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ABSTRACT

Distributed video coding performances strongly depend
on the side information quality, built at the decoder. In
multi-view schemes, correlations in both time and view
directions are exploited, obtaining in general two estima-
tions that need to be merged. This step, called fusion,
greatly affects the performance of the coding scheme;
however, the existing methods do not achieve accept-
able performances in all cases, especially when one of
the estimations is not of good quality, since in this case
they are not able to discard it. This paper provides a
detailed review of existing fusion methods between tem-
poral and inter-view side information, and proposes new
promising techniques. Experimental results show that
these methods have good performances in a variety of
configurations.

1. INTRODUCTION

Distributed Video Coding (DVC) is a quite recent
paradigm with high potential in many practical appli-
cations, in particular multiple camera video transmis-
sion. In the 1970’s, Slepian-Wolf [1] and Wyner-Ziv [2]
obtained interesting theoretical results in information
theory, showing that a system can attain the same rate-
distortion performances while encoding two correlated
sources jointly or independently provided that the de-
coding is performed jointly. In multi-view video coding,
this means that the correlation between cameras can be
exploited just at the decoder, without affecting the per-
formances. In other words, encoding complexity can be
reduced and communication between cameras avoided,
while compression efficiency is preserved.

Even though theory was known for a long time, only
quite recently the first practical solutions for DVC have
appeared. One popular solution takes as starting point
the Stanford coding scheme [3], which consists in first
splitting the video sequence into two subsets: the key
frames (KF) and the Wyner-Ziv frames (WZF). This
step is critical especially for multi-view DVC, since the
frame repartition strongly affects the rest of the scheme,
as well as the employed prediction and fusion techniques.
The main existing solutions are summarized in [4]. In
this work, we adopt the so called symmetric scheme 1/2,
which gives identical roles to all cameras: each of them
produces alternatively one KF followed by one WZF. A
shift is introduced between cameras, in order to obtain
a quincunx frame repartition in the time-view domain
(see Fig. 1). The KFs are intra encoded/decoded using
an H.264 Intra codec. The WZFs are transformed (us-
ing DCT) and quantized, and the resulting bit-planes
are turbo-encoded. However, the systematic bits are

Time

Figure 1: Time-space frame repartition. KFs are in
black and WZFs in white.

not transmitted, and instead they are replaced, at the
decoder side, by an estimation of the WZF, called side
information (SI), generated from the decoded KFs. This
SI is corrected by the turbo-decoder with the parity bits
sent by the encoder, and finally the corrected DCT co-
efficients undergo an inverse transform to produce the
decoded WZF.

As shown in many works [5], the global coding per-
formances strongly depend on the quality of the SI. The
better the side information, the fewer bits are required
to encode the WZF. The proposed methods deal with
the generation of the SI through interpolation. In the
symmetric 1/2 frame disposition, for a given WZF two
interpolations can be used, a temporal estimation (using
the backward and the forward KFs) and an inter-view
estimation (using KFs from the left and right views).
The two estimations need to be combined, or fused, in
order to build a unique SI for the turbo decoder, while
improving the rate distortion performance. Many fusion
techniques have been proposed in the literature. How-
ever, the presented performances do not show, for all
cases, the gain with respect to just using temporal or
inter-view side information.

In this paper, we first state the fusion problem in
Sec. 2. In order to explore temporal and spatial redun-
dancies, temporal and inter-view interpolations use re-
spectively motion and disparity vectors estimation and
compensation. We consider in this work a convex vari-
ational approach allowing to obtain dense and accurate
displacement vectors. This approach is briefly described
in Sec. 2.1, but reader is referred to [6] for more details.
Then, we review in Sec. 3 some of the state-of-the-art fu-
sion methods proposed in the multi-view DVC context
and, in Sec. 4, we present three novel efficient fusion
techniques. Experimental results are provided in Sec. 5.
The paper ends with a conclusion in Sec. 6.
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2. SIDE INFORMATION CONSTRUCTION

2.1 Motion/disparity estimation

In this paper, we consider only rectified multi-view se-
quences [7]. This is a very common assumption accord-
ing to which, at a given time t, the disparity between
the frames of the different cameras is only horizontal.
We denote the tth frame of the nth camera by In,t. The
goal of the interpolation is to generate an estimation of
a frame from two available reference frames In1,t1 and
In2,t2 . If t1 = t2, the interpolation uses only information
from the left and right frames and is based on disparity
estimation. Whereas, if n1 = n2, interpolation performs
motion estimation between the forward and the back-
ward frames. To estimate both disparity and motion
vector fields, we use in this work a dense variational es-
timation method [6], consisting in minimizing an appro-
priate convex objective function under various convex
constraints. A total variation based regularization con-
straint is considered in order to output a smooth dispar-
ity or motion field while preserving discontinuities. The
resulting convex optimization problem is solved using
a parallel block iterative algorithm based on recently
developed convex analysis tools [6]. We use this very
efficient algorithm to perform both temporal and inter-
view estimations, leading finally to dense and accurate
displacement fields with ideally infinite precision, which
are used to compensate the reference frames.

