What is the impact of deobfuscation (decompilers) on code obfuscation resilience?

8.3.1 Hypothesis Formulation

The above set of the research questions deals with using the proposed metrics to study the quality

of code obfuscation. Among these questions, we formulate the null hypotheses for the questions

RQ3 and RQ4, the rest of the questions are answered based on the descriptive statistic (average)

and visual data inspections using graphs. For question RQ3, two null hypotheses are set as follows:

• Null hypothesis, H03a: There is no difference in the Kolmogorov complexity (compression)

between clear and obfuscated code i.e. for an obfuscated programO(P,λ) of a program P ,

C(O(P,λ)) = C(P ).

Alternative hypothesis: H13a: There is a difference in the Kolmogorov complexity (com-

pression) between clear and obfuscated code i.e. for an obfuscated program O(P,λ) of a
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program P , C(O(P,λ)) ≠ C(P ).

Upon testing this hypothesis, we proceed and check whether the difference, if it exists, is a

result of a positive increase. Therefore, we formulate the following null hypotheses:

• Null hypothesis, H03b: There is no increase in the Kolmogorov complexity (compression) of

clear code due to obfuscation.

Alternative hypothesis: H13b: There is an increase in the Kolmogorov complexity (compres-

sion) of clear code due to obfuscation.

To answer question RQ4, we use the following null hypothesis:

• Null hypothesis, H04: There are no changes in the clear code due to obfuscation i.e. for an

obfuscated program O(P,λ) of a program P , NCD(P,O(P,λ)) = 0.

Alternative hypothesis, H14: There are changes in the clear code due to obfuscation i.e. for

an obfuscated program O(P,λ) of a program P , NCD(P,O(P,λ)) ≠ 0.

8.3.2 Obfuscation Analysis using NCD

We use the normalised compression distance (NCD) to study the quality of obfuscation. The

reported data of this measure is presented in Fig. 8.11. We start by answering the hypothesis H04 of

question RQ4. It concerns with checking whether obfuscation produces changes to the clear code.

The reason for including this question is to check whether the clear programs (the benchmark)

are sensitive to obfuscation using different obfuscation algorithms, without applying our attack

(decompilers). Although we can visually answer this question by inspecting Fig. 8.11, we apply the

Mann-Whitney statistical test (see Section 7.5) to check whether we can reject the null hypothesis

(when the p-value is less than 0.05). The outcome of the Mann-Whitney test shows that we can

reject the null hypothesis and accept the alternative hypothesis, as the p-value is smaller than 0.05.

This shows that NCD is a non-zero value for all obfuscated programs. Furthermore, we test the

NCD, using the Mann-Whitney test as well, for all the decompiled obfuscated code usingJAD, JD

and Jode i.e. NCD between the clear decompiled code and the decompiled obfuscated code. The

results show that NCD is also positive.

It is clear that obfuscation creates changes to clear code; we investigate the obfuscation effec-

tiveness before decompilation using NCD in Fig. 8.11. First, it is noticed that the NCD (lines
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Figure 8.11: Averaged NCD for all obfuscation techniques with (NCD) and without decompilation
attack (NCD-JD, NCD-JD, and NCD-Jode)

labeled with NCD) between the clear code and the obfuscated code, using all the obfuscated

techniques, have similar values. However, these values are close to 1 (NCD = 0.98), which means

that obfuscation has made substantial changes in the clear code of SPECjvm2008 benchmark,

making the obfuscated code totally different from the original clear code. Only one technique

shows a different behaviour: SM-C-CS, a class splitter obfuscation technique, a part of Sandmark’s

obfuscator techniques.

