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Abstract

The acquisition of global navigation satellite system (GNSS) signals is an extremely computa-

tionally intensive task. This explains that the first GPS receivers needed a very long time to

obtain a position. Thanks to technological advances, it is now possible to use highly parallel

implementations and efficient algorithms based on the fast Fourier transform (FFT), and thus

reduce significantly the processing time. Indeed, today, it takes less than a second to detect a

GPS L1 C/A signal with a clear view of the sky. However, this case does not correspond to all

the situations, and does not mean that the research on this topic is completed. For example, it

is always necessary to reduce the power consumption of GNSS devices embedded in portable

electronics equipment to further improve their battery autonomy. Sometimes, it is necessary

to detect very weak signals, such as in space applications because of the long distances and

the bad geometry, or with receivers embedded in smartphones where the antenna must meet

aesthetic criteria, which leads to poor performance in terms of gain. And finally, the recent

introduction of new GNSS signals will lead to better performance, but at the same time will

require a much more complex signal processing. Therefore, it is still necessary to find new

algorithms in order to meet the current needs of the society and scientists.

The goal of this Ph.D. thesis has been to search algorithms to reduce the complexity of the

acquisition, in order to reduce the processing time or the resources used, depending on

the context. The research has focused on the computation of the correlation using FFTs,

and on reducing its complexity by exploiting the characteristics of the GNSS signals. This

research has been performed with a hardware implementation in mind rather than a software

implementation, because this Ph.D. thesis started with a project where the goal was to develop

a GPS receiver on a programmable circuit (more specifically on a field programmable gate

array, or FPGA).

In this thesis, first we show simple methods to reduce the complexity of the FFT or of a

correlation computed by FFT (or of a convolution) on Altera FPGAs. In particular the methods

we propose allow a significant reduction of the memory resources. Moreover, the application

of these methods is not restricted to GNSS signals, but in fact apply to any other systems

computing FFTs, convolutions, or correlations, since no assumption is made on the signals.

Afterwards, we focus on the acquisition of modern signals having a secondary code using the

parallel code search, and especially on the acquisition of the GPS L5 signal. Two cases are

considered :
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Abstract

First, we discuss the acquisition where the correlation is performed over one period of the

primary code. This case is useful if we want to receive a modern GNSS signal and a fast

processing is preferred to a high sensitivity for example, or if we want to use one period of

the secondary code (which is longer than a period of the primary code), but it is not possible

to compute directly so large FFTs. Starting from an existing solution, two algorithms are

proposed in order to reduce the complexity under some conditions (e.g. the FFT length must

be a power of two).

Second, we discuss the case where the correlation is performed over one period of the sec-

ondary code. We seek to reduce the complexity by exploiting the fact that the tiered code

contains a repetition of the primary code, and that the secondary code is short and common

to all the satellites (for the considered signal). In search for an exact algorithm, we found an

approximation that reduces the complexity in exchange of a reduction of the signal-to-noise

ratio (SNR).

Keywords : Acquisition, Algorithm, Complexity, Convolution, Correlation, fast Fourier trans-

form, FFT, FPGA, Hardware receiver, Implementation, Galileo, Global navigation satellite

system, Global positioning system, GNSS, GPS, Parallel code search, Sensitivity.
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Résumé

L’acquisition des signaux GNSS est une tâche extrêmement gourmande en calculs. Ceci ex-

plique que les premiers récepteurs GPS obtenaient une position après un temps très long.

Grâce aux progrès technologiques, il est devenu possible d’utiliser des implémentations haute-

ment parallèles et des algorithmes efficaces basés sur la transformée de Fourier rapide (FFT),

et donc de réduire le temps de calcul de manière significative. En effet, à l’heure actuelle,

détecter un signal GPS L1 C/A avec une vue dégagée du ciel prend moins d’une seconde.

Cependant, ce cas ne s’applique pas à tous les contextes, et ne signifie pas que la recherche

sur ce sujet soit terminée. Entre autres, il y a toujours la nécessité de réduire la consommation

des appareils GNSS intégrés aux équipements portables afin d’améliorer l’autonomie. Il est

parfois nécessaire de détecter des signaux très faibles, comme pour les applications spatiales

à cause des longues distances et de la géométrie défavorable, ou avec les récepteurs intégrés

aux téléphones portables où l’antenne doit répondre à des exigences esthétiques, ce qui est

fortement préjudiciable pour le gain de l’antenne. Et pour finir, l’introduction récente de

nouveaux signaux GNSS décuple les possibilités et les performances mais rend également les

traitements beaucoup plus complexe. Il est donc toujours nécessaire de trouver de nouveaux

algorithmes afin de répondre aux besoins actuels de la société et des scientifiques.

Le but de ce doctorat a donc été de rechercher des algorithmes qui permettent de réduire la

complexité de l’acquisition, afin de réduire le temps de calcul ou les ressources utilisées, selon

le contexte. La recherche s’est articulée principalement autour de l’opération de corrélation

calculée par FFT, et des moyens d’exploiter les caractéristiques des signaux GNSS afin d’en

réduire la complexité. Cette recherche a été effectuée en ayant à l’esprit plutôt une implémen-

tation matérielle que logicielle des algorithmes, car ce doctorat a débuté avec un projet dont

le but était de développer un récepteur GPS sur un circuit programmable (FPGA).

Dans cette thèse, dans un premier temps des méthodes simples sont présentées pour réduire

la complexité d’une FFT ou d’une corrélation par FFT (ou d’une convolution) sur des FPGAs de

chez Altera. En particulier, ces méthodes permettent une réduction significative de la mémoire

nécessaire. De plus, l’application de ces méthodes n’est pas limitée aux signaux GNSS, mais

s’applique à tout système calculant des FFT, des convolutions ou des corrélations, car elles

n’utilisent aucune propriété concernant les signaux.
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Résumé

Ensuite, nous nous concentrons sur l’acquisition des nouveaux signaux comportant un code

secondaire en utilisant la recherche parallèle du code, et en particulier sur l’acquisition du

signal GPS L5. Deux cas sont étudiés :

Tout d’abord, celui où la corrélation est calculée sur une période du code primaire. Ce cas est

utile si l’on souhaite par exemple recevoir un des nouveaux signaux GNSS et que la rapidité

est privilégiée sur la performance en matière de sensibilité, ou si l’on souhaite utiliser une

période du code secondaire (qui est plus longue qu’une période du code primaire) mais

qu’il n’est pas possible de calculer des FFT de si grande longueur directement. Partant d’une

solution existante, deux algorithmes sont proposés afin de réduire la complexité sous certaines

conditions (par exemple que la longueur des séquences pour les FFT soit une puissance de

deux).

Ensuite, nous étudions le cas où la corrélation est calculée sur une période du code secondaire

directement. En exploitant le fait que le code local complet contient une répétition du code

primaire et que le code secondaire est court et commun à tous les satellites (pour le signal

considéré), nous essayons de réduire la complexité. À défaut d’avoir trouvé une méthode

de calcul exact, nous proposons une approximation qui permet de réduire la complexité en

contrepartie d’une baisse du rapport signal sur bruit.

Mots-clés : Acquisition, Algorithme, Complexité, Convolution, Corrélation, FFT, FPGA, Implé-

mentation, Galileo, GNSS, GPS, Récepteur matériel, Recherche parallèle du code, Sensibilité,

système de positionnement par satellites, transformée de Fourier rapide.
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Introduction

Genesis of this thesis

I started my Ph.D. thesis working on a European project, where my objective was to develop a

high-sensitivity GPS receiver with a fast time-to-first-fix (TTFF) implemented into an FPGA.

Since one of the target was to obtain a fast TTFF, I focused my attention on the acquisition,

the most time consuming operation when we turn on a GPS receiver. What I was looking for,

a comparison between different acquisition methods for an FPGA implementation, was not

available in the literature, thus I performed this comparison myself.

After this comparison, I chose one of the best methods, with the intuition that it was possible

to obtain more efficient implementations. This was the starting point of the real research.

Motivations

As mentioned above, the acquisition is a computational intensive task. The technology

improvements have allowed the use of efficient and highly parallel algorithms, so that it is

now possible to acquire a sufficient number of satellite signals in less than a second. However,

there are still many reasons to perform additional research on this topic :

1. Although the power consumption is not so critical for GNSS receivers for cars, boats, or

planes, this is highly critical for embedded systems, such as mobile phones, satellites, or

robots.

2. There are applications where the power of the GNSS signals received is very low, which

requires much more processing to detect the signals. This can be due to the environ-

ment, like for indoor positioning where there are obstacles, or like for space navigation

where the main lobe of the GNSS satellite antenna may not be in the direction of the

receiver and where the distances may be much longer. It can also be due to the receiver

components, like with mobile phones where the antenna must meet aesthetic require-

ments that lead to poor performance (the gain can be 10 dB lower compared to an ideal

3 dBi antenna, which means that 90 % of the power is lost before reaching the front-end

(van Diggelen [2009], p. 216)).
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3. Several new signals are now available, and although they offer better performance, the

complexity for the acquisition is much higher, especially because of a higher chipping

rate, the use of longer codes, and the presence of a secondary code (van Diggelen [2014]).

4. With four GNSS constellations in the sky soon, the performance of GNSS receiver will

be improved significantly (e.g. the number of satellites in view will increase and the

geometry will be improved, leading to a better positioning accuracy and availability).

However, each constellation provides signals with different characteristics, it is thus a

challenging task to find implementations that can process several signals in an efficient

way (e.g. by sharing some processing units).

For all these reasons, the research of more efficient algorithms for the acquisition is still

necessary. Here, by more efficient, we mean that the complexity of the algorithms should be

reduced, which can lead to different improvements according to the objective. For instance, it

can result in a reduction of the processing time (thus allowing to get a position more quickly),

or in a reduction of the resources used (e.g. memory), leading to a reduction of the energy

consumption.

Therefore, during this Ph.D. thesis, I focused my research on the acquisition, and on how to

reduce its complexity. The acquisition includes additional topics, such as ways to increase the

sensitivity (coherent vs. non-coherent vs. differential integration, combination of data and

pilot channels), or the methods of detection. Here, these topics are not addressed, and the

focus is only on the computation algorithms, and more specifically on the ways to compute

the correlation of two signals through FFTs in the GNSS context.

I specify in the GNSS context because the aim was to use the specificities of the GNSS signals

and the application context to find more efficient algorithms, and not to find the solution

of general problems, because the question of the fast computation of the DFT and of the

convolution has already been discussed extensively since the 1970s (see e.g. Winograd [1980],

Nussbaumer [1982], Burrus and Parks [1985], Garg [1998], Blahut [2010]).

The focus is also more on hardware receivers than on software receivers, because I started my

Ph.D. thesis implementing a hardware receiver. Nevertheless, we discuss also the applicability

of some of the proposed algorithms for software receivers.

Mathematical tools used during this thesis

During the thesis, different mathematical tools have been used, because the correlation

between two discrete signals can be expressed in various ways. The correlation is usually

expressed in the time domain. But it can also be expressed as the product of two polynomials

(through the use of the z transform for example), or using matrices, which involves circulant,

skew-circulant, Toeplitz and Hankel matrices. And finally, the correlation is deeply related to

the discrete Fourier transform.

2



Introduction

Then, there are also different ways to manipulate the signals, as for example using a downsam-

pling or a segmentation, or applying the Chinese remainder theorem.

Outline

This thesis is separated in two parts. The first part, which includes Chapters 1, 2 and 3, intro-

duces GNSS signals and receivers with a closer look on the acquisition block, and presents

a comparison of different known methods for the acquisition. The second part, which in-

cludes Chapters 4, 5 and 6, presents the proposed algorithms to reduce the complexity of the

acquisition in different contexts.

Chapter 1 introduces some basic notions about GNSS, by describing the concepts, the current

systems, the GNSS signals, and the different elements of a GNSS receiver. More importantly,

this chapter introduces the model used for the discrete GNSS signals. Chapter 2 focuses on

the acquisition, describing the operation performed, presenting different known methods,

and briefly introducing some concepts that are part of the acquisition but not considered

in this thesis. The content of these two chapters is not really new, but is presented in a

rigorous way. In Chapter 3, and using results provided in Appendix C, we propose a new

comparison framework to compare the implementations of the main GNSS signals acquisition

architectures on FPGAs.

Using known algorithms, Chapter 4 presents some implementations to reduce the complexity

of the FFT and of the correlation implemented on Altera FPGAs, using the Altera FFT. Chapter

5 discusses the problem of the acquisition in presence of sign transitions due to a secondary

code (or data). We present two algorithms to reduce the complexity. These algorithms compute

the output exactly and are thus not approximations. However, they are efficient only under

certain conditions. Chapter 6 discusses the problem of the high sensitivity acquisition using

the secondary code. We discuss implementations to use smaller FFTs (which will bring us

back the Chapter 5), and then implementations to reduce the complexity (which will lead to

approximations).

Chapter 7 concludes this work and provides some comments for future research.

Several appendices complete this thesis. Appendix A summarizes the definition of some

operations (DFT, z transform, convolution, correlation) in different ways (time domain, matrix

view, z transform view), and provides the relations between them. Appendix B gives some

tips to reduce the complexity when we deal with FFT and correlation, which can be useful

for GNSS receivers. Finally, Appendix C contains the details of the estimation of the FPGA

resources for the implementations discussed in Chapter 3.

Overall, I tried to gather in this manuscript all the information I learnt and that someone

would need to continue this research in the same direction.
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1 Some basics about GNSS

1.1 General principle of GNSS

The positioning in GNSS is based on trilateration, i.e. the measurement of distances from

references whose positions are known. An example in two-dimension is given Fig. 1.1. If

the receiver R knows that its distance from the reference S1 is d1, it knows that its position

is on the circle of radius d1 and centered at S1. Moreover, if then the receiver knows that its

distance from the reference S2 is d2, it knows that its position may be on two points, namely

the intersection of the two circles. Finally, the same information for the third reference S3 will

indicate the true receiver position.

In GNSS, the references are the GNSS satellites, the distances are determined by measuring

the travel time of the signals, and we have three dimensions instead of two. Therefore, the

measure of the distance from a first satellite reduces the possibilities for the receiver position

to a sphere; a second measure reduces the possibilities to a circle; a third measure reduces the

possibilities to two points; and a fourth measure reduces the possibilities to one point, the

receiver position. Consequently, the signals from at least four GNSS satellites are needed to

obtain a position. Actually, a GNSS receiver needs at least four satellites, but for additional

reasons. After the third measure, there are two possibilities for the position, but one of them

is on the surface of the Earth, while the other is on an impossible place (e.g. far below the

surface or in space (note that this is an impossible place for a terrestrial receiver, but not for

a satellite)). Thus, with a clever algorithm, three satellites would be sufficient. However, the

time of arrival of the signals is measured with the clock of the receiver, which has a limited

accuracy (whereas GNSS satellites use atomic clocks). An error in the estimate of the travel

time results in an error of the satellites position and in the estimates of the distances (in 1µs

the waves travel about 300 m), and thus in the estimate of the receiver position. To resolve this

error, an additional measure is needed. Therefore, four satellites are needed to get a position.

Nevertheless, a receiver usually uses more than four signals to improve the accuracy.

Regarding the GNSS satellites, they send their current time and their ephemeris (parameters

that define their orbit), which allows the receiver to compute their position. Afterwards, to
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S1

S2

S3

R

d1

d2

d3

Figure 1.1: Illustration of the trilateration principle in a two-dimension case.

determine the distance from each GNSS satellite, the receiver determines the travel time

(time between the reception and the emission of the signal) and multiplies it by the speed of

propagation.

For more details, see for example http://www.navipedia.net/index.php/An_intuitive_approach_

to_the_GNSS_positioning, or (Kaplan and Hegarty [2005] Chap. 2, El-Rabbany [2006]).

1.2 Overview of the terrestrial GNSSs

A GNSS is composed of three segments : the space segment, the control segment, and the user

segment.

The space segment consists in the GNSS satellites themselves, which are in almost circular

orbits around the Earth, at an altitude of about 20 000 km in a region called medium Earth

orbit (MEO). The constellations rely on 24 to 30 satellites, distributed between several planes.

The GNSS satellites send permanently signals in direction of the Earth.

The control segment consists in a network of stations on Earth, which includes a master

control station, several stations that monitor the GNSS signals, and some stations that upload

new data to the GNSS satellites (e.g. to adjust the orbit parameters of the satellites).
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1.3. Signals transmitted by GNSS satellites

The user segment consists in all the equipments that receive and process the GNSS signals.

This thesis, which discusses about the processing of GNSS signals, is thus in this category.

For a thorough review of the application of GNSS, see (Jacobson [2007]) and (Gleason and

Gebre-Egziabher [2009]).

In the next years, there will be four GNSSs fully operational. Two of them are currently fully

operational (GPS and GLONASS), and two of them are in development (Galileo and BeiDou).

The GPS is an American system, started in the late 1970s by the Department of Defense for

military applications. Later, in the 1990s, it was open to civil applications, but it’s mainly

when the selective availability was removed (making the positioning accuracy within 10 m

instead of about 100 m (Adrados et al. [2002])) that the GPS has been democratized. Since the

beginning, the system is evolving progressively, each new generation of satellites bringing new

performances (e.g. using better clock and increasing the life span) or new signals. As of March

2014, the GPS constellation includes 31 satellites (http://www.gps.gov/systems/gps/space),

whereas the baseline was 24 satellites.

GLONASS is a Russian system developed approximately at the same time as the GPS. How-

ever, due to a lack of maintenance, the system was no more fully operational, until a re-

cent renovation. As of March 2014, GLONASS is fully operational with 24 satellites (http:

//www.glonass-center.ru/en/GLONASS). As GPS, GLONASS evolves, and the next generation

of satellites will include new signals. Until now, GLONASS satellites used FDMA (frequency

division multiple access) for the multiple access, i.e. each satellite uses a specific frequency.

This is the only GNSS to use this technology, all the others using only CDMA (code division

multiple access), where all the satellites use the same frequency but they have a specific code

(GLONASS uses also such codes but only for ranging purpose). The new GLONASS signals will

be based on CDMA only.

Galileo is a European system in development. As the modernized GPS, the Galileo satellites

will transmit several signals for civil applications and governments, including wide band

signals. According to the latest estimations, the system should be fully operational in 2018.

BeiDou is a Chinese system in development. Most of the signals will be similar to those of

Galileo or GPS. According to the latest estimations, the system should be fully operational in

2018. For a summary of the GNSS signals, see (Hegarty [2012]).

1.3 Signals transmitted by GNSS satellites

The GNSS satellites continuously send signals in direction of the Earth. Those signals have

three essential components (Langley [1990]) :

• A carrier, which is a sinusoidal signal whose frequency is in the L band (band between 1

and 2 GHz).

• A spreading code, which is a known long binary sequence of +1 and −1 specific to each
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1 ms = 1 primary code period
           = 1023 primary code chips

Figure 1.2: Illustration of the data (d(t )) and code (c(t )) synchronization for the GPS L1 C/A
signal. The values inside boxes indicate the chip number.

satellite and transmitted at high rate. This sequence, also called pseudo-random noise

(PRN) code, allows precise ranging and lets the satellites to broadcast signals at the same

carrier frequency (see e.g. (Viterbi [1995]) for more details about CDMA). The values of

a PRN code are usually called chips instead of bits, to emphasize that they do not carry

information.

• Navigation data, which is a binary-coded message of value +1 or −1 transmitted at low

rate to provide the information necessary for the navigation, such as time and orbital

information (called ephemeris). The duration of one data bit is equal or is a multiple of

the duration of one period of the PRN code (see Figs. 1.2 and 1.3).

The famous GPS L1 C/A signal has these three components, and the signal emitted by the

satellite u is defined as

su
e (t ) =

√
2Pe cu(t ) d u(t ) cos(2π fL1t +ϕu

e ), (1.1)

where t is the time, Pe is the signal power, c(t ) is the PRN code, d(t) is the data, fL1 is the L1

carrier frequency, and ϕe is a phase. The synchronization between the code and the data is

illustrated in Fig. 1.2. The modulation used for this signal is called binary phase shift keying,

or BPSK (Ziemer and Tranter [2008] pp. 403–408).

Modern signals, on the other hand, have introduced some new components (Turunen [2007]) :

• A secondary code, which is a known binary sequence transmitted at low rate. This

means that two codes (usually called primary and secondary codes) are combined to

form a tiered spreading code (see Fig. 1.3). The secondary code helps, among others, for

the synchronization with the data bits.

• A sub-carrier, which is a square wave multiplying each chip of the PRN code. This leads

to a new modulation family (binary offset carrier, or BOC) and modifies the spectrum of

the signals (Betz [2001]).

• A pilot channel, that includes only the spreading code and the carrier, and not the data.

This provides a lot of advantages for the signal detection since it is fully deterministic. For
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Figure 1.3: Illustration of the data (d(t )) and codes (cs(t ) and cp (t )) synchronization for the L5
signal. The values inside boxes indicate the chip number.

some signals (e.g. the GPS L5 and the Galileo E5a and E5b), the data and pilot channels

are in quadrature, in this case, if each channel is BPSK modulated, the modulation

is a quadrature phase shift keying (QPSK), and the data channel is usually denoted

the I channel, and the pilot channel the Q channel. Otherwise, the two channels are

transmitted in a different way, like time multiplexing (e.g. TMBOC for the GPS L1C

signal) or code multiplexing (e.g. CBOC for the Galileo E1 signal). See (Ávila Rodríguez

et al. [2006]) for more details.

So, the signal emitted by a GNSS satellite u when the data and pilot channels are in quadrature

is defined as

su
e (t ) =

√
2Pe cu

i (t ) d u(t ) cos(2π fL t +ϕu
e )+

√
2Pe cu

q (t ) sin(2π fL t +ϕu
e ), (1.2)

where P u
e is the emitted power on each channel (assuming the same power on both channels),

fL is the carrier frequency in the L band, and ci (t ) and cq (t ) are the PRN codes of the data and

pilot channels defined as

cu
i (t ) = cu

p,i (t ) cu
s,i (t ) scu

i (t ), (1.3)

and

cu
q (t ) = cu

p,q (t ) cu
s,q (t ) scu

q (t ), (1.4)

where cp,i and cp,q are the primary codes of the data and pilot channels, cs,i and cs,q are the

secondary codes of the data and pilot channels, and sci and scq are the sub-carriers of the

data and pilot channels. The synchronization between the codes and the data is illustrated in

Fig. 1.3.

A summary of the properties of some GNSS signals is given Table 1.1. It can be seen that

there are only two different chipping rates used for the primary code, 1.023 MHz and 10.23

13
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Signal GPS L1 C/A
Galileo E1 GPS L5 Galileo E5a Galileo E5b
D P I Q I Q I Q

Carrier frequency
1575.42 1575.42 1176.45 1176.45 1207.14

(MHz)

Modulation BPSK CBOC QPSK QPSK QPSK

Primary code
1.023 1.023 10.23 10.23 10.23

chipping rate (Mchip/s)

Primary code
1023 4092 10 230 10 230 10 230

length (chip)

Primary code
1 4 1 1 1

length (ms)

Secondary code
- - 250 1000 1000 1000

chipping rate (chip/s)

Secondary code
- - 25 10 20 20 100 4 100

length (chip)

Secondary code
- - 100 10 20 20 100 4 100

length (ms)

Data rate
50 250 - 100 - 50 - 250 -

(bit/s)

Table 1.1: Properties of some GPS and Galileo signals.

MHz, and that the primary code length is always a multiple of 1023. Regarding the secondary

codes, those for the Q channel of the E5a and E5b signals are specific to each Galileo satellite

(there are 100 codes defined), while the other secondary codes are unique (for example the

secondary code for the I channel of the E5b signal is −1 −1 −1 +1). For details on other

signals, the reader can refer to (Hegarty [2012]) or (Ávila Rodríguez [2008]).

The spreading codes used in GNSS have not been randomly chosen, but have been carefully

selected according to their auto-correlation (correlation of a signal with itself) and cross-

correlation (correlation between two signals) properties. The codes are selected in order to

have cross-correlation values as low as possible, and auto-correlation values as low as possible

except for one case, when the code is aligned with itself. This is illustrated in Fig. 1.4 for the

auto-correlation of some primary codes, in Fig. 1.5 for the cross-correlation of some primary

codes, and in Fig. 1.6 of some secondary codes. It can be seen that the longer is the code, the

better are the correlation properties.

Regarding the spreading codes composed of a primary and a secondary code, it can be

tempting to think that the protection is the addition of the protection of each codes (if it was

true, the minimum protection of the L5 spreading code would be about 27 + 14 = 41 dB for
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Figure 1.4: Auto-correlation of a L1 C/A code (1023 chips), an E1 code (4092 chips) and a L5
code (10 230 chips).

15



Chapter 1. Some basics about GNSS

0 100 200 300 400 500 600 700 800 900 1000
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Delay (chip)

N
o
rm

a
li
ze

d
 c

ro
ss

-c
o
rr

e
la

ti
o
n
 o

f 
a
 L

1
 C

/A
 c

o
d
e

(a)

0 100 200 300 400 500 600 700 800 900 1000
-80

-70

-60

-50

-40

-30

-20

-10

0

Delay (chip)

N
o
rm

a
li
ze
d
 c
ro
ss
-c
o
rr
e
la
ti
o
n
 o
f 
a
 L
1
 C
/A
 c
o
d
e
 (
d
B
)

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Delay (chip)

N
o
rm

a
li
ze

d
 c

ro
ss

-c
o
rr

e
la

ti
o
n
 o

f 
a
 E

1
 c

o
d
e

(c)

0 500 1000 1500 2000 2500 3000 3500 4000
-80

-70

-60

-50

-40

-30

-20

-10

0

Delay (chip)

N
o
rm

a
li
ze

d
 c

ro
ss

-c
o
rr

e
la

ti
o
n
 o

f 
a
 E

1
 C

/A
 c

o
d
e
 (
d
B

)

(d)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Delay (chip)

N
o
rm

a
li
ze

d
 c

ro
ss

-c
o
rr

e
la

ti
o
n
 o

f 
a
 L

5
 c

o
d
e

(e)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-80

-70

-60

-50

-40

-30

-20

-10

0

Delay (chip)

N
o
rm

a
li
ze
d
 c
ro
ss
-c
o
rr
e
la
ti
o
n
 o
f 
a
 L
5
 c
o
d
e
 (
d
B
)

(f)

Figure 1.5: Cross-correlation of a L1 C/A code (1023 chips), an E1 code (4092 chips) and a L5
code (10 230 chips).
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Figure 1.6: Auto-correlation of the L5 secondary code (20 chips), the E1 secondary code (25
chips) and an E5Q secondary code (100 chips).
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Figure 1.7: Auto-correlation of the L5 spreading code (204 600 chips) and the E1 secondary
code (102 300 chips).

example). However, this is not the case as shown in Fig. 1.7. It can be seen that around the

correct alignment, the correlation value is higher. Indeed, in this case the secondary code is

nearly aligned since a shift of 1 chip of the L5 primary code is equal to a shift of 1
10 230 chip of

the L5 secondary code, thus the correlation value is mainly due to the primary code. Then,

when the secondary code is sufficiently shifted, the correlation value is much lower, except

for some delays. These delays correspond to a correct alignment of the primary code, thus

in these cases the correlation value is given by the secondary code, which explain the higher

values.

Finding a set of codes with very good characteristics is not an easy task. Indeed, the number of

possibilities is too large to make an exhaustive search. For example, for a length of 1023 chips,

there are 21022 code possible. With an imaginary supercomputer that could check the auto-

correlation of 1015 codes in one second, it would still require about 10275 times the universe

age to test all of them. And this does not take into account the research of a set of several codes
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with good cross-correlations properties. Therefore, smart approaches have to be used, and

today they are known ways to generate some code families having good properties using shift

registers (Holmes [2007] Chap. 2). The most well-known codes are probably the Gold codes

(Gold [1967]), which are used with the GPS L1 C/A signal. However, other characteristics can

be included in the search of good codes, such as the correlation in presence of a transition, or

the correlation in presence of a residual carrier (which affects a lot the short secondary code

(Macabiau et al. [2003])). See (Soualle et al. [2005]) for more details.

1.4 Space travel

During the travel in space, the GNSS signals are affected by different elements, as well sum-

marized in (MacGougan et al. [2001]). Here we describe two important effects, which are the

reasons of the acquisition, and we mention some other effects.

1.4.1 Free space loss

Like every propagating signal, the GNSS signals are affected by a loss of power during the

travel. This loss, usually called free space loss, is defined as

L f =
(

4πd f

c

)2

, (1.5)

where d is the distance in m, f the carrier frequency in Hz, and c the speed of light in m/s

(Ziemer and Tranter [2008], pp. 695–698). This loss can also be expressed in log scale, which

gives

L f (dB) = 10log10

(
4πd f

c

)2

≈ 20log10(d)+20log10( f )−147.55.

(1.6)

Therefore, for the signals at the L1 frequency, the loss is

L fL1 (dB) ≈ 20log10(d)+183.95−147.55

≈ 20log10(d)+36.40,
(1.7)

and for the signals at the L5 frequency, the loss is

L fL5 (dB) ≈ 20log10(d)+181.41−147.55

≈ 20log10(d)+33.86.
(1.8)
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Signal GPS L1 C/A
Galileo E1 GPS L5 Galileo E5a Galileo E5b
D P I Q I Q I Q

Received power −128.5 −130 −130 −127∗ −127∗ −128 −128 −128 −128
(dBm)

Table 1.2: Minimum received power on Earth (for a 3-dB gain linearly polarized antenna or a
unity gain RHCP antenna). ∗For block III GPS satellites (−127.9 dBm for block IIF satellites.)

Using d = 20200 km (the approximate altitude of the GPS satellites), this gives

L fL1 (dB) ≈ 146.11+36.40

≈ 182.50
(1.9)

and

L fL5 (dB) ≈ 146.11+33.86

≈ 179.97
(1.10)

Of course, the distance traveled by the signals depends also on the position of the receiver on

Earth. Thus, according to the position of the receiver, the free space loss is different. However,

the pattern of the satellites antenna is designed to partially compensate this (Kaplan and

Hegarty [2005] pp. 133–135, van Diggelen [2009] pp. 10–12). In the end, the minimum signal

power received on Earth is given in Table 1.2 for different GNSS signals. But in presence of

obstacles (e.g. glass, wood, concrete), the signals are strongly attenuated and the power can

drop to −160 dBm (van Diggelen [2009] pp. 215–217). Furthermore, with a poor performance

antenna (such as in mobile phones), this power can be reduced again by 10 dB to reach −170

dBm, which represents a factor of about 10 000 compared to the nominal value. It will be then

the job of the signal processing in the receiver to compensate these losses. Of course, lower is

the received signal power, higher is the processing required.

1.4.2 Doppler effect

Another important effect is the Doppler effect. The Doppler effect implies a time compression

or expansion of the signals due to the relative motion between a transmitter and a receiver.

Thus, a signal s(t ) will be seen as s
(
(1+α)t

)
, where α= v

c , with v the relative velocity between

the emitter and the receiver, and c the speed of light. Consequently, this means that the

period T of a periodic signal is divided by 1+α, and that its frequency f is multiplied by

1+α, as illustrated in Fig. 1.8. The difference between the received frequency and the emitted

frequency, equal to α f , is usually called the Doppler frequency or the Doppler shift.

According to (Tsui [2005] pp. 34–37), the GPS satellites are moving at a speed of about 3874

m/s, and the maximum relative speed between a GPS satellite and a static user on Earth is
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c ((1+α)t ) t 

α<0
T

1+α

(a)

c (t ) t 

T

(b)

c ((1+α)t ) t 

T
α>0

1+α

(c)

Figure 1.8: Illustration of the Doppler effect on a periodic signal when (a) the emitter and the
receiver go away from each other (the relative speed between them is negative, thus α< 0); (b)
the relative speed between the emitter and the receiver is zero; (c) the emitter and the receiver
are getting closer (the relative speed between them is positive, thus α> 0).