2.2 Fusion problem statement

This section states the fusion problem and defines the
notations for the SI generation of a WZF Wn,t. The
fusion problem springs up since in the multi-view DVC
context, one ends up with having two different estima-
tions of the current WZF, Wn,t coming from the tempo-
ral and the inter-view interpolations. This is illustrated
in Fig. 2: motion estimation produces two motion vector
fields, vb and vf , which in turn are used to provide tem-
poral estimations of Wn,t from In,t−1 and In,t+1. There-
fore, we note with Ĩn,t− = In,t−1(vb) the prediction ob-
tained by compensating the image In,t−1 with vector vb.
Likewise, we have Ĩn,t+ = In,t+1(vf ). As far as disparity
estimation is concerned, we note the disparity fields as vl

and vr (which have quite different characteristics from
motion vector fields), and the corresponding estimations
as Ĩn−,t and Ĩn+,t. Finally, the two temporal (or inter-
view) estimations are combined in order to obtain a sin-

gle estimation, respectively ĨT = 1

2

(

Ĩn,t− + Ĩn,t+

)

and

ĨN = 1
2

(

Ĩn−,t + Ĩn+,t

)

. The fusion problem amounts

to produce an estimation of Wn,t from ĨT and ĨN with
the target of minimizing the mean square error with re-
spect to the actual WZF. In particular, an efficient fu-
sion technique should produce a smaller MSE than both
the “non-fusion” estimations ĨT and ĨN .

3. EXISTING FUSION SOLUTIONS

In this section, we review the existing solutions for the
fusion problem in the case of a quincunx frame reparti-
tion. Some existing solutions are not studied here since
they are based on other configurations. For exemple,
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Figure 2: Fusion problem: Ix are the available KFs
and Ĩx their motion compensated version, estimating
the WZF Wn,t. vx are the vector fields.

some techniques [8,9] use an hybrid frame repartition in
the time-view space and are not available in the symmet-
ric scheme adopted in this paper. In another solution,
reported in [10, 11] the fusion is performed on the ba-
sis of a frame analysis to be carried out at the encoder
side. However this method would not be coherent with
our intended DVC framework, where no joint processing
of images is allowed at the encoder.

The ideal fusion (Id), studied in [4,12] is the upper
bound one can achieve when performing a fusion. Pixel
by pixel, the true estimation error, taking into account
the original WZF, is computed and used as an oracle in
order to decide what is the best value for the SI. The
equation of the ideal fusion is for each pixel s:

Ĩ(s) =

{

ĨN (s), if |ĨN (s) − Wn,t(s)| < |ĨT (s) − Wn,t(s)|
ĨT (s), otherwise.

The pixel difference fusion (PD) was proposed
by Ouaret et al. in [8]. The interpolation error is esti-
mated using the backward and forward frames of the
same view. Two estimation errors are computed for
the inter-view interpolation Eb

N = |ĨN − In,t−1| and

E
f
N = |ĨN − In,t+1| and, similarly, for temporal inter-

polation Eb
T = |ĨT − In,t−1| and Ef

T = |ĨT − In,t+1|.
The equation of the PD fusion is therefore:

Ĩ(s) =

{

ĨN (s), if Eb
N (s) < Eb

T (s) andE
f
N (s) < E

f
T (s)

ĨT (s), otherwise.

The motion compensated difference fusion
(MCD) was proposed by Guo et al. in [13]. In this fusion
algorithm, the absolute value of the difference between
Ĩn,t− and Ĩn,t+ is thresholded by T1 and the motion vec-
tor values are also thresholded by T2. The equation of



the MCD fusion process is:

Ĩ(s) =















ĨN(s), if |Ĩn,t−(s) − Ĩn,t+(s)| > T1

or ‖vb(s)‖ > T2

or ‖vf (s)‖ > T2

ĨT (s), otherwise.