Analysis Per Obfuscation Type

We analyse the obfuscation transformation algorithms according to the type of transformations

(see Section 7.3.6): Control-Flow, Data and Layout, and report the average NCD for each type

after we subject the obfuscated programs of SPECjvm2008 to decompilation. The aim is to

answer the part of question RQ4 that is related to NCD measure. We see the results in Fig. 8.12 :

Layout obfuscation techniques perform better than Control-Flow and Data obfuscation. The Layout

obfuscation algorithms, specially Dasho’s techniques, produce more changes in the benchmark

programs than the Control-Flow and Data obfuscation types. We investigate this matter in more

detail; it is noticed that Dasho’s Layout obfuscation techniques (based on Overload-Induction)

apply intensive renaming for identifiers and variables, which render the decompilation process in
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Figure 8.12: Averaged NCD measure per decompiled obfuscation transformation. Control-Flow,
Data and Layout obfuscation.

many instances useless. Therefore, this type of obfuscation algorithms overload the result ofNCD

between the clear code and the deobfuscated programs using decompilation.

The Impact of Decompilation on Obfuscation Resilience

We answer question RQ5 by investigating the effect of decompilation as an attack on code obfus-

cation resilience using NCD. Fig. 8.11 reports the results: it shows three different lines labeled

with JAD, JD and Jode which resemble the average NCD of obfuscation techniques after being

subjected to decompilation.

Overall, we observe a significant decrease in the NCD of all obfuscated programs due to

decompilation. This decline in NCD varies among the different obfuscation techniques, which also

indicates different behaviour in terms of resilience to decompilation process. It is difficult, based

on Fig. 8.13, to clearly distinguish the resilience of obfuscations among the different decompilers,

as they score almost similar results. However, most of the obfuscation techniques show the highest

resilience against JD with around 50% more than JAD, and around 80% more than Jode. We

further investigate the resilience of each obfuscation techniques against all decompilers: String

Encoder (SM-D-SE) shows the highest resilience for JD and JAD, where Rename OverInduction

Maintainhierarchy (DH-L-ROM) shows the highest resilience for Jode. ClassSplitter (SM-C-CS)

demonstrates the lowest resilience for JAD, and Constant Pool Reordering (SM-L-CPR) shows the

weakest against JD. In the case of Jode, Field Assignment (SM-D-FA) scores the weakest resilience.
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8.3.3 Obfuscation Analysis using πU

In this section we report on the analysis of obfuscation unintelligibility index (πU ), the algorithmic

complexity difference between clear and obfuscated code (see Definition 6.22). We answer the

question RQ3 in Section 8.3 by investigating its formulated null hypothesis H03a, which states

that there is no difference in the Kolmogorov complexity (approximated by compression) between

clear and obfuscated code; we test if πU = 0 which is equivalent to C(O(P,λ)) = C(P ), see

Section 6.4.1. Visually, in Fig. 8.13, we observe that all obfuscation techniques produce changes in

the complexity of obfuscated code, as the upper line labeled with Un-Index does not produce any

zero value of πU . The visual results in Fig. 8.13 are reported on average, by computing the mean

(see Section 7.5). However, by applying the Mann-Whitney statistical test we can get even better

statistical evidence (multiple pairwise comparisons) that supports the visual investigation, and

subsequently checks whether we can reject the null hypothesis. The outcome of the Mann-Whitney

test shows that we can reject the null hypothesis with high statistical significance, as the p-value is

below 0.05.

Figure 8.13: Averaged Un-Index for all obfuscation techniques with and without decompilation
attack.

In the case of checking the changes in the kolmogorov complexity after the decompilation, we

could not infer this result visually as we see in Fig. 8.13. Using the Mann-Whitney statistical test,

we reject the null hypothesis that the complexity of the deobfuscated programs (decompiled) are

not different than their clear unobfuscated code.
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While the statistical test of H03a allows for checking the presence of significant differences,

it does not provide any information about the magnitude of such a difference. We proceed to

investigate to what extent the use of obfuscation changes the complexity of source-code i.e. the

magnitude of changes in the complexity (πU ), and whether they are positive or not, by checking the

null hypothesis H03b. The outcome of the Mann-Whitney statistical test shows that the magnitude

of changes in complexity, due to the obfuscation process, is always positive with high statistical

significance, as their p-value report below 0.05. Similarly, we notice the same results that show the

positive magnitude (on average) for most of the deobfuscated programs (πU > 0).

Analysis Per Obfuscation Type

This section answer the part of question RQ4 which is related to the πU measure (see Section 8.3).

