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Abstract

A novel circuit-level neuron architecture based on the
principle of analog charge-based computation of neural
functions has been developed with the goals of high-speed
processing, adjustable weights, and support of
perturbation-based learning algorithms. The two-stage
architecture which is composed of non-linear synapses,
driving a linear capacitive soma, has been implemented
using a conventional double-polysilicon CMOS technology.
The feed-forward architecture of the proposed neuron
model is shown to synthesize a large number of non-linear
mappings of the 2D-1D space.

Introduction

Early developments in the field of artificial neural
networks (ANNs) have relied on emulation of complex
architectures and algorithms on standard serial computer
architectures, due to a large demand in hardware resources,
in terms of operators, memory, but also precision.

Analog hardware has emerged as a promising solution to
the computation of neural operations [1]. Simple operations
such as addition and multiplication, and also very complex
ones such as the synthesis of non-linear activation function
have a very efficient implementation in terms of processing
speed, silicon area and power consumption, largely owing
to the convenient exploitation of intrinsic electrical
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properties of integrated elements such as MOSFETS,
capacitive or resistive arrays. Moreover, hardware friendly
algorithms [2] have been developed so as to fit the
algorithmic complexity to the specificities and limitations
of hardware integration.

In this paper we demonstrate the use of the charge-based
capacitive technique in the synthesis of a two-stage
integrated neuron. In the next Sections, we are reviewing
the neuron architecture and operation, as well as the study
of standard 2D-1D mappings, which are advantageously
synthesized with a feed-forward ANN (FFANN)
organization of several neurons.

Architecture of the Two-Stage Capacitive
Neuron

The charge-based neuron architecture consists of a first
hard-limiting synaptic stage, driving a linear capacitive
soma as a second stage (see Fig. 1). A fundamental
difference with conventional neuron models lies in the
non-linearity being placed at the synaptic level, rather than
at the output. Synaptic non-linearity has already been
proved to have an efficient hardware implementation [3],
also supporting supervised learning of an adapted version
of the widely used backpropagation algorithm. We show
that our model, although different from this latter, also has
the ability of synthesizing a wide range of nonlinear
mappings, with the advantage of a VLSI-friendly
mixed-analog/digital integration.
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Fig. 1 : Schematic description of the two-stage charge-based neuron architecture, and corresponding
driving clock signals.

The synaptic first stage is functionally composed of two
programmable capacitances C; and Cg, which are
respectively in charge of implementing the threshold and
weight of the neuron model, as well as one fixed
capacitance C,, in charge of inducing row perturbation
according to learning algorithms [4]. All these capacitances
have one common node called row, by analogy to the array
of charge-based ANN circuits from which the proposed
neuron architecture is derived [5], [6]. Each of the
programmable capacitances is composed of a number of n
elementary capacitances, each of which can be individually
selected to compose the active programmed capacitance
value, all unselected capacitances being tied to ground. The
selectable weight capacitors are sized in binary increments,
ie., available capacitance values are C,-2' where

i=1,2,...,n and C, is the unit capacitance.

The interface between the first and second stage consists of
a chain of conventional full-CMOS inverters. The binary
signal resulting from the operation of the first stage is
selected at the output either of the second or third inverter,
depending on the currently programmed synaptic polarity,
which is a parameter resulting from the learning phase.

The second stage is an array of identical capacitances with
convenient precharge circuitry, so as to process the sum of
the first stage activity. Finally, an output operational
amplifier (OA) is used to recover the full dynamic of the
signal at the neuron output, to be connected to the next
FFANN layer, an IC output pad, or an ADC for digital
further processing (leaming).

Operation of the Two-Stage Capacitive
Neuron

A very simple two phase non-overlapping clock scheme
consisting of a precharge (®,) and evaluation phase (®,)
schedules the complete operation of the circuit.