928.7 m/s. If we follow the same procedure, the relative speed between a Galileo satellite and

a static user on Earth is 17/20 the one with GPS (17/20 is the ratio between the altitude of

GPS satellites and the altitude of Galileo satellites), i.e. 789.4 m/s. This leads to the Doppler

shifts indicated in Table 1.3. It can be seen that the GNSS signals are not equivalent from the

Doppler effect point of view. Regarding the code Doppler, even if it seems very low, it still plays

an important role as will be shown in Chapter 2.

For a moving receiver, the relative speed between the satellites and the receiver is higher. Table

1.4 provides the maximum supplementary Doppler shift for an aircraft having a speed of 1000

km/h and a spacecraft in low Earth orbit (LEO) having a speed of 7.7 km/s. Note that the

total Doppler shift in the case of the LEO is not the sum of the Doppler shifts of Tables 1.3

and 1.4, since Table 1.3 takes into account the geometry for a user on Earth. For example, the

maximum carrier Doppler shift measured by a LEO receiver having a speed of 7.7 km/s in

(Dion et al. [2008]) was 42 kHz for the L1 C/A signal.

1.4.3 Doppler rate of change

Since the GNSSs are dynamic systems, the relative velocity between the GNSS satellites and

the user is changing over the time. According to (Tsui [2005] pp. 39–40), the maximum rate of

21



Chapter 1. Some basics about GNSS

Signal
Carrier Doppler Code Doppler

(kHz) (Hz)

GPS L5 3.64 31.7
GPS L2 3.80 3.17
GPS L1 4.88 3.17

Galileo E5a 3.10 26.9
Galileo E5b 3.18 26.9
Galileo E1 4.15 2.69

Table 1.3: Maximum Doppler shift for GNSS signals for a static user.

Signal
Aircraft Spacecraft

Carrier Doppler Code Doppler Carrier Doppler Code Doppler
(kHz) (Hz) (kHz) (Hz)

GPS L5 1.09 9.48 30.2 263
GPS L2 1.14 0.95 31.5 26.3
GPS L1 1.46 0.95 40.5 26.3

Galileo E5a 1.09 9.48 30.2 263
Galileo E5b 1.11 9.48 31.0 263
Galileo E1 1.46 0.95 40.5 26.3

Table 1.4: Maximum supplementary Doppler shift for GNSS signals for an aircraft (speed of
1000 km/h) and for a spacecraft (speed of 7.7 km/s).

change of the carrier Doppler shift is about 0.94 Hz/s for a static user on Earth considering the

L1 frequency. In fact, the range of values of the rate of change depends on the latitude of the

user (van Diggelen [2009] pp. 45–46).

For a moving receiver, the rate of change can be much higher. For example, when a car is

on a roundabout, the relative speed between the receiver and the emitter changes rapidly

and can imply a change of the carrier Doppler of dozens of Hz in few seconds. The rate of

change can be quite high also in space. For example, considering the L1 C/A signal, the rate of

change of the carrier Doppler shift can reach at least 62 Hz/s for a receiver on LEO (Dion et al.

[2008]), 14 Hz/s for a receiver on a medium Earth orbit (MEO) and 5.5 Hz/s for a receiver on a

geostationary Earth orbit (GEO) (Capuano et al. [2013]).

The code Doppler shift is also evolving over the time, although the change is not so significant

(with the L1 C/A signal, a rate of change of 0.94 Hz/s for the carrier Doppler means a rate of

change of 0.61 mHz/s for the code Doppler). The impact of the rate of change of Doppler is

discussed in Chapter 2.

22



1.5. Basic operation of a GNSS receiver

1.4.4 Other effects

There are also other effects, not so important for the acquisition, but important for the posi-

tioning. For example, there are perturbations coming from the atmosphere of the Earth, and

more particularly from the ionosphere and the troposphere, that affect the speed of the signal

(and consequently the distances that will be measured). However, some models have been

developed to correct these effects, and the use of signals at different frequencies (L1 and L2 (or

L5) for example) also allows us to correct them (Hoque and Jakowski [2012]).

1.5 Basic operation of a GNSS receiver

In this section, we describe the different elements of a GNSS receiver, and we provide the

signal model at each stage. Here we consider two models : the first one takes into account the

impact of the Doppler effect and of the reference frequency accuracy on both carrier and code.

Whereas the second model takes into account only the major impacts on the carrier. A tilde is

used to denote this simplified model.

The first model is typically required when we want to detect weak signals or when the speed of

the receiver is high (like on an aircraft or a spacecraft), while the simplified model is enough

for strong signals when the speed of the receiver is low (like on a boat or a car).

1.5.1 Antenna

The antenna is the element that converts the received electromagnetic wave into an electrical

signal. The design of an antenna for GNSS can be quite complex and involves many parameters

such as the bandwidth (it is not the same if we want to receive signals at a specific frequency

(only L1 for example) or to receive signals at different frequencies (L1 and L5 for example)),

the gain, the polarization, the phase center, etc. The reader can refer to (Wang [2012]) for an

introduction on this topic, or to (Grewal et al. [2013] Chap. 5, Rama Rao et al. [2012], Chen

et al. [2012]) for detailed information.

After the antenna, the received signal is the combination of signals coming from U different

satellites plus a noise term (discussed later in Section 1.5.2), it is thus defined as

sr (t ) =
U∑

u=1
su

r (t )+ηr (t ). (1.11)

The signal coming from a satellite u when the data and pilot channels are in quadrature is
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defined as

su
r (t ) =

√
2P u

r cu
i

(
(1+αu)t −τu)

d u(
(1+αu)t −τu)

cos
(
2π fL

(
(1+αu)t −τu)+ϕu

e

)
+

√
2P u

r cu
q

(
(1+αu)t −τu)

sin
(
2π fL

(
(1+αu)t −τu)+ϕu

e

)
=

√
2P u

r cu
i

(
(1+αu)t −τu)

d u(
(1+αu)t −τu)

cos
(
2π( fL + f u

d )t +ϕu
r

)
+

√
2P u

r cu
q

(
(1+αu)t −τu)

sin
(
2π( fL + f u

d )t +ϕu
r

)
,

(1.12)

where P u
r is the received power on each channel, αu = vu

c with vu is the relative velocity

between the satellite u and the receiver, f u
d = αu fL is the carrier Doppler frequency, τu is

the delay due to the distance traveled by the signal, and ϕu
r =ϕu

e −2π fLτ
u the phase of the

received carrier.

For the simplified model, the Doppler effect on the code is neglected, and the expression

becomes

s̃u
r (t ) =

√
2P u

r cu
i

(
t −τu)

d u(
t −τu)

cos
(
2π( fL + f u

d )t +ϕu
r

)
+

√
2P u

r cu
q

(
t −τu)

sin
(
2π( fL + f u

d )t +ϕu
r

)
.

(1.13)

1.5.2 Front-end

After the antenna, the received signal goes through the front-end, which is depicted in Fig.

1.9, where fREF is the reference frequency of the receiver, fLO is the local oscillator frequency,

f I F = fL − fLO is the intermediate frequency, and fS is the sampling frequency. The signal is

first amplified by a low-noise amplifier (LNA) and filtered around the frequency of interest.

Then, the signal is mixed with a local sine wave of frequency fLO and filtered, which brings the

signal to baseband (i.e. the signal is now centered on the intermediate frequency f I ). After,

the signal is amplified by an amplifier with an automatic gain control (AGC). And finally, the

signal is sampled and quantized by the analog-to-digital converter (ADC).

Of course, Fig. 1.9 depicts the principle, however the design of a real front-end depends on

many parameters such as the reception of one or several signals, power consumption, size,

etc. (see e.g. (Chastellain [2010], Chastellain et al. [2011], La Valle et al. [2011], Ruegamer et al.

[2012])).

Downconversion

The local oscillator frequency is defined as

fLO = MLO fREF , (1.14)
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Front-end

sr (t )

Frequency 
synthesizer

LNA

fI

fS

fREF

sb (t ) sb (nTS )

fL

ADC

Frequency 
synthesizer

AGC

cos(2πfLOt )

Figure 1.9: Illustration of a front-end.

where MLO is a rational number. The intermediate frequency is defined as the difference

between the frequency in the L band and the local frequency, we have thus

f I = fL − fLO

= fL −MLO fREF .
(1.15)

However, the reference oscillator is not perfect, it has a certain accuracy (van Diggelen [2009]

Chap. 3) and phase noise (Thombre et al. [2011]), and consequently its actual frequency is not

exactly fREF . To take into account the accuracy of the reference oscillator, we will denote fr e f

the actual reference frequency, which is defined as

fr e f = fREF (1+β), (1.16)

where β represents the oscillator accuracy. The accuracy of an oscillator depends mainly

on the type of oscillator used, and is usually defined in ppm. For example, if the oscillator

accuracy is 1 ppm, β= 10−6. Consequently, this impacts the local oscillator frequency and thus

the intermediate frequency. The actual intermediate frequency, denoted fi , is thus defined as

fi = fL −MLO fr e f

= fL −MLO fREF (1+β)

= f I −∆ fi ,

(1.17)

where ∆ fi = βMLO fREF = β fLO , and represents the difference between the theoretical and

the actual intermediate frequency. Let’s make an example to give an insight into the impact of

the oscillator accuracy. Let’s consider that fREF = 16.384 MHz with an accuracy of ± 1 ppm,

and MLO = 96. We have then f I = 2.556 MHz and ∆ fi = 1572.864 Hz. So, the offset implied by

the local oscillator may represent a significant amount, and this shows the importance to have

a good oscillator. It can be noticed that∆ fi is proportional to the local oscillator frequency but
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not to the reference frequency (because if we change the reference frequency, we also need to

change the factor MLO). This means that ∆ fi will be lower considering the L5 frequency than

the L1 frequency, but using a lower reference frequency will not change anything.

The baseband signal for a satellite u is thus defined as

su
b (t ) =

√
2P u

b cu
i

(
(1+αu)t −τu)

d u(
(1+αu)t −τu)

cos
(
2π f u

b t +ϕu
b

)
+

√
2P u

b cu
q

(
(1+αu)t −τu)

sin
(
2π f u

b t +ϕu
b

)
,

(1.18)

where P u
b is the power on each channel, f u

b = f I −∆ fi + f u
d is the baseband frequency, which

contains two unknowns, one common to all the satellite signals (∆ fi ), and one specific to each

satellite signal ( f u
d ), and ϕu

b is the phase of the carrier.

For the simplified model, the expression of the baseband signal for a satellite u is

s̃u
b (t ) =

√
2P u

b cu
i

(
t −τu)

d u(
t −τu)

cos
(
2π f u

b t +ϕu
b

)
+

√
2P u

b cu
q

(
t −τu)

sin
(
2π f u

b t +ϕu
b

)
.

(1.19)

Sampling

The sampling frequency is defined as

fS = MS fREF , (1.20)

where MS is a rational number. In the same way as for the intermediate frequency, the

reference oscillator accuracy impacts the actual sampling frequency, which is defined as

fs = MS fr e f

= MS fREF (1+β)

= fS(1+β).

(1.21)

Consequently, the actual sampling period is Ts = TS
1+β , where Ts = 1

fs
and TS = 1

fS
. Therefore,

after the ADC, the discrete baseband signal for a satellite u is

su
b (nTs) =

√
2P u

b cu
i

(
(1+αu)nTs −τu)

d u(
(1+αu)nTs −τu)

cos
(
2π f u

b nTs +ϕu
b

)
+

√
2P u

b cu
q

(
(1+αu)nTs −τu)

sin
(
2π f u

b nTs +ϕu
b

)
,

(1.22)
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where n is the index of the samples. This signal can also be expressed using the theoretical

sampling period,

su
b (nTs) =

√
2P u

b cu
i

(1+αu

1+β nTS −τu)
d u(1+αu

1+β nTS −τu)
cos

(
2π

f u
b

1+βnTS +ϕu
b

)
+

√
2P u

b cu
q

(1+αu

1+β nTS −τu)
sin

(
2π

f u
b

1+βnTS +ϕu
b

)
.

(1.23)

Eqs. (1.22) and (1.23) are strictly equivalent, but they provide a different interpretation. With

Eq. (1.22), we consider that the input signal is not modified, and that it is sampled with the

actual sampling frequency. With Eq. (1.23), we consider that the input signal is modified, and

that it is sampled with the theoretical sampling frequency. In this last case, the modification

acts as a Doppler effect, but identical for all the satellite signals.

The first question is when Eq. (1.22) is more appropriate, and when Eq. (1.23) is more ap-

propriate ? In short, the answer is with hardware receivers for Eq. (1.22), and with software

receivers for Eq. (1.23). Indeed, for a hardware receiver, the clock signal used for the sampling

is provided to the next stages of the receiver. So all the signals that will be generated by the

receiver will be based on the actual sampling frequency, this is why it is better to consider the

actual sampling frequency. However, for a software receiver, the sampling frequency is written

in hard in a program. And this value corresponds to the theoretical sampling frequency of

course, this is why in this case it is better to consider the theoretical sampling frequency.

The second question is what is the impact of this Doppler like effect ? In a perfect world, we

should receive a signal sampled at the theoretical sampling frequency, and we should generate

local signals sampled at the theoretical sampling frequency. In the reality, with a hardware

receiver, we receive a signal sampled at the actual sampling frequency, and we generate local

signals sampled at the actual sampling frequency, thus the effect is automatically compensated.

But with a software receiver, we receive a signal sampled at the actual sampling frequency, and

we generate local signals sampled at the theoretical sampling frequency, thus the effect is not

compensated.

Let’s take an example with β = 10−6, where we receive a code with a chipping rate of 1.023

Mchip/s and where we want to generate a code with a chipping rate of 1.023 Mchip/s. For a

hardware receiver, after the ADC, the code chipping rate is indeed 1.023 Mchip/s considering

a sampling frequency fs , when the local code chipping rate will be 1.023 Mchip/s considering

a sampling frequency fs . Whereas, for a software receiver, after the ADC, the code chipping

rate is 1.023
1+β ≈ 1.022 998 977 Mchip/s considering a sampling frequency fS , when the local code

chipping rate will be 1.023 Mchip/s considering a sampling frequency fS , which may cause

a problem. Consequently, this effect needs to be taken into account during the design of

software receivers.

Note that nevertheless, the offset due to the oscillator (∆ fi ) can be estimated once the receiver

has computed its position and tracks several signals, and thus the actual sampling frequency

can be estimated too. However, if the receiver is switched off, and switched on later, the
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oscillator offset has changed, so the uncertainty can be reduced but never cancelled when

starting the receiver.

The carrier Doppler shift is also affected by the sampling, but in a lesser extent. For example, if

β= 10−6 and the baseband frequency f u
b is 2.56 MHz, after the ADC, the baseband frequency

will be shifted by be about 2.56 Hz, which is negligible compared to the range of the carrier

Doppler shift.

For the simplified model, we can consider only the theoretical sampling frequency, thus the

discrete baseband signal for a satellite u is

s̃u
b (nTs) =

√
2P u

b cu
i

(
nTS −τu)

d u(
nTS −τu)

cos
(
2π f u

b nTS +ϕu
b

)
+

√
2P u

b cu
q

(
nTS −τu)

sin
(
2π f u

b nTS +ϕu
b

)
.

(1.24)

Complex sampling

In Fig. 1.9, the local oscillator generates one sine wave. It is also possible to generate two

sine waves in quadrature, in order to obtain two sequences at the output of the front-end, as

illustrated in Fig. 1.10. In this case, the discrete baseband signal sb(nTs) can be modeled as a

complex signal, where si (nTs) is the real part and sq (nTs) is the imaginary part. For a satellite

u, these two signals are defined as

su
i (nTs) =

√
2P u

b cu
i

(
(1+αu)nTs −τu)

d u(
(1+αu)nTs −τu)

cos
(
2π f u

b nTs +ϕu
b

)
+

√
2P u

b cu
q

(
(1+αu)nTs −τu)

sin
(
2π f u

b nTs +ϕu
b

) (1.25)

and

su
q (nTs) =

√
2P u

b cu
i

(
(1+αu)nTs −τu)

d u(
(1+αu)nTs −τu)

sin
(
2π f u

b nTs +ϕu
b

)
−

√
2P u

b cu
q

(
(1+αu)nTs −τu)

cos
(
2π f u

b nTs +ϕu
b

)
.

(1.26)

Therefore, the discrete baseband signal for a satellite u is

su
b (nTs) = su

i (nTs)+ j su
q (nTs)

=
√

2P u
b

(
cu

i

(
(1+αu)nTs −τu)

d u(
(1+αu)nTs −τu)

− j cu
q

(
(1+αu)nTs −τu))

e j
(
2π f u

b nTs+ϕu
b

)
,

(1.27)

where j =p−1.

In the same way, for the simplified model of the discrete baseband signal for a satellite u, we
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Figure 1.10: Illustration of a front-end using complex sampling.

have

s̃u
i (nTs) =

√
2P u

b cu
i

(
nTS −τu)

d u(
nTS −τu)

cos
(
2π f u

b nTS +ϕu
b

)
+

√
2P u

b cu
q

(
nTS −τu)

sin
(
2π f u

b nTS +ϕu
b

) (1.28)

and

s̃u
q (nTs) =

√
2P u

b cu
i

(
nTS −τu)

d u(
nTS −τu)

sin
(
2π f u

b nTS +ϕu
b

)
−

√
2P u

b cu
q

(
nTS −τu)

cos
(
2π f u

b nTS +ϕu
b

)
,

(1.29)

and thus

s̃u
b (nTs) = s̃u

i (nTs)+ j s̃u
q (nTs)

=
√

2P u
b

(
cu

i

(
nTS −τu)

d u(
nTS −τu)− j cu

q

(
nTS −τu))

e j
(
2π f u

b nTS+ϕu
b

)
.

(1.30)

The use of complex sampling presents some advantages and drawbacks for the front-end

design (e.g. it resolves the image frequency problem, but it requires two paths instead of

one. See e.g. (Chastellain et al. [2011]) for more details). It also allows us to have a lower

intermediate frequency (it can be even 0 Hz) and a lower sampling frequency than for a real

sampling (the minimum sampling frequency corresponds to the signal bandwidth, whereas it

is twice the signal bandwidth for a real sampling).

Note that in Fig. 1.10, the local sine wave of the bottom branch is ahead compared to the sine

wave of the top branch, i.e. there is a difference of phase of −90°. However, it is possible to have

it late by removing the minus sign of the sine wave of the bottom branch, leading to a difference

of phase of +90°. In this case, there are two differences with the model established by Eqs.

29



Chapter 1. Some basics about GNSS

(1.27) and (1.30). The first is that the data and pilot channels are combined with + j instead of

− j , and the second is the insertion of a minus sign in the complex exponential, which implies

a reversal of the spectrum. For example, if the carrier Doppler shift for a satellite is 1000 Hz,

the baseband signal will be shifted by −1000 Hz, which implies additional corrections in the

later processing.

Noise

As indicated previously, the received signal is the combination of several signals coming from

different satellites, plus a noise term. The discrete baseband signal is thus

sb(nTs) =
U∑

u=1
su

b (nTs)+ηb(nTs), (1.31)

where ηb(nTs) is a noise. This noise comes from the thermal noise induced by the antenna

and the front-end themselves. The thermal noise is assumed to be an additive white Gaussian

noise (AWGN) (Ziemer and Tranter [2008] pp. 341–342). The two-sided power spectral density

value of an AWGN is constant and equal to N0
2 (Ziemer and Tranter [2008] pp. 313–314), where

N0 is defined as

N0 = kB TEF F , (1.32)

with kB the Boltzmann constant and TEF F the effective temperature of the entire front-end,

therefore N0 is expressed in W/Hz (equivalent to joule). The effective temperature of the

front-end depends on the noise figure of the front-end, on the ambient temperature and on

the effective temperature of the antenna (van Diggelen [2009] pp. 133–137). This means that

the front-end itself plays an important role in the noise level present at the output.

Before the ADC, the signal is filtered, and therefore the noise too. If we assume an ideal filter

of two-sided bandwidth 2B , the noise before the ADC is a bandlimited white noise (Ziemer

and Tranter [2008] pp. 342–343). In this case, the noise power is

σ2
b = N0

2
2B = N0 B. (1.33)

Therefore, the noise power is proportional to the bandwidth of the filter front-end. This means

that the noise power depends on the signal we want to receive (e.g. the bandwidth of the GPS

L5 signal is ten times the bandwidth of the a GPS L1 C/A signal).

After the ADC, the spectrum is replicated at each multiple of the sampling frequency, as

illustrated in Fig. 1.11a, which shows the power spectral density (PSD) of a bandlimited white

noise when B < fs/2. It can be seen that after the sampling the noise is still a bandlimited

white noise. However, if we consider the special case B = fs/2, illustrated Fig. 1.11b, after

the sampling the noise is a white noise. This difference is important because in the later

processing (acquisition and tracking), the samples will be accumulated. With a white noise,
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Figure 1.11: Illustration of the noise PSD before and after the sampling, (a) when B < fs/2, (b)
when B = fs/2.

the samples are uncorrelated and thus the variance of the noise increases linearly with the

number of samples accumulated, while with a bandlimited noise the samples are correlated

and the variance increases faster. If we do not take this into account, we may think that

keeping the same front-end bandwidth and increasing the sampling frequency will provide a

better signal-to-noise ratio (SNR), which is not the case, as demonstrated in (van Diggelen

[2009] pp. 146–154). Therefore, to consider ηb(nTs) as an AWGN, we should consider B = fs

2

for a real sampling, or B = fs for a complex sampling. Of course, in the real world, it is not

possible to build an ideal filter, consequently, a precise analysis can be performed only when

the transfer function of the front-end filter is known.

Since the noise power depends on the front-end bandwidth (or on the sampling frequency),

the SNR at the output of the front-end may be different for signals of same power but different

bandwidth. However, in the later processing, for the same accumulation time, the SNR will

be the same for signals of same power but different bandwidth (because whatever is the

bandwidth of the input signal, the bandwidth after the accumulation is reduced to the same

value). Therefore, the SNR at the output of the front-end is not providing a very meaningful

information. In order to get rid of the front-end bandwidth, we usually use the carrier power-
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Figure 1.12: Acquisition principle.

to-noise density ratio (Joseph [2010], van Diggelen [2009] pp. 137–140), defined as

C /N0 = Pr

N0
. (1.34)

The C /N0 is usually expressed in log scale, thus we have

C /N0 = 10log10

(
Pr

N0

)
= 10log10(Pr )−10log10(N0).

(1.35)

For example, considering a signal power of −160 dBW, an effective temperature of 300 K for the

front-end, which means N0 =−203.8 dBW/Hz, we have C /N0 = 43.8 dBHz, which is a typical

value for open sky view. Note that the C /N0 does not depend on the front-end bandwidth, but

it still depends on the noise figure of the front-end.

1.5.3 Acquisition

After the front-end, the first stage of a GNSS receiver is the acquisition. Its purpose is threefold :

1) Detect the satellites in view; 2) Obtain a rough estimation of the baseband frequency f u
b ;

and 3) Obtain a rough estimation of the delay of the spreading code transmitted τu (in fact not

τu itself, but τu modulo one code period).

The processing consists of four steps as shown in Fig. 1.12 : 1) Multiplication with a com-

plex exponential of frequency − f̂b ; 2) Multiplication with the spreading code of the satellite

searched with a delay τ̂; 3) Accumulation of the signal samples in order to increase the SNR;

and 4) Computation of the magnitude (or the power) of the signal.

When we are looking for a satellite v , if f̂b is close to f v
b and if τ̂ is close to τv , the value∣∣r v ( f̂b , τ̂)

∣∣ will be high. Else if f̂b is far from f v
b or if τ̂ is far from τv , the value

∣∣r v ( f̂b , τ̂)
∣∣ is low.

The notion of close and far will be formally defined in Chapter 2.

Consequently, this process is repeated for different values of f̂b and τ̂ until a peak exceeds a

predefined threshold for example, or until all the possibilities have been tested without success

(which means that the satellite is not in view or that we have missed it). So, the acquisition is a

two-dimensional search for each satellite. It is possible to compute r v ( f̂b , τ̂) for one or several

couples ( f̂b , τ̂) at a time, as described more in details in Chapter 2.
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Figure 1.13: Tracking principle.

1.5.4 Tracking

Once a satellite has been detected during the acquisition, the estimates f̂b and τ̂ have to be

refined and followed, because they change over time since the satellites are constantly moving

and the receiver may also move.

The operation performed in tracking is similar to the one in acquisition, i.e. the incoming

signal is multiplied with a local carrier, then multiplied with a local code, and the result is

then accumulated. To follow the received carrier frequency, a frequency-locked loop (FLL) can

be used, but usually the receivers use a phase-locked loop (PLL) for better performance. To

follow the received code, a delay-locked loop (DLL) is used. The DLL generates three versions

of the local code (sometimes more, as with BOC modulations), called early, prompt and late,

which are slightly shifted versions of each other (less than one chip), in order to keep the

synchronization. This basic scheme is illustrated in Fig. 1.13. Of course, the design of the

tracking loops depends on many parameters, such as the sensitivity and the accuracy expected,

the oscillator noise, if we need to deal with multipath or not, etc. For more details on tracking,

the reader can refer to (Kaplan and Hegarty [2005] Chap. 5, Curran [2010]).

1.5.5 Navigation

Once a signal is tracked, the navigation data bits can be extracted. This usually requires

a significant amount of time. For example, for the GPS L1 C/A, the data essential for the

navigation are transmitted during 18 s, and they are repeated each 30 s. Therefore, in the

best case, 18 s are needed, while in the worst case 30 s are needed (assuming all the bits are

correctly decoded).

33



Chapter 1. Some basics about GNSS

Once the data have been extracted for at least four satellites, the position of the GNSS satellites

can be computed. Then, using the pseudoranges (apparent distances between the receiver and

the satellites), the position of the receiver can be determined. For more details on navigation,

see e.g. (Misra and Enge [2011] Chap. 6, van Diggelen [2009] Chap. 3).

1.6 Summary

In this chapter, we have presented in a general way the GNSSs and the GNSS signals, and more

in details the necessary elements to understand the following chapters. We have defined two

models for the discrete baseband signal. The first one takes into account the impact of the

Doppler effect and of the reference frequency accuracy on both carrier and code. Whereas the

second model, which is a simplified version, takes into account only the major impacts on the

carrier.

The simplified model can be largely sufficient for strong signals when the speed of the receiver

is low (as for a boat or a car). However, if we want to detect weak signals or if the speed of the

receiver is quite high, the simplified model is usually not sufficient. It is even worst with the

signals having a chipping rate of 10.23 MHz (since the code Doppler is ten times higher than

with the other GNSS signals).

Note that here we did not consider all the effects. For example, we did not show the impact of

the quantization during the digitization. Usually, a loss is added to take this into account (van

Diggelen [2009], p. 154), but it can also be the subject of deeper studies (Curran et al. [2009] ,

Curran et al. [2010]). We also mentioned the Doppler rate of change, however this does not

appear in the equations defining the received signal, mainly to not overload the equations.

But in case of high dynamics and high sensitivity, this should be taken into account.
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2 Acquisition of GNSS signals

In this chapter, we present in details the operations performed during the acquisition. We also

explain the principle, the advantages and drawbacks of different acquisition methods. And

finally, we introduce briefly some notions that are important but out of the scope of this thesis.

2.1 The cross ambiguity function

2.1.1 Exact derivation

As indicated in Section 1.5.3, for the search of a satellite v , there are four steps as shown in

Fig. 1.12 : 1) Multiplication with a complex exponential of frequency − f̂b ; 2) Multiplication

with the spreading code of the satellite searched with a delay τ̂; 3) Accumulation of the signal

samples in order to increase the SNR; and 4) Computation of the magnitude (or the power) of

the signal.

In the following developments, we will consider the simplified model with a complex input

signal. If we search for the satellite v , after an accumulation over NC samples, the signal can

be expressed as

r v ( f̂b , τ̂) =
NC−1∑
n=0

s̃b(nTs) cv (nTS − τ̂) e− j 2π f̂b nTS . (2.1)

Using Eq. (1.31), we can then write

r v ( f̂b , τ̂) =
NC−1∑
n=0

(
U∑

u=1
s̃u

b (nTs)+ηb(nTs)

)
cv (nTS − τ̂) e− j 2π f̂b nTS

=
U∑

u=1

(
NC−1∑
n=0

s̃u
b (nTs)cv (nTS − τ̂)e− j 2π f̂b nTS

)

+
NC−1∑
n=0

ηb(nTs) cv (nTS − τ̂) e− j 2π f̂b nTS .

(2.2)
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r v ( f̂b , τ̂) is called the cross ambiguity function (CAF). We can also express Eq. (2.2) as

r v ( f̂b , τ̂) =
NC−1∑
n=0

s̃v
b (nTs) cv (nTS − τ̂) e− j 2π f̂b nTS

︸ ︷︷ ︸
r v,v ( f̂b ,τ̂)

+
U∑

u=1
u 6=v

(
NC−1∑
n=0

s̃u
b (nTs)cv (nTS − τ̂)e− j 2π f̂b nTS

)
︸ ︷︷ ︸

r v,u ( f̂b ,τ̂)

+
NC−1∑
n=0

ηb(nTs) cv (nTS − τ̂) e− j 2π f̂b nTS

︸ ︷︷ ︸
r v,η( f̂b ,τ̂)

= r v,v ( f̂b , τ̂)+
U∑

u=1
u 6=v

r v,u( f̂b , τ̂)+ r v,η( f̂b , τ̂),

(2.3)

where r v,v corresponds to the CAF considering only the signal of interest, r v,u corresponds to

the CAF considering only a signal coming from another satellite, thus this can be considered

as an interference from our point of view, and r v,η corresponds to the CAF considering only

the noise.

The number of samples used for the accumulation defines the coherent integration time TC ,

which is equal to TC = NC TS . The coherent integration time impacts the sensitivity (i.e. the

minimum power of the input signal for which the signal can be detected) and some acquisition

parameters, as shown later.

For the acquisition, we can either use the data channel or the pilot channel, or both channels.

For the moment, we will consider the simplest case where we use only the pilot channel. In

this case, the local code corresponds to the code of the pilot channel, and r v,v becomes

r v,v ( f̂b , τ̂) =
NC−1∑
n=0

s̃v
b (nTs) cv

q (nTS − τ̂) e− j 2π f̂b nTS . (2.4)

Using Eq. (1.30), we can then write

r v,v ( f̂b , τ̂) =
NC−1∑
n=0

√
2P v

b

(
cv

i

(
nTS −τv )

d v (
nTS −τv )− j cv

q

(
nTS −τv ))

e j
(
2π f v

b nTS+ϕv
b

)

cv
q (nTS − τ̂) e− j 2π f̂b nTS

=
√

2P v
b

NC−1∑
n=0

cv
i

(
nTS −τv )

cv
q (nTS − τ̂) d v (

nTS −τv )
e j

(
2π( f v

b − f̂b )nTS+ϕv
b

)

− j
√

2P v
b

NC−1∑
n=0

cv
q

(
nTS −τv )

cv
q (nTS − τ̂) e j

(
2π( f v

b − f̂b )nTS+ϕv
b

)

= r v,v
i q ( f̂b , τ̂)− j r v,v

q ( f̂b , τ̂),

(2.5)
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where r v,v
i q corresponds to an interference caused by the quadrature component of the same

satellite, and r v,v
q corresponds to the signal of interest. Now, we will focus on the CAF of the

signal of interest, and consider different cases to clearly show how looks r v,v
q .

Correct estimation of code delay and carrier frequency

In the first case, we consider that the delay of the local code is equal to the delay of the received

code, i.e. τ̂= τv , and that the frequency of the local carrier is equal to the frequency of the

received carrier, i.e. f̂b = f v
b . In this case, we have cv

q

(
nTS − τv

)
cv

q (nTS − τ̂) = 1, and r v,v
q

becomes

r v,v
q ( f v

b ,τv ) =
√

2P v
b

NC−1∑
n=0

e jϕv
b

= NC

√
2P v

b e jϕv
b .