The view projection fusion (Vproj) was proposed
by Ferré et al. in [14]. In this case, the estimation ĨT
is projected onto In−1,t and In+1,t. This projection
consists in disparity compensations (dcl(·) and dcr(·))
based on a simple block matching disparity estima-
tion. The error images El = In−1,t − dcl(ĨT ) and
Er = In+1,t − dcr(ĨT ) are thresholded, leading to two
masks which are projected back onto the WZF, with
disparity compensations (dc−1

l (·) and dc−1
r (·)) based on

vr and vl. The equation of the Vproj fusion process is:

Ĩ(s) =

{

ĨN (s), if |dc−1

l (El)(s)| > T or |dc−1
r (Er)(s)| > T

ĨT (s), otherwise.

The temporal projection fusion (Tproj) was pro-
posed by Ferré et al. in [14]. It is the equivalent of the
Vproj fusion in the temporal direction. The estima-
tion ĨN is first projected on In,t−1 and In,t+1 by motion
compensation. Two error images, Eb = In,t−1−mcl(ĨN )
and Ef = In,t+1 − mcr(ĨN ), are then thresholded and
the obtained masks are projected back onto the original
position. The equation of the Tproj fusion process is:

Ĩ(s) =

{

ĨN (s), if mc−1

b (Eb) < T or mc−1

f (Ef ) < T

ĨT (s), otherwise.

4. PROPOSED FUSION METHODS

The fusion solutions presented in the previous section
achieve good performances in some cases. For exam-
ple, the PD fusion is quite efficient when the temporal
motion activity is low. On the contrary, non-fusion es-
timation qualities strongly depend on the sequence. In
this section, we propose three new methods aiming at
more robustness. The first two use the residual (i.e.
the difference between the two compensated reference
frames), like the MCD fusion does. The residual is com-
monly used to approximate the estimation error in DVC,
for example for the distribution model analysis at the
turbo decoder.

The motion and disparity compensated differ-
ence binary fusion (MDCDBin) compares the tem-
poral and inter-view residuals, and uses for the esti-
mation the one having the smallest one. Similarly to
the existing solutions, the decision is binary. The resid-
uals are defined as ET (s) = |Ĩn,t−(s) − Ĩn,t+(s)| and

EN (s) = |Ĩn−,t(s) − Ĩn+,t(s)|. Therefore, the equation
of MDCDBin is:

Ĩ(s) =

{

ĨN (s), if EN (s) < ET (s)
ĨT (s), otherwise.

The two following proposed methods adopt a quite
different approach. Instead of a binary decision, the

fusion process is now based a linear combination
between the available values. Note that a linear fusion
can in principle outperform the ideal binary fusion (Id)
and no upper bound can be found.

In the case of motion and disparity compen-
sated difference linear fusion (MDCDLin), the cri-
terion of MDCDBin is improved by computing a linear
combination of inter-view and temporal estimation, as
follows:

Ĩ(s) =
ET (s)

ET (s) + EN (s)
ĨN (s) +

EN (s)

ET (s) + EN (s)
ĨT (s)

Finally, in the case of Estimation-error and
vector-norm based linear fusion (ErrNorm), we
build on the consideration that often, the larger are
the motion vectors, the less reliable is the estimation.
Therefore, we use the motion vector norms as weights
in computing a linear combination between ĨT and ĨN .
The resulting image is then averaged with the one pro-
duced by MDCDLin to obtain the new estimation. More
precisely, in the ErrNorm case we have the following
equations:

Ĩ(s) =
Ĩerr(s) + Ĩnorm(s)

2
where

Ĩnorm(s) =
(‖vb‖ + ‖vf‖)ĨN (s) + (‖vl‖ + ‖vr‖)ĨT (s)

‖vb‖ + ‖vf‖ + ‖vl‖ + ‖vr‖

Ĩerr(s) =
ET (s)ĨN (s)

ET (s) + EN (s)
+

EN (s)ĨT (s)

ET (s) + EN (s)

5. EXPERIMENTAL RESULTS

We compared the state-of-the-art fusion techniques pre-
sented above with the proposed ones, by running them
on two multi-view test sequences, “Book Arrival” and
“Outdoor”, from [15]. For both sequences, the spatial
resolution was halved from 1024×772 to 512×386, and
only the first 8 cameras were used. We performed the
displacement estimation algorithm presented in Sec. 2.1
in order to produce the vector fields for both tempo-
ral and inter-view interpolations. We considered lossy
coded KFs and four quantization steps (QP= 31, 34,
36 and 40), in order to observe the behavior of fusion
methods in a relatively wide range of bit-rates.