All nodes connected to capacitances in the first stage are
applied a voltage by a current source during the precharge
phase, resulting in charge transfer onto the plates. The row
in the first stage has its voltage imposed by the threshold
value of the first comparator V,,,. The amount of charge
transferred to the row is equal to :
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The row node is set in a floating state at completion of the
precharge phase. The condition of charge conservation on
the row node dictates that any change in the voltage applied
to its converging capacitances external node during the
evaluation phase :

Qevﬂ = (Vmw - VIN X:W + Vmw (C&OT _CW )+ vmeT (2)
+ Vmw (C¥OT - CT )+ VmeP + VrowCS
causes a perturbation of the row voltage equal to AV__ :
AV = Vmcw _VDDCT iVDDCP (3)

o T CIOT 4 CIT 4.C, +C

An analog input voltage V. is applied to the C

capacitance; the resulting perturbation of the row voltage is
proportional to both Vy, and C,,, thus processing the
weighting of the input. The threshold capacitance C; has a
binary input changing from V, to GND at evaluation; the
voltage shift being constant and negative has the similar
role as a threshold in a conventional neuron model. The
perturbation capacitance C, is attributed the task of
generating a sufficiently small voltage perturbation of the
row, thus allowing the estimation of the error surface with
respect to the variable parameters, the weight and
threshold, in order to perform analog learning by descent of
the gradient towards the minima of the error. The purely
binary perturbation input is applied during evaluation
without extra precharging. Both polarities of the
perturbation are allowed, which is reflected in Equation 3
by the + sign of V,,;C,; in the proposed circuit however, the
sign of perturbation has to be determined prior to
precharge, thus reducing the circuit complexity, at the cost
of lower algorithmic flexibility.

The second stage of the neuron is fully reset to GND
during precharge. While in evaluation, each of the binary
values resulting from the first stage activity is driving one
unit capacitance, causing the OA input node to rise to a
voltage value reflecting the weighted sum of the second
stage inputs.

Synthesis of Transfer Functions and Surfaces
ANNs are widely used for their ability to synthesize

non-linear mappings. The binary synapse architecture with
programmable weights proves to be appropriate for the

synthesis of a large set of nonlinear transfer functions, the
quantification rate being adaptable, within the range
dictated by hardware as well as algorithmic limitations. In
this Section we focus on the synthesis of some basic
transfer functions and surfaces which were obtained by
software simulation of ideal synapse, neuron and FFANN
models. Throughout this paper we have assumed an 8-bit
capacitance resolution and a power supply of 5 V, which
are the values chosen in the VLSI integration to be
examined later.

The transfer function of a binary synapse is similar to a
hard-limiter with programmable parameters. The switching
point is adjustable with the C;/C,, ratio, the polarity
being also programmable. As can be seen on Fig. 2, the
range of interesting capacitance values is limited to the
case: C; <Cy .
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Fig. 2 : Simulation of the synaptic hard-limiting transfer function;
W is the equivalent decimal weight, T is the equivalent decimal
threshold and SP is the synapse polarity.

The basic neuron transfer function is a step-shaped line
with a maximal number of quantified steps equal to the
number of capacitances in the second stage. Each of the
steps in the transfer function correspond to the Logic
‘I’/Logic ‘0’ switch of the first stage comparator, resulting
from the corresponding synaptic threshold being overshoot.
Consequently, the one-synapse neuron has the same
transfer function as its synapse (see Fig. 2).

Connecting several synapses to the same input allows
synthesizing complex quantified transfer functions. The
principle underlying this technique is based on a convenient
choice of each synapse’s C;/Cy, ratio. A neuron having
several synapses of slowly growing C./C, ratios will
have its second stage capacitances becoming active each in
turn, resulting in a smooth quantified transfer function of
adaptable slope and intercept, whereas a neuron with
several synapses of identical C;/Cy, ratios will synthesize
a very steep slope in the transfer function. Figure 3
illustrates these principles showing the transfer function of
a three-synapses neuron, having all of its synapses
connected to the same input.
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Fig. 3 : Simulation of the neuron transfer function in the case of
three synapses connected to the same input.

The selection of the inverse polarity for some of the
synapses has two main consequences (see Fig. 4). The
neuron acquires the ability of synthesizing non-monotonic
functions; however, the cost is in terms of loss in the
dynamics of the output signal, resulting from the
theoretically guaranteed activity of some of the input
neurons throughout the whole of the input range.
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Fig. 4 : Right : simulation of a neuron transfer function in the case
of single-input neuron of seven synapses; Left : simulation of the

seven synapses transfer functions, the synapses with inverted
polarity have a dotted line.