The results are presented in Fig. 8.14. Control-Flow obfuscation techniques outperform both Data

and Layout obfuscation techniques in most of the benchmark programs (9 out of 11). That was

a bit surprising, as we expected the Data obfuscation to exceed both Control-Flow and Layout

obfuscation in terms of complexity. This is due to the nature of Data obfuscation that adds a lot

of noise to a program’s data structure comparing to Control-Flow obfuscation type, which only

complicates the structure of Control Flow Graph (CFG). We check the main reason behind this

behaviour; we notice that most of these algorithms in Dasho and Sandmark add a lot of spurious

branches full of random code, especially opaque predicates (see Section 3.4.2). Layout obfuscations

score the lowest (8 out of 11 benchmark programs) as the most of these algorithms rely on renaming

techniques, especially in Dasho’s obfuscation techniques; Dasho obfuscator renames as many

methods as possible to exactly the same name. Apparently, this produces a high level of redundancy

and regularity, which reduces the complexity of the code. Furthermore, in particular, Dasho’s

obfuscation techniques employ, in addition to renaming, heavy optimisation methods.

The Impact of Decompilation on Obfuscation Resilience

In this section we proceed to answer question RQ5 in Section 8.3 using the πU as a measure

for studying the effect of decompilation attacks on the obfuscated benchmark programs. In

Fig. 8.13, we can see that decompilation successfully managed to decrease the πU of the obfuscated

benchmark programs, for the majority of obfuscation techniques. However, we notice in two

Dasho’s obfuscation techniques: Rename Flattenhierarchy Simple (DH-L-RFS) and Rename
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Figure 8.14: Averaged Un-Index (πU ) measure per decompiled obfuscation transformation. Control
Flow, Data and Layout obfuscation.

FlattenHierarchyOverInduction (DH-C-RFO) their decompilation increases the πU above their

original πU . To explain this behaviour, we see on the one hand that both of those two obfuscation

techniques employ heavy use of renaming; most of the renaming replaces variables and identifiers

with less complex ones, normally adding the same and simple unreadable identifiers. On the other

hand, decompilers replace the obfuscated variables and identifiers with more complex names.7

Rename Register (SM-L-RR) and Overload Names (SM-D-ON) achieve the lowest πU of all

deobfuscated benchmark programs, as the decompilers replace all overloaded methods and local

registers (byte-code level) into less complex and randomless names. String Encoder (SM-D-SE)

shows the highest scores of πU before decompilation. The reason behind this is that String Encode

uses an encryption process which produces a lot of randomness in the code. However, decompilers

are effective at reducing the πU of SM-D-SE, but not to the level of other deobfuscated (decompiled)

programs (different obfuscation techniques). We investigate this reduction in the πU , and noticed

that the reason was not due to the effectiveness of decompilers producing correct and less complex

program, but was related to the fact that decompilers failed to produce the correct code out of

obfuscated one.

7The names replaced by the decompilers (JD, JAD and Jode) are more complex but more readable than the obfuscated
variable names.
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8.3.4 Obfuscation Analysis using NC

We use the normalised compression (NC) to study the impact of obfuscation on clear code. The

reported data of this measure is presented in Fig. 8.16. Around 50% of obfuscation techniques,

of different obfuscation type, score similar normalised compression values (NC=0.91) with very

minor differences, and all of these techniques are part of the Sandmark obfuscator framework. This

could indicate a common design pattern among these techniques, which needs further investigation.

Dasho’s obfuscation techniques show different behaviour: only Data obfuscation type techniques

have similar NC values. We also find that String Encoder (SM-D-SE) and BuggyCode (SM-C-BC)

perform better than all the obfuscation techniques in terms of NC, where Class Splitter (SM-C-CS)

and Rename FlattenHierarchy OverInduction (DH-C-RFO) score the lowest among all obfuscation

techniques.

Figure 8.15: Averaged NC measure per decompiled obfuscation transformation. Control-Flow,
Data and Layout obfuscation.