The performance of all the methods are shown in
Fig. 3 where we give the PSNR of the SI with respect
to the original WZF. Note that the mean square error
is commonly used to measure the SI quality, and the
conclusions one can draw from it will be further con-
firmed with the final rate distortion performances. Gray
bars correspond to simple cases, where only temporal or
inter-view estimation are considered, the white bar cor-
respond to the ideal (i.e. oracle-driven) fusion, the blue
bars are the state-of-the-art methods explained in Sec-
tion 3, and the red ones are the proposed techniques. We
notice that for “Book Arrival” test sequence, the tem-
poral estimation is slightly better than the inter-view
one, while the opposite is true for the second sequence,
“Outdoor”. In both cases, the comparison between the
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Figure 3: SI quality for different fusion methods, at different KF quantization levels, and for two test sequences
“Book Arrival” and “Outdoor”.

ideal fusion (which can be seen as an upper bound for
fusion method performances) and no-fusion cases, shows
that fusion has the potential of largely improve the WZF
estimation.

However state-of-the-art methods look like not able
to adequately take advantage from fusion: while for the
“Book Arrival” sequence, MCD and PD fusion obtain
good performances, much better than the non-fusion
predictions ĨT and ĨN , this is no longer the case for the
second sequence, where state-of-the-art methods per-
form worse than simple inter-view estimation. We con-
clude that these methods are not robust enough when
there is a sensible gap of quality between the temporal
and inter-view estimations.

Different observations can be made for the proposed
methods (red bars in Fig. 3). The first remark is that
MDCDLin outperforms MDCDBin, showing that a lin-
ear based fusion is more efficient than a binary deci-
sion based method. Moreover, for “Book Arrival” se-
quence, the MDCDBin method reaches better perfor-
mances than the existing solutions. For “Outdoor” se-
quence, where the other solutions obtain a lower SI qual-
ity, the proposed methods achieve good results and Er-
rNorm fusion sensibly improves the ĨN prediction. Fi-
nally, for ease of comparison, some of the results of Fig. 3
are reported in Tab. 1 and 2, in terms of the differ-
ence between the best non-fusion estimation for each se-
quence and three fusion methods, PD (the best existing
method), MDCDLin and ErrNorm (the best proposed
methods).

In Fig. 4 we present the rate-distortion performance
obtained when using PD, MDCDLin and ErrNorm
within a complete DVC multiview coder as DISCOVER
[12]. The results confirm that the proposed methods

QP 31 34 36 40

PD -6.0131 -4.9926 -4.2939 -3.0226
MCDLin -0.9516 -1.0624 -0.9639 -0.8322
ErrNorm 0.3893 0.2253 0.1658 0.0740

Table 1: ∆PSNR between different fusion method and
the best non-fusion estimation (inter-view estimation in
this case) for “Outdoor” sequence.

QP 31 34 36 40

PD 0.2901 0.1293 0.0807 -0.0244
MCDLin 0.5777 0.4926 0.4799 0.3709
ErrNorm -0.1393 0.0271 0.1761 0.2636

Table 2: ∆PSNR between different fusion method and
the best non-fusion estimation (temporal estimation in
this case) for “Book Arrival” sequence.

(red curves) outperform existing ones (blue curves). In
order to facilitate the comparison, the average perfor-
mances computed with the Bjontegaard metric [16] are
shown in Tab. 3 and 4. We note that ErrNorm is consis-
tently better than than the non-fusion techniques (ob-
taining a rate reduction up to 3.64%), while MDCDLin
is always better than PD, which in turns, is much worse
than the non-fusion method for the “Outdoor” sequence.

6. CONCLUSION

In this paper, a review of some existing fusion meth-
ods in the multi-view DVC framework have been first
presented. Then, three new fusion techniques showing
better robustness and improving SI quality have been
introduced. Experimental results show that the pro-
posed solutions achieve good results for different inter-
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Figure 4: RD performances for 3 fusions methods and the best non-fusion estimation.

∆ Rate (%) ∆ PSNR (dB)

PD 21.96 -0.84
MCDLin 2.24 -0.13
ErrNorm -3.64 0.22

Table 3: Rate-distortion performance comparison be-
tween the different fusion methods and the inter-view
non-fusion estimation for “Outdoor” sequence, obtained
with the Bjontegaard metric [16].

∆ Rate (%) ∆ PSNR (dB)

PD -2.78 0.19
MCDLin -6.07 0.37
ErrNorm -3.13 0.20

Table 4: Rate-distortion performance comparison be-
tween the different fusion methods and the temporal
non-fusion estimation for “Book Arrival” sequence, ob-
tained with the Bjontegaard metric [16].

view and temporal estimation quality conditions, while
existing methods loose their performances in the case of
low temporal prediction quality. Future work will focus
on comparing different approaches for dense field esti-
mation in multi-view DVC framework [17].
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