(2.6)

The magnitude of r v,v is then∣∣∣r v,v
q ( f v

b ,τv )
∣∣∣= NC

√
2P v

b . (2.7)

Correct estimation of code delay

In the second case, we consider that only the delay of the local code is equal to the delay of the

received code, i.e. τ̂= τv . In this case, r v,v
q becomes

r v,v
q ( f̂b ,τv ) =

√
2P v

b

NC−1∑
n=0

e j
(
2π( f v

b − f̂b )nTS+ϕv
b

)

=
√

2P v
b e jϕv

b
1−e j 2π( f v

b − f̂b )NC TS

1−e j 2π( f v
b − f̂b )TS

=
√

2P v
b e jϕv

b
e jπ( f v

b − f̂b )NC TS

e jπ( f v
b − f̂b )TS

e− jπ( f v
b − f̂b )NC TS −e jπ( f v

b − f̂b )NC TS

e− jπ( f v
b − f̂b )TS −e jπ( f v

b − f̂b )TS

=
√

2P v
b e jϕv

b e jπ( f v
b − f̂b )(NC−1)TS

sin
(
π( f v

b − f̂b)NC TS
)

sin
(
π( f v

b − f̂b)TS
) .

(2.8)

The magnitude of r v,v is then

∣∣∣r v,v
q ( f̂b ,τv )

∣∣∣=√
2P v

b

∣∣∣∣∣sin
(
π( f v

b − f̂b)NC TS
)

sin
(
π( f v

b − f̂b)TS
) ∣∣∣∣∣

≈
√

2P v
b

∣∣∣∣∣sin
(
π( f v

b − f̂b)NC TS
)

π( f v
b − f̂b)TS

∣∣∣∣∣
≈ NC

√
2P v

b

∣∣sinc
(
π( f v

b − f̂b)TC
)∣∣ .

(2.9)
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Figure 2.1: Illustration of the loss due to the frequency mismatch, (a) in linear scale, (b) in log
scale.

On the second line, we can make this approximation because f v
b − f̂b is several kHz at most

(or dozens of kHz for high speed context), while TS is less than a microsecond, the product is

thus usually less than 10−2, which allows the use of the small-angle approximation.

Eq. (2.9) means that if the estimation of the code delay is correct but the estimation of the

carrier frequency is not correct, there is a loss proportional to the frequency mismatch and to

the coherent integration time, as illustrated in Fig. 2.1.

Correct estimation of carrier frequency

In the third case, we consider that only the frequency of the local carrier is equal to the

frequency of the received carrier, i.e. f̂b = f v
b . In this case, r v,v

q becomes

r v,v
q ( f v

b , τ̂) =
√

2P v
b e jϕv

b

NC−1∑
n=0

cv
q

(
nTs −τv )

cv
q (nTs − τ̂). (2.10)

The magnitude of r v,v is then

∣∣∣r v,v
q ( f v

b , τ̂)
∣∣∣=√

2P v
b

∣∣∣∣∣NC−1∑
n=0

cv
q

(
nTs −τv )

cv
q (nTs − τ̂)

∣∣∣∣∣ . (2.11)

This means that if the estimation of the carrier frequency is correct, the result is the correlation

of the two codes. The correlation for integer delays is defined by the codes themselves.

However, the shape of the correlation between integer delays is defined by the modulation

used. This is illustrated in Fig. 2.2 for the BPSK and BOC(1,1) modulations when the codes are

aligned within ±1 chip.
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Figure 2.2: Illustration of the loss due to the code delay mismatch, (a) in linear scale for a
BPSK modulation, (b) in log scale for a BPSK modulation, (c) in linear scale for a BOC(1,1)
modulation, (d) in log scale for a BOC(1,1) modulation.

2.1.2 Approximation

In the case when neither the code delay nor the carrier frequency are correct, there is no better

closed formed expression for r v,v than Eq. (2.4). Since the two effects are interacting, the total

loss is not simply the product of the frequency loss and of the code loss. However, this is an

often used approximation, and in this case we have

∣∣∣r v,v
q ( f̂b , τ̂)

∣∣∣≈√
2P v

b

∣∣sinc
(
π( f v

b − f̂b)TC
)∣∣ ∣∣∣∣∣NC−1∑

n=0
cv

q

(
nTs −τv )

cv
q (nTs − τ̂)

∣∣∣∣∣ . (2.12)

The question of the validity region of this approximation has been discussed in (Motella and

Lo Presti [2010]), but not in a fully satisfactory way1. It can be checked that if we replace f̂b

1In this paper, different components are mixed : the errors due to the double frequency term (which is not
present anymore if we consider a complex sampling), the errors due to the cross-correlation with other codes, and
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Chapter 2. Acquisition of GNSS signals

by f v
b in Eq. (2.12) we find Eq. (2.11), and if we replace τ̂ by τv in Eq. (2.12) we find Eq. (2.9).

Therefore Eq. (2.12) is exact when at least one of the estimates is correct.

In (Motella and Lo Presti [2010], Foucras et al. [2014b]), it is shown that the approximation is

very close to the exact value for any f̂b when |τv − τ̂| < 1 chip . Everywhere else, the approxi-

mation is not valid anymore, and it appears that the level is usually slightly higher than the

code correlation value (Foucras et al. [2014b]). Some works on this topic include (Soualle

et al. [2005], Wallner et al. [2007], Qaisar and Dempster [2007], Soualle [2009], Balaei and Akos

[2010]).

2.1.3 Step of the search

As seen previously, to detect the signal, the local carrier frequency and code delay should be

close to those of the received signal. Since those of the received signal are unknown, there is

no other choice than computing r v ( f̂b , τ̂) for different couples ( f̂b , τ̂) until a peak is detected.

The step between two values tested should be as small as possible to reduce the loss described

previously and to have the best possible estimates. However, decreasing the step increases the

number of possibilities to test, and thus increases the computational burden and the required

processing time. Therefore, we must do a trade-off, which depends on the context (expected

signal power, computational power available, required TTFF, etc.).

Frequency step

During the search, the parameter f̂b will take a finite number of values. This number depends

on the range of the frequency search space, and on the step between two consecutive values.

Usually, the values taken by f̂b are f I +k δf , where δf is the step between two frequencies

tested, and k is an integer between −NF B−1
2 and NF B−1

2 , with NF B the number of frequency

tested (called frequency bins). Thus, with this formula, there is a frequency bin centered on

the intermediate frequency, and the same number of frequency bins above and below this

frequency.

The best case that may happen during the search is when f̂b = f v
b , i.e. when the received

frequency falls exactly on a frequency tested ( f v
b = f I +k δf ), as illustrated in Fig. 2.3a. The

worst case that may happen is when the received frequency falls exactly on the middle of two

frequencies tested ( f v
b = f I +

(
k + 1

2

)
δf ), as illustrated in Fig. 2.3b. In this case, the frequency

mismatch between f v
b and the closest frequency bin is δf

2 . So, depending on the step used,

the maximum loss will be different. In the literature (e.g. van Diggelen [2009], Kaplan and

Hegarty [2005]), we can find mainly two rules of thumb for the choice of δf , 1
2TC

and 2
3TC

,

whose corresponding losses are given in Table 2.1. The second case leads to a higher loss, but

the errors due to the presence of the Doppler. This implies that at the end the real impact of the Doppler is not
better known.
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Figure 2.3: Illustration of the loss due to the frequency step, (a) in the best case, (b) in the worst
case. The frequency step δf is 1

TC
here.

Frequency step 1
2TC

2
3TC

1
TC

Maximum frequency error 1
4TC

1
3TC

1
2TC

Loss
Linear scale 0.9003 0.8270 0.6366
Log scale (dB) −0.9121 −1.6500 −3.9224

Table 2.1: Maximum loss due to the frequency mismatch for a coherent integration time TC .

to fewer frequency bins.

Code step

Similarly as f̂b , during the search, the parameter τ̂ will take a finite number of values. The

values taken by τ̂ are k δτ, where δτ is the step between two delays tested, and k is an integer

between 0 and NC B −1, with NC B the number of code delay tested (called code bins).

The best case that may happen during the search is when τ̂= τv , i.e. when the code delay of

the received signal falls exactly on a code delay tested (τv = kδτ), as illustrated in Figs. 2.4a and

2.4c. The worst case that may happen is when the code delay of the received signal falls exactly

on the middle of two delays tested (τv = (
k + 1

2

)
δτ), as illustrated in Figs. 2.4b and 2.4d. In this

case, the code delay mismatch between τv and the closest code bin is δτ
2 . So again, depending

on the step used, the maximum loss will be different. In the literature, the usual rule of thumb

for the choice of δτ is half a chip for a BPSK modulation, and one sixth of a chip for a BOC(1,1)

modulation (values chosen for Fig. 2.4 that give the same loss for both modulations), whose

corresponding losses are given in Table 2.2 (van Diggelen [2009] pp. 155–158).
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Figure 2.4: Illustration of the loss due to the code step, (a) in the best case for a BPSK modula-
tion, (b) in the worst case for a BPSK modulation, (c) in the best case for a BOC(1,1) modulation,
(d) in the worst case for a BOC(1,1) modulation. The code step δτ is half a chip for (a) and (b),
and one sixth of a chip for (c) and (d).

2.1.4 Noise level

Regarding the noise part of the CAF, we have

r v,η( f̂b , τ̂) =
NC−1∑
n=0

ηb(nTs) cv (nTS − τ̂) e− j 2π f̂b nTS

=
NC−1∑
n=0

(
ηi (nTs)+ j ηq (nTs)

)
cv (nTS − τ̂) e− j 2π f̂b nTS ,

(2.13)

where ηi (nTs) and ηq (nTs) are AWGN of zero mean and variance σ2.

Multiplying a noise by a spreading code does not change its mean or its variance since the

code value is either +1 or −1.
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2.2. Evaluation methods of the cross ambiguity function

Code step 1
4 chip 1

3 chip 1
2 chip 1 chip

Maximum code delay error 1
8 chip 1

6 chip 1
4 chip 1

2 chip

Maximum Loss
Linear scale 0.8750 0.8333 0.7500 0.5000
Log scale (dB) −1.1598 −1.5836 −2.4988 −6.0206

Average Loss
Linear scale 0.9375 0.9167 0.8750 0.7500
Log scale (dB) −0.5606 −0.7558 −1.1598 −2.4988

Table 2.2: Loss due to the code delay mismatch for a BPSK modulation.

Then, the noises are multiplied by a complex exponential, and we have

ηb(nTs) e− j 2π f̂b nTS = (
ηi (nTs)+ j ηq (nTs)

)(
cos(2π f̂bnTS)− j sin(2π f̂bnTS)

)
= (

ηi (nTs)cos(2π f̂bnTS)+ηq (nTs)sin(2π f̂bnTS)
)

+ j
(
ηq (nTs)cos(2π f̂bnTS)−ηi (nTs)sin(2π f̂bnTS)

) (2.14)

Multiplying a noise by a cosine wave divides its variance by 2. Since ηi (nTs) and ηq (nTs) are

independent, ηi (nTs)cos(2π f̂bnTS) and ηq (nTs)sin(2π f̂bnTS) are also independent, and thus

the variance of their sum is the sum of their variance, i.e. σ2. Therefore, we can write

r v,η( f̂b , τ̂) =
NC−1∑
n=0

ηi ,1(nTs)+ j ηq,1(nTs)

= ηi ,2(nTs)+ j ηq,2(nTs),

(2.15)

where ηi ,1(nTs) and ηq,1(nTs) are noises of zero mean and variance σ2, and ηi ,2(nTs) and

ηq,2(nTs) are Gaussian noises of zero mean and variance NCσ
2.

If the result is normalized by NC , the variance becomes σ2

NC
. Considering σ2 = N0 fS (see

Section 1.5.2), the variance is N0 fS

TC fS
= N0

TC
. Thus the longer is the coherent integration time, the

lower is the noise variance.

2.2 Evaluation methods of the cross ambiguity function

In this section, we detail different methods to compute the CAF for a single or for multiple

couples ( f̂b , τ̂) simultaneously, and we present the advantages and drawbacks of each one.

2.2.1 Serial search

The simplest acquisition method is the serial search (or sequential search), where the CAF

is computed for one couple ( f̂b , τ̂) at a time (called a cell), and the computation is repeated

for different f̂b and different τ̂. This method is depicted in Fig. 2.5, which shows the two

possibilities for the order of the operations.

43



Chapter 2. Acquisition of GNSS signals
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Figure 2.5: Principle of the serial search acquisition, (a) when we start by removing the carrier,
(b) when we start by removing the code.

The advantage of this architecture is its simplicity, because it requires very few elements for a

hardware implementation. However, this leads to an inefficient computation, and to a long

acquisition time because the operations are repeated NF B NC B times. This is especially true

when the frequency search space is large, as for fast moving receivers, or with modern signals

having long codes or modulations requiring a small code step.

2.2.2 Parallel code search

Direct approach

A first solution to reduce the acquisition time is to parallelize the search in the code search

space. The second part of the processing in Fig. 2.5a (multiplication by a known sequence and

accumulation for different delays) corresponds to a correlation. It is possible to implement

this correlation as a circular correlation due to the repetition of the incoming code.

The circular correlation between two sequences can be computed efficiently by means of

FFT (see Appendix A.3.3). Therefore, the acquisition can be done as depicted Fig. 2.6. This

means that using FFTs, it is possible to obtain the CAF for all the code delays (or code bins)

simultaneously for a specific f̂b ; hence the name of parallel code search (PCS).

44



2.2. Evaluation methods of the cross ambiguity function

e −j2πf  nTs
b

cv(nTs )

sb (nTs )

repeat for different fb

IFFT

FFT*

rv(fb) |rv(fb)|

sb (nTs )

repeat for different fb

rv(fb) |rv(fb)|

|   |FFT
NC

NC

NC

Figure 2.6: Principle of the parallel code search acquisition using a direct approach.
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Figure 2.7: Output of the parallel code search acquisition using a direct approach, computing
the circular correlation over 10 periods of the L1 C/A code.

However, if the integration is performed over several code periods, this approach is not the best

one. First, the length of the FFTs is NC and this can be quite large if the coherent integration

time is long, which may lead to implementation difficulties. Second, since the received and

the local codes are periodic, it is not necessary to make a circular correlation over several code

periods because this will lead to several identical peaks, as shown in Fig. 2.7.

Smart approach

To circumvent the drawbacks described previously, it is possible to perform the FFTs and the

IFFT over one code period, and then to add the results, as shown in Fig. 2.8, where N PC S
F F T is the

FFT length and corresponds to the number of samples in one code period, NP is the number

of code period during the coherent integration time, and we have NC = N PC S
F F T NP .

The advantage of the parallel code search is its very high gain in processing time, since the
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e −j2πf  nTs
b

cv(nTs )

sb (nTs )

repeat for different fb

IFFT

FFT*

rv(fb) |rv(fb)|
FFT Σ

NP

|   |
NPCSNFFT

NPCSNFFT

NPCSNFFT

Figure 2.8: Principle of the parallel code search acquisition using a smart approach.

circular correlation computed with FFT is far more efficient than a direct implementation

(Lyons [2010] Chap. 4, Smith [2002] Chap. 12). However, there are several drawbacks with this

architecture.

The first drawback is its dependence on the sampling frequency. Indeed, the length of the

FFT being the number of samples in one code period, it directly depends on the sampling

frequency. And the choice for the length is sometimes limited.

The first FFT algorithm was proposed by (Cooley and Tukey [1965]) for sequences whose

length is a composite number. The special case of sequences of length 2n , with n a positive

integer, is very popular thanks to its efficient implementation on binary computers. Still today,

a lot of FFT implementations require a length that is a power of two, such as the FFTs provided

by FPGA companies (Altera [2013], Xilinx [2013], Microsemi [2013]), the FFTs that we can find

on www.opencores.org, or the FFTs provided by DSP companies (Texas Instruments [2013]).

However, on computers, the flexibility is much higher than on embedded systems, and there

are libraries that allow the computation of FFTs of sequences of any length, such as the FFTW

library (Frigo and Johnson [2005]), even for sequences whose length is a prime number (Rader

[1968], Bluestein [1970]). However, the performance of the FFT depends on the length, and

typically it is better if the length is a composite number having small prime factors.

This is a problem because if the FFT length does not correspond to the length of a code period,

it is not possible to extend the sequences by using some more samples or zero padding. Indeed,

this may result in a reduction of the maximum peak, and thus in a reduction of the SNR. The

number of points should be at least twice the number of samples in one code period to ensure

that there will not be any loss (Leclère et al. [2010]). For example, for the GPS L1 C/A signal

with a sampling frequency of 4 MHz, one code period result in 4000 samples. To avoid any

losses, the sequences must be padded up to 8192 points, and not up to 4096).

The second drawback is its sensitivity to bit transition. Unlike the serial search, one period

of the received code is sufficient to search all code delays (the serial search use two periods).

Therefore, if there is a transition, due to data or a secondary code, it may result in losses (as

shown in Chapter 5, Fig. 5.1). This problem can be resolved as the previous problem, by
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doubling the FFT size and zero-padding the local code replica (case discussed in Chapter 5,

see Fig. 5.2).

There exists modified versions of the parallel code search to reduce the complexity in exchange

of losses in the SNR, such as those proposed in (Starzyk and Zhu [2001], Sajabi et al. [2006],

Sagiraju et al. [2006], Qaisar et al. [2008]).

2.2.3 Parallel frequency search

Direct approach

A second solution to reduce the acquisition time is to parallelize the search in the frequency

search space. To see this, it can be observed that the operation performed after the code

removal in Fig. 2.5b is

r v ( f̂b , τ̂) =
NC−1∑
n=0

(
sv

b (nTs) cv (nTS − τ̂)
)

e− j 2π f̂b nTS , (2.16)

for different f̂b . We can make a parallel with the discrete Fourier transform of a sequence xn of

NC points, which is defined as

Xk =
NC−1∑
n=0

xn e−
j 2πkn

Nc , (2.17)

with k = 0,1, . . . , NC −1. So, Eq. (2.16) can be seen as a DFT of NC points with sv
b (nTs) cv (nTs −

τ̂) = xn and f̂bnTS = kn
NC

, i.e.

f̂b = k

NC Ts
= k

TC
. (2.18)

This is interesting because a DFT can be computed efficiently with an FFT algorithm. The

corresponding implementation is given in Fig. 2.9. In this case, we obtain the CAF for all the

frequencies (or frequency bins) simultaneously for a specific τ̂. This approach is presented for

example in (Borre et al. [2007]). However, this approach has three drawbacks.

The first drawback of this method is that it can involve FFT of large size, depending on the

sampling frequency and on the coherent integration time, and this may be a limitation for

some implementations.

The second drawback is that the frequency search space is imposed by the FFT and is too large.

Indeed, the frequencies searched by the FFT goes from 0 Hz up to fs
NC−1

NC
. The span is thus

about fs , i.e. several MHz, while the useful frequency search space is several kHz, as illustrated

in Fig. 2.10. So, most of the points computed are in fact not used, which is inefficient, and

using pruning methods would not help because they are usually efficient only for small length
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Figure 2.9: Principle of the parallel frequency search acquisition using a direct approach.

|rv(fb,τv)|

fb
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1
T

Figure 2.10: Output of the parallel frequency search acquisition using a direct approach.

(Sorensen and Burrus [1993], Huang et al. [2008], FFTW).

The third drawback is that the frequency step is 1
TC

, which may imply a loss of about 3.92 dB

(see Table 2.1). However, the frequency step may be reduced by zero-padding the sequence

before performing the FFT. Indeed, adding (P −1)NC zeros reduces the frequency step to 1
PTC

.

Nevertheless, we have mentioned just before that the length of the FFT may be already large,

so increasing it is not the best option.

Smart approach

To circumvent the drawbacks described previously, the idea consists of performing a short

accumulation before the FFT (Mathis et al. [2003]), as illustrated in Fig. 2.11. In this way, the

length of the FFT is reduced to scale to the frequency search space. In this case, the local

carrier is generated only to remove the intermediate frequency. The comparison between the

two approaches is illustrated in Fig. 2.12.

However, the accumulation before the FFT has an impact. Let’s consider that the local code is

aligned with the received code. After the code and IF removal, if we perform accumulations
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Figure 2.11: Principle of the parallel frequency search acquisition using a smart approach.
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Figure 2.12: Comparison of the parallel frequency search using (a) the direct approach, (b) the
smart approach, with NC = 30, NA = 5 and N PF S

F F T = 6.

over NA points, we obtain

r v
0 (m) =

√
2P v

b

(m+1)NA−1∑
n=mNA

e j (2π∆ f v
b nTS+ϕv

b )

=
√

2P v
b e jϕv

b

(
(m+1)NA−1∑

n=0
e j 2π∆ f v

b nTS −
mNA−1∑

n=0
e j 2π∆ f v

b nTS

)

=
√

2P v
b e jϕv

b

(
1−e j 2π∆ f v

b (m+1)NATS

1−e j 2π∆ f v
b TS

− 1−e j 2π∆ f v
b mNA TS

1−e j 2π∆ f v
b TS

)

=
√

2P v
b e jϕv

b
1−e j 2π∆ f v

b NATS

1−e j 2π∆ f v
b TS

e j 2π∆ f v
b mNATS

=
√

2P v
b e jϕv

b e jπ∆ f v
b (NA−1)TS

sin(π∆ f v
b NATS)

sin(π∆ f v
b TS)

e j 2π∆ f v
b mNATS ,

(2.19)

with m = 0,1, ..., N PF S
F F T , where N PF S

F F T = NC
NA

, and∆ f v
b = f v

b − f I . This means that the output signal

still contains a complex exponential with the same frequency ∆ f v
b but with a sampling period

NATS , and there is a loss proportional to NA due to the sinc function. Now, to remove the
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complex exponential, we have

r v (∆̂ f b) =
N PF S

F F T −1∑
m=0

r v
0 (m)e− j 2π∆̂ f b mNA TS

=
√

2P v
b e jϕv

b e jπ∆ f v
b (NA−1)TS

sin(π∆ f v
b NATS)

sin(π∆ f v
b TS)

N PF S
F F T −1∑
m=0

e j 2π(∆ f v
b −∆̂ f b )mNATs

=
√

2P v
b e jϕv

b e jπ∆ f v
b (NA−1)TS

sin(π∆ f v
b NATS)

sin(π∆ f v
b TS)

1−e j 2π(∆ f v
b −∆̂ f b )NA N PF S

F F T TS

1−e j 2π(∆ f v
b −∆̂ f b )NA TS

=
√

2P v
b e jϕv

b e jπ∆ f v
b (NA−1)TS e jπ(∆ f v

b −∆̂ f b )NA (N PF S
F F T −1)TS

sin(π∆ f v
b NATS)

sin(π∆ f v
b TS)

sin(π(∆ f v
b − ∆̂ f b)NA N PF S

F F T TS)

sin(π(∆ f v
b − ∆̂ f b)NATS)

.

(2.20)

The magnitude of r v (∆̂ f b) is then

∣∣∣r v (∆̂ f b)
∣∣∣=√

2P v
b

∣∣∣∣∣sin(π∆ f v
b NATS)

sin(π∆ f v
b TS)

sin(π(∆ f v
b − ∆̂ f b)NA N PF S

F F T TS)

sin(π(∆ f v
b − ∆̂ f b)NATS)

∣∣∣∣∣
≈

√
2P v

b NA N PF S
F F T

∣∣∣sinc(π∆ f v
b NATS) sinc(π(∆ f v

b − ∆̂ f b)NA N PF S
F F T TS)

∣∣∣
≈

√
2P v

b NC

∣∣∣sinc(π∆ f v
b TA) sinc(π(∆ f v

b − ∆̂ f b)TC )
∣∣∣ ,

(2.21)

where TA = NATS = TC

N PF S
F F T

corresponds to the integration time of the accumulator before the

FFT. If we compare Eq. (2.21) to Eq. (2.9), we see that there is an additional loss that depends

on TA and on the received frequency ∆ f v
b .

Eq. (2.20) corresponds to a DFT of N PF S
F F T points with ∆̂ f bmNATS = km

N PF S
F F T

, i.e.

∆̂ f b = k

N PF S
F F T NATS

= k

NC TS
= k

TC
. (2.22)

So the resolution is the same as with the direct approach. Therefore the loss due to the

frequency step is the same as with the direct approach. To cope with this problem, as before

zero-padding can be used.

With this architecture, the length of the FFT is thus divided by NA and the frequencies tested

are from 0 Hz to fs

NA

N PF S
F F T −1

N PF S
F F T

. This means that the choice of NA depends on the frequency search

space. On one hand, NA should be as high as possible to reduce the length of the FFT. But, on

the other hand, there is a loss proportional to NA . There is thus a trade off to do. If the FFT

search space is scaled exactly to the frequency search space, the loss can reach 3.92 dB for the

maximum frequency. If the FFT search space is scaled to twice the frequency search space,

the loss becomes 0.9 dB.

The main drawback of this architecture is the loss linked to the mismatch between the replica
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code chipping rate and the received code chipping rate which is also affected by the Doppler

effect (we called this code Doppler, see. Ziedan and Garrison [2004], Foucras et al. [2014a]).

Indeed, several carrier frequencies are tested through the FFT whereas there is only one code

chipping rate tested. For example, with the GPS L5 signal, if the carrier frequency is shifted by

2300 Hz due to the Doppler effect, the code chipping rate will be shifted by 20 chip/s. This

means that the code replica and the received code will shift by 20 chips every second, or half a

chip after 25 ms. Without compensation, this will imply a loss. So to reduce this effect, the

frequency search space must be cut into several smaller spaces (Cheng et al. [1990]).

2.2.4 Other methods

A method that mixes the PCS and the PFS is called the double-block zero-padding (DBZP)

(Ziedan and Garrison [2004], Ziedan [2005], Foucras et al. [2012]). This method search simulta-

neously several carrier frequencies as the PFS does, but the small accumulation performed

before the FFT is now computed for several code delays using small FFTs. Since the correlation

is not circular, it is needed to pad with zeros the portions of local code.

Another method that also mixes the PFS and the PCS has been presented in (Akopian [2005]),

that uses FFT to search both the frequency and the code dimension at the same time, at the

expense of an increase of the memory required to store intermediate results.

2.3 Sensitivity issues

The sensitivity of a receiver is a major feature. It depends on many parameters, such as the

front-end noise figure, the integration time, the detection process (Paonni et al. [2009], van

Diggelen [2009] Chap. 6). It has also been shown that the sensitivity depends on the acquisition

search space, independently of the receiver architecture (Turunen [2010]). In this section,

we discuss briefly some elements that contribute to the sensitivity, and provide interesting

references for each element.

2.3.1 Integration time and integration methods

In the previous sections, we have considered a coherent integration time TC . As shown before,

in order to reduce the noise, and thus to detect signals with a power as low as possible, we

need to increase the coherent integration time. However, TC impacts the frequency mismatch

loss (Eq. (2.9)), and thus the frequency step (Table 2.1). Doubling the coherent integration

time means halving the frequency step. Thus the processing time is multiplied by a factor 4

(twice more data to process, and twice more frequency bins to test).

A solution to this problem is the use of non-coherent integration, which consists in accumu-

lating the signal after the magnitude (or power) computation. This has the advantage to not

impact the width of the sinc function in Eq. (2.9), thus the frequency step can stay the same.
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The drawback is that the performance in terms of output SNR are lower than for the coherent

integration (van Diggelen [2009] Chap. 6, Borio and Akos [2009], Jayaram and Murthy [2013]).

This means that in terms of SNR, it’s better to perform a coherent integration of 10 ms than 10

non-coherent accumulations of coherent integrations of 1 ms.

Another solution to this problem is the differential integration (Elders-Boll and Dettmar [2004],

Ayaz [2005]), whose performances are close to the non-coherent integration (Esteves et al.

[2012]).

2.3.2 Detection

Until now, we have discussed the computation of the CAF. The step after the computation is

the detection of the satellite signal.

Quite often, the detection problem is addressed in a simple way using the probability of

detection, the probability of false alarm and the SNR (van Diggelen [2009] Chap. 6). However,

this is only an approximation, and the theory about detection is relatively complex. Indeed, a

lot of parameters are involved in the detection performance, the SNR of course (Borio et al.

[2008c]), but also the acquisition strategy (Borio et al. [2006], Borio et al. [2008a], Geiger et al.

[2010]), the correlations between cells (Ta et al. [2012]), the detection method (threshold or

ratio based, Geiger et al. [2012]), and the Doppler effect (Geiger and Vogel [2013]).

This shows the complexity of the topic, which may require a thesis for itself (O’Driscoll [2007],

Borio [2008]). Therefore we do not discuss this topic here, and recommend the above refer-

ences for the reader interested in this topic.

2.3.3 Time-to-first-fix

The TTFF is an important feature of GNSS receivers since it indicates the time required to

obtain a position. The TTFF depends on several elements, such as the time to acquire the

signals, the time to decode the data, the availability of any assistance, or the strategy used.

The acquisition time is not so easy to determine. Of course, during the design of a GNSS

receiver, we know the number of code and frequency bins to test and we know the computa-

tional power, so it is easy to determine the time to explore the entire acquisition search space.

The mean acquisition time depends on the time-frequency search space, but it also depends

on the detection method, on the acquisition strategy (Holmes and Chen [1977], Park et al.

[2002]), and on the Doppler (Lozow [1977]).

Therefore, the TTFF is also not easy to determine. However, some methodologies have been

proposed (Anghileri et al. [2009], Anghileri et al. [2010], Paonni et al. [2010]).
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2.4 Summary

In this chapter, we have presented the mathematical model behind the acquisition. We have

also discussed the difference between the exact result and the approximation often considered.

Then, we have presented rigorously different acquisition methods, and discussed their advan-

tages and drawbacks.

Finally, we discussed briefly some topics related to the acquisition, such as the integrations

other than coherent, the detection process and the TTFF.
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3 Comparison of GNSS signals
acquisition architectures on FPGAs

In this chapter, the implementation on a FPGA of each acquisition method – serial search,

parallel code search, and parallel frequency search – is presented and analyzed in details.

The parallel code search is much faster than the serial search, since it tests all the code delays in

one time. However, for an implementation on a FPGA, the FFTs of the parallel code search will

require much more resources than the simple accumulator of the serial search. Therefore, to

compare the methods in a fair way, we should consider a given area (or amount of resources),

and duplicate the basis structure of the methods to use all this area. Like this, the three

implementations will require the same amount of resources, and then we can determine the

performance by evaluating their processing time.

First, we introduce some notions about FPGAs and describe the elementary blocks that

compose them. Then, we discuss briefly the implementation of GNSS receivers. After this, we

describe the implementation of the different acquisition methods. Finally, we determine the

parallelization and the processing time of each implementation, and we conclude by looking

at the drawbacks of each implementation.

The initial work on this topic has been published in (Leclère et al. [2010]), and the final results

have been published in (Leclère et al. [2013b]).

3.1 A few words on FPGAs

An FPGA is a programmable device containing mainly three types of resource (Maxfield

[2008]) :

1. Logical blocks. These are small blocks containing a look-up table (to make logic func-

tion), a full adder, and one or several registers. These blocks are different for each

manufacturer, and also sometimes between some FPGA families (low-cost, mid-range,

high-end).
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2. Memory blocks. These are memories of small size, typically between 0.5 and 128 Kibit1.

3. DSP blocks. These blocks contain hardware multipliers, typically of 18 bits × 18 bits.

To evaluate the complexity of a system implemented on an FPGA, we must thus evaluate

the resources in terms of logic, memory and DSP blocks. It is relatively easy to estimate the

resource usage for the memory and DSP blocks because it is simple to determine the number

of bits and the number of multiplications required in a system. However, for the logical blocks,

the resource usage is more difficult to estimate for several reasons. First, these blocks contain

logic and registers, and a block can use one or the other, or both, depending on the function

implemented. Thus, if there are some functions (like an accumulator or a counter) whose

resource usage is easy to evaluate, some other functions (like multiplexing or magnitude

computation) are more difficult to evaluate and empirical formulas have to be used. Second,

the compilation tools perform various optimizations that can affect the final implementation.

And third, these blocks are different according to the manufacturer or even between different

families, with different performances, which means that it is not possible to make a perfect

and universal estimation.