Aggregating the obfuscation techniques according to their types shows a very minor difference

using the proposed metric (see Fig. 8.15). Layout and Control-Flow obfuscation performed roughly

the same, slightly exceeding Data obfuscation techniques.
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Figure 8.16: Averaged NC for all obfuscation techniques with and without decompilation attack
(NC-JD,NC-JD, and NC-Jode).

The Impact of Decompilation on Obfuscation Resilience

We study the effect of decompilation as an attack on code obfuscation resilience using NC as a

measure. Fig. 8.16 reports the results; it shows three different lines labeled with JAD, JD and Jode,

which resemble the average NC of obfuscation techniques after being subjected to decompilation

for all the benchmark programs. Most of obfuscation techniques, in this study, show high resilience

against JD and JAD, and weak resilience against Jode. Analysing each obfuscation technique,

we observe a high resilience of Dasho’s obfuscation techniques against JD, apart of Synthetic

technique which scores the lowest complexity. Synthetic (DH-D-SY) is a technique designed to

fail decompilation; however JD was very effective at thwarting this technique. StringEncoder

(SM-D-SE) has the highest resilience against JD where Class Splitter (SM-C-CS) demonstrates the

lowest resilience. TryCatch10 shows a high resilience against JD and JAD, as they are ineffective

against the intensive use of try-catch blocks.

Jode performed better than other decompilers at reducing the complexity of obfuscation trans-

formations on individual technique, as we see in Fig. 8.16. Jode is very effective at reducing the

complexity of TryCatch10 (DH-C-TC) obfuscated programs comparing to JAD and JD. We notice

that Jode managed to reduce the NC to the benchmark baseline level in Fig. 8.16. We check this
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matter in more details, and find the main reason for this decrease in normalised complexity: Jode

failed to produce a complete decompilation when it decompiles the programs that were obfuscated

with arbitrary byte-code, such as BuggyCode (SM-C-BC). We also realised the same problem with

JAD; surprisingly Jode failed to replace java.lang.Integer object to the correct int in the

source code for Promote Primitive Register (SM-D-PPR), and Promote Primitive Type (SM-D-PPT)

obfuscation, which agrees with Hamilton et al.[HD09] observation that Jode sometimes fails at

resolving and inferring the correct types. Nevertheless, Jode decompiles the other obfuscated

programs with a reasonable accuracy. In general, all decompilation managed to reduce NC to a

certain degree, where Jode outperforms all the decompilers at reducing the complexity of obfuscated

programs.

Figure 8.17: Averaged NC measure for all decompiled obfuscation techniques according to
obfuscators.

8.3.5 Discussion on the Findings

In this section we elaborate more on the outcome of the experiment, and discuss the implications

of the finding as a result of answering the posed research questions. The NCD shows that all the

obfuscation algorithms produce drastic changes in the original code; the amount of these changes

are similar among most of the obfuscated programs. However, the NCD measure behaves totally

different when the obfuscated code is subjected to an attack. The deobfuscation (using decompliers)
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responds distinctively to each individual obfuscated technique; NCD reflects this behavior by

reporting different values. This means that each obfuscation technique provides different resilience

to the attacks.

We can notice the same behaviour using unintelligibility index πU . Increasing Kolmogorov

complexity, which can be monitored using πU , shows the different resilience of obfuscated code

to the decompilers. Higher πU before decompilation did not match the increase in the πU after.

However, in case of normalised compression NC, after decompilation, the deobfuscated programs

have the same trends as the obfuscated programs, but NC correlates poorly with the obfuscation

resilience using GAllDec, where simple compression length (C), along other classical complexity

metrics correlate better with GAllDec.

In general, this shows the danger of relying on absolute metrics as a means to predict the

obfuscation resilience, without taking into account the attacker itself when we measure. For

example, if the goal of the defender is to obfuscate a program so that it becomes difficult to

decompile, then the defender has to test the obfuscated program against a decompiler. Subsequently,

the outcome of the decompiler, which is code as well, can be measured using the proposed metrics

to estimate the obfuscation resilience.