Considering the implementation of the proposed neuron
model into a realistic FFANN, we have decided to devote
a special study to the 2D-1D mapping, as a general case
which is the basis of further investigation into more
complex space mappings. The basic transfer function
surface of a 2-input neuron of two synapses is shown on
Fig. 5. The variation of the C,/C,, ratios allows the

transverse modulation of this surface. Also notice that the
inversion of the synaptic polarity affects the surface as a
symmetry/rotation operation.

W11=200 T11=100 SP11=1
W21=200 T21=100 SP21=1

W11=200 T11=100 SP11=0
W21=200 T21=100 SP21=1

Fig. 5 : Simulation of neuron transfer function; here the neuron
has two independent inputs; Right : one synapse has an inverted
polarity.

The connection of several synapses to each of the two
inputs has a similar effect on the transfer function surface
as seen previously (see Fig. 6).

Building a FFANN of the proposed neuron model, together
with the careful application of the transfer function
surfaces principles outlined here allows the synthesis of
complex surfaces with reasonably small networks. Figure 6
(right) illustrates the surface obtained with a two-layer
ANN of only three neurons.

2
A, Ii; -Mw‘w”
Fig. 6 : Left : Simulation of the neuron transfer function; here the
neuron has two input and five synapses per inputs; Right : transfer
function of a FFANN with three neurons.

VLSI Integration of the ANN Modules

The integration of the proposed circuit architecture was
produced using a 0.8um double-poly CMOS technology.
The 8-bit programmable capacitances are realized as
comb-shaped overlaps of the two polysilicon layers, the
actual weight and threshold values are stored in the digital
domain, allowing robust data recovery.

The microphotograph of the realized test structure is shown
in Fig. 7.

The table below lists some of the IC specifications, and
observed performances. The IC test strategy includes an
HP82000 IC tester, as well as standard analog testing
equipment.
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IC Specifications and Preliminary Performances

Technology AMS-Thesys CXQ 0.8 pm
CMOS (double poly)
Power Supply S5V
Integrated Units 1 8-bit synapse
1 8-bit, 10-synapse neuron
Area: synapse 0.165 mm’
neuron 1.63 mm’
VO Pads : total (s. & n.) 21
neuron 10 analog in/ 1 analog out

8 dig. in/ 1 dig. out (test)

Capacitances count/synapse | 17

Unit Capacitance (1* & 2*) | 50 fF
Transistor count/synapse 397
Cycle time characteristics :

min. observed precharge | 18 ns

min. observed latency | 8 ns

Fig. 7 : Microphotograph of the integrated structures, consisting
of one standalone synapse and output driving circuitry, together
with one 10-synapses two-stage neuron, and its /O OA and
drivers devices.

The functional tests have shown a correct behavior of both
integrated units. The sensitivity tests show a large influence
of stray capacitance, which dictates the actual limit to the
circuit resolution. The precision of the synaptic threshold
switching point, and the hysteresis effect due to the
comparator can be seen on Fig. 8, emphasizing the best
choice of large capacitance values to represent a given
C,/Cy ratio.

The functional test of the integrated neuron have
demonstrated the validity of the principles of transfer
function surface synthesis previously exposed. Fig. 9
illustrates the synthesis of a 10-steps pyramidal transfer
function, where five synapses have an inverted polarity to
create the down-slope.
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Fig 8 : Synthesis of a synaptic transfer function with an expected
switching point at 1.5 V. The dotted line represents the results
obtained with a negative slope ramp applied to the synapse,
showing the hysteresis.
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Fig. 9 : Observed synthesis of a pyramidal non-linear transfer
function by the ten synapses neuron.

Conclusions

The circuit description and operation of an innovative
charge-based neuron architecture with non-linear synapses
are demonstrated. This novel analog-digital architecture
takes advantage from both domains resulting in a robust
neuron building block. The storage of parameters is
secured in the digital domain, whereas the computation of
neural functions (summation, multiplication, non-linear
thresholding) as analog operators allows for fast processing
and easy interfacing with the outside world.

A wide array of non-linear mappings with variable
quantification steps are possible for high-speed
applications. The analog nature of the circuit allows the
consideration of high-speed applications in the neuro-fuzzy
field.
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