Here, we consider the FPGAs from Altera, and more particularly the low-cost Cyclone III family

(Altera [2012]) and the high-end Stratix III family (Altera [2011]). The logical blocks of the

Cyclone III FPGAs are logical elements (LE) that contain one register, whereas the logical

blocks of the Stratix III FPGAs are adaptive logic module (ALM) that contain two registers. The

same estimation can be performed with FPGAs from other manufacturers, and approximate

conversions can be applied between them although this is not undertaken here. The details of

the resource estimation of the implementation are given in Appendix C.

3.2 A few words on GNSS receivers

The different satellite signals can be processed in parallel through several acquisition channels

or sequentially using one bigger acquisition channel. Here, we consider a system with one

acquisition channel, because it is more efficient in terms of resource sharing. However, the

analysis proposed here can be adapted for several acquisition channels.

Also, the acquisition can be done in a streaming way by processing the signal at the sample

rate, as shown in Fig. 3.1a, or the input signal can be stored in a buffer and then accessed

at a higher rate, as shown in Fig. 3.1b. The second option requires of course an additional

memory, but it allows a significant gain in processing time if the clock of the processing unit is

much higher than the sampling frequency, as shown in Fig. 3.2. For example, if the sampling

frequency is 5 MHz and the clock frequency of the processing unit is 200 MHz, once the

signal is stored, the processing time will be divided by about 40. Four our comparison, we will

consider the signal buffering.

11 Kibit = 1024 bits. See http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html
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Figure 3.1: Overview of a GNSS receiver, (a) processing the samples at the sampling rate fS ,
(b) using a buffer to process the samples at the FPGA rate (i.e. clock frequency of the FPGA,
fF PG A).
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Figure 3.2: Illustration of the processing, (a) without buffer, (b) with a buffer when fF PG A = 4 fS .

The signal buffering can also be used to share the hardware between the tracking channels

and save resources, however it is more difficult to manage than for the acquisition (because

in tracking, the accumulation must start at the first chip of the code, which corresponds to

different instants for the different satellites).

3.3 Implementations

3.3.1 Serial search implementation

The direct implementation of the serial search method is given Fig. 3.3. It follows closely

Fig. 2.5, but now we show how the local signals are usually generated, and we show the

non-coherent accumulation. A numerically controlled oscillator (NCO) is a counter whose

the input frequency is the sampling frequency, and whose the increment specifies the output

frequency. The number of bits of the counter defines the resolution of the output frequency,
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Figure 3.3: Implementation of the serial search architecture.

and is typically between 24 and 32 bits. The value of the NCO is then used to generate cosine

and sine waves, or to generate the PRN code (Kaplan and Hegarty [2005] pp. 155–164).

This implementation tests the possible couples ( f̂b , τ̂) one by one. In order to reduce the

processing time, the blocks can be duplicated in order to have several branches (denoted as NB

in the following). There are two possibilities to do so, either testing several carrier frequencies

simultaneously, or testing several code delays simultaneously. Generating different carrier

frequencies requires as many NCOs as there are frequencies, while generating shifted versions

of the code replica requires only one NCO and one register per delay. Since a NCO requires

many registers, it is more efficient to test several code delays simultaneously.

The corresponding implementation considering NB branches is shown in Fig. 3.4, which thus

tests NB code delays simultaneously. At the bottom of the figure, the data rate or the average

data rate (when there is not a new sample at each clock cycle) is shown. The mixers and the

coherent accumulators run at the frequency fF PG A . The rate at the output of the coherent

accumulators is then divided by NC (the number of samples used for the coherent integration

and equal to fSTC ). Since the accumulation of the different accumulators starts and ends at

different clock cycles (because an accumulation always starts at the first sample of the code),

it is possible to use a multiplexer to share the following blocks, i.e. magnitude computation

and non-coherent accumulation. To clarify this, a timing diagram is given Fig. 3.5, considering

NC = 6, NNC = 4, and NB = 3.

Note that there is nevertheless a limitation with the implementation of Fig. 3.4. After the

accumulator, the data rate is divided by NC , and after the multiplexer the data rate is multiplied

by NB . Since the data rate cannot be superior to the FPGA rate ( fF PG A), we must have NB ≤ NC .

Therefore, the number of branches is limited by the number of accumulations performed

by the coherent accumulator. But since NC corresponds to the number of samples in one or

several code periods, its value is high enough to not have this problem. Otherwise, this limit

may be easily circumvented by duplicating the blocks after the coherent accumulators, i.e. the

multiplexer, the magnitude computation and the non-coherent accumulator.
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Figure 3.6: Memory-based accumulator, (a) schematic, (b) Timing diagram, with NNC = 4. The
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Now, let’s have a closer look at the implementation of each element. Although the mixers

perform a multiplication, they should be implemented with logical blocks instead of DSP

blocks. Indeed, the input signal and the local carrier are quantized with few bits (between

two and four usually), thus it would be a waste to use 18-bit multipliers for this. This is also

true for the multiplication with the local code, since the code value is +1 or −1. The coherent

accumulators are classical adders implemented with logical blocks. It is possible to optimize

the implementation by fusing a code mixer and an accumulator into an accumulator that

can add or subtract the input value according to the value of the code. This optimization is

discussed in Section C.1.1 of Appendix C. The multiplexer is implemented with logical blocks.

The magnitude computation can be performed using different approximations (Lyons [2010]

pp. 679–683), the simplest being the Robertson approximation (Robertson [1971]). Finally,

since the samples are in series, the non-coherent accumulator can be implemented using

only one adder and a memory to save the accumulator value for each branch, in order to save

logical blocks. The schematic of such accumulator is given Fig. 3.6a, and a timing diagram is

given Fig. 3.6b for illustration. Each address is associated to a branch, and is accessed NNC −1

times to perform the accumulation. The memory has thus NB addresses. To differentiate the
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memory-based accumulator from the logic-based accumulator, the letter M is added in the

bottom left corner of the block in figures.

In the serial search implementation, the duplicated elements are thus the code mixer and

the coherent accumulator, and the multiplexer is proportional to the number of branches.

The most-used resources are clearly the logical blocks, as the memory is used only with the

non-coherent accumulator and to store the PRN code, and the DSP blocks are not used at all.

3.3.2 Parallel code search implementation

The direct implementation of the parallel code search method is given Fig. 3.7. It follows closely

Fig. 2.8, but as previously, we show the generation of the local signals and the non-coherent

accumulation. Since the samples at the output of the IFFT are in series, the accumulators for

the coherent and non-coherent accumulations can both use a memory. The memories have

thus N PC S
F F T addresses.

Following the same idea used in the previous section, we can duplicate the elements to have

several branches in order to test several carrier frequencies simultaneously. The corresponding

implementation considering NB branches is shown in Fig. 3.8.

Regarding the implementation of the elements, the carrier and code generators are identical

to those seen previously, as well as the carrier mixers. The FFTs use logical, memory and DSP

resources. The complex multipliers in the frequency domain use DSP blocks. And as said

before, both the coherent and non-coherent accumulators are implemented with memory

blocks. In this implementation, no multiplexing can be performed because the accumulation

on the different branches starts at the same time. However, the addressing of the accumulators

can be share, as well as the control signals of the FFTs.

This implementation has a better balance between the resources than the implementation of
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Figure 3.7: Implementation of the parallel code search architecture.
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the serial search, because it uses logical (local signals generation, carrier mixers, magnitude,

FFTs), memory (FFTs, accumulators), and DSP blocks (FFTs and FFT mixers).

With this implementation, there are several carriers (and thus carrier frequencies) generated

while there is only one code (and thus one code frequency) generated. Therefore, there may

be a code mismatch due to the Doppler effect. However, since the FFT uses a lot of resources,

the number of branches is rather small, and thus the carrier frequencies may be close. For

example, considering the GPS L1 C/A signal, if the carrier frequencies cover a Doppler range

of ± 150 Hz, the maximum difference between the chipping rate that we should use and the

one used is 150
1540 ≈ 0.097 chip/s, which means a shift of one quarter of a chip after about 2.6

seconds, which gives a comfortable margin. Otherwise, the effect can be compensated by

generating a code for each carrier frequency tested, at the expense of additional FFTs, or

smarter by applying a correction during the coherent accumulation stage (shift of the IFFT

outputs or multiplication by a carrier in the frequency domain, see (O’Driscoll [2007]) for

more details).

An optimization of this architecture is possible if the frequency search space is wide enough.

Instead of multiplying the input signal by different local carriers and performing several FFTs,

only one local carrier and two FFTs can be used (one for the input signal and one for the code

replica), and the multiplication by the different carriers is replaced by shifts of the FFT output

(thanks to DFT shift theorem (Oppenheim and Schafer [2009] pp. 564–567)), as shown in Fig.

3.9. A shift of one sample is equivalent to a multiplication by a 1 kHz carrier if the FFT length

is 1 ms. For example, considering five branches, it means that it would be possible to test

simultaneously the following carrier frequencies, −2000, −1000, 0, 1000, 2000 Hz; and if no

signal is found, to continue with the next frequencies, e.g. −1950, −950, 50, 1050, 2050 Hz,
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Figure 3.9: Implementation of the parallel code search architecture using shift in the frequency
domain.

and so on and so forth. But in this case, the Doppler effect is more important, since with a

Doppler range of ± 2 kHz, a shift of one quarter of a chip may happen after 192.5 ms only. This

implementation is denoted PCS* in the following.

3.3.3 Parallel frequency search implementation

The direct implementation of the parallel frequency search method is given Fig. 3.10a. It

follows closely Fig. 2.11, but as previously, we show the generation of the local signals and the

non-coherent accumulation.

Following the same idea used in Section 3.3.1, we can duplicate the elements to have several

branches in order to test several code delays simultaneously. The corresponding implementa-

tion considering NB branches is shown in Fig. 3.10b.

Regarding the implementation of the elements, there is nothing new except the ping-pong

buffer. This is a buffer, which has a writing order different from the reading order. This is

because after the multiplexer there are first the first points of each branch, then the second

points of each branch, etc., whereas the FFT should be first fed with all the points of the first

branch, then with all the points of the second branch, etc. Also, since data can be written at

addresses not yet read, it is necessary to use two buffers, one being read while the other is

written to, which alternate their roles (which is often called a ping-pong buffer).

As mentioned in Chapter 2, according to the values selected for NA and N PF S
F F T , only a portion
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Figure 3.10: Implementation of the parallel frequency search architecture, (a) direct, (b) using
duplication.

of the FFT bins may be necessary to cover the search space. The number of bins kept is

then denoted NF BS , which is equal to the number of frequency bins NF B only if the entire

frequency search space is covered by the FFT. The rate after the FFT is thus reduced by

N PF S
F F T /NF BS . Finally there are the magnitude computation and the non-coherent accumulator

based on memory blocks. The memory inside the non-coherent accumulator has NB NF BS

addresses in this case.

In this implementation, the resource usage of the logical elements is relatively similar to the

serial search architecture because the accumulators are a little bit smaller and there is just one

supplementary FFT, but the memory is far more used. However, there are two limitations with

the implementation depicted in Fig. 3.10b. First, as for the serial search implementation, the

number of branches is limited by the number of accumulations performed by the accumulator

before the multiplexer. But here NA is much lower than NC . However, as before, this limit
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may be easily circumvented by duplicating the multiplexer and the latter blocks. The second

limitation is if zero-padding is used, because in this case the data rate after the FFT is higher

than the data rate after the multiplexer. So, we should take care also to not obtain a rate higher

than the FPGA rate. Otherwise, this limit can be circumvented in the same manner as before

by duplicating the multiplexer and the latter blocks.

3.3.4 Parallelization

Now that the implementations of the different acquisition architectures have been described,

we can determine the parallelization of each implementation, and the time needed to explore

the entire acquisition search space.

With a coherent integration time of TC = NC TS and a number of non-coherent accumulations

NNC , the total integration time is TT = TC NNC , and the number of samples to process is

NC NNC . For a system running at the sampling frequency and using not any parallelism

(i.e. the serial search without duplication), the time to test one code delay and one carrier

frequency is thus NC NNC TS = TT , and the time to explore the entire search space is thus

TT NC B NF B , with NC B the number of code bins and NF B the number of frequency bins.

Until now, we did not discuss the question of the data transition. So here, we will consider two

cases, either the data are ignored which implies a loss, or the alternate half-bits method is used,

which requires to double the length of the input signal (see (van Diggelen [2009] and (Psiaki

[2001]) respectively for more details). To differentiate these two cases, we use a parameter d ,

which is equal to 2 for the alternate half-bits method, and 1 otherwise.

Now, if we consider a system running at a higher frequency, the processing time will be divided

by a factor GF PG A = fF PG A

fS
. Then, if we consider a parallelism, the processing time will be

divided by a factor P that indicates the number of bins processed in parallel. Therefore, the

time to explore the entire search space is

TE = dTT

GF PG A

NC B NF B

P
. (3.1)

Note that the time to load a new code or to modify the carrier and code frequencies on the

channel, and the latency in the processing are not taken into account in this formula. Indeed,

the loading time is very small, typically on the order of dozens of cycles. The latency is mainly

due to the FFTs and corresponds to the size of the elements, i.e., a few thousands of clock

cycles, whereas the input signal used is typically composed of hundreds of thousands of

samples if high sensitivity is intended (since high sensitivity requires long integration times).

Therefore, the latency represents only a low percentage of TE . Note also that the time needed

to store the signal into a memory before the processing (which is equal to dTT ) is also not

taken into account in Eq. (3.1).

For the serial search (SS), the parallelization comes from the duplication of the elements, and
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corresponds to the number of branches implemented. Therefore,

TE ,SS = dTT

GF PG A

NC B NF B

NB ,SS
. (3.2)

For the parallel code search (PCS), the parallelization comes from the duplication of the

elements and from the FFTs for the correlation. Therefore,

TE ,PC S = dTT

GF PG A

NC B NF B

NB ,PC S N PC S
F F T

. (3.3)

If the length of the FFT corresponds to the number of code bins, the equation simplifies to

TE ,PC S = dTT

GF PG A

NF B

NB ,PC S
. (3.4)

For the parallel frequency search (PFS), the parallelization comes from the duplication of the

elements and from the FFT. Therefore,

TE ,PF S = dTT

GF PG A

NC B NF B

NB ,PF S NF BS
. (3.5)

If the FFT covers all the frequency bins, the equation simplifies to

TE ,PF S = dTT

GF PG A

NC B

NB ,PF S
. (3.6)

3.4 Application example

Now that the different parameters and implementations have been described, the performance

of the three implementations is compared through an application example.

For this application, the implementation on a low-cost FPGA (the Altera Cyclone III EP3C120)

and on a high-end FPGA (Altera Stratix III EP3SE260) is considered.

Then the signal considered is the GPS L1 C/A, with two cases. A stand-alone case where the

receiver has no a priori information, and an assisted case where the receiver has a priori

information on the Doppler frequency of the satellites, which reduces the frequency search

space (Leclère et al. [2010]).

A sampling frequency of 4.096 MHz is selected, which is a good compromise between com-

plexity and accuracy. The FPGA frequencies selected are multiples of the sampling frequency,

and are realistic values obtained from real designs.

A sensitivity of −150 dBm is assumed, because this is the start of high sensitivity. The required

coherent integration time and the number of non-coherent accumulation are then obtained
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fS 4.096 MHz

FPGA EP3C120 EP3SE260

fF PG A 98.304 MHz 196.608 MHz

GF PG A 24 48

Table 3.1: Summary of the FPGA parameters selected for the application.

Sensitivity −150 dBm

TC 10 ms

NC 40 960

NNC 40

TT 400 ms

Table 3.2: Summary of the sensitivity parameters selected for the application.

Case Assisted Stand-alone

Frequency search space 1360 Hz 11 020 Hz

Frequency step (δ f ) 50 Hz

NF B 29 221

Code step (δC ) 1 sample

NC B 4096 samples

Table 3.3: Summary of the search space parameters selected for the application.

using the method from (van Diggelen [2009]), considering the alternate half-bits method for

managing the data bit transitions (i.e. d = 2). These parameters are summarized in Tables 3.1,

3.2, and 3.3.

With such a long integration time, the maximum error allowed for the code chipping rate

is about 0.156 chip/s (this ensures to have a shift smaller than half a sample). The PFS can

thus search only ±240 Hz (0.156×1540) of the frequency search space simultaneously, i.e.

NF BS = 11.

3.4.1 Results

The details of the calculations are provided in Appendix C, and the results in terms of number

of branches, parallelization, and time to explore the entire search space are given in Table 3.4.

The number of branches gives the degree of duplication in the implementations depicted in

Figs. 3.4, 3.8, 3.9, and 3.10b. The parallelization is the number of cells tested simultaneously,
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Low-cost FPGA High-end FPGA
EP3C120 EP3SE260

Assisted Stand-alone Assisted Stand-alone
case case case case

Number of
branches

NB ,SS 971 2911

NB ,PC S 2 8

NB ,PC S∗ - 4 - 11

NB ,PF S 1095 3385

Parallelization

PSS 971 2911

PPC S 8192 32 768

PPC S∗ - 16 384 - 45 056

PPF S 12 045 37 235

Time to
explore the

search space (ms)

TE ,SS 4078 31 075 680.1 5183

TE ,PC S 483.3 3683 60.42 460.4

TE ,PC S∗ - 1842 - 334.8

TE ,PF S 328.7 2505 53.17 405.2

Table 3.4: Results and performance of the implementations.

and can be used to compare the implementations. The time to explore the entire search space

is maybe more meaningful for GNSS users since it gives an idea of the processing time, and it

can also be used to compare the implementations.

From Table 3.4, it can be seen that the SS implementation is the least efficient. Even with

assistance, the result is worse than for the other implementations in the stand-alone case. The

PFS implementation is slightly more efficient than the PCS implementation. But if the PCS

implementation is optimized with shift in the frequency domain (PCS* implementation), then

it becomes slightly better than PFS for the stand-alone case. In the assisted case, most of the

frequencies that can be tested through the different branches fall outside of the frequency

search space, and are thus useless.

3.4.2 Observations

Why the PFS and PCS are better than the SS ?

The SS and PFS implementations are identical until the multiplexer, except that the accumula-

tors of the PFS are smaller since the integration length is smaller. Since the PFS has an FFT,

the resource usage of the logical blocks is then almost equivalent for the two implementations.

Since the PFS tests also several frequency bins simultaneously, it has a higher parallelism.
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Regarding the PCS, it is well known that performing a convolution using an FFT is more

efficient than with traditional filters, as soon as the filter length is more than 64 (Smith [2002]

pp. 311–318). Therefore, it is not a surprise if the PCS is better than the SS.

Comparison of the PFS with the PCS

Each implementation has some drawbacks. Here we list them in order to determine weak

point of the implementations, and when they are not suitable.

Regarding the PCS, the first drawback is that it uses a lot of DSP blocks with the FFTs. Although

the high-end FPGA used was very rich in DSP blocks, it can be the element limiting the

duplication (see Appendix C.2).

Second, the resolution for the data and the twiddle factors of the FFT in the PCS architecture

needs to be higher than in the PFS, because the longer chain to compute the correlation

(FFTs, multiplication, normalization to reduce the signal resolution and then IFFT), results in

a propagation of the quantization errors.

Third, the PCS is more sensitive to the sampling frequency than the PFS. With the PFS im-

plementation, to double the sampling frequency results in adding one bit in the coherent

accumulators, i.e. R +1 bits to store instead of R. Thus we can interpolate roughly by saying

that keeping the same hardware resources, the number of branches would be divided by R+1
R .

Whereas with the PCS architecture, to double the sampling frequency doubles the size of the

FFT and of the accumulators. Thus, the number of branches would be divided by 2. This

means that using a higher sampling frequency than 4.096 MHz would be better for the PFS, but

using a sampling frequency lower would be better for the PCS. However, this may be avoided

if a resampling block is included in the acquisition channel, but this block would still require

additional resources.

Regarding the PFS, the first drawback is a small loss of sensitivity. As discussed in Section 2.2.3,

due to the small accumulation performed before the FFT, there is a loss proportional to the

input carrier frequency. This loss depends on the accumulation time, but can easily reach

more than 1 dB. In our application, we did not take into account this loss, this means that the

actual sensitivity for the PFS would be slightly lower than −150 dBm.

But the main drawback of the PFS is that it cannot handle the Doppler effect on the code. If

the code chipping rate was not altered, the entire frequency search space would be covered

by the FFT, regardless of the total integration time used, and the PFS would be clearly better

than the PCS. But since the code chipping rate is altered, the space searched by the FFT must

be reduced. In our application, where a relatively long total integration time was considered,

the PFS searches only 11 frequency bins simultaneously while the frequency space contains

221 bins in the stand-alone case. With a GNSS signal having a chipping rate of 10.23 Mchip/s

instead of 1.023 Mchip/s, the effect of this drawback will be worst, and the number of bins

searched simultaneously would be divided by the same factor.
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Influence of the FPGA

From Table 3.4, it can be seen that despite the large differences in the absolute results for the

two FPGAs, the ranking of the implementations is the same.

Generally, inside an FPGA family, the ratio between the different types of resources is relatively

similar, i.e. using a bigger FPGA will provide an equivalent increase of the logical, memory

and DSP blocks. Consequently for different FPGAs of the same family, we do not expect the

ranking to change significantly.

Between different families, the ratios between logical and memory, as well as logical and DSP

blocks, are different. For the same amount of logical blocks, a high-end FPGA will have more

memory and DSP blocks than a low-cost FPGA. High-end FPGAs are consequently more suited

for FFT-based implementations. However, this should not impact the ranking since the SS

implementation is far inferior to the others in terms of performance.

High-end FPGAs also allows the use of a higher clock frequency, which improves the perfor-

mance of all the implementations in the same manner.

3.5 Summary

In this chapter, we have presented a framework to compare the implementations of the

main GNSS signals acquisition architectures on FPGAs. The implementations have been

optimized towards achieving maximum parallelization for a single acquisition channel and

fixed resources.

Considering the GPS L1 C/A signal and long integration times, it has been shown that the two

FFT-based implementations are far more efficient than a simple duplication of mixers and

accumulators. Then, these two implementations have provided similar results, with a slight

advantage to the PFS over the PCS. However, we have shown the parameters that influences

each implementations, and depending on those, the PCS can sometimes be more efficient

than the PFS.

Moreover, the implementation of the PCS discussed here is straightforward, in the sense that

no additional techniques are used. However, it is possible to use techniques to reduce the

complexity, as those proposed in (Sajabi et al. [2006], Sagiraju et al. [2006], Qaisar et al. [2008])

for example. Also, here we did not use the fact that the local code is real, whereas we can use

this fact to reduce the complexity of its FFT (see Appendix B).

After this comparison, we decided to direct our research towards the PCS rather than the PFS,

for the following reasons :

1. The PFS cannot handle the code Doppler, which is important with long integration

times, high Doppler, and high chipping rate. Long integrations are needed for high
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sensitivity receivers. A high Doppler is usual in space applications, where GNSS is more

and more used. And a high chipping rate is available with modern signals that allow a

higher positioning accuracy. Therefore, the PFS does not seem adapted to answer these

challenges.

2. It is relatively easy to have an estimate of the Doppler on the carrier frequency when

we start a receiver. For a terrestrial user, the last position obtained by the receiver can

be used and the almanac can be used to determine a rough position of the satellites.

Therefore, the frequency search space can be reduced to dozens or hundreds of Hz

instead of thousands of Hz. For a space user, the user position can be obtained using an

orbital filter, and thus in the same way the frequency search space can be reduced to

hundreds of Hz instead of dozens of thousands of Hz. Whereas having an estimate of

the code delay is much more difficult to obtain.

3. Additional properties or methods can be used to reduce the complexity of the PCS, as

stated before. Especially, using the fact the the local code is real allows a reduction of

the resources without any degradation.
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The question of the reduction of the complexity for the acquisition of GNSS signals has been

discussed for a long time, and a large variety of solutions have been proposed.

For example, some people tried to exploit the fact that the local code is binary for the design of

fast correlation algorithms (Guo et al. [1991b], Guo et al. [1991a]). Theoretically, this means that

it is possible to not have any multiplications. However, the number of additions is much higher

as compared to an FFT algorithm, making the proposed method not efficient in practice.

Regarding the parallel code search, different methods have been proposed to reduce the

complexity. For example, (Starzyk and Zhu [2001]) proposed to perform an average over few

samples in order to get one point per chip, and thus a smaller FFT (however the codes length

contain high prime factors). (Sajabi et al. [2006]) proposed to use only half of the samples

to compute the IFFT in the correlation, and (Sagiraju et al. [2006]) proposed to sum samples

to reduce the IFFT length. (Qaisar et al. [2008]) proposed to simply filter and downsample

the signal before performing the correlation. (Hassanieh et al. [2012]) and (Rao and Ratnam

[2013]) proposed algorithms based on the sparse FFT. Of course, the price to pay is usually a

reduction of the SNR.

Then, the advent of new GNSS signals has brought new constraints (longer codes, tiered codes,

higher chipping rate, new modulations), which has thus required new algorithms. For some

specific context, like the acquisition in presence of transition (due to a secondary code or

data), specific solutions have been proposed (detailed in Chapter 5), but most of the time at

the expense of a reduction of the SNR (and thus a reduction of the probability of detection).

Therefore, when we have carried out this research, the idea was to exploit the characteristics

of the GNSS signals to compute the circular correlation accurately and efficiently, and not

to obtain approximations that impact the detection performance. In this part of the thesis,

we thus concentrate only on the circular correlation, represented in Fig. 3.11, where xn

corresponds to the signal after the multiplication with the local carrier, hn is the local code,

and yn is their circular correlation. Moreover, we do not discuss side problems, such as the

impacts of the oscillator effects such as phase noise or the user dynamics (because the coherent

integration times considered are short enough (van Diggelen [2014])), or interferences.

In Chapter 4, we propose some ideas to reduce the processing time or the resource of the FFT

and of the circular correlation on Altera FPGAs. These algorithms can be used with any GNSS

xn Xk yn

hn Hk

Yk

FFT

FFT*

IFFT

H*

N

N N

Figure 3.11: Operation considered for the next chapters : The circular correlation computed
using FFTs.
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signal, and even with any signal, since we simply use the properties of the Altera FFT, and not

the characteristics of the signal.

In Chapter 5, we focus on the acquisition of GNSS signals in presence of sign transition where

the coherent integration time corresponds to a period of the primary code. We start from a

known solution to the problem, and improve it to reduce the complexity.

In Chapter 6, we focus on the acquisition of GNSS signals where the coherent integration time

corresponds to a period of the tiered code. We discuss first implementations to use small FFTs

(because large FFTs are sometimes not possible to implement), and then implementations to

reduce the complexity using the specificities of the secondary code.
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4 Efficient FFT and correlation imple-
mentations on Altera FPGAs

In this chapter, we discuss the implementation of the FFT on Altera FPGAs, and the implemen-

tation of the circular correlation using FFTs (the discussion can also be applied to the circular

convolution). Using known algorithms, it is shown that is is possible to obtain more efficient

implementations than the traditional ones, by reducing the amount of resources, especially

the memory.

Some of the work presented here – the implementation of the correlation with a separation by

downsampling – has been published in (Leclère et al. [2012]).

4.1 Description of the Altera FFT

The implementation of an FFT algorithm on an FPGA is not an easy task. Hopefully, FPGA

companies provide an FFT as Intellectual Property (IP). In this thesis, we will discuss of the

FFT provided by Altera, because we use Altera FPGAs in our research projects. However the

characteristics of the FFT provided by Xilinx are probably similar.

The Altera FFT is highly configurable, for example we can select :

• The transform length, which must be a power of two. Currently, the minimum length

is 8 points and the maximum length is 262 144 points (this is for the version 13.0 of

November 2013, the maximum length may grow in the next years).

• The input/output (I/O) data flow (more details about this are provided below).

• The number of bits to quantify the input and output data, and the twiddle factors.

• The order of the input and of the output (natural order or bit-reversed order, see Section

B.1 for more information on this).

• Some options for the FFT engine.

77



Chapter 4. Efficient FFT and correlation implementations on Altera FPGAs

• Some options for the implementation of the complex multipliers (we can use 4 multipli-

ers and 2 adders or 3 multipliers and 5 adders, and we can implement them using DSP

blocks or logic cells).

• The repartition of the memory between the different memory types.

There are four I/O data flows available : variable streaming, streaming, buffered burst, burst.

For the variable streaming and the streaming I/O data flows, the input and output data flow

can be continuous, without any break between consecutive transforms. The corresponding

timing diagram of an N -point FFT (shown in Fig. 4.1a) is given Fig. 4.1b. Between the last

input sample and the first output sample of the FFT, there is a latency, denoted LN , which

depends on the transform length. Therefore, in this case, the P th FFT result is fully available

after N +LN +P N = (P +1)N +LN clock cycles. For the burst I/O data flow, it is possible to

load a new input only when the output is completely unloaded, as shown in Fig. 4.1c. This

means that the throughput is reduced compared to the variable streaming and streaming

implementations. The buffered burst data flow is between the two previous cases. The flow

Xkxn

FFT
N

(a)

3

xn

Xk

1 2 3

1 2

N

LN

4

(b)

2

xn

Xk

1 2

1

N
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Figure 4.1: (a) N -point Altera FFT, (b) timing diagram of an N -point Altera FFT with the
streaming I/O data flow, (c) timing diagram of an N -point Altera FFT with the burst I/O data
flow. The number in the boxes identifies the sequences.
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I/O data flow
Inverse of the Logic usage Memory usage Multipliers usage

throughput* (cycle) (ALUT) (M9K+) (DSP element)

Streaming 4096 7326 76 24

Buffered Burst 4608 7607 60 24

Burst 10 861 7151 28 24

Table 4.1: Resources estimated with the Altera MegaWizard Plug-in Manager for an FFT of
4096 points implemented on a Stratix III FPGA, considering 18 bits for the data and twiddle
precision, and 2 FFT engines with quad output. *The inverse of the throughput is defined as
the minimum number of cycles between the start of two consecutive periods. +One M9K is a
memory of 9 Kibit = 9216 bits.

cannot be continuous, but it is not required to wait for the complete unload of the output

samples before loading new input samples.

Of course, the higher is the throughput, the higher are the required resources. For example,

an estimate of the resources is provided Table 4.1 for three I/O data flows. Playing with the

engine options may lower the resources (logic, memory and DSP) for the buffered burst and

burst I/O data flows, in exchange of a reduced throughput.

Due to the large number of possibilities for the FFT implementation, for the evaluation of the

resources in the following sections, we will consider a Stratix III FPGA, a transform length of

2048, the streaming I/O data flow, a data and twiddle precision of 18 bits, complex multipliers

implemented in DSP blocks using four real multipliers, and no logic function implemented in

memory. However, the discussion of this chapter can be applied to other FPGA families and

with other FFT parameters.

Note that the Altera FFT can be used to compute the FFT or the IFFT. More details about the

Altera FFT can be found in (Altera [2013]).

4.2 How to compute an FFT on Altera FPGAs more efficiently than

the Altera FFT

4.2.1 Computing an FFT of N points using two FFTs of N/2 points

The DFT of a sequence xn of N points is defined as

Xk =
N−1∑
n=0

xne−
j 2πkn

N , (4.1)

with k = 0,1, . . . , N −1.
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Input separated by parity, output separated by section

If we separate the input sequence in even and odd samples, we have

Xk =
N /2−1∑

n=0
x2ne−

j 2πk(2n)
N +

N /2−1∑
n=0

x2n+1e−
j 2πk(2n+1)

N

=
N /2−1∑

n=0
x2ne−

j 2πkn
N /2 +e−

j 2πk
N

N /2−1∑
n=0

x2n+1e−
j 2πkn

N /2 .

(4.2)

Of course, this requires that N is divisible by 2, which will be assumed throughout this chapter.