Figure 8.18: Averaged NCD measure for all decompiled obfuscation techniques according to
obfuscators.
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We find that the initial complexity of clear code affects πU , especially when we investigate RQ3.

In some of the benchmark programs, the compression length is relatively big (high Kolmogorov

complexity) so that the obfuscator has a little room to increase the complexity. We see that

in Fig. 8.14 for benchmark programs: crypto, compress, and xml. For example, if the clear

program contains a small number of string variables, then the obfuscation using String Encoder

(SM-D-SE) becomes insignificant. Similarly, if the code does not contain generics or arrays, then

the obfuscation techniques that manipulate these data structures become ineffective which can

undermine the potential of code obfuscation having effective protection. Therefore, the defender

has to decide whether the clear code needs to be obfuscated or not, and which feature to obfuscate,

probably by using Kolmogorov complexity (compression length) as a ‘sanity check’ metric to test

the initial complexity.

Finally, our finding confirms the theoretical reasoning in Section 4.2.4: increasing the complexity

of obfuscated does not always produce increases in the NCD, this can be seen in Fig. 8.11 and

Fig. 8.13. In many instances, such as Rename Flattenhierarchy Simple (DH-L-RFS) and Rename

FlattenHierarchy OverInduction (DH-C-RFO) which obtain the lowest Kolmogorov complexity

(compression), their NCD measures are relatively high; this case is typical in Dasho’s obfuscation

techniques. In general, we see from Fig. 8.18, 8.17, and 8.19 that Dasho’s obfuscation techniques

outperformed Sandmark’s obfuscation techniques using all proposed measures.

Figure 8.19: Averaged Un-Index (πU ) measure for all decompiled obfuscation techniques according
to obfuscators.
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8.4 Limitations and Threats of Validity

In this part we address the potential threats to the experiment that may affect the outcome of our

results. We investigate these possible issues using Wohlin et al.[WRH+00] general framework

for threats validation in software engineering experiments. The framework consists of four major

classes: internal, construction, conclusion and external validity threats.

8.4.1 Internal Validity

Internal validity demonstrates the extent in which our operations are sound and accurate. It checks

for the effect of additional factors that may or may not account for which negatively influence our

results.

Compression acts as an upper bound estimation for Kolmogorov complexity; however, it is

safe for large binary sequences (of length l ≥ 50 bits) [STZDG12]. For short binary sequences,

compression becomes inefficient; many researchers are trying to tackle this limitation by providing

alternative solutions based on the Coding theorem such as [GZD11]; the Coding theorem connects

algorithmic probability (or frequency of production) [ LV08] to Kolmogorov complexity for com-

puting effective complexity estimation for short binary strings. This approach is beyond the scope

of this thesis; in our case, all the benchmarks programs are large in size.

We also employ plagiarism detection technique (Sherlock) to measure decompilation similarity

between the original decompiled benchmark programs and its obfuscated versions. Sherlock

is based on syntactic matching; it is used, in our experiment, to measure the effectiveness of

decompiled obfuscated compared to the original code using digital signatures by finding similar

pieces of text, i.e. for matching strings of words. We tried to eliminate the threat of using such a

syntactic tools in decompilations by decompiling the original (clear) byte-code of each benchmark

and the obfuscated version using the same decompiler; then we could apply our matching tool with

a high confidence of producing accurate matching results (see also Section 7.3.4).

8.4.2 Construction Validity

Construction validity checks if our approach (theory) has any actual, real relation with observation

(resilience of code obfuscation) using the dependent variable: percentage of failing to find the

original code from the obfuscated one. It is used to describe the extent to which our measurements
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describe the desired attribute we want to compute (code obfuscation security). We justify the choice

of this factor, as a valid evaluation factor for successful deobfuscation, in Section 7.3.4.

It is well known that reverse engineers apply different types of methods to successfully deobfus-

cate obfuscated code; beside decompilers (including static analysis and reverse engineering tools)

they apply dynamic analysis such as debuggers and profilers. We do not claim that our threat model

using decompilation is the only model to evaluate the resilience of code obfuscation. Decompilation

is still an immature technique compared to compilers and other disciplines in software engineering,

as decompilers can fail sometimes even for clear unobfuscated code. Despite these limitations,

decompilers are still an important tool in the hands of reverse engineers to attack obfuscated code.

In this experiment, we select three Java decompilers that are subject to an empirical validation for

their effectiveness [HD09], in order to eliminate any bias relying on one decompiler.

8.4.3 Conclusion Validity

Threats to conclusion validity address the issues that affect the ability to draw the correct conclusion

about the relation between our treatment (our proposed metric) and the outcome (resilience of code

obfuscation). We justify the choice of selecting the statistical methods in Section 7.5. We also

find a statistical significance between our proposed metrics, and decompilation. The conclusions

have been drawn based on objective statistical tests; we have adopted non-parametric tests (such

as Mann-Whitney and Spearman Rank Correlation) that do no make assumptions on the normal

distribution of data. We analyse and study the multi-linear regression models using some diagnostic

plots for error rate (regression models), and p-value for hypotheses testing.

8.4.4 External Validity

External validity investigates the extent to which we can generalise what we learn from our

measurements to other (similar) disciplines or other programming paradigms. Our proposed metrics

can be applied to any programming paradigm, with no restriction. However, since our regression

model estimates the security in code obfuscation, it is only applicable to Java byte-code and cannot

be generalised to all programming languages as in [CALO94] for Maintenance Index (MI). It will

require more extensive empirical and experimental efforts to validate this result over benchmarks

of different programming paradigms, which can be reserved for future work.
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8.5 Summary

The empirical results demonstrate the possibility of using an Algorithmic Information Theory

approach to measure the quality of code obfuscation. Based on Kolmogorov complexity and

data compression, we establish consistent metrics for software protection without having to rely

on classical software complexity metrics, to reason about the amount of security added by each

obfuscation technique. We empirically validated the usefulness of the proposed metrics (NCD,

πU and NC). The results shows that all the proposed measures are positively correlated with the

percentage of code obfuscation resilience to an attacker using decompilers, which indicates a

positive relationship with the obfuscation resilience factor (percentage of failing to retrieve the

original clear code), yet at different level of correlations. The NCD offers the highest correlation, the

πU shows a medium correlation, where the NC scores the lowest. We also construct a multi-linear

regression model, using the proposed metrics, to estimate Java programs resilience to decompilation

attacks.

We used the proposed metrics to study the quality of code obfuscation. We find in the most of

cases the effectiveness of an attacker (using a decompiler) is greatly reduced by the level of noise

and irregularities introduced by obfuscation techniques. The more code is lifted from the obfuscated

jar files using decompiler, the less the degree of similarity distance (using NCD), Unintelligibility

Index (πU ) and normalised Kolmogorov complexity (usingNC). The analysis of the results shows

the importance of defining a clear attack model, which has to be taken into account when we apply

the proposed measures. In general, we see from the obtained results that Dasho’s obfuscation

techniques outperformed Sandmark’s obfuscation techniques using all proposed measures. Among

all decompliers we find that Jode is the best decompiler according to all proposed metrics. Layout

obfuscation techniques exceed Data and Control-Flow obfuscation techniques usingNCD. On the

other hand Control-Flow obfuscation techniques score the best values according to πU . In case of

NC, Layout, Control-Flow, and Data obfuscation techniques achieve similar results.
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9 Conclusion

Code obfuscation presents an effective and promising protection mechanism for software intellectual

property; it can be extended to solve may problems that cryptography has not yet addressed.

However, code obfuscation is as yet in its infancy, and very few theoretical investigations exist

that reason about its security. Moreover, the early theoretical work by Barak et al. showed that

it is impossible to find a general purpose obfuscator that can efficiently obfuscate programs, and

secure programs according to the virtual black-box security model. On the other hand, the recent

theoretical advances by Garg et al. using indistinguishably obfuscation, have shown the possibility

of constructing secure obfuscation based on linear maps, Multilinear Jigsaw Puzzles, that satisfy

indistinguishability obfuscation. Despite that result, there are no theoretical or practical frameworks

that can reason about the security of current obfuscation techniques. Furthermore, it is an open

problem whether there exist quantitative metrics that can measure the quality of code obfuscation.