The first half of the DFT is

Xk =
N /2−1∑

n=0
x2ne−

j 2πkn
N /2 +e−

j 2πk
N

N /2−1∑
n=0

x2n+1e−
j 2πkn

N /2 , (4.3)

with k = 0,1, . . . , N /2−1 (the equation is the same, only the range of k has changed). The two

sums correspond to the DFT of the sequences x2n and x2n+1, respectively. The second half of

the DFT is

Xk+N /2 =
N /2−1∑

n=0
x2ne−

j 2π(k+N /2)n
N /2 +e−

j 2π(k+N /2)
N

N /2−1∑
n=0

x2n+1e−
j 2π(k+N /2)n

N /2

=
N /2−1∑

n=0
x2ne−

j 2πkn
N /2 −e−

j 2πk
N

N /2−1∑
n=0

x2n+1e−
j 2πkn

N /2 ,

(4.4)

with k = 0,1, . . . , N /2−1. The two sums also correspond to the DFT of the sequences x2n and

x2n+1, respectively. Therefore, an FFT of N points can be computed using two FFTs of N /2

points as shown in Fig. 4.2a.

Input separated by section, output separated by parity

If we separate the input sequence in two sections, we have

Xk =
N /2−1∑

n=0
xne−

j 2πkn
N +

N−1∑
n=N /2

xne−
j 2πkn

N

=
N /2−1∑

n=0
xne−

j 2πkn
N +

N /2−1∑
n=0

xn+N /2e−
j 2πk(n+N /2)

N

=
N /2−1∑

n=0
xne−

j 2πkn
N +e− jπk

N /2−1∑
n=0

xn+N /2e−
j 2πkn

N

=
N /2−1∑

n=0

(
xn +e− jπk xn+N /2

)
e−

j 2πkn
N .

(4.5)
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The even samples of the DFT correspond to

X2k =
N /2−1∑

n=0

(
xn +e− jπ(2k)xn+N /2

)
e−

j 2π(2k)n
N

=
N /2−1∑

n=0
(xn +xn+N /2)e−

j 2πkn
N /2 ,

(4.6)

with k = 0,1, . . . , N /2−1. This corresponds to the DFT of the sequence xn +xn+N /2. The odd

samples of the DFT correspond to

X2k+1 =
N /2−1∑

n=0

(
xn +e− jπ(2k+1)xn+N /2

)
e−

j 2π(2k+1)n
N

=
N /2−1∑

n=0
(xn −xn+N /2)e−

j 2πn
N e−

j 2πkn
N /2 ,

(4.7)

with k = 0,1, . . . , N /2−1. This corresponds to the DFT of the sequence
(
xn − xn+N /2

)
e−

j 2πn
N .

Therefore, an FFT of N points can also be computed using two FFTs of N /2 points as shown in

Fig. 4.2c.

4.2.2 Computing an IFFT of N points using two IFFTs of N/2 points

The IDFT of a sequence Xk of N points is defined as

xn = 1

N

N−1∑
k=0

Xk e
j 2πkn

N , (4.8)

with n = 0,1, . . . , N −1.

Input separated by section, output separated by parity

If we separate the input sequence in two sections, we have

xn = 1

N

N /2−1∑
k=0

Xk e
j 2πkn

N + 1

N

N−1∑
k=N /2

Xk e
j 2πkn

N

= 1

N

N /2−1∑
k=0

Xk e
j 2πkn

N + 1

N

N /2−1∑
k=0

Xk+N /2e
j 2π(k+N /2)n

N

= 1

N

N /2−1∑
k=0

Xk e
j 2πkn

N +e jπn 1

N

N /2−1∑
k=0

Xk+N /2e
j 2πkn

N

= 1

N

N /2−1∑
k=0

(
Xk +e jπn Xk+N /2

)
e

j 2πkn
N .

(4.9)
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The even samples of the IDFT correspond to

x2n = 1

N

N /2−1∑
k=0

(
Xk +e jπ(2n)Xk+N /2

)
e

j 2πk(2n)
N

= 1

N

N /2−1∑
k=0

(Xk +Xk+N /2)e
j 2πkn

N /2 ,

(4.10)

with n = 0,1, . . . , N /2−1. This corresponds to the IDFT of the sequence Xk +Xk+N /2. The odd

samples of the IDFT correspond to

x2n+1 = 1

N

N /2−1∑
k=0

(
Xk +e jπ(2n+1)Xk+N /2

)
e

j 2πk(2n+1)
N

= 1

N

N /2−1∑
k=0

(Xk −Xk+N /2)e
j 2πk

N e
j 2πkn

N /2 ,

(4.11)

with n = 0,1, . . . , N /2−1. This corresponds to the IDFT of the sequence (Xk −Xk+N /2)e
j 2πk

N .

Therefore, an IFFT of N points can be computed using two IFFTs of N /2 points as shown in

Fig. 4.2b.

Input separated by parity, output separated by section

If we separate the input sequence in even and odd samples, we have

xn = 1

N

N /2−1∑
k=0

X2k e
j 2π(2k)n

N + 1

N

N /2−1∑
k=0

X2k+1e
j 2π(2k+1)n

N

= 1

N

N /2−1∑
k=0

X2k e
j 2πkn

N /2 +e
j 2πn

N
1

N

N /2−1∑
k=0

X2k+1e
j 2πkn

N /2 .

(4.12)

The first half of the IDFT is

xn = 1

N

N /2−1∑
k=0

X2k e
j 2πkn

N /2 +e
j 2πn

N
1

N

N /2−1∑
k=0

X2k+1e
j 2πkn

N /2 , (4.13)

with n = 0,1, . . . , N /2−1. The two sums correspond to the IDFT of the sequences X2k and

X2k+1, respectively. The second half of the IDFT is

xn+N /2 = 1

N

N /2−1∑
k=0

X2k e
j 2πk(n+N /2)

N /2 +e
j 2π(n+N /2)

N
1

N

N /2−1∑
k=0

X2k+1e
j 2πk(n+N /2)

N /2

= 1

N

N /2−1∑
k=0

X2k e
j 2πkn

N /2 −e
j 2πn

N
1

N

N /2−1∑
k=0

X2k+1e
j 2πkn

N /2 ,

(4.14)

with n = 0,1, . . . , N /2−1. The two sums also correspond to the IDFT of the sequences X2k and

X2k+1, respectively. Therefore, an IFFT of N points can also be computed using two IFFTs of

N /2 points as shown in Fig. 4.2d.
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–

e j 
2πk/N

IFFT
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–
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2πn/N
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xn

xn+N/2

X2k

X2k+1

(d)

Figure 4.2: Computation of an N -point FFT using two N /2-point FFTs, (a) where the input is
separated by parity and the output is separated by section, (c) where the input is separated
by section and the output is separated by parity. Computation of an N -point IFFT using two
N /2-point IFFTs, (b) where the input is separated by section and the output is separated by
parity, (d) where the input is separated by parity and the output is separated by section.

4.2.3 Theoretical complexity

Let’s consider that an N -point FFT requires N
2 log2 N complex multiplications and N log2 N

complex additions (Lyons [2010] pp. 135–159). The implementations in Fig. 4.2 then require

2
( N

4 log2
N
2

)+N
2 = N

2 log2 N complex multiplications, and 2
( N

2 log2
N
2

)+2 N
2 = N log2 N complex

additions.

Thus, the number of operations is identical in both cases, which is normal since the separation

presented corresponds precisely to the first step of the radix-2 FFT algorithm. Therefore, at

first glance, the implementations of Fig. 4.2 seem useless, but actually not, as shown in the

next sections.

4.2.4 Application to reduce the processing time

For the following, we will consider the implementation of Fig. 4.2a, but the same results would

be obtained with any implementation of Fig. 4.2. The corresponding timing diagram using the

Altera FFT is depicted Fig. 4.3, where LN /2 denotes the latency of the FFT when the transform

length is N
2 . It can be seen that the P th FFT result is fully available after N

2 +LN /2 +P N
2 =

(P +1) N
2 +LN /2 clock cycles. Therefore, compared to the direct implementation of an N -point

FFT, the processing time is approximately halved (see Fig. 4.1b).
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Xk

1 2

N/2

L N/2

x2n

x2n+1 1 2

3 4 5 6 7 8

3 4 5 6 7 8

Xk+N/2

71 2 3 4 5 6

1 2 3 4 5 76

Figure 4.3: Timing diagram of the implementation of Fig. 4.2a using Altera FFTs. The number
in the boxes identifies the sequences.

Implementation Function
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

2 1024-point FFTs 2 × 5248 2 × 19 2 × 12

1 NCO 180 2 4

Fig. 4.2a 1 Multiplier 0 0 4

2 Adders 2 × 36 2 × 0 2 × 0

Total 10 748 40 32

Fig. 4.1a
1 2048-point FFT 6906 38 24

Total 6906 38 24

Ratio 1.56 1.05 1.33

Table 4.2: Comparison of the resources for Fig. 4.2a and Fig. 4.1a using the Altera FFT with
N = 2048.

For the evaluation of the resources, we consider N = 2048. The complex exponential in Fig.

4.2a can be generated using the NCO IP provided by Altera. Therefore, the resources for the

FFT and the NCO are estimated with the Altera MegaWizard Plug-In Manager (the parameters

for the NCO are keep to the default ones), and the models defined in Appendix C are used for

the other elements (multiplier and adder). The summary of the resources is given Table. 4.2. It

can be seen that the resources are higher for the implementation of Fig. 4.2a (two N /2-point

FFTs) than Fig. 4.1a (one N -point FFT). However, we have seen just before that the processing

time for Fig. 4.2a was divided by a factor two. Since the resources are increased by a factor less

than two, the implementation of Fig. 4.2a is more efficient than the implementation of Fig.

4.1a.
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4.2.5 Application to reduce the resources

In the previous section, the proposed implementation was more efficient, but the resources

were increased. In this section, we adapt it to use only one FFT, at the expense of an additional

memory. The implementation is given Fig. 4.4, and the corresponding timing diagram is given

Fig. 4.5. The idea is to first compute the FFT of the even samples of the sequence, and to store

the result in a memory. Then, we compute the FFT of the odd samples of the sequence. When

the result is available, we read the memory and we compute the first half and the second half

of the FFT of the initial sequence. The first half is outputted while the second half is stored in

the memory. Once the first half is fully outputted, the memory is read and the second half is

outputted. In this way the FFT result is provided in the exact same order as with Fig. 4.1a. In

this case, the P th FFT result is fully available after N
2 +LN /2 + N

2 +P N
2 = (P +1)N +LN /2 clock

cycles, which is slightly lower than for Fig. 4.1a because of the lower latency.

The corresponding resources are given Table 4.3. For the memory, we need to store twice

(because the signal is complex) 1024× 18 bits, which requires 4 M9K memories, and we

consider few logic for the addressing. It can be seen that the resources are reduced, by 20 %

for the logic, 34 % for the memory, and 17 % for the DSP elements, which is not negligible.

If we extrapolate to larger transform lengths, the results regarding the logic and the memory

would be about the same, however for the DSP elements the results would be not as good

because the number of DSP elements does not increase when we increase the transform

length above 2048.

e −j
 
2πk/N

–

FFT
N/2

xIN,n

MOUT,k
Memory

XS,k

XD,k

XIN,k

XOUT,k

MIN,k

Figure 4.4: Computation of an N -point FFT using one N /2-point FFTs and a memory.

4.3 Efficient implementation of the correlation on Altera FPGAs

In this section, we propose alternative architectures to compute a circular correlation that

use smaller FFTs than the traditional architecture, in the same way as in the previous section.

We show different methods to obtain slightly different architectures, and then we perform an

evaluation with the most interesting one.
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XIN,k

x2n
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x2n+1 x2n x2n+1 x2n x2n+1xIN,n
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XD,k Xk+N/2
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Xk+N/2
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Xk+N/2

Xk+N/2
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Xk+N/2 Xk+N/2Xk Xk Xk

Xk+N/2

Xk+N/2

Xk+N/2

Xk+N/2

X0,k X0,k X0,k X0,k

X0,k X0,k X0,k

Figure 4.5: Timing diagram corresponding to Fig. 4.4 using Altera FFTs. The colors inside the
boxes identify the sequences.

Implementation Function
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

Fig. 4.4

1 1024-point FFT 5248 19 12

1 NCO 180 2 4

1 Multiplier 0 0 4

2 Adders 2 × 36 2 × 0 2 × 0

1 Memory 22 4 0

Total 5522 25 20

Fig. 4.1a
2048-point FFT 6906 38 24

Total 6906 38 24

Ratio 0.80 0.66 0.83

Table 4.3: Resources for Fig. 4.4 and comparison with the direct use of an N -point FFT, with
N = 2048.
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4.3.1 Traditional correlation implementation with FFTs

The circular correlation yn of two sequences hn and xn of N points is defined as

yn =
N−1∑
k=0

h∗
k x(n+k) mod N , (4.15)

with n = 0,1, . . . , N −1, and mod denotes the modulo operation, i.e. (n +mN ) mod N = n with

m ∈Z. The circular correlation can also be expressed as

Yk = H∗
k Xk , (4.16)

where Yk , Hk and Xk are the DFTs of yn , hn and xn , respectively (see Appendix A.3.3). So,

by computing the IDFT of H∗
k Xk we obtain yn . Therefore, the circular correlation can be

computed efficiently as shown in Fig. 4.6.

Xk yn

hn

Yk

FFT IFFT

N
FFT* HkH*

xn

N

N N

Figure 4.6: Computation of the circular correlation of two sequences of N points using FFTs.

2

3

3

1

N

L N

hn

xn 1

2 3 4

2 3 4

Xk

31 2

1 2

Yk

L N

yn

1 2

1

HkH*

Figure 4.7: Timing diagram of Fig. 4.6 using Altera FFTs. The number in the boxes identifies
the sequences.
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The timing diagram corresponding to Fig. 4.6 using the Altera FFT is depicted Fig. 4.7. It can be

seen that the P th correlation result is fully available after N+LN +N+LN +P N = (P+2)N+2LN

clock cycles.

4.3.2 FFT separation

It is possible to compute the circular correlation using the separations of the FFT and IFFT of

Fig. 4.2, to either obtain the implementation of Fig. 4.8a, where the inputs and the output are

separated in even and odd samples, or the implementation of Fig. 4.8b, where the inputs and

the output are separated in sections.

4.3.3 Separation using the Chinese remainder theorem

The circular correlation can also be expressed as

Y (z) = H∗(1/z∗)X (z) mod (z−N −1), (4.17)

where Y (z), H(z) and X (z) are the z transforms of yn , hn and xn , respectively, and N is the

length of the sequences (see Appendix A.3.3). Noting that z−N −1 = (z−N /2 −1)(z−N /2 +1), we

can define

Y0(z) = Y (z) mod (z−N /2 −1) (4.18)

Y1(z) = Y (z) mod (z−N /2 +1) (4.19)

and using the Chinese remainder theorem (CRT) (see Nussbaumer [1982], Ding et al. [1996]),

we have

2Y (z) =
(

Y0(z)

z−N /2 −1
− Y1(z)

z−N /2 +1

)
(z−N −1)

= (z−N /2 +1)Y0(z)− (z−N /2 −1)Y1(z)

= (
Y0(z)+Y1(z)

)+ z−N /2(Y0(z)−Y1(z)
)
.

(4.20)

Detailing Y0(z) and Y1(z), we have

Y0(z) = H∗(1/z∗)X (z) mod (z−N /2 −1) = H∗
0 (1/z∗)X0(z) mod (zN /2 −1) (4.21)

Y1(z) = H∗(1/z∗)X (z) mod (z−N /2 +1) = H∗
1 (1/z∗)X1(z) mod (zN /2 +1), (4.22)

where

H0(1/z∗) = H(1/z∗) mod (z−N /2 −1), H1(1/z∗) = H(1/z∗) mod (z−N /2 +1), (4.23)

X0(z) = X (z) mod (z−N /2 −1), X1(z) = X (z) mod (z−N /2 +1). (4.24)
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Figure 4.8: Computation of a circular correlation of N points using N /2-point FFTs, (a) where
the inputs and the output are separated by parity, (b) where the inputs and the output are
separated by section.

Eq. (4.21) corresponds to a circular correlation, and Eq. (4.22) corresponds to a skew-circular

correlation (see Appendix A.3.4). In Eq. (4.23), H0(z) and H1(z) are the z transforms of h0,n

and h1,n , where h0,n is the sum of the first N /2 samples and of the last N /2 samples of hn , and

h1,n is the difference of the first N /2 samples and of the last N /2 samples of hn . Idem for Eq.

(4.24).

The corresponding implementation is given Fig. 4.9. It can be seen that in fact, this architecture

is identical to the one of Fig. 4.8b.
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Figure 4.9: Computation of a circular correlation of N points using N /2-point FFTs (algorithm
based on the Chinese remainder theorem).

4.3.4 Separation by downsampling

Matrix view

Using the matrix notation, the circular correlation yn of two sequences hn and xn of length N

can be expressed as

y0

y1

y2

y3
...

yN−4

yN−3

yN−2

yN−1



=



h0 h1 h2 h3 · · · hN−4 hN−3 hN−2 hN−1

hN−1 h0 h1 h2 · · · hN−5 hN−4 hN−3 hN−2

hN−2 hN−1 h0 h1 · · · hN−6 hN−5 hN−4 hN−3

hN−3 hN−2 hN−1 h0 · · · hN−7 hN−6 hN−5 hN−4
...

...
...

...
. . .

...
...

...
...

h4 h5 h6 h7 · · · h0 h1 h2 h3

h3 h4 h5 h6 · · · hN−1 h0 h1 h2

h2 h3 h4 h5 · · · hN−2 hN−1 h0 h1

h1 h2 h3 h4 · · · hN−3 hN−2 hN−1 h0



∗

x0

x1

x2

x3
...

xN−4

xN−3

xN−2

xN−1


y = H∗ x.

(4.25)
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If we separate yn in even and odd samples, we have



y0

y2
...

yN−4
yN−2

=



h0 h1 h2 h3 · · · hN−4 hN−3 hN−2 hN−1
hN−2 hN−1 h0 h1 · · · hN−6 hN−5 hN−4 hN−3

...
...

...
...

. . .
...

...
...

...
h4 h5 h6 h7 · · · h0 h1 h2 h3

h2 h3 h4 h5 · · · hN−2 hN−1 h0 h1



∗



x0

x1

x2

x3
...

xN−4
xN−3
xN−2
xN−1



=



h0 h2 · · · hN−4 hN−2
hN−2 h0 · · · hN−6 hN−4

...
...

. . .
...

...
h4 h6 · · · h0 h2

h2 h4 · · · hN−2 h0



∗

x0

x2
...

xN−4
xN−2

+



h1 h3 · · · hN−3 hN−1
hN−1 h1 · · · hN−5 hN−3

...
...

. . .
...

...
h5 h7 · · · h1 h3

h3 h5 · · · hN−1 h1



∗

x1

x3
...

xN−3
xN−1


y0 = H∗

0 x0 +H∗
1 x1,

(4.26)

and



y1

y3
...

yN−3
yN−1

=



hN−1 h0 h1 h2 · · · hN−5 hN−4 hN−3 hN−2
hN−3 hN−2 hN−1 h0 · · · hN−7 hN−6 hN−5 hN−4

...
...

...
...

. . .
...

...
...

...
h3 h4 h5 h6 · · · hN−1 h0 h1 h2

h1 h2 h3 h4 · · · hN−3 hN−2 hN−1 h0



∗



x0

x1

x2

x3
...

xN−4
xN−3
xN−2
xN−1



=



hN−1 h1 · · · hN−5 hN−3
hN−3 hN−1 · · · hN−7 hN−5

...
...

. . .
...

...
h3 h5 · · · hN−1 h1

h1 h3 · · · hN−3 hN−1



∗

x0

x2
...

xN−4
xN−2

+



h0 h2 · · · hN−4 hN−2
hN−2 h0 · · · hN−6 hN−4

...
...

. . .
...

...
h4 h6 · · · h0 h2

h2 h4 · · · hN−2 h0



∗

x1

x3
...

xN−3
xN−1



=



h1 h3 · · · hN−3 hN−1
hN−1 h1 · · · hN−5 hN−3

...
...

. . .
...

...
h5 h7 · · · h1 h3

h3 h5 · · · hN−1 h1



∗

x2

x4
...

xN−2
x0

+



h0 h2 · · · hN−4 hN−2
hN−2 h0 · · · hN−6 hN−4

...
...

. . .
...

...
h4 h6 · · · h0 h2

h2 h4 · · · hN−2 h0



∗

x1

x3
...

xN−3
xN−1


y1 = H∗

1 P x0 +H∗
0 x1,

(4.27)

where H0 and H1 are circulant matrices corresponding to the even and odd samples of hn , x0

and x1 are vectors corresponding to the even and odd samples of xn , and P is the following
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Figure 4.10: Computation of a circular correlation of N points using N /2-point FFTs (algorithm
obtained using matrices).

permutation matrix,

P =



0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

1 0 0 · · · 0 0 0


. (4.28)

The permutation matrix implies a circular shift of one sample of the signal. Since the matrices

H0 and H1 are circulant, we can use the FFT to implement the matrix-vector products, which

gives Fig. 4.10. However, since a circular shift of one sample in the time domain of a sequence

of N samples corresponds to a multiplication by e
j 2πk

N in the frequency domain (Oppenheim

and Schafer [2009], pp. 564-567), one FFT can be removed and then we obtain Fig. 4.11.

Z transform view

The circular correlation can also be expressed as

Y (z) = H∗(1/z∗)X (z) mod (z−N −1), (4.29)
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Figure 4.11: Computation of a circular correlation of N points using N /2-point FFTs (al-
gorithm obtained using matrices replacing the time domain shift by a frequency domain
multiplication).

with Y (z), H(z) and X (z), the z transforms of yn , hn and xn , respectively, and N is the length

of the sequences. By separating the even and odd samples of the sequence xn , we can write

X (z) =
N /2−1∑

n=0
x2n z−2n +

N /2−1∑
n=0

x2n+1z−(2n+1). (4.30)

Defining

X0(z) =
N /2−1∑

n=0
x2n z−n , X1(z) =

N /2−1∑
n=0

x2n+1z−n , (4.31)

which are the z transforms of the sequences from the even and odd samples of xn , we can

write

X (z) = X0
(
z2)+ z−1X1

(
z2). (4.32)

This is the polyphase representation (Vaidyanathan [1993] pp. 120–122). Note that X0
(
z2

)
and

X1
(
z2

)
contain only even powers of z. In the same way, we have

Y (z) = Y0
(
z2)+ z−1Y1

(
z2), (4.33)

with

Y0(z) =
N /2−1∑

n=0
y2n z−n , Y1(z) =

N /2−1∑
n=0

y2n+1z−n , (4.34)

93



Chapter 4. Efficient FFT and correlation implementations on Altera FPGAs

and

H∗(1/z∗) =
N−1∑
n=0

h∗
n zn

=
N /2−1∑

n=0
h∗

2n z2n +
N /2−1∑

n=0
h∗

2n+1z2n+1

= H∗
0

(
(1/z∗)2)+ z H∗

1

(
(1/z∗)2),

(4.35)

with

H0(z) =
N /2−1∑

n=0
h2n z−n , H1(z) =

N /2−1∑
n=0

h2n+1z−n . (4.36)

Applying this to Eq. (4.29), we have

Y0
(
z2)+ z−1Y1

(
z2)= (

H∗
0

(
(1/z∗)2)+ z H∗

1

(
(1/z∗)2))(X0

(
z2)+ z−1X1

(
z2)) mod

(
z−N −1

)
=

(
H∗

0

(
(1/z∗)2)X0

(
z2)+H∗

1

(
(1/z∗)2)X1

(
z2)) mod

(
z−N −1

)
+ z−1

(
H∗

0

(
(1/z∗)2)X1

(
z2)+ z2H∗

1

(
(1/z∗)2)X0

(
z2)) mod

(
z−N −1

)
(4.37)

Inside both parenthesis, there are only even powers of z. The second parenthesis being

multiplied by z−1, this term contains only odd powers of z. If N is even, after the modulo

operation, the parity of the powers of z are unchanged. Consequently, we have

Y0
(
z2)= (

H∗
0

(
(1/z∗)2)X0

(
z2)+H∗

1

(
(1/z∗)2)X1

(
z2)) mod

(
z−N −1

)
(4.38)

and

Y1
(
z2)= (

H∗
0

(
(1/z∗)2)X1

(
z2)+ z2H∗

1

(
(1/z∗)2)X0

(
z2)) mod

(
z−N −1

)
. (4.39)

Evaluating the previous equations for z = e
j 2πk

N with k = 0,1, . . . , N −1, we obtain

Y0,k = H∗
0,k X0,k +H∗

1,k X1,k , (4.40)

and

Y1,k = H∗
0,k X1,k +e

j 2πk
N /2 H∗

1,k X0,k , (4.41)

where Y0,k and Y1,k are the DFTs of y2n and y2n+1, H0,k and H1,k are the DFTs of h2n and h2n+1,

and X0,k and X1,k are the DFTs of x2n and x2n+1. We obtain the same result as using the matrix

notation, and the corresponding implementation is in Fig. 4.11.
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Figure 4.12: Computation of a circular correlation of N points using N /2-point FFTs and the
minimum number of multipliers, where the inputs and the output are separated by parity.

Reduction of multipliers

The developments presented previously can be adapted to separate the sequences into 3, 4 or

more sub-sequences. If each sequence is split in S sub-sequences, the number of multipliers is

S2+S−1 (S2 for the products between the FFTs, and S−1 for the products with the exponentials)

and the number of adders is S(S−1). However, it is possible to reduce the number of multipliers.

For example, noting that(
H∗

0,k +H∗
1,k

)(
X0,k +X1,k

)= H∗
0,k X0,k +H∗

1,k X1,k +H∗
0,k X1,k +H∗

1,k X0,k , (4.42)

Eq. (4.40) becomes

Y0,k = (
H∗

0,k +H∗
1,k

)(
X0,k +X1,k

)−H∗
0,k X1,k −H∗

1,k X0,k . (4.43)

Therefore, using Eqs. (4.43) and (4.41), the circular correlation can be computed using 4

multipliers and 5 adders as shown in Fig. 4.12, compared to 5 multipliers and 2 adders using

Eqs. (4.40) and (4.41). These developments are based on the same principle as the fast FIR

(finite impulse response) algorithms (FFA) (Mou and Duhamel [1991], Parker and Parhi [1997],

Parhi [1999] Chap. 9), except that they are adapted to the circular correlation implemented

with FFTs.

However, the FFAs do not always provide the minimum number of multipliers, but only a

sub-optimal reduction. The minimum number of multipliers that can be obtained is 3S −2.
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Algorithm
Number of Number of Number of

sub-sequences (S) complex multipliers complex adders

No reduction
of the multipliers

2 5 2

3 11 6

4 19 12

Sub-optimal reduction
of the multipliers

2 4 5

3 8 13

4 13 25

Optimal reduction
of the multipliers

2 4 5

3 7 25

4 10 78

Table 4.4: Number of operations for the different algorithms.

Indeed, if we express the relation between the FFTs using matrices, we have[
Y0,k

Y1,k

]
=

[
H0,k H1,k

e−
j 2πk
N /2 H1,k H0,k

]∗[
X0,k

X1,k

]
. (4.44)

If we split the sequences in three sub-sequences, we have

Y0,k

Y1,k

Y2,k

=


H0,k H1,k H2,k

e−
j 2πk
N /2 H2,k H0,k H1,k

e−
j 2πk
N /2 H1,k e−

j 2πk
N /2 H2,k H0,k


∗X0,k

X1,k

X2,k

 . (4.45)

It can be seen that the matrix in Eq. (4.45) is a Toeplitz matrix (see Section A.2.3), and it

is known that the minimum number of multiplications required to compute the product

between a Toeplitz matrix of size S ×S and a vector of length S is 2S −1 (Lafon [1974]). Since

there are also S −1 multipliers needed for the multiplication with the complex exponentials,

the total minimum number of multipliers is 3S −2. However, when the number of multipliers

is minimum, the number of adders increases very fast, as shown in Table 4.4 for the some

small values of S (Leclère et al. [2012]).

Note that when splitting the signals in two (i.e. S = 2), it could be possible to have only two

multipliers for the product between the FFTs, but this requires that the length of the sequences

be the product of two coprime numbers (Garg [1998] pp. 313–316). Therefore, this cannot be

applied when the length of the sequences is a power of two.
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Figure 4.13: Timing diagram corresponding to Fig. 4.12 using Altera FFTs. The number in the
boxes identifies the sequences.

4.3.5 Application to reduce the processing time

Implementations of Figs. 4.8 and 4.9 require 5 multipliers and 6 adders, and the implementa-

tion of Fig. 4.12 requires 4 multipliers and 5 adders. Since this last implementation uses less

DSP resources, we consider it for the evaluation of the resources in this section.

The timing diagram corresponding to Fig. 4.12 using the Altera FFT is depicted Fig. 4.13. It

can be seen that the P th correlation result is fully available after N
2 +LN /2 + N

2 +LN /2 +P N
2 =

(P +2) N
2 +2LN /2 clock cycles. Therefore, compared to the traditional implementation of the

circular correlation (Fig. 4.6), the processing time is approximately halved (see Fig. 4.7).

For the evaluation of the resources, we consider N = 2048. As previously, the resources for the

FFT and the NCO are estimated with the Altera MegaWizard Plug-In Manager (the parameters

for the NCO are keep to the default ones), and the models defined in Appendix C are used

for the other elements (multiplier and adder). The summary of the resources is given Table

4.5. It can be seen that the resources are higher for the implementation of Fig. 4.12 than Fig.

4.6. However, we have seen just before that the processing time for Fig. 4.12 was divided by a

factor two. Since the resources are increased by a factor less than two, the implementation of

Fig. 4.12 is more efficient than the implementation of Fig. 4.6.
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Implementation Function
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

6 1024-point FFTs 6 × 5248 6 × 19 6 × 12

NCO 180 2 4

Fig. 4.12 4 Multipliers 0 0 4 × 4

5 Adders 5 × 36 0 0

Total 31 848 116 92

3 2048-point FFTs 3 × 6906 3 × 38 3 × 24

Fig. 4.6 1 Multiplier 0 0 4

Total 20 718 114 76

Ratio 1.54 1.02 1.21

Table 4.5: Comparison of the resources for Fig. 4.12 and Fig. 4.6 using the Altera FFT with
N = 2048.

4.3.6 Application to reduce the resources

In the previous section, the proposed implementation was more efficient, but the resources

were increased. In this section, we adapt it to use only three FFTs instead of six, at the expense

of an additional memory. In this case, the implementations based on the CRT (Fig. 4.9) is more

interesting because it requires less memory. Indeed, each IFFT output is obtained using only

two FFTs results, whereas in Fig. 4.11 the four FFTs results are needed to compute the each

IFFT output. The implementation is given Fig. 4.14, and the corresponding timing diagram is

given Fig. 4.15.

Here is a summary of how works Fig. 4.14 :

1. Compute the FFTs of h0,n and x0,n .

2. Compute the product of the FFTs.

3. Compute the IFFT to obtain y0,n .

4. Store y0,n in a memory.

5. Repeat the first three steps for h1,n and x1,n (which are before multiplied by the com-

plex exponential) to obtain y1,n (which involved also a product with a the complex

exponential).

6. When y1,n is available, read y0,n from the memory and compute their sum and differ-

ence.
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Figure 4.14: Computation of the correlation using three N /2-point FFTs and a memory.

Implementation Function
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

Fig. 4.14

3 1024-point FFTs 3 × 5248 3 × 19 3 × 12

1 NCO 180 2 4

4 Multipliers 0 0 4 × 4

4 Adders 4 × 36 0 0

1 Memory 22 4 0

Total 16 090 63 56

3 2048-point FFTs 3 × 6906 3 × 38 3 × 24

Fig. 4.6 1 Multiplier 0 0 4

Total 20 718 114 76

Ratio 0.78 0.55 0.74

Table 4.6: Comparison of the resources for Fig. 4.14 and Fig. 4.6 using the Altera FFT with
N = 2048.

7. Output their sum, which corresponds to yn , and store in the memory their difference,

which corresponds to yn+N /2.

8. Read the memory to output yn+N /2.

In this way the correlation result is provided in the exact same order as with Fig. 4.6. In this

case, the P th correlation result is fully available after N
2 +LN /2+N

2 ++N
2 +P N = (P+ 3

2 )N+2LN /2

clock cycles, which is about N /2 cycles less than for Fig. 4.6 because of the lower latency.