In this thesis, we attempted to tackle these challenges by following two research methods. We

pursue a theoretical and formal approach to address the lack of theoretical foundations for the

security of code obfuscation, and find quantitative metrics that can measure and certify obfuscated

programs. Then we applied an experimental validation approach to evaluate and test whether our

proposed model (theory and metrics) is empirically sound. We proposed a novel approach that

established a theoretical foundation for code obfuscation security which quantitatively captures the

level of confusion that is added by code obfuscation.

The main idea of this approach is to apply Algorithmic Information Theory (Kolmogorov

complexity) and algorithmic mutual information to build security foundations for code obfuscation,

and to model adversaries with deobfuscation capabilities. First, we defined code obfuscation based

on the notion of Unintelligibility; the rationale behind this definition is that an obfuscated program

must be more difficult to understand than the original program. Then, we showed that in some

cases unintelligibility in not sufficient to reason about code obfuscation security, which led to a
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further definition for code obfuscation security that is based on algorithmic mutual information.

This definition allows us to reveal a negligible amount of information about the original program to

an adversary.

We compared our security definition with the famous impossibility result of code obfuscation,

and we showed that our proposed security model differs substantially from the virtual black-box

obfuscation model that led to this negative result, in the sense that our definition is a less stringent

form of obfuscation rather than a weak form of black-box obfuscation. We assume the functionality

of an obfuscated program to be almost completely known and available to an adversary, and only

require hiding the implementation rather than the functionality itself. This approach to obfuscation

is very practical and pragmatic, especially for software protection obfuscation. We further compared

our security model with indistinguishability obfuscation, and argued that with indistinguishable

obfuscation it is very difficult to provide a guarantee about what obfuscation hides. We also showed,

according to our proposed definition of security and under reasonable conditions, code obfuscation

is secure.

We investigated the security of two main approaches to obfuscated code in software, encoding

and hiding, at the subprogram level. We studied the security of combining different obfuscation

techniques, which is essential for dynamic obfuscation, and malware design that employs different

obfuscations during runtime to avoid detection.

We model adversaries with deobfuscation capabilities, and compute the attack outcome (success)

algorithmic mutual information. We theoretically showed that Kolmogorov complexity is a valid

metric to measure software. Then we derived a comprehensive set of quantitative metrics that are

approximated by lossless compression: unintelligibility index, normalised Kolmogorov complexity,

normalised Compression distance, and code obfuscation stealth, to measure the quality of code

obfuscation, and justify their usage in the light of our security model.

The proposed metrics were validated empirically to check whether they are effective and sound

metrics to measure code obfuscation security. We obfuscated the SPECjvm2008 benchmark

programs using two obfuscators: Sandmark, an open-source obfuscation suite, and Dasho, a

commercial obfuscator. Then we applied three different decompilers, as a model of attack, to study

the degree of resilience exhibited by each obfuscated programs. The results showed that all the

proposed measures are positively correlated with the percentage of code obfuscation resilience to

an attacker using decompilers, which indicate a positive relationship with obfuscation resilience
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factor (the percentage of the clear code that was not recovered); however, at different levels of

correlations. Furthermore, the results shed light on the danger of relying on absolute metrics as a

means to predict the obfuscation resilience, without taking into account the attacker itself when

measuring. We also found that the initial complexity of a clear program affects the quality of

the obfuscated version. Therefore, the defender has to decide whether the clear code needs to be

obfuscated or not, and which features to obfuscate.

To the best of our knowledge, our model presents a new practical approach to measure, quanti-

tatively, the security of the current state of art obfuscation techniques, without having to rely on

classical complexity metrics as in [CCFB14, CTL97]. The results of this thesis partially comple-

ment the experimental work of Jbara et al. [JF14] on program comprehension and understanding

using compression, by providing rigorous theoretical foundation and metric validation, which

justify the use of Kolmogorov complexity and compression, as the upper bound approximation for

Kolmogorov complexity, to measure unintelligibility in code obfuscation. However, we advance on

this theory and use algorithmic mutual information as the basis for code obfuscation security.