The corresponding resources are given Table 4.6, still with N = 2048. For the memory, we need

to store twice (because the signal is complex) 1024×18 bits, which requires 4 M9K memories,

and we consider few logic for the addressing. It can be seen that the resources are reduced, by

about 22 % for the logic, 45 % for the memory, and 26 % for the DSP elements, which is not

negligible.

99



Chapter 4. Efficient FFT and correlation implementations on Altera FPGAs

xi,n

h0,n

N/2

L N/2

h1,n h0,n h1,n h0,n h1,nhi,n

Hi,k

Xi,k

yi,n

mIN,n

mOUT,n

h0,n h1,n

H0,k H1,k H0,k H1,k H0,k H1,k H0,k

X0,k X1,k X0,k X1,k X0,k X1,k X0,k

y0,n y1,n y0,n y1,n y0,n y1,n

yn

yn+N/2 yn+N/2 yn+N/2

L N/2

x0,n x1,n x0,n x1,n x0,n x1,n x0,n x1,n

y0,n y0,n y0,n

y0,n y0,n y0,nyn+N/2

yn+N/2

yn+N/2

yn+N/2yn yn yn

Figure 4.15: Timing diagram corresponding to Fig. 4.14 using Altera FFTs. The colors inside
the boxes identify the sequences.

4.4 Summary

In this chapter, we have shown different ways to compute an FFT in Altera FPGAs, with lower

resources and the same processing time than the direct implementation of one Altera FFT.

Then, it was shown also that it is possible to reduce the resources for an FFT-based circular

correlation compared to the direct implementation that uses three FFTs.

It has been shown that all the resources can be reduced, i.e the logic, the memory and the

DSP blocks, but it is mainly the memory that is reduced (33 % for the FFT and 45 % for the

correlation with sequences of 2048 samples). If we extrapolate to other transform lengths, the

results regarding the logic and the memory would be about the same, however for the DSP

elements the results would be not as good because the number of DSP elements does not

increase when we increase the transform length above 2048.

The algorithms presented do not make any assumptions about the input or output signals,

therefore they can be applied not only for GNSS but for any other systems computing FFTs,

convolutions, or correlations. Besides, in addition to the implementations proposed in this
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chapter, it is possible to use the method for computing the FFT of two real sequences using

the complex Altera FFT (see Appendix B), which is useful in GNSS since the local code is real.

Some other examples are also given in (Leclère et al. [2012]).
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5 Acquisition of GNSS signals in
presence of transition

In this chapter, we discuss the problem of the parallel code search acquisition when one

primary code period is used, and when the received signal contains bit transitions, that can be

due to a secondary code or data modulation.

After discussing the proposition of two algorithms, we consider their application to different

GNSS signals, such as GPS L5 and Galileo E5a, E5b and E1 OS.

This work has been published in (Leclère et al. [2013a]) and (Leclère et al. [2014]), except for

the second proposed algorithm that has been discovered later.

5.1 Introduction

As indicated in Chapter 1, the recently introduced GPS and Galileo signals bring new features

compared to the initial civilian GPS L1 C/A signal, such as a higher power, longer codes for

a better cross-correlation between satellites signals, pilot channels that do not carry data to

facilitate long integrations and improve the sensitivity threshold, and secondary codes that

are usually short PRN codes to make the data synchronization easier.

The presence of a secondary code brings advantages and additional performance, but also

makes the acquisition more difficult (Shivaramaiah et al. [2008], Borio [2011]). Exploiting

the secondary code adds a third dimension to the acquisition search, besides the Doppler

frequency and primary code dimensions (or it increases the code dimension, depending on

the point of view), and implies the use of long coherent integration times, which impacts also

the search in the Doppler frequency dimension.

To acquire very weak signals, such as in indoor or urban environments (Ayaz et al. [2010]), the

coherent integration time should be as long as possible (Pany et al. [2009]). Therefore, with

modern signals this means that the secondary code must be synchronized too. However, it

is still possible to perform the acquisition using only the primary code, with the possibility

to synchronize with the secondary code afterwards if the sensitivity is not the priority. This
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Figure 5.1: Illustration of the problem due to the secondary code transition. The values inside
boxes indicate the chip number. (a) By chance, the incoming primary code starts with the
first chip, the correlation at the correct alignment is maximum. (b) The incoming primary
code does not start at the first chip (usual case), the correlation at the correct alignment is
reduced. (c) In the worst case, the incoming primary code starts at the middle of a period, the
correlation at the correct alignment is 0.

chapter focuses on this case. This case may happen if we want to process a modern signal to

get a better accuracy (the L5, E5a and E5b signals have a chipping rate of 10.23 MHz), or to get

a fast position (the E1 OS and E5b signals have a data rate of 250 bit/s). This case happens also

if we want to perform a coherent integration over a secondary code period, but the limited

resources prevent the computation of so large FFTs (as will be shown in Chapter 6, which also

discuss the case using large FFTs).

Even if the secondary code is not exploited, the potential transitions between consecutive

periods of the primary code prevent the direct use of the parallel code search acquisition.

Indeed, this can result in very high losses leading to the non-detection of the signal (Borio et al.

[2008b]), as illustrated in Fig. 5.1. When the local replica of the primary code is aligned with

the incoming primary code, the magnitude of the correlation peak is maximum only if there

is no transition (Fig. 5.1 (a)). Else, in case of transition, the correlation peak is reduced (Fig.

5.1 (b)), or even vanishes if the incoming primary code starts at the middle of the period (Fig.

5.1 (c)). In fact, the problem is worse than a simple non-detection, because the correlation

peak may be detected at an incorrect frequency (Lo Presti et al. [2009]), which means that the

receiver will start tracking the signal incorrectly and waste time before performing again an

acquisition.

There were different propositions to overcome this problem. For example, people proposed

to perform a kind of average in the Doppler search space (Lo Presti et al. [2009]); to have two

steps to find first the code delay, and then the Doppler frequency (Sun and Lo Presti [2012]); or

to generate two local codes, one without a transition and one with a transition, requiring to

compute five FFTs instead of the usual three (Jeon et al. [2012]).
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Figure 5.2: Straightforward solution to the secondary code transition problem. The values
inside boxes indicate the chip number, and the gray area contains only zeros. The magnitude
of the first peak is always maximum, whereas the second peak can be reduced due to transition.

A straightforward solution exists and consists in using two consecutive periods of the incoming

primary code and one period of the primary code padded with zeros for the local code to

perform the correlation (Yang et al. [2004], Borio et al. [2008b]). In this way, there is always

one period of the incoming code free of transition, and thus a maximum correlation peak, as

illustrated in Fig. 5.2 (the sign of the peak is not important, only its magnitude is). It can be

seen that there is a second peak, similar to the one of Fig. 5.1 (b). Indeed, since there are two

periods of the incoming primary code, the local code is correctly aligned twice. However, the

magnitude of the first peak is always maximum, whereas the second peak can be reduced or

vanish due to the transition. Since the first peak always occurs in the first half of the correlation,

the second half of the correlation is discarded.

However, this solution increases the complexity and is not so efficient since half of the points

calculated are unused. To tackle this problem, we propose two new algorithms that reduce the

complexity by transforming the initial correlation into two sub-correlations. These algorithms

are not approximations, but other ways to compute the samples of interest. Therefore, there is

no degradation of the sensitivity. The concept has some similarities with classical divide-and-

conquer approaches such as the overlap-and-add or overlap-and-save methods (Proakis and

Manolakis [2006]), although different.

The straightforward and proposed algorithms are compared first for the acquisition of the GPS

L5, Galileo E5a and E5b signals, which are equivalent for this problem since their primary codes

have the same length and the modulation is the same. Then, the algorithms are compared

for the acquisition of the Galileo E1 OS signal, considering first the BOC(1,1) modulation

and then the BPSK modulation. The comparison of the algorithms is done for a software
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xn Xk yn

hn Hk

Yk

FFT

FFT*

IFFT

H*

N

N N

Figure 5.3: Implementation of the straightforward algorithm using FFTs. The second half of
hn contain only zeros, and the second half of yn is not used.

implementation using Matlab, and for a hardware implementation on an FPGA.

5.2 Proposed Algorithms

The idea of the proposed algorithms is to transform the initial correlation into two sub-

correlations of smaller size. The proposed algorithm exploits two facts for this : 1) Half of

the points of one of the signals are zero; and 2) Half of the points of the correlation output

are discarded. A third fact will be exploited for the reduction of the complexity, the usage of

additional zero-padding when it is needed to reach a specific sequence length.

Let’s first define the operation we want to perform. Using the matrix notation, the circular

correlation yn of two sequences hn and xn of N points can be expressed as



y0

y1
...

y N
2 −1

y N
2

...

yN−2

yN−1


=



h0 h1 · · · h N
2 −1 h N

2
· · · hN−2 hN−1

hN−1 h0 · · · h N
2 −2 h N

2 −1 · · · hN−3 hN−2

...
...

. . .
...

...
. . .

...
...

h N
2 +1 h N

2 +2 · · · h0 h1 · · · h N
2 −1 h N

2

h N
2

h N
2 +1 · · · hN−1 h0 · · · h N

2 −2 h N
2 −1

...
...

. . .
...

...
. . .

...
...

h2 h3 · · · h N
2 +1 h N

2 +2 · · · h0 h1

h1 h2 · · · h N
2

h N
2 +1 · · · hN−1 h0



∗

x0

x1
...

x N
2 −1

x N
2

...

xN−2

xN−1


y = H∗ x,

(5.1)

where hn corresponds to the local code, and xn to the incoming signal after the carrier removal.

The corresponding implementation using FFTs is given Fig. 5.3.

Using the two conditions described previously, namely that the second half of hn contains
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only zeros and that the second half of yn is not used, what we want to compute is


y0

y1
...

y N
2 −1

=


h0 h1 · · · h N

2 −1 0 · · · 0

0 h0 · · · h N
2 −2 h N

2 −1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · h0 h1 · · · h N
2 −1



∗



x0

x1
...

x N
2 −1

x N
2

...

xN−2


yT = H∗

T xT .

(5.2)

It can be noted that the sample xN−1 is not required to compute the first half of yn , since it is

multiplied by the samples from h N
2

to hN−1, which are zero here. That is why we remove it in

Eq. (5.2). At this stage, yT (T stands for truncated) is a vector of N /2 points, HT is a matrix of

N /2×N −1, and xT is a vector of N −1 points. We start from this equation to describe the two

proposed algorithms.

5.2.1 Algorithm 1

Step 1 : Separation of the matrix

The first step consists in separating the matrix HT in two matrices, HT 0 and HT 1, where HT 0

is HT with hn = 0 for N
4 ≤ n ≤ N

2 −1, and HT 1 is HT with hn = 0 for 0 ≤ n ≤ N
4 −1, such that

HT is the sum of HT 0 and HT 1. Of course, this requires that N is divisible by 4, which will be

assumed throughout this chapter. We thus obtain

yT = H∗
T xT

= (H∗
T 0 +H∗

T 1) xT
y0

y1
...

y N
2 −1

=




h0 h1 · · · 0 0 · · · 0

0 h0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · h0 h1 · · · 0


∗

+


0 0 · · · h N

2 −1 0 · · · 0

0 0 · · · h N
2 −2 h N

2 −1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · h N
2 −1



∗



x0

x1
...

x N
2 −1

x N
2

...

xN−2


.

(5.3)
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Step 2 : Removing of columns of zeros

The last N
4 columns of HT 0 and the first N

4 columns of HT 1 contain only zeros. Thus, we can

remove these columns to obtain HT T 0 and HT T 1 and then

yT = (H∗
T 0 +H∗

T 1) xT

= H∗
T T 0 x0 +H∗

T T 1 x1


y0

y1
...

y N
2 −1

=


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+


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4
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2 −1 0 · · · 0

0 h N
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2 −1



∗



x N
4

x N
4 +1
...

x N
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x N
2

...

xN−2


.

(5.4)

At this stage, HT T 0 and HT T 1 are matrices of N
2 × 3N

4 −1, and x0 and x1 are vectors of 3N
4 −1

points.

Step 3 : Making the matrices circulant

The matrices HT T 0 and HT T 1 have a circular pattern. It is thus possible to include them into

circulant matrices by adding N
4 −1 rows, as shown in Eqs. (5.5) and (5.6).

H0 =
[

HT T 0

HD0

]
=



h0 h1 · · · h N
4 −1 0 · · · 0

0 h0 · · · h N
4 −2 h N

4 −1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . h N
4 −1

h N
4 −1 0 . . . 0 0 . . . h N

4 −2
...

...
. . .

...
...

. . .
...

h1 h2 · · · 0 0 · · · h0


(5.5)
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H1 =
[

HT T 1

HD1

]
=
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(5.6)

Eq. (5.4) can then be modified to obtain[
yT

yD

]
=

[
H∗

T T 0
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]
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(5.7)

At this stage, yM (M stands for modified) is a vector of 3N
4 −1 points, H0 and H1 are circulant

matrices of 3N
4 −1× 3N

4 −1, and x0 and x1 are vectors of 3N
4 −1 points. The vector yM is composed

of the initial vector yT of N
2 points, and of the vector yD (D stands for discarded) of N

4 −1 points.

Therefore, the first N
2 points of the result are identical to those of the initial correlation, while

the other points are different, which is not important since they are discarded. This means

that this algorithm discards only about one third of the points calculated, instead of discarding

about half. However, the matrices contains about two third of zeros instead of about half.
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The corresponding implementation using FFTs is given in Fig. 5.4, with

h0 =
[

h0 h1 · · · h N
4 −1

N /2−1︷ ︸︸ ︷
0 · · · 0

]
h1 =

[
h N

4
h N

4 +1 · · · h N
2 −1 0 · · · 0

]
x0 =

[
x0 x1 · · · x 3N

4 −2

]
x1 =

[
x N

4
x N

4 +1 · · · xN−2
]
.

(5.8)

If needed, the sequences can be zero-padded to reach a specific length, without impacting the

desired samples.

H*

H*

x0,n

x1,n

yM,n

h0,n

h1,n

YM,k

FFT
3N/4–1

FFT
3N/4–1

FFT*

3N/4–1

FFT*

3N/4–1

IFFT
3N/4–1

H0,k

H1,k

X0,k

X1,k

Figure 5.4: Implementation of the first proposed algorithm using FFTs. The last two thirds of
h0,n and h1,n contain only zeros, and the last third of yM ,n is not used.
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5.2.2 Algorithm 2

Step 1 : Separation of the output

The first step consists in separating the output vector yT in two, to obtain

yT 0 = H∗
T 0 xT
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,
(5.9)

and

yT 1 = H∗
T 1 xT


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4
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x 3N
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

.
(5.10)

At this stage, yT 0 and yT 1 are vectors of N
4 points, HT 0 and HT 1 are matrices of N

4 ×N −1, and

xT is still a vector N −1 points. Be careful to not confuse the matrix HT 0 in Eq. (5.9) with

the matrix HT 0 used in Eq. (5.3) for the first algorithm, they correspond to different matrices

(idem for HT 1).
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Step 2 : Removing of columns of zeros

The last N
4 columns of HT 0 and the first N

4 columns of HT 1 contain only zeros. Thus, we can

remove these columns to obtain

yT 0 = H∗
T T x0


y0

y1
...

y N
4 −1

=


h0 h1 · · · h N

4 −1 · · · h N
2 −1 · · · 0

0 h0 · · · h N
4 −2 · · · h N

2 −2 · · · 0
...

...
. . .

...
. . .

...
. . .

...

0 0 · · · h0 · · · h N
4

· · · h N
2 −1



∗



x0

x1
...

x N
4 −1
...

x N
2 −1
...

x 3N
4 −2



,
(5.11)

and

yT 1 = H∗
T T x1


y N

4

y N
4 +1
...

y N
2 −1

=


h0 h1 · · · h N

4 −1 · · · h N
2 −1 · · · 0

0 h0 · · · h N
4 −2 · · · h N

2 −2 · · · 0
...

...
. . .

...
. . .

...
. . .

...

0 0 · · · h0 · · · h N
4

· · · h N
2 −1



∗



x N
4

x N
4 +1
...

x N
2 −1
...

x 3N
4 −1
...

xN−2



.
(5.12)

At this stage, HT T is a matrix of N
4 × 3N

4 −1, and x0 and x1 are vectors of 3N
4 −1 points. Note

that the vectors x0 and x1 are the same as for the first algorithm (see Eq. (5.4)).
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Step 3 : Making the matrix circulant

The matrix HT T has a circular pattern. It is thus possible to include it into a circulant matrix

by adding N
2 −1 rows, as shown in Eq. (5.13).

HC =
[

HT T

HD

]
=



h0 h1 · · · h N
4 −1 · · · h N

2 −1 · · · 0

0 h0 · · · h N
4 −2 · · · h N

2 −2 · · · 0
...

...
. . .

...
. . .

...
. . .

...

0 0 · · · h0 · · · h N
4

· · · h N
2 −1

...
...

. . .
...

. . .
...

. . .
...

h1 h2 · · · h N
4

· · · 0 · · · h0


(5.13)

Eqs. (5.11) and (5.12) can then be modified to obtain[
yT 0

yD0

]
=

[
H∗

T T

H∗
D

]
x0

yM0 = H∗
C x0



y0

y1
...

y N
4 −1

yD0,0
...

yD0, N
4 −2


=



h0 h1 · · · h N
4 −1 · · · h N

2 −1 · · · 0

0 h0 · · · h N
4 −2 · · · h N

2 −2 · · · 0
...

...
. . .

...
. . .

...
. . .

...

0 0 · · · h0 · · · h N
4

· · · h N
2 −1

0 0 · · · 0 · · · h N
4 −1 · · · h N

2 −2
...

...
. . .

...
. . .

...
. . .

...

h1 h2 · · · h N
4

· · · 0 · · · h0



∗


x0

x1
...

x N
4 −1
...

x N
2 −1
...

x 3N
4 −2



(5.14)

and [
yT 1

yD1

]
=

[
H∗

T T

H∗
D

]
x1

yM1 = H∗
C x1

y N
4

y N
4 +1
...

y N
2 −1

yD1,0
...

yD1, N
4 −2


=



h0 h1 · · · h N
4 −1 · · · h N

2 −1 · · · 0

0 h0 · · · h N
4 −2 · · · h N

2 −2 · · · 0
...

...
. . .

...
. . .

...
. . .

...

0 0 · · · h0 · · · h N
4

· · · h N
2 −1

0 0 · · · 0 · · · h N
4 −1 · · · h N

2 −2
...

...
. . .

...
. . .

...
. . .

...

h1 h2 · · · h N
4

· · · 0 · · · h0



∗

x N
4

...

x 3N
4 −1
...

xN−2



(5.15)
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yM0,nYM0,k

FFT
3N/4–1

FFT
3N/4–1

FFT*

3N/4–1

IFFT
3N/4–1

yM1,n

IFFT
3N/4–1

YM1,k

x0,n

x1,n

hC,n

X0,k

X1,k

H*HC,k

Figure 5.5: Implementation of the second proposed algorithm using FFTs. The last third of
hC ,n contains only zeros, and the last two thirds of yM0,n and yM1,n are not used.

At this stage, yM0 and yM1 are vectors of 3N
4 −1 points, HC is a circulant matrix of 3N

4 −1× 3N
4 −1,

and x0 and x1 are vectors of 3N
4 −1 points. The vectors yM0 and yM1 are composed of one half

the initial vector yT , and of the vectors yD0 and yD1 of N
2 −1 points, respectively. Therefore,

the first N
2 points of the result are identical to those of the initial correlation, while the other

points are different, which is not important since they are discarded. This means that this

algorithm discards about two thirds of the points calculated, instead of discarding about half.

However, the matrices now contains only about one third of zeros, compared to about half.

The corresponding implementation using FFTs is given in Fig. 5.5, with

hC = [
h0 h1 · · · h N

2 −1

N /4−1︷ ︸︸ ︷
0 . . . 0

]
x0 =

[
x0 x1 · · · x 3N

4 −2

]
x1 =

[
x N

4
x N

4 +1 · · · xN−2
]
.

(5.16)

As for the first algorithm, if needed, the sequences can be zero-padded to reach a specific

length, without impacting the desired samples.

5.2.3 Algorithms complexity

The proposed algorithms perform five FFTs or IFFTs of 3N
4 −1 points, whereas the straightfor-

ward algorithm performs three FFTs or IFFT of N points (or N −1).

Considering that an FFT of N points requires about N log(N ) multiplications, the straightfor-

ward algorithm requires approximately 3N log(N )+N multiplications, while the proposed

algorithms require 5 3N
4 log

(3N
4

)+ 2 3N
4 multiplications. The number of operations is thus

greater for the proposed algorithms, by about 21 to 23 %.

This means that while the initial aim of finding a new algorithm was to decrease the complexity

of the straightforward algorithm, the proposed algorithms in fact require more operations.
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l 5 7 9 11 13 15 17 19

L = 2l 32 128 512 2048 8192 32 768 131 072 524 288

N 44 172 684 2732 10 924 43 692 174 764 699 052

Table 5.1: Correlation length (N ) and radix-2 FFT length (L) of the proposed algorithms for l
odd.

l 6 8 10 12 14 16 18 20

L = 2l 64 256 1024 4096 16 384 65 536 262 144 1 048 576

N 84 340 1364 5460 21 844 87 380 349 524 1 398 100

Table 5.2: Correlation length (N ) and radix-2 FFT length (L) of the proposed algorithms for l
even.

However, when there are some constraints on the FFT length (e.g. to be a power of two), the

sequences are zero-padded to meet the requirements, and the proposed algorithms can be

advantageous, as shown in the next sections.

5.2.4 Use with the radix-2 FFT

The proposed algorithms performs FFTs on 3N
4 −1 points. If the use of radix-2 FFTs is desired

(by radix-2 FFT we mean that the FFT length must be a power of two), there is the following

constraint,

3N

4
−1 = 2l ⇔ N = 4

3
(2l +1), (5.17)

where l is a positive integer. This equation has integer solutions only if l is odd, and the result

for a range of suitable values is provided in Table 5.1. We can use zero-padding to obtain

sequences of length 3N
4 +1, which gives the following constraint,

3N

4
+1 = 2l ⇔ N = 4

3
(2l −1), (5.18)

where l is a positive integer. This equation has integer solutions only if l is even, and the result

for a range of suitable values is provided in Table 5.2.

To make the link with the GNSS signals, the FFT length for the straightforward and the pro-

posed algorithms in function of the sampling frequency is provided in Table 5.3, considering

a code of 1 ms. It can be seen that there are two possibilities. Either the FFT lengths of the

algorithms are identical, or the FFT length of the proposed algorithms is half the FFT length of

the straightforward algorithm. For a code of 4 ms, the length of the sequence would be four

times longer, therefore Table 5.3 can be read by multiplying the sampling frequency by four.
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Sampling frequency FFT length with the FFT length with the
range (MHz) span (MHz) straightforward algorithm proposed algorithms

1.023 − 1.024 0.001 2048 2048

1.025 − 1.366 0.341 4096 2048

1.367 − 2.048 0.681 4096 4096

2.049 − 2.730 0.681 8192 4096

2.731 − 4.096 1.365 8192 8192

4.097 − 5.462 1.365 16 384 8192

5.463 − 8.192 2.729 16 384 16 384

8.193 − 10.922 2.729 32 768 16 384

10.923 − 16.384 5.461 32 768 32 768

16.385 − 21.846 5.461 65 536 32 768

21.847 − 32.768 10.921 65 536 65 536

32.769 − 43.690 10.921 131 072 65 536

Table 5.3: Radix-2 FFT length for the straightforward and the proposed algorithms in function
of the sampling frequency considering a code of 1 ms (for a code of 4 ms, multiply the actual
sampling frequency by 4 to find the corresponding FFT length).

When the FFT lengths are identical, it is clear that the proposed algorithms are less efficient,

since they compute more FFTs than the straightforward algorithm. For example, if we use a

sampling frequency of 24 MHz, we have N = 48000, and 3N
4 −1 = 35999. Therefore, both the

straightforward and the proposed algorithms will use FFTs of 65 536 points.

When the FFT length of the proposed algorithms is half the FFT length of the straightforward

algorithm, the proposed algorithms seem more efficient. Indeed, the theoretical number of

multiplications is 5 N
4 log( N

2 )+2 N
2 for the proposed algorithms, against 3 N

2 log(N )+N for the

straightforward algorithm, which means a reduction of about 20 %. For example, if we use

a sampling frequency of 21 MHz, we have N = 42000, and 3N
4 −1 = 31499. Therefore, the

traditional algorithm still uses FFTs of 65 536 points, while the proposed algorithms now use

FFTs of 32 768 points.

It can be also noted that the sampling frequency span is the same when the FFT lengths of

the algorithms are equal and when the FFT length of the proposed algorithms is half the FFT

length of the straightforward algorithm. Therefore, there is a 50 % chance that the proposed

algorithms are efficient.
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5.2.5 Algorithm to obtain P sub-correlations

The proposed algorithms can be generalized to more than two sub-correlations. For example,

to obtain P sub-correlations with the algorithm 1, hn and xn must be decomposed into P

components, respectively hi ,n and xi ,n with i = {0,1, ...,P −1}, of P+1
P

N
2 points, where

• hi ,n contains 1
P

N
2 points of hn and N

2 points of zeros,

• xi ,n contains P+1
P

N
2 points of xn ,

• hi ,n and xi ,n start at the samples i
P

N
2 of hn and xn , respectively.

The output is then computed as

yM ,n = IFFT

(
P−1∑
i=0

(
FFT∗(hi ,n) FFT(xi ,n)

))
, (5.19)

with

hi =
[

h i
P

N
2

h i
P

N
2 +1 · · · h i+1

P
N
2 −1

N /2︷ ︸︸ ︷
0 . . . 0

]
xi =

[
x i

P
N
2

x i
P

N
2 +1 · · · x i+1+P

P
N
2 −1

]
.

(5.20)

There are thus 2P FFTs and one IFFT of P+1
P

N
2 −1 points. Note that as P increases, the number

of output samples get closer to N /2, which is the number of samples of interest. However,

the efficiency of the algorithm decreases because the number of FFTs increases linearly with

P while the FFT length reduces only as P+1
P , consequently the number of sub-correlations

should be as low as possible, i.e. 2.

5.3 Application for the acquisition of the L5, E5a and E5b signals

In this section, the straightforward and the proposed algorithms are compared for the acquisi-

tion of the GPS L5, Galileo E5a and E5b signals.

5.3.1 FFT lengths

The L5, E5a and E5b signals are BPSK signals and have a code chipping rate of 10.23 MHz.

The minimum sampling frequency to get the main lobe (which contains 90 % of the signal

power) is twice the chipping rate, i.e. 20.46 MHz. To have the usual code step of 1
2 chip (see

Section 2.1.3), the sampling frequency must also be twice the chipping rate. Therefore, we

will consider a minimum sampling frequency of 20.46 MHz for these signals. This means that

N = 2×20460 = 40920, since the primary code length of these three signals is 1 ms.
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Algorithm
Minimum Minimum FFT length Minimum power of two
FFT length with small prime factors FFT length

Straightforward
L = 40920 L = 41472 L = 65536
fS = 20.46 fS ∈ [20.46−20.736] fS ∈ [20.46−32.768]

Proposed
L = 30690 L = 31104 L = 32768
fS = 20.46 fS ∈ [20.46−20.736] fS ∈ [20.46−21.846]

Table 5.4: FFT length (L) and sampling frequency range ( fS , in MHz) for the acquisition of the
GPS L5, Galileo E5a and E5b signals.

Since the minimum length requires already relatively large FFTs, we will concentrate on values

close to this minimum. Three cases are considered for the comparison : 1) The use of the

smallest FFT length; 2) The use of the smallest FFT length that has 2 and 3 as prime factor only,

which should provide better performance than the first case (see p. 46 the discussion about

FFTs and the length of sequences); and 3) The use of the smallest FFT length that is a power of

two, to check the conclusion obtained in Section 5.2.4.

For the first case, the FFT length is 40 920 for the straightforward algorithm, and 30 690

( 3
4 ×40920) for the proposed algorithms. Note that using an FFT length of N −1 = 40919 for the

straightforward algorithm is not interesting since it has higher prime factors than 40 920, and

using 3N
4 −1 = 30689 for the proposed algorithms is also not interesting because this is a prime

number. Since the FFT lengths have relatively high prime factors (40920 = 23 ×3×5×11×31),

the performance should be lower than for the other cases.

For the second case, the smallest number higher than 40 920 that has 2 and 3 as prime factors

only is 41 472 (= 29 ×34). Thus, the FFT length is 41 472 for the straightforward algorithm, and

31 104 (= 27 ×35) for the proposed algorithms.

For the third case, the smallest power of two higher than 40 920 is 65 536 (= 216), and the

smallest power of two higher than 30 690 is 32 768 (= 215). Thus, the FFT length is 65 536 for

the straightforward algorithm, and 32 768 for the proposed algorithms.

The FFT lengths and the corresponding range for the sampling frequency are summarized

in Table 5.4. For example, an FFT length of 41 472 for the straightforward algorithm can be

obtained using a sampling frequency of 20.46 MHz and padding the sequence with 552 zeros,

or using a sampling frequency of 20.736 MHz, or with any sampling frequency between these

two values.

5.3.2 Software implementation

In this section, the straightforward algorithm and the proposed algorithm 1 are compared

on five different personal computers using Matlab. The FFT function of Matlab is based on

the FFTW library, which has no restriction on the FFT length (Frigo and Johnson [2005]). The
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Proposed, L = 32,768
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Proposed, L = 31,104

Figure 5.6: Average processing time of the algorithms on different computers for the GPS L5,
Galileo E5a and E5b signals (L is the FFT length). The CPU of the computers are respectively :
Core 2 Duo E4600 @ 2.40 GHz, QuadCore Xeon E5430 @ 2.66 GHz, Core 2 Duo E6700 @ 2.66
GHz, QuadCore Xeon E5430 2.66 GHz, Mobile Dual Core i7-2620M @ 3.2 GHz.

average processing time over 1000 runs is shown in Fig. 5.6.

Focusing on the ranking of the algorithms, it can be seen that there are mainly two groups.

The first, with the longest processing time, includes the traditional algorithm for a power

of two length, and both algorithms for the minimum length case. This is coherent with the

expectations. Indeed, for L = 65536, the FFT length is far higher than for the other cases,

which explains a longer processing time; and for the minimum FFT length case, since the

length contains high prime factors, the FFT algorithm is less efficient than for the other cases.

It can be noted that the straightforward algorithm is better than the proposed one for this case,

as expected (see Section 5.2.3). The other group includes first the proposed algorithm for a

power of two length, and then both algorithms for length that have small prime factors. The

last two have equivalent performance, the proposed algorithm being slightly better on most of

the computers, although not directly expected according to Section 5.2.3.

Regarding the case where the length is a power of two, the processing time is reduced by about

39 % in average using the proposed algorithm. This result is thus better than foreseen by the

theoretical complexity (reduction of about 20 %). This is probably due to the fact that the

performance of the FFTW algorithm in terms of FLOPS is slightly higher for a 32 768-point

FFT than for a 65 536-point FFT (Frigo and Johnson [2005]), and due to to some internal

specificities of the implemented FFT algorithm.
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Implementation Function
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

Proposed
algorithm 2

(Fig. 5.5)

5 32 768-point FFTs 5 × 7194 5 × 608 5 × 24

2 Multipliers 0 0 2 × 4

Total 35 970 3040 128

Straightforward
algorithm
(Fig. 5.3)

3 65 536-point FFTs 3 × 7627 3 × 1216 3 × 24

1 Multiplier 0 0 4

Total 22 881 3648 76

Ratio 1.57 0.83 1.68

Table 5.5: Comparison of the resources for the proposed and straightforward algorithms using
the Altera FFT for the L5, E5a and E5b signals.

5.3.3 Hardware implementation

In this section, the straightforward and the proposed algorithms are compared for an imple-

mentation on an Altera FPGA. As in Chapter 4, the FFT used is the one provided by Altera

(Altera [2013]), which requires a number of points that is a power of two. Thus, only the third

case is considered for the hardware implementation.

Due to the large number of possibilities for the FFT implementation, for the evaluation of

the resources, we consider a Stratix III FPGA, the streaming I/O data flow, a data and twiddle

precision of 18 bits, complex multipliers implemented in DSP blocks using four real multipliers,

and no logic function implemented in memory. As for Chapter 4, the resources for the FFT is

estimated with the Altera MegaWizard Plug-In Manager, and the models defined in Appendix

C are used for the other elements (multiplier and adder).

Application to reduce the processing time

The summary of the resources is given Table 5.5, considering the proposed algorithm 2 (which

has an adder less than algorithm 1, but this is a negligible difference). It can be seen that

the resources are higher for the proposed algorithm than for the straightforward algorithm.

However, as discussed in Chapter 4, the processing time with the proposed algorithm is

divided by a factor of two since the FFT length is divided by a factor two. Since the resources

are increased by a factor less than two (the memory is even reduced), the proposed algorithm

is thus more efficient than the straightforward algorithm.

Application to reduce the resources

If an increase of the resources is not wanted, the proposed algorithm can be adapted to use

only three FFTs instead of five. In this case, the two proposed algorithms are not equivalent.
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Figure 5.7: Implementation of the proposed algorithm 2 using three FFTs.
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Figure 5.8: Timing diagram corresponding to Fig. 5.7. The colors inside the boxes identify the
sequences.

Indeed, for algorithm 1, the output is the sum of two results. Consequently, a memory is

needed to store an intermediate result. Whereas for algorithm 2, there are two outputs that

can be computed one after the other, which does not require a memory for any intermediate

result. However, this requires to generate twice the local code, but this is simple and do not

require an additional memory.

The corresponding implementation of algorithm 2 is given Fig. 5.7, and the corresponding

timing diagram using the Altera FFT is depicted Fig. 5.8. It can be seen that the P th correlation

result is fully available after (P +1)65536+2L32768 clock cycles, which is about 65 536 cycles

less than for the straightforward implementation.

The corresponding resources are given in Table 5.6. It can be seen that the logic resources are

slightly reduced, the DSP resources are identical, and that the memory is reduced by 50 %,

which is a significant reduction.
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Implementation Function
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

Proposed
algorithm 2

(Fig. 5.7)

3 32 768-point FFTs 3 × 7194 3 × 608 3 × 24

1 Multiplier 0 0 1 × 4

Total 21 582 1824 76

Straightforward
algorithm
(Fig. 5.3)

3 65 536-point FFTs 3 × 7627 3 × 1216 3 × 24

1 Multiplier 0 0 4

Total 22 881 3648 76

Ratio 0.94 0.5 1

Table 5.6: Comparison of the resources for the proposed and straightforward algorithms using
the Altera FFT for the L5, E5a and E5b signals, when the proposed algorithm uses less FFTs.

5.3.4 Case with pre-averaging

To use smaller FFTs, it is possible to perform a sum before the FFT in order to have one sample

per chip (Starzyk and Zhu [2001], Hegarty et al. [2003]). Applying this technique to the L5, E5a

and E5b signals results in 10 230 points per code period, i.e. the equivalent sampling frequency

is 10.23 MHz. Therefore the results will be similar to those obtained previously. Indeed, the

prime factors of the length are similar, and for the radix-2 FFT case, according to Table 5.3,

the FFT length for the proposed algorithms would be half the one for the straightforward

algorithm.

5.4 Application to the acquisition of the E1 OS signal processed as

BOC(1,1)

In this section, a similar application study as in Section 5.3 is done, but applied to the E1 OS

signal processed as BOC(1,1). We do not consider that CBOC modulation, because it would

require a higher sampling frequency and higher complexity, however the interested reader

can easily verified if the proposed algorithms are interesting or not in this case.

5.4.1 FFT lengths

The E1 OS BOC(1,1) signal has a code chipping rate of 1.023 MHz. The minimum sampling

frequency to get the two main lobes is four times the chipping rate, i.e. 4.092 MHz. To have

the usual code step of 1
6 chip (see Section 2.1.3), the sampling frequency must be six times

the chipping rate, i.e. 6.138 MHz. Therefore, we will consider a minimum sampling frequency

of 6.138 MHz for this signal. This means that N = 2×24552 = 49104, since the primary code

length of this signal is 4 ms.
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Algorithm
Minimum Minimum FFT length Minimum power of two
FFT length with small prime factors FFT length

Straightforward
L = 49104 L = 49152 L = 65536
fS = 6.138 fS ∈ [6.138−6.144] fS ∈ [6.138−8.192]

Proposed
L = 36828 L = 36864 L = 32768*
fS = 6.138 fS ∈ [6.138−6.144] fS ∈ [6.138−6.144]

Table 5.7: FFT length (L) and sampling frequency range ( fS , in MHz) for the acquisition of the
E1 OS BOC(1,1) signal. *use of three sub-correlations.

For the first case (minimum FFT length), the FFT length is 49 104 for the straightforward

algorithm, and 36 828 ( 3
4 ×49104) for the proposed algorithms. Note that using an FFT length

of N − 1 = 49103 for the straightforward algorithm is not interesting since this is a prime

number, and using 3N
4 −1 = 36827 for the proposed algorithms is also not interesting since its

has higher prime factors than 36 828. Since the FFT lengths have relatively high prime factors

(49104 = 24 ×32 ×11×31), the performance should be lower than for the other cases.

For the second case (minimum FFT length with small prime factors), the smallest number

higher than 49 104 that has 2 and 3 as prime factors only is 49 152 (= 214 ×3). Thus, the FFT

length is 49 152 for the straightforward algorithm, and 36 864 (= 212 ×32) for the proposed

algorithms.

For the third case (minimum power of two FFT length), the smallest power of two higher than

49 104 is 65 536, and the smallest power of two higher than 36 828 is also 65 536. Thus, the

FFT length for the straightforward and the proposed algorithms is 65 536. We know that in

this case the proposed algorithms are less efficient, so we will consider three sub-correlations,

which gives FFT length of 32 768 points. Since here we have three sub-correlations, it is sure

that the proposed algorithms are less efficient for E1 OS than for L5, E5a and E5b.

The FFT lengths and the corresponding range for the sampling frequency are summarized in

Table 5.7.

5.4.2 Software implementation

The proposed and traditional algorithms are compared on five different personal computers

using Matlab as in Section 5.3.2. The average processing time over 1000 runs is shown in Fig.

5.9.

The results are more heterogeneous than in Fig. 5.6. It can be seen that however, the least

three performing algorithms are the same as previously. The proposed algorithm for a power

of two length is less efficient than previously, which is expected since there are more FFTs

performed. Finally, the best two options are for an FFT length that has small prime factors,

with an advantage for the straightforward algorithm this time (as was expected according to
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Figure 5.9: Average processing time of the algorithms on different computers for the Galileo
E1 OS BOC(1,1) signal. *use of three sub-correlations.

Section 5.2.3).

In summary, it can be seen that the most efficient way to perform the correlation is to use

lengths with small prime factors and limited zero-padding. Here, the small prime factors are

2 and 3, but 5 and 7 can also be considered. With this wide variety of lengths available, it is

rarely possible to reduce significantly the zero-padding with the proposed algorithms, and

even in the best cases the gain in performance would be marginal.

Regarding the case where the length is a power of two, the processing time is reduced by about

15 % in average using the proposed algorithm. Thus, as in Section 5.3.2, this result is better

than foreseen by the theoretical complexity (increase of about 11 %).

5.4.3 Hardware implementation

The implementation of the straightforward algorithm is identical to the one for the L5, E5a and

E5b signals, and the implementation of the proposed algorithm 2 with three sub-correlations

is provided in Fig. 5.10. The corresponding resources are provided in Table 5.8, where it can

be seen that the proposed algorithm requires far more resources than the straightforward

one, more than a factor 2 (except for the memory). Implementing only three FFTs as done in

Section 5.3.3 would reduce the resources, but the processing time would be increased by a

factor 1.5. Consequently, the proposed algorithm is not more efficient than the traditional

algorithm in this case.
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Figure 5.10: Implementation of the proposed algorithm for the E1 OS BOC(1,1) signal.

Implementation Function
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

Proposed
algorithm 2
(Fig. 5.10)

7 32 768-point FFTs 7 × 7194 7 × 608 7 × 24

3 Multipliers 0 0 3 × 4

Total 50 358 4256 180

Straightforward
algorithm
(Fig. 5.3)

3 65 536-point FFTs 3 × 7627 3 × 1216 3 × 24

1 Multiplier 0 0 4

Total 22 881 3648 76

Ratio 2.20 1.17 2.37

Table 5.8: Comparison of the resources for the proposed and straightforward algorithm using
the Altera FFT for the E1 OS BOC(1,1) signal, when the proposed algorithm uses three sub-
correlations.

5.4.4 Modifying the correlation length to improve the performance

The minimum correlation length was fixed according to the code length and the code step.

While the code length is kept fixed, however, the code step can be modified using a different

sampling frequency (which will impact the code alignment loss).

Previously, the maximum code step considered was 1
6 since the minimum sampling frequency

was 6.138 MHz, which gave a minimum correlation length of N = 49104. By increasing the

code step in order to obtain a correlation length of 43 692 instead of 49 104, the proposed

algorithms could use FFTs of 32 768 points with two sub-correlations. In this case, the results

would be the same as for the L5, E5a and E5b signals. Such length is reached for a maximum

sampling frequency of 5.4615 MHz, which means a code step of about 1
5.34 chip, resulting

in a maximum and average loss of 2.87 dB and 1.31 dB (van Diggelen [2009] pp. 155–158),

respectively. This is very close to the loss using a code step of 1
6 chip, namely 2.50 dB at
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maximum and 1.16 dB in average.

Therefore, it is possible to use a slightly larger code step for the Galileo E1 OS signal processed

as BOC(1,1), in order to be able to use the proposed algorithms with two sub-correlations and

smaller FFTs, as for the L5, E5a and E5b signals, at the expense of a very small loss in terms of

SNR.

5.5 Application to the acquisition of the E1 OS signal processed as

BPSK

If the E1 OS signal is processed as a BPSK signal, the minimum sampling frequency to get a

main lobe is twice the chipping rate, i.e. 2.046 MHz. To have the usual code step of 1
2 chip,

the sampling frequency must also be twice the chipping rate. Therefore, we will consider a

minimum sampling frequency of 2.046 MHz for this signal. This means that N = 2×8184 =
16368, since the primary code length of this signal is 4 ms.

Considering the same three cases as before, for the first case, the FFT length is 16 368 for the

straightforward algorithm, and 12 276 ( 3
4 ×16368) for the proposed algorithms.

For the second case, the smallest number higher than 16 368 that has 2 and 3 as prime factors

only is 16 384 (= 214), which in fact has just 2 as prime factor. Thus, the FFT length is thus

16 384 for the straightforward algorithm, and 12 288 (= 212 ×3) for the proposed algorithms.

Since the FFT length for the straightforward algorithm is a power of two, it is expected that the

proposed algorithms will be less efficient for this case.

For the third case, the smallest power of two higher than 16 368 is 16 384, and the smallest

power of two higher than 12 288 is also 16 384. Thus, the FFT length for the straightforward

and the proposed algorithms is 16 384. We know that in this case the proposed algorithms are

less efficient. Even considering three sub-correlations, the FFT length would still be 16 384 for

the proposed algorithms. In fact, to halve the FFT length, we should use 1023 sub-correlations,

which is clearly not efficient. The proposed algorithm is thus less efficient for this case also.

Consequently, the proposed algorithm is not efficient for the acquisition of the E1 OS signal

processed as BPSK considering the minimum sampling frequency, 2.046 MHz. However, such

a low sampling frequency has an impact on the positioning accuracy, it is thus common to use

a higher frequency. In this case, the choice for the best algorithm with the radix-2 FFT can be

found using Table 5.3.

5.6 Summary

In this chapter, we discussed the problem of decreasing the complexity of the acquisition of

the modernized GPS and Galileo signals that have a secondary code that is not exploited. The

126



5.6. Summary

straightforward solution of doubling the size of the correlation and discarding half of the points

calculated is not satisfying, which led us to look for a more efficient algorithm. We then pro-

posed two algorithms that transform the initial correlation into two smaller sub-correlations,

without loss of sensitivity since the samples of interest are computed exactly. From these two

algorithms, it was shown that one is preferable when the local code is computed offline, and

that the other is preferable for hardware implementations.

The proposed algorithms are more efficient than the straightforward algorithm when the latter

requires significant zero-padding. The zero-padding size depends on the sampling frequency

and the type of FFT used, and it can be significant only when the radix-2 FFT is used. Therefore

the proposed algorithms are interesting for hardware and DSP-based receivers, but not for a

computer-based receivers (which can efficiently implement FFT of any lengths). Considering

the radix-2 FFT, the proposed algorithms are more efficient for half of the possible sampling

frequencies. To rapidly know if the proposed algorithms are more efficient for a specific case,

it is enough to look at Fig. 5.11, which is a graphical version of Table 5.3.

If the sampling frequency is in a range where the proposed algorithms are more efficient, it

has been shown that the theoretical number of operations is reduced by about 20 %, and that

the memory required for an FPGA implementation is divided by two.

For the GPS L5, Galileo E5a and E5b signals, if the sampling frequency is between 20.46 MHz

and 21.846 MHz, the proposed algorithms are more efficient.

For the Galileo E1 OS signal processed as BOC(1,1), the minimum sampling frequency consid-

ered, 6.138 MHz, is in a range where the proposed algorithms are not more efficient. However,

if the sampling frequency is decreased to 5.4615 MHz at the expense of an average loss 0.15 dB

(due to a larger code step in the acquisition), this sampling frequency is in a range where the

proposed algorithms are more efficient.

For the Galileo E1 OS signal processed as BPSK, and the GPS L1 C/A signal (where transition

can be due to the data), the minimum sampling frequency considered, 2.046 MHz, is in a

range where the proposed algorithms are not more efficient. But from 2.049 MHz to 2.730

MHz, the proposed algorithms are more efficient. Thus, the conclusion really depends on the

context.

Using similar analysis as done in this chapter, it is easy to determine if the proposed algorithms

are suitable for other and/or future GNSS signals. For example, the E6 CS signal is a good

candidate since the minimum correlation length is half the one for the L5, E5a and E5B signals.

The proposed algorithm may be also interesting for the E6 PRS signal, the GPS M signal or the

future GLONASS CDMA and BeiDou signals.

The problem discussed in this chapter does not necessarily restrict to GNSS and to the parallel

code search. Any system that performs a circular correlation (or a convolution) between two

signals where one of them has half of zeros and where half of the output is discarded can
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Figure 5.11: Radix-2 FFT length for the proposed and the straightforward algorithms in func-
tion of the sampling frequency considering a code of 1 ms (for a code of 4 ms, multiply the
actual sampling frequency by 4). Note that the axis is logarithmic.

use the proposed algorithm. In GNSS, this problem is also present in the DBZP acquisition

method (Foucras et al. [2012]), as well as for the acquisition of signals using the secondary

code, as will shown be in Chapter 6.
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6 Acquisition of modern GNSS signals
for high sensitivity

In this chapter, we discuss the problem of the parallel code search acquisition when the

complete tiered code is used, i.e. the code used to compute the correlation using FFTs contains

a primary and a secondary code. This case is typically for high sensitivity receivers, since in

this case there is no limit for the coherent integration time due to transitions (but there is

still the limits due to the oscillator or the receiver dynamics (van Diggelen [2014])). However,

a direct implementation requires a significant amount of resources, because large FFTs are

involved. For example, the L5 signal has a primary code of 10 230 chips and a secondary code

of 20 chips, therefore considering two samples per chip, the tiered code is composed of 409 200

samples. In this chapter, we discuss two directions to answer this problem.

First, we look for implementations that use smaller FFTs (same order of magnitude as the

length of the primary code), in order to be able to implement the parallel code search in FPGAs

since the direct implementation is not possible. The aim is not to reduce the complexity

(i.e. the number of operations), but we compute the complexity to compare the different

implementations. We also show the relation with the problem of Chapter 5. Since the matrix

notation is used, to show more easily the results, we consider very small sequences for the

demonstration (4 samples for the primary code and 3 chips for the secondary code), but we

provide the complexity for the general case, and we consider 20 460 samples and 20 chips (as

for the GPS L5 signal) for the numerical application. For the evaluation of the complexity, we

consider that an FFT of N points requires N
2 log2(N ) multiplications and N log2(N ) additions.

Of course, this is true only for the radix-2 FFT, however this approximation will allow us to

have an idea of the complexity.

Second, we look for implementations that reduce the complexity. The idea we exploit is that

performing some combinations of the tiered code may lead to some sub-sequences that will

contain only zeros. For this, we use the Chinese remainder theorem already seen in Chapter 4.

We apply this to the GPS L5 signal, and in addition to the L5 secondary code, we also study the

other binary codes of 20 bits length to verify the potential of the proposed method for other

codes, and finally we briefly discuss the application to other GNSS signals.
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6.1 Expression of the tiered code

As indicated in Chapter 1, a tiered code is composed of a primary code repeated several

times where each primary code period is multiplied by a chip of the secondary code. In the

following, we will denote hn the tiered code, pn the primary code and sn the secondary code

(the corresponding notations in Chapter 1 for the pilot channel were cq (nTs), cp,q (nTs) and

cs,q (nTs), respectively).

Considering that the primary code pn contains NP samples, and that the secondary code sn

contains NS chips, we can write

p =
[

p0 p1 . . . pNP−1

]
, (6.1)

and

s =
[

s0 s1 . . . sNS−1

]
. (6.2)

Then, the tiered can be defined as

h = s⊗p

=
[

s0p s1p . . . sNs−1p
]

=
[

s0p0 s0p1 . . . s0pNp−1 s1p0 s1p1 . . . s1pNp−1 . . . sNs−1pNp−1

]
=

[
h0 h1 . . . hN−1

]
,

(6.3)

where ⊗ denotes the Kronecker product, and N = NP NS .

6.2 Direct implementation of the circular correlation

The implementation of the circular correlation of the incoming signal xn and the local tiered

code hn can be performed as usual using 3 FFTs, as shown in Fig. 6.1.

xn Xk yn

hn

Yk

FFT IFFT

N

N N

FFT* HkH*

N

Figure 6.1: Computation of a circular correlation of N points using FFTs.

Considering for example a number of samples in one primary code period of NP = 4, and a

number of chips in the secondary codes of NS = 3, the tiered code is composed of N = NP NS =
12 samples, and the circular correlation between the incoming signal xn and the local tiered
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code can be expressed as
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y = H x,

(6.4)
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y = X h,

(6.5)

where H is a right circulant matrix, and X is a left circulant matrix. Implementing this operation

with FFTs requires 3 FFTs of N points and 1 product of N points, as shown in Fig. 6.1. Therefore

the number of multiplications is

Nmul = 3
N

2
log2(N )+N

= 3
NP NS

2
log2(NP NS)+NP NS

= NP NS

(
3

2
log2(NP )+ 3

2
log2(NS)+1

)
,

(6.6)

and the number of additions is

Nadd = 3N log2(N )

= 3NP NS log2(NP NS)

= NP NS
(
3log2(NP )+3log2(NS)

) (6.7)
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Considering NP = 20460 and NS = 20, this gives

Nmul ≈ 409200 (28.96) ≈ 11851934

Nadd ≈ 409200 (55.93) ≈ 22885467.
(6.8)

6.3 Implementations to use smaller FFTs

In this section, we present different implementations to compute the circular correlation

defined by Eqs. (6.4) and (6.5) using smaller FFTs. This is done by separating the sequences

either by downsampling or by segmentation, and either by a factor NP or NS .

6.3.1 Separation by downsampling

In this section, we look at the results when we separate the input and output samples by

performing a downsampling. First, we perform a downsampling by a factor NS , and then by a

factor NP .

Downsampling by a factor NS using the equation with the matrix H

By separating the samples by performing a downsampling by a factor NS , each sequence is

separated into NS sub-sequences of NP samples, and Eq. (6.4) can be expressed as


y0
y3
y6
y9

=


s0 p0 s0 p3 s1 p2 s2 p1
s2 p1 s0 p0 s0 p3 s1 p2
s1 p2 s2 p1 s0 p0 s0 p3
s0 p3 s1 p2 s2 p1 s0 p0




x0
x3
x6
x9

+


s0 p1 s1 p0 s1 p3 s2 p2
s2 p2 s0 p1 s1 p0 s1 p3
s1 p3 s2 p2 s0 p1 s1 p0
s1 p0 s1 p3 s2 p2 s0 p1




x1
x4
x7

x10

+


s0 p2 s1 p1 s2 p0 s2 p3
s2 p3 s0 p2 s1 p1 s2 p0
s2 p0 s2 p3 s0 p2 s1 p1
s1 p1 s2 p0 s2 p3 s0 p2




x2
x5
x8

x11




y1
y4
y7

y10

=


s2 p3 s0 p2 s1 p1 s2 p0
s2 p0 s2 p3 s0 p2 s1 p1
s1 p1 s2 p0 s2 p3 s0 p2
s0 p2 s1 p1 s2 p0 s2 p3




x0
x3
x6
x9

+


s0 p0 s0 p3 s1 p2 s2 p1
s2 p1 s0 p0 s0 p3 s1 p2
s1 p2 s2 p1 s0 p0 s0 p3
s0 p3 s1 p2 s2 p1 s0 p0




x1
x4
x7

x10

+


s0 p1 s1 p0 s1 p3 s2 p2
s2 p2 s0 p1 s1 p0 s1 p3
s1 p3 s2 p2 s0 p1 s1 p0
s1 p0 s1 p3 s2 p2 s0 p1




x2
x5
x8

x11




y2
y5
y8

y11

=


s2 p2 s0 p1 s1 p0 s1 p3
s1 p3 s2 p2 s0 p1 s1 p0
s1 p0 s1 p3 s2 p2 s0 p1
s0 p1 s1 p0 s1 p3 s2 p2




x0
x3
x6
x9

+


s2 p3 s0 p2 s1 p1 s2 p0
s2 p0 s2 p3 s0 p2 s1 p1
s1 p1 s2 p0 s2 p3 s0 p2
s0 p2 s1 p1 s2 p0 s2 p3




x1
x4
x7

x10

+


s0 p0 s0 p3 s1 p2 s2 p1
s2 p1 s0 p0 s0 p3 s1 p2
s1 p2 s2 p1 s0 p0 s0 p3
s0 p3 s1 p2 s2 p1 s0 p0




x2
x5
x8

x11

 ,

(6.9)

or in a more concise wayy0

y1

y2

=

 H0 H1 H2

P H2 H0 H1

P H1 P H2 H0


x0

x1

x2

 , (6.10)

where P is a permutation matrix, and the matrices Hi are circulant. Implementing these

operations using FFTs requires

• NS FFTs of NP points, for the sequences hi ,n ,

• NS FFTs of NP points, for the sequences xi ,n ,

• NS IFFTs of NP points, for the sequences yi ,n ,
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• NS −1 products of NP points, for the permutation performed by a multiplication with a

complex exponential,

• N 2
S products of NP points, for the matrix-vector products,

• NS(NS −1) additions of NP points, for the additions of the results of the matrix-vector

products.

Therefore, the number of multiplications is

Nmul = 3NS

(
NP

2
log2(NP )

)
+ (

N 2
S +NS −1

)
NP

= NP NS

(
3

2
log2(NP )+NS +1− 1

NS

)
,

(6.11)

and the number of additions is

Nadd = 3NS
(
NP log2(NP )

)+NS(NS −1)NP

= NP NS
(
3log2(NP )+NS −1

)
.

(6.12)

Considering NP = 20460 and NS = 20, this gives

Nmul ≈ 409200 (42.48)−20460 ≈ 17362674

Nadd ≈ 409200 (61.96) ≈ 25354669,
(6.13)

which means an increase of 46.5 % for the multiplications and 10.8 % for the additions,

compared to the direct implementation. The large increase for the multiplications is due to

the N 2
S matrix-vector products.

Here, each matrix Hi contains all the secondary code chips, thus we cannot exploit the

repetitions in the tiered code. This means that the same result would be obtained with any

signal.

Downsampling by a factor NS using the equation with the matrix X

Doing the same separation as previously using Eq. (6.5) leads to a similar implementation

with the same complexity, therefore we do not give the details.
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Downsampling by a factor NP using the equation with the matrix H

By separating the samples by performing a downsampling by a factor NP , each sequence is

separated into NP sub-sequences of NS samples, and Eq. (6.4) can be expressed as

y0
y4
y8

=
s0 p0 s1 p0 s2 p0

s2 p0 s0 p0 s1 p0
s1 p0 s2 p0 s0 p0

x0
x4
x8

+
s0 p1 s1 p1 s2 p1

s2 p1 s0 p1 s1 p1
s1 p1 s2 p1 s0 p1

x1
x5
x9

+
s0 p2 s1 p2 s2 p2

s2 p2 s0 p2 s1 p2
s1 p2 s2 p2 s0 p2

x2
x6
x9

+
s0 p3 s1 p3 s2 p3

s2 p3 s0 p3 s1 p3
s1 p3 s2 p3 s0 p3

 x3
x7

x11


y1

y5
y9

=
s2 p3 s0 p3 s1 p3

s1 p3 s2 p3 s0 p3
s0 p3 s1 p3 s2 p3

x0
x4
x8

+
s0 p0 s1 p0 s2 p0

s2 p0 s0 p0 s1 p0
s1 p0 s2 p0 s0 p0

x1
x5
x9

+
s0 p1 s1 p1 s2 p1

s2 p1 s0 p1 s1 p1
s1 p1 s2 p1 s0 p1

x2
x6
x9

+
s0 p2 s1 p2 s2 p2

s2 p2 s0 p2 s1 p2
s1 p2 s2 p2 s0 p2

 x3
x7

x11


 y2

y6
y10

=
s2 p2 s0 p2 s1 p2

s1 p2 s2 p2 s0 p2
s0 p2 s1 p2 s2 p2

x0
x4
x8

+
s2 p3 s0 p3 s1 p3

s1 p3 s2 p3 s0 p3
s0 p3 s1 p3 s2 p3

x1
x5
x9

+
s0 p0 s1 p0 s2 p0

s2 p0 s0 p0 s1 p0
s1 p0 s2 p0 s0 p0

x2
x6
x9

+
s0 p1 s1 p1 s2 p1

s2 p1 s0 p1 s1 p1
s1 p1 s2 p1 s0 p1

 x3
x7

x11


 y3

y7
y11

=
s2 p1 s0 p1 s1 p1

s1 p1 s2 p1 s0 p1
s0 p1 s1 p1 s2 p1

x0
x4
x8

+
s2 p2 s0 p2 s1 p2

s1 p2 s2 p2 s0 p2
s0 p2 s1 p2 s2 p2

x1
x5
x9

+
s2 p3 s0 p3 s1 p3

s1 p3 s2 p3 s0 p3
s0 p3 s1 p3 s2 p3

x2
x6
x9

+
s0 p0 s1 p0 s2 p0

s2 p0 s0 p0 s1 p0
s1 p0 s2 p0 s0 p0

 x3
x7

x11

 ,

(6.14)

or in a more concise way
y0

y1

y2

y3

=


p0S p1S p2S p3S

p3P S p0S p1S p2S

p2P S p3P S p0S p1S

p1P S p2P S p3P S p0S




x0

x1

x2

x3

 , (6.15)

where P is a permutation matrix, and S a circulant matrix. Implementing these operations

using FFTs requires

• 1 FFT of NS points, for the sequence sn ,

• NP FFTs of NS points, for the sequences xi ,n ,

• NP IFFTs of NS points, for the sequences yi ,n ,

• 1 product of NS points, for the permutation performed by a multiplication with a

complex exponential,

• 2NP −1 products of NS points, for the matrix-vector products,

• NP (NP −1) additions of NS points, for the combinations of the results of the matrix-

vector products.

Note that here we do not consider the multiplication by the samples pi , as it can be seen as an

addition or a subtraction. Therefore, the number of multiplications is

Nmul = (2NP +1)

(
NS

2
log2(NS)

)
+ (2NP −1+1) NS

= NP NS

(
log2(NS)+2+ log2(NS)

2NP

)
,

(6.16)
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and the number of additions is

Nadd = (2NP +1)
(
NS log2(NS)

)+NP (NP −1)NS

= NP NS

(
2log2(NS)+NP −1+ log2(NS)

NP

)
.

(6.17)

Considering NP = 20460 and NS = 20, this gives

Nmul ≈ 409200 (6.32)+43.22 ≈ 2586976

Nadd ≈ 409200 (20467.64)+86.44 ≈ 8375359952,
(6.18)

which means an reduction of 78.2 % for the multiplications but an increase of 36 496.8 % for

the additions, compared to the direct implementation. The large increase for the additions is

due to the NP (NP −1) additions between the matrix-vector products, since NP is a high value.

Here, we are able to exploit the repetitions in the tiered code since we have only one matrix,

which means that the number of FFTs is reduced by about one third. However, there is a huge

increase of the number additions, due to the additions between intermediate results, which

make this implementation inefficient.

Downsampling by a factor NP using the equation with the matrix X

Doing the same separation as previously using Eq. (6.5) leads a similar implementation with

the same complexity, therefore we do not give the details.

6.3.2 Separation by segmentation

In this section, we look at the results when we separate the input and output samples by

sections. First, we perform a segmentation by a factor NS , and then by a factor NP .

Segmentation by a factor NS using the equation with the matrix H

By segmenting the sequences by a factor NS , each sequence is separated into NS sub-sequences

of NP samples, and Eq. (6.4) can be expressed as


y0
y1
y2
y3

=


s0 p0 s0 p1 s0 p2 s0 p3
s2 p3 s0 p0 s0 p1 s0 p2
s2 p2 s2 p3 s0 p0 s0 p1
s2 p1 s2 p2 s2 p3 s0 p0




x0
x1
x2
x3

+


s1 p0 s1 p1 s1 p2 s1 p3
s0 p3 s1 p0 s1 p1 s1 p2
s0 p2 s0 p3 s1 p0 s1 p1
s0 p1 s0 p2 s0 p3 s1 p0




x4
x5
x6
x7

+


s2 p0 s2 p1 s2 p2 s2 p3
s1 p3 s2 p0 s2 p1 s2 p2
s1 p2 s1 p3 s2 p0 s2 p1
s1 p1 s1 p2 s1 p3 s2 p0




x8
x9

x10
x11




y4
y5
y6
y7

=


s2 p0 s2 p1 s2 p2 s2 p3
s1 p3 s2 p0 s2 p1 s2 p2
s1 p2 s1 p3 s2 p0 s2 p1
s1 p1 s1 p2 s1 p3 s2 p0




x0
x1
x2
x3

+


s0 p0 s0 p1 s0 p2 s0 p3
s2 p3 s0 p0 s0 p1 s0 p2
s2 p2 s2 p3 s0 p0 s0 p1
s2 p1 s2 p2 s2 p3 s0 p0




x4
x5
x6
x7

+


s1 p0 s1 p1 s1 p2 s1 p3
s0 p3 s1 p0 s1 p1 s1 p2
s0 p2 s0 p3 s1 p0 s1 p1
s0 p1 s0 p2 s0 p3 s1 p0




x8
x9

x10
x11




y8
y9

y10
y11

=


s1 p0 s1 p1 s1 p2 s1 p3
s0 p3 s1 p0 s1 p1 s1 p2
s0 p2 s0 p3 s1 p0 s1 p1
s0 p1 s0 p2 s0 p3 s1 p0




x0
x1
x2
x3

+


s2 p0 s2 p1 s2 p2 s2 p3
s1 p3 s2 p0 s2 p1 s2 p2
s1 p2 s1 p3 s2 p0 s2 p1
s1 p1 s1 p2 s1 p3 s2 p0




x4
x5
x6
x7

+


s0 p0 s0 p1 s0 p2 s0 p3
s2 p3 s0 p0 s0 p1 s0 p2
s2 p2 s2 p3 s0 p0 s0 p1
s2 p1 s2 p2 s2 p3 s0 p0




x8
x9

x10
x11

 ,

(6.19)
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or in a more concise wayy0

y1

y2

=

H0 H1 H2

H2 H0 H1

H1 H2 H0


x0

x1

x2

 . (6.20)

Each matrix Hi contains only two secondary code chips, one is present on and above the

diagonal while the other is present below the diagonal. This means that a matrix Hi is either

circulant or skew-circulant (see Appendix A.2). There are thus only two possible matrices. For

example, if we consider that s0 = 1, s1 = 1, and s2 =−1, Eq. (6.20) becomesy0

y1

y2

=

 PS PC −PS

−PS PS PC

PC −PS PS


x0

x1

x2



=

PC PS

PC PS

PC PS


x1 x0 −x2

x2 x1 −x0

x0 x2 −x1

 ,

(6.21)

with

PC =


p0 p1 p2 p3

p3 p0 p1 p2

p2 p3 p0 p1

p1 p2 p3 p0

 , and PS =


p0 p1 p2 p3

−p3 p0 p1 p2

−p2 −p3 p0 p1

−p1 −p2 −p3 p0

 . (6.22)

Implementing these operations using FFTs requires

• 2 FFTs of NP points, for the sequence pn ,

• 2NS FFTs of NP points, for the combinations of the sequences xi ,n ,

• 2NS IFFTs of NP points, for the sequences yi ,n ,

• 2NS products of NP points, for the matrix-vector products,

• 2NS +1 products of NP points, for the skew-circular correlations,

• NS(NS −2) additions of NP points, for the combinations of the sequences xi ,n ,

• NS additions of NP points, for the additions to obtain the sequences yi ,n ,
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Therefore, the number of multiplications is

Nmul = (4NS +2)

(
NP

2
log2(NP )

)
+ (4NS +1) NP

= NP NS

(
2log2(NP )+4+ log2(NP )+1

NS

)
,

(6.23)

and the number of additions is

Nadd = (4NS +2)
(
NP log2(NP )

)+NS(NS −1)NP

= NP NS

(
4log2(NP )+NS −1+ 2log2(NP )

NS

)
.