9.1 Future Work

Our proposed theoretical security, the adversary model, and the proposed metrics are by no means

complete to predict and compute the security of code obfuscation, and we do not claim it is

the best achievable overall. It only presents a milestone towards paving the way and inspire

security researchers into adapting, and building a sufficient and complete metrics to quantify code

obfuscation security. Towards achieving this important goal, we propose the following research

directions.

Characterise the security of particular obfuscation technique. We are planning to study and

characterise the security of particular obfuscation techniques, and to analyse more carefully

the scenario of active adversaries that equipped with dynamic analysis tools. For example, in

Section 4.4 we studied the security of combining multiple obfuscation techniques; however,

we did not cover the case of self-modified obfuscated code that is used to counter static-

analysis attacks. In this technique, the program is in constant flux of changing, and an

adversary attacks (typically using dynamic analysis tools) each version of the modified

obfuscated code. S/he may obtain partial information on every single instance of multiple
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obfuscation, and tries to combine the partial information in order to construct the original

clear code. That requires a security analysis for every single instance of modified obfuscated

program separately.

Experimental evaluation for dynamic obfuscation technique. The proposed metrics were

validated empirically on a set of Java source and byte code of SPECjvm2008 programs. We

are interested in extending our validation framework to cover other programming languages

such as C, C++, JavaScript and assembly language.

In our experiment, we used an attack model where the adversary can only use static analysis

techniques; the metrics that we proposed do not certify code obfuscations against dynamic

analysis tools such as profiling, debugging and dynamic slicers.

Experimental work to validate stealth in code obfuscation. One of the main problems with

measuring stealth is that it is context dependant. In Section 6.4.5 we propose a modified

version of Information distance that measures the intrinsic and extrinsic stealth in obfuscated

programs, and eliminates the dependency factor. However, we did not provide empirical

evidence about the validity of this metric. We are planning to design experiments, in a

similar way to Chapter 7 and 8, to measure and validate the stealth measure, and to test

its effectiveness in detecting and distinguishing obfuscated code from clear code. Another

interesting research direction, would be to apply the proposed stealth measure to classify and

detect malware in a similar way to [ABCD15].

Kolmogorov complexity to measure program semantics Compression is used as an upper

bound approximation for Kolmogorov complexity. So far we present our theoretical foun-

dation and metrics for code obfuscation security based on binary strings; a very important

question that can rise here is whether can we apply our approach on programs semantics in-

stead of binary strings. Giacobazzi et al. [GR97] propose the notion of Domain Compression

in abstract interpretation theory (see Section 3.6.2) as a refinement of a finite abstract domain,

and showed that is possible to simplify abstract domains through abstract compression. We

envision that this approach could be the way to reason about Kolmogorov complexity of

programs based on their semantics properties. If the concrete semantics of an obfuscated

program are abstracted and then compressed, it could be a way to measure the complexity of

the programs’ semantics in obfuscated code. Moreover, it can be used to study the security
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of more sophisticated obfuscation techniques that require a semantic-reasoning approach to

deobfuscate [CLD11b] as in virtual obfuscations (see Section 3.6.4).

Explore the relation between Shannon Entropy and Kolmogorov complexity. Shannon En-

tropy is asymptotically equal to Kolmogorov complexity, as Shannon entropy is the expected

value of Kolmogorov complexity (see Section 2.11). Despite that relation, it is unclear

whether Shannon Entropy can equivalently address the security of code obfuscation as with

Kolmogorov complexity, and under which conditions; an interesting research direction that

is worth investigation, is to study code obfuscation security in the context of Classical

Information Theory.

Towards a unified theory for software protection. Finally, Algorithmic Information Theory

can be the tool to study security in many open problems in software protection such as

software watermarking, software birthmark, and software temper-proofing. We envisage that

Algorithmic Information Theory is a candidate for building a unified theory for software pro-

tection, that could lead to new, effective, provably secure, and practical, software protection

techniques.
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