(6.24)

Considering NP = 20460 and NS = 20, this gives

Nmul ≈ 409200 (32.64)+313457.81 ≈ 13670170

Nadd ≈ 409200 (76.28)+585995.62 ≈ 31800620,
(6.25)

which means an increase of 15.3 % for the multiplications and 39.0 % for the additions,

compared to the direct implementation. Compared to the downsampling by a factor NS , the

number of FFTs is higher (2+4NS instead of 3NS), but the number of multiplications for the

matrix-vector products is reduced a lot (2NS instead of N 2
S ). This explains a lower increase for

the multiplications, and a higher increase for the additions.

Here, it is possible to exploit the repetitions, but the fact to have at the same time circulant

and skew-circulant matrices implies to double the number of FFTs.

Segmentation by a factor NS using the equation with the matrix X

By segmenting the sequences by a factor NS , each sequence is separated into NS sub-sequences

of NP samples, and Eq. (6.5) can be expressed as


y0

y1

y2

y3

=


x0 x1 x2 x3

x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6




s0p0

s0p1

s0p2

s0p3

+


x4 x5 x6 x7

x5 x6 x7 x8

x6 x7 x8 x9

x7 x8 x9 x10




s1p0

s1p1

s1p2

s1p3

+


x8 x9 x10 x11

x9 x10 x11 x0

x10 x11 x0 x1

x11 x0 x1 x2




s2p0

s2p1

s2p2

s2p3




y4

y5

y6

y7

=


x4 x5 x6 x7

x5 x6 x7 x8

x6 x7 x8 x9

x7 x8 x9 x10




s0p0

s0p1

s0p2

s0p3

+


x8 x9 x10 x11

x9 x10 x11 x0

x10 x11 x0 x1

x11 x0 x1 x2




s1p0

s1p1

s1p2

s1p3

+


x0 x1 x2 x3

x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6




s2p0

s2p1

s2p2

s2p3




y8

y9

y10

y11

=


x8 x9 x10 x11

x9 x10 x11 x0

x10 x11 x0 x1

x11 x0 x1 x2




s0p0

s0p1

s0p2

s0p3

+


x0 x1 x2 x3

x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6




s1p0

s1p1

s1p2

s1p3

+


x4 x5 x6 x7

x5 x6 x7 x8

x6 x7 x8 x9

x7 x8 x9 x10




s2p0

s2p1

s2p2

s2p3

 ,

(6.26)
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or in a more concise wayy0

y1

y2

=

s0X0 s1X1 s2X2

s0X1 s1X2 s2X0

s0X2 s1X0 s2X1


p

p

p

 , (6.27)

where the matrices Xi are Hankel (see Appendix A.2.4). Hankel matrices can be embedded

into circulant matrices of double size.

Thus, implementing these operations using FFTs requires

• 1 FFT of 2NP points, for the sequence pn ,

• NS FFTs of 2NP points, for the sequences xi ,n ,

• NS IFFTs of 2NP points, for the sequences yi ,n ,

• NS products of 2NP points, for the matrix-vector products,

• NS(NS −1) additions of NP points, for the combinations of the results of the matrix-

vector products.

Therefore, the number of multiplications is

Nmul = (2NS +1)

(
2NP

2
log2(2NP )

)
+NS NP

= NP NS

(
2log2(NP )+3+ log2(2NP )

NS

)
,

(6.28)

and the number of additions is

Nadd = (2NS +1)
(
2NP log2(2NP )

)+NS(NS −1)NP

= NP NS

(
4log2(NP )+NS +3+ 2log2(2NP )

NS

)
.

(6.29)

Considering NP = 20460 and NS = 20, this gives

Nmul ≈ 409200 (31.64)+313457.81 ≈ 13260970

Nadd ≈ 409200 (80.28)+626915.62 ≈ 33478340,
(6.30)

which means an increase of 11.9 % for the multiplications and 46.3 % for the additions,

compared to the traditional implementation.

Compared to the segmentation by a factor NS using the matrix H, the number of FFTs is

divided by two but the FFT length is doubled (which requires slightly more operations), but

there is not the additional product required by the skew-circular correlations. This explains

the lower increase for the multiplications, and the higher increase for the additions.
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Here, it is possible to exploit the repetitions, but the fact to have Hankel matrices implies to

double the length of the FFTs.

Segmentation by a factor NP using the equation with the matrix H

By segmenting the sequences by a factor NP , each sequence is separated into NP sub-sequences

of NS samples, and Eq. (6.4) can be expressed as

y0
y1
y2

=
s0 p0 s0 p1 s0 p2

s2 p3 s0 p0 s0 p1
s2 p2 s2 p3 s0 p0

x0
x1
x2

+
s0 p3 s1 p0 s1 p1

s0 p2 s0 p3 s1 p0
s0 p1 s0 p2 s0 p3

x3
x4
x5

+
s1 p2 s1 p3 s2 p0

s1 p1 s1 p2 s1 p3
s1 p0 s1 p1 s1 p2

x6
x7
x8

+
s2 p1 s2 p2 s2 p3

s2 p0 s2 p1 s2 p2
s1 p3 s2 p0 s2 p1

 x9
x10
x11


y3

y4
y5

=
s2 p1 s2 p2 s2 p3

s2 p0 s2 p1 s2 p2
s1 p3 s2 p0 s2 p1

x0
x1
x2

+
s0 p0 s0 p1 s0 p2

s2 p3 s0 p0 s0 p1
s2 p2 s2 p3 s0 p0

x3
x4
x5

+
s0 p3 s1 p0 s1 p1

s0 p2 s0 p3 s1 p0
s0 p1 s0 p2 s0 p3

x6
x7
x8

+
s1 p2 s1 p3 s2 p0

s1 p1 s1 p2 s1 p3
s1 p0 s1 p1 s1 p2

 x9
x10
x11


y6

y7
y8

=
s1 p2 s1 p3 s2 p0

s1 p1 s1 p2 s1 p3
s1 p0 s1 p1 s1 p2

x0
x1
x2

+
s2 p1 s2 p2 s2 p3

s2 p0 s2 p1 s2 p2
s1 p3 s2 p0 s2 p1

x3
x4
x5

+
s0 p0 s0 p1 s0 p2

s2 p3 s0 p0 s0 p1
s2 p2 s2 p3 s0 p0

x6
x7
x8

+
s0 p3 s1 p0 s1 p1

s0 p2 s0 p3 s1 p0
s0 p1 s0 p2 s0 p3

 x9
x10
x11


 y9

y10
y11

=
s0 p3 s1 p0 s1 p1

s0 p2 s0 p3 s1 p0
s0 p1 s0 p2 s0 p3

x0
x1
x2

+
s1 p2 s1 p3 s2 p0

s1 p1 s1 p2 s1 p3
s1 p0 s1 p1 s1 p2

x3
x4
x5

+
s2 p1 s2 p2 s2 p3

s2 p0 s2 p1 s2 p2
s1 p3 s2 p0 s2 p1

x6
x7
x8

+
s0 p0 s0 p1 s0 p2

s2 p3 s0 p0 s0 p1
s2 p2 s2 p3 s0 p0

 x9
x10
x11

 ,

(6.31)

or in a more concise way
y0

y1

y2

y3

=


H0 H1 H2 H3

H3 H0 H1 H2

H2 H3 H0 H1

H1 H2 H3 H0




x0

x1

x2

x3

 , (6.32)

where the matrices Hi are Toeplitz (see Appendix A.2.3). Toeplitz matrices can be changed to

circulant matrices by doubling their size. Thus, implementing these operations using FFTs

requires

• NP FFTs of 2NS points, for the sequence hi ,n ,

• NP FFTs of 2NS points, for the sequences xi ,n ,

• NP IFFTs of 2NS points, for the sequences yi ,n ,

• NP products of 2NS points, for the matrix-vector products,

• NP (NP −1) additions of NS points, for the combinations of the results of the matrix-

vector products.

Therefore, the number of multiplications is

Nmul = 3NP
(
NS log2(2NS)

)+NP NS

= NP NS
(
3log2(2NS)+1

)
,

(6.33)
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and the number of additions is

Nadd = 3NP
(
2NS log2(2NS)

)+NP (NP −1)NS

= NP NS
(
6log2(2NS)+NP −1

)
.

(6.34)

Considering NP = 20460 and NS = 20, this gives

Nmul ≈ 409200 (16.97) ≈ 6942399

Nadd ≈ 409200 (20490.93) ≈ 8384889198,
(6.35)

which means a reduction of 41.4 % for the multiplications but an increase of 36 538.5 % for the

additions, compared to the direct implementation.

Compared to the downsampling by a factor NP , the number of FFTs is higher and the FFT

length is doubled, which explains a higher number of the multiplications. The large increase

for the additions is still due to the NP (NP − 1) additions of the matrix-vector products to

compute.

Here, each matrix Hi contains all the secondary code chips, thus we cannot exploit the

repetitions in the tiered code. This means that the same result would be obtained with any

signal.

Segmentation by a factor NP using the equation with the matrix X

Doing the same separation as previously using Eq. (6.5) leads a similar implementation with

the same complexity, therefore we do not give the details.

6.3.3 Summary

Table 6.1 provides a summary of the different implementations according to the separation

(downsampling or segmentation), the factor (NS or NP ) and the equation used (Eq. 6.4 with

H as matrix or Eq. 6.5 with X as matrix). It can be seen that using a factor NP is not efficient

because of the prohibitive number of additions, even if we can exploit the repetition of the

primary code.

The most efficient implementations (downsampling and segmentation by a factor NS) have

similar performance. However, for a hardware implementation the implementation obtained

by segmentation is more interesting. Indeed, for each section of the output, there is only NS

products to perform between the FFTs and the storage of intermediate value is relatively small

(the result of one product), while with the implementation obtain by downsampling, there are

N 2
S product and the storage is much higher, as already shown for the case NS = 2 in Section

4.3.6.
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Factor NS NP

Matrix used H X H X

Separation by
downsampling

Matrices
Circulant Circulant Circulant Circulant

obtained

Exploitation of
No No Yes Yes

the repetition

Complexity
+46.5 % +46.5 % −78.2 % −78.2 %
+10.8 % +10.8 % +36496.8 % +36496.8 %

Separation by
segmentation

Matrices Circulant and
Hankel Toeplitz Toeplitz

obtained skew-circulant

Exploitation of
Yes Yes No No

the repetition

Complexity
+15.3 % +11.9 % −41.4 % −41.4 %
+39.0 % +46.3 % 36 538.5 % 36 538.5 %

Table 6.1: Summary of the implementations according to the separation and separation factor.
The complexity is given in comparison to the direct implementation (Fig. 6.1), for the number
of multiplications and additions.

6.3.4 Relation to Chapter 5

In the separation by segmentation with a factor NS and the matrix X, the small matrices

obtained were Hankel. As indicated, such matrices can be embedded into circulant matrices.

Below, we detail this operation. In Eq. (6.27), we have

X0 =


x0 x1 x2 x3

x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

 , (6.36)

an NP ×NP matrix. This Hankel matrix can be embedded into the 2NP −1×2NP −1 circulant

matrix

XC 0 =



x0 x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6 x0

x2 x3 x4 x5 x6 x0 x1

x3 x4 x5 x6 x0 x1 x2

x4 x5 x6 x0 x1 x2 x3

x5 x6 x0 x1 x2 x3 x4

x6 x0 x1 x2 x3 x4 x5


. (6.37)
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Thus, the product between the matrix X0 and the vector p can be obtained as

x0 x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6 x0

x2 x3 x4 x5 x6 x0 x1

x3 x4 x5 x6 x0 x1 x2

x4 x5 x6 x0 x1 x2 x3

x5 x6 x0 x1 x2 x3 x4

x6 x0 x1 x2 x3 x4 x5





p0

p1

p2

p3

0

0

0


=



x0 x1 x2 x3

x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

x4 x5 x6 x0

x5 x6 x0 x1

x6 x0 x1 x2




p0

p1

p2

p3



XC 0 pZ =
[

X0

XD

]
p,

(6.38)

where pZ is p padded with NP −1 zeros, by keeping only the first NP samples of the product.

This matrix-vector product can be reformulated to have the samples of xn in the vector, i.e.

x0 x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6 x0

x2 x3 x4 x5 x6 x0 x1

x3 x4 x5 x6 x0 x1 x2

x4 x5 x6 x0 x1 x2 x3

x5 x6 x0 x1 x2 x3 x4

x6 x0 x1 x2 x3 x4 x5





p0

p1

p2

p3

0

0

0


=



p0 p1 p2 p3 0 0 0

0 p0 p1 p2 p3 0 0

0 0 p0 p1 p2 p3 0

0 0 0 p0 p1 p2 p3

p3 0 0 0 p0 p1 p2

p2 p3 0 0 0 p0 p1

p1 p2 p3 0 0 0 p0





x0

x1

x2

x3

x4

x5

x6


. (6.39)

Such a matrix-vector product has already been encountered in Chapter 5 (see Eq. (5.2)), where

the aim was to perform a circular correlation over one primary code avoiding any loss due to a

transition caused by the secondary code. Therefore, the algorithms proposed in Chapter 5

to reduce the complexity can be applied for the circular correlation over a full period of the

tiered code, using a segmentation by a factor NS when X is the matrix.

6.4 Implementations to reduce the complexity

In this section, we present alternative implementations of the correlation where the aim is to

use the specificities of the secondary code to reduce the complexity. The idea is that since the

secondary code is binary, adding or subtracting chips will lead to 0, +2 or −2. And maybe it is

possible to obtain some sub-sequences with only zeros, which could reduce the complexity.

6.4.1 Computation of the correlation using the Chinese remainder theorem

Computation using two sub-correlations

As already presented in Section 4.3.3, the circular correlation can be computed as depicted in

Fig. 6.2 using the CRT. In this case, the inputs of the circular and skew-circular correlations
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h1,n

x1,n

FFT
N/2

IFFT
N/2

IFFT
N/2 –

yn

yn+N/2

h0,n

x0,n

FFT*

N/2

FFT
N/2

FFT*

N/2–

hn

hn+N/2

–

xn

xn+N/2

y0,n

y1,n

e −j
 
πn/(N/2)

e −j
 
πn/(N/2)

e j 
πn/(N/2)

Figure 6.2: Computation of a circular correlation of N points using N /2-point FFTs (algorithm
based on the Chinese remainder theorem).

are the sum and the difference of the first and second half of the input sequences, i.e. h0,n =
hn +hn+N /2 and h1,n = hn −hn+N /2. If hn is a tiered code, from Eq. (6.3) we have

h0 =
[

(s0 + sNS /2)p (s1 + sNS /2+1)p . . . (sNS /2−1 + sNS−1)p
]

=
[

s0,0p s0,1p . . . s0,NS /2−1p
]

= s0 ⊗p,

(6.40)

and

h1 =
[

(s0 − sNS /2)p (s1 − sNS /2+1)p . . . (sNS /2−1 − sNS−1)p
]

=
[

s1,0p s1,1p . . . s1,NS /2−1p
]

= s1 ⊗p.

(6.41)

Since the chips of the secondary code sn can take as value +1 or −1, the chips of the sub-

sequences s0,n and s1,n can take as value +2, 0 or −2. Therefore, about half of the samples of

h0,n and h1,n may be zeros (since there are two possibilities to obtain 0, but only one to obtain

+2 or −2).

Computation using one sub-correlation and two sub-sub-correlations

Since the top part in Fig. 6.2 with the 3 FFTs corresponds also to a circular correlation, we

can apply the CRT once again to obtain Fig. 6.3, where h00,n = h0,n +h0,n+N /4 and h01,n =
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h1,n

x1,n

FFT
N/2

IFFT
N/2 –

yn

yn+N/2

FFT*
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Figure 6.3: Computation of a circular correlation of N points using N /2-point and N /4-point
FFTs.

h0,n −h0,n+N /4. If hn is a tiered code, Eq. (6.40) we have

h00 =
[

(s0,0 + s0,NS /4)p (s0,1 + s0,NS /4+1)p . . . (s0,NS /4−1 + s0,NS /2−1)p
]

=
[

s00,0p s00,1p . . . s00,NS /4−1p
]

= s00 ⊗p,

(6.42)

and

h01 =
[

(s0,0 − s0,NS /4)p (s0,1 − s0,NS /4+1)p . . . (s0,NS /4−1 − s0,NS /2−1)p
]

=
[

s01,0p s01,1p . . . s01,NS /4−1p
]

= s01 ⊗p.

(6.43)

Since the chips of the sub-sequences s0,n and s1,n can take as value +2, 0 or −2, the chips of

the sub-sequences s00,n and s01,n can take as value +4, +2, 0, −2 or −4.
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h1,n
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Figure 6.4: Implementation of Fig. 6.2, (a) when h0,n is null, (b) when h1,n is null.

Application to reduce the complexity of the correlation with tiered codes

If we can find a sub-code s0,n that contains only zeros (as shown later in Section 6.4.2), the

corresponding tiered code h0,n would also contain only zeros according to Eq. 6.3. Therefore,

in this case it would not be necessary to compute the FFTs of the circular correlation in Fig.

6.2, and the implementation would reduce to Fig. 6.4a. In the same way, if the sub-code s1,n

contains only zeros, h1,n will also contain only zeros, and Fig. 6.2 becomes 6.4b. In both cases,

the number of operations is approximately reduced by 50 %. It can be seen that in this case the

two halves of the output yn are either identical or opposite, which is normal because having

s0,n or s1,n null means that the two halves of sn are opposite or identical, respectively.

In the same way, if the sub-codes s00,n or s01,n contains only zeros, h00,n or h01,n will also

contain only zeros, and Fig. 6.3 becomes 6.5a or 6.5b. In both cases, the number of operations

is approximately divided by 25 %.

If the sub-codes s0,n or s00,n are constant, h0,n or h00,n will contain the primary code repeated

several times. The FFT of a sequence repeated P − 1 times is the same as the FFT of this

sequence with P −1 zeros added between two samples. Therefore, it is possible to compute an

NP -point FFT instead of an FFT of N /2 = NP NS/2 points if s0,n is constant, or instead of an

FFT of N /4 = NP NS/4 points if s00,n is constant. In this case, the reduction of the complexity

is respectively of about 14 % and 5 %, with NS = 20.
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Figure 6.5: Implementation of Fig. 6.3, (a) when h00,n is null, (b) when h01,n is null.

6.4.2 Results with the GPS L5 signal

Sub-codes

For the GPS L5 pilot signal, we have NS = 20, and NP depends on the sampling frequency. The

L5 secondary code sn and its sub-codes are given Table 6.2. It can be seen that none of these

sequences is null or constant. The sequences s0,n , s1,n and s00,n are invariant by translation of

sn , but not s01,n . However, even for the other delays of sn , s01,n is not null or constant.

The idea is then to use a different code for the local secondary code, in order to get null

sub-codes. Of course, this will have an impact on the SNR and on the protection against
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sn 1 1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 −1 1

s0,n 2 0 2 0 2 0 0 0 −2 0

s1,n 0 2 0 2 0 −2 2 2 0 −2

s00,n 2 0 2 −2 2

s01,n 2 0 2 2 2

Table 6.2: Secondary code of the GPS L5 pilot signal, and its sub-codes.

noise and cross-interference with other GNSS signals. In order to find a code having a sub-

code null and the smallest impact on the SNR, we performed an exhaustive search. For this,

we have generated all the possible secondary codes sn , where each chip can take a value

among {−2,−1.5,−1,−0.5,0,+0.5,+1,+1.5,+2}, and for each of them we have computed the

protection and the loss of SNR. The protection is determined easily since it is the ratio between

the first maximum and the second maximum of the correlation. For the SNR loss, it is slightly

more complicated and we detail below its computation.

Determination of the loss

Let’s consider that after the accumulation over one primary code period, the amplitude of the

signal is a, and the noise has a variance σ2. Thus, the SNR is

SN RP = 10log10

(
a2

σ2

)
. (6.44)

Then, during the correlation with the secondary code, we compute NS products and we

accumulate the results. The variance of the noise after the correlation with the secondary code

is then

V ar (ηT ) =σ2
NS−1∑
n=0

s2
n , with sn ∈ {−2,−1.5,−1,−0.5,0,+0.5,+1,+1.5,+2}. (6.45)

The SNR after the correlation with the secondary code is then

SN RT = 10log10

(
a2cor r 2

max

σ2 ∑NS−1
n=0 s2

n

)

= SN RP +10log10

(
cor r 2

max∑NS−1
n=0 s2

n

)
,

(6.46)

where cor rmax is the maximum of the correlation of the received and local secondary code. If

the local code is identical to the received code, cor rmax = NS . For the L5 signal, the secondary

code is binary, thus s2
n = 1 and

∑NS−1
n=0 s2

n = NS . Therefore, if the local code is the L5 secondary
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code, the SNR after the correlation with the secondary code is maximum and is equal to

SN RT,max = SN RP +10log10

(
N 2

S

NS

)
= SN RP +10log10(NS).

(6.47)

Consequently, using a modified code implies a loss defined as

loss = SN RT,max −SN RT

= 10log10(NS)−10log10

(
cor r 2

max∑NS−1
n=0 s2

n

)
.

(6.48)

Reduction of the complexity by 1/2

As indicated previously, if s0,n or s1,n is null, the complexity is reduced by about 50 %. We

performed an exhaustive search considering all the codes giving s0,n = 0 or s1,n = 0, i.e. codes

where sn = sn+NS /2 or sn =−sn+NS /2. Therefore, the number of possible codes for each case is

910 = 3486784401.

Table 6.3 shows the minimum loss that we can obtain to have s0,n null when receiving the L5

secondary code, according to the first and the second maximum of the correlation. The best

case that we can obtain is a loss of about 2.22 dB. This can be obtained with several codes,

one of them is given Table 6.4. It can be noticed that such code uses only three levels (+1,

0, and −1). The auto and cross-correlation of the L5 secondary code with this local code is

illustrated Fig. 6.6. It can be seen that the maximum of the cross-correlation is 12 instead of

20 for the auto-correlation of the L5 code, which is expected since the local code contains 8

zeros. Therefore this is equivalent to have an integration time of 12 ms instead of 20 ms (hence

a loss of 10log10

(20
12

)≈ 2.22 dB). However, it can be noticed that the protection is increased

to 20log10

(12
2

)≈ 15.56 dB, instead of 20log10

(20
5

)≈ 13.98 dB for the autocorrelation of the L5

secondary code.

The same search has been performed to have s1,n null, but the results are less good (in the best

case the minimum loss we can obtain is about 3.98 dB).

Reduction of the complexity by 1/4

In this case, we performed an exhaustive search considering all the codes giving s00,n = 0 or

s01,n = 0. Since the constraints are less strong than before, we could have expected better

results. However, the minimum loss that we can obtain is still about 2.22 dB.
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XXXXXXXXXXX1st max
2nd max

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 10.00 6.99 5.23 3.98 3.01 2.22 2.64 2.73 2.68 2.79 2.35 2.39 2.61 2.55

2 6.99 5.23 3.98 3.01 2.89 2.64 2.73 2.68 2.55 2.39 2.22 2.35 2.39 2.39 2.55 2.47 2.38 2.28 2.30

3 5.23 3.98 3.80 3.47 3.10 2.73 2.68 2.55 2.39 2.40 2.35 2.39 2.39 2.35 2.29 2.22 2.28 2.30 2.31 2.39 2.45

4 4.95 4.47 3.98 3.51 3.08 2.68 2.55 2.60 2.57 2.49 2.39 2.39 2.35 2.29 2.30 2.28 2.30 2.31 2.29 2.26 2.22

5 5.05 4.44 3.89 3.40 2.96 2.79 2.79 2.73 2.63 2.52 2.39 2.35 2.38 2.38 2.35 2.30 2.31 2.29 2.26 2.26

6 4.85 4.24 3.70 3.47 3.22 2.97 2.89 2.77 2.64 2.50 2.45 2.47 2.45 2.42 2.37 2.31 2.29 2.31 2.40

7 4.56 4.24 3.93 3.62 3.32 3.04 2.91 2.76 2.71 2.64 2.55 2.53 2.49 2.43 2.36 2.34 2.45 2.61

8 4.73 4.34 3.98 3.64 3.33 3.04 2.99 2.91 2.82 2.71 2.60 2.55 2.49 2.48 2.50 2.68 2.89

9 4.72 4.31 3.94 3.60 3.40 3.21 3.11 2.99 2.87 2.75 2.62 2.61 2.64 2.74 2.98 3.08

10 4.62 4.22 3.98 3.74 3.51 3.29 3.16 3.03 2.89 2.81 2.79 2.90 3.06 3.18 3.26

11 4.61 4.33 4.06 3.80 3.55 3.32 3.17 3.09 3.06 3.06 3.24 3.36 3.37 3.43

12 4.65 4.35 4.07 3.80 3.55 3.38 3.35 3.35 3.42 3.64 3.57 3.56 3.60

13 4.62 4.32 4.04 3.84 3.72 3.65 3.72 3.98 3.85 3.76 3.73 3.83

14 4.56 4.33 4.18 4.08 4.03 4.34 4.19 4.05 3.94 3.97 4.04

15 4.67 4.55 4.48 4.72 4.55 4.39 4.24 4.19 4.20 4.24

16 4.95 5.17 4.98 4.80 4.62 4.49 4.42 4.41 4.44

17 5.48 5.27 5.07 4.88 4.73 4.64 4.61

18 5.54 5.32 5.12 4.95 4.85

19 5.56 5.35 5.17

20 5.56

Table 6.3: Minimum loss in dB when receiving the L5 secondary code and using a local code
sn having its sub-sequence s0,n null.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sn 1 1 0 −1 0 −1 0 −1 0 1 −1 −1 0 1 0 1 0 1 0 −1

s0,n 0 0 0 0 0 0 0 0 0 0

s1,n 2 2 0 −2 0 −2 0 −2 0 2

Table 6.4: Example of code where the sub-code s0,n is null, and giving a loss of 2.22 dB.

Reduction of the complexity by 1/3

As indicated previously, having s0,n or s1,n equal to zeros means that the first half and the

second half of sn are identical or opposite. In order to allow new possibilities, we now consider

a local code that is the sum of two codes. One code that gives s0,n or s1,n null as before, and

another code where its half are not identical or opposite, but whose the correlation with can

be computed in a efficient way. This code and its sub-codes are given Table 6.5. It can be seen

the values of s0,n alternate between 0 and 1, and the values of s1,n also alternate between 0

and 1 or −1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sn 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

s0,n 0 1 0 1 0 1 0 1 0 1

s1,n 0 −1 0 1 0 −1 0 1 0 −1

Table 6.5: Special code.
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Figure 6.6: Auto and cross-correlation of the L5 secondary code with the local secondary code
of Table 6.4.

If we write the circular correlation with the special sub-code s0,n in matrix form, and taking for

example NP = 3 and s0,n = [0 1 0 1 0 1] (this is simply to be able to display the matrix), we have



y0,0
y0,1
y0,2
y0,3
y0,4
y0,5
y0,6
y0,7
y0,8
y0,9

y0,10
y0,11
y0,12
y0,13
y0,14
y0,15
y0,16
y0,17



=



0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2
p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1
p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0
p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0
0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0
0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0
0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2

p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1
p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0
p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0
0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0
0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0
0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2

p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1
p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0
p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0
0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0
0 0 p0 p1 p2 0 0 0 p0 p1 p2 0 0 0 p0 p1 p2 0





x0,0
x0,1
x0,2
x0,3
x0,4
x0,5
x0,6
x0,7
x0,8
x0,9

x0,10
x0,11
x0,12
x0,13
x0,14
x0,15
x0,16
x0,17


y0,0

y0,1
y0,2

=
PC PC PC

PC PC PC
PC PC PC

x0,0
x0,1
x0,2



=
PC

PC
PC

x0,0 +x0,1 +x0,2
x0,0 +x0,1 +x0,2
x0,0 +x0,1 +x0,2

 ,

(6.49)

where PC is a 6×6 circulant matrix. It can be seen that each section of the output is the same,

and that only one matrix-vector product is needed. Therefore, instead of performing a circular

correlation of N = NP NS points, we can sum sections of the incoming signal and compute a

circular correlation of 2NP points.

If we write the skew-circular correlation with the special sub-code s1,n in matrix form, and
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sn 1.5 0.5 1.5 −0.5 1.5 0.5 −1.5 1 1.5 0.5 −1.5 −0.5 −1.5 0.5 −1.5 −0.5 1.5 −1 −1.5 −0.5

s0,n 0 0 0 0 0 0 0 0 0 0

s1,n 3 1 3 −1 3 1 −3 2 3 1

Table 6.6: Example of code where the sub-code s0,n is null, and giving a loss of 1.69 dB using
the special code.

taking as example NP = 3 and s1,n = [0 −1 0 1 0 −1], we havey1,0

y1,1

y1,2

=

 PS −PS PS

−PS PS −PS

PS −PS PS


x1,0

x1,1

x1,2



=

 PS

−PS

PS


x1,0 −x1,1 +x1,2

x1,0 −x1,1 +x1,2

x1,0 −x1,1 +x1,2

 ,

(6.50)

where PS is the following 6×6 skew-circulant matrix,

PS =



0 0 0 −p0 −p1 −p2

p2 0 0 0 −p0 −p1

p1 p2 0 0 0 −p0

p0 p1 p2 0 0 0

0 p0 p1 p2 0 0

0 0 p0 p1 p2 0


. (6.51)

It can be seen that each section of the output is the same (or the sign is changed), and that

only one matrix-vector product is needed. Therefore, instead of performing a skew-circular

correlation of N = NP NS points, we can sum and subtract sections of the incoming signal and

compute a skew-circular correlation of 2NP points.

Therefore, the circular correlation using this code can be computed as in Fig. 6.2 except that

the FFT length is 2NP instead of N /2, and the input for the incoming signal requires additional

additions and subtractions. With this additional computations, the complexity is reduced by

about 33 %.

Then, in the same way as before, we performed an exhaustive search considering all the codes

giving s00,n = 0 or s01,n = 0. Now the minimum loss that can be obtained is about 1.69 dB, with

a protection of 12.88 dB. This can be obtained with several codes, one of them is given Table

6.6. If we want no decrease of the protection, it is also possible to get a loss of 1.75 dB for a

protection of 14.40 dB.
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2nd max 4 8 12 16 20

Number of codes 4565 16 042 4924 632 109

Table 6.7: Magnitude of the second maximum of the autocorrelation of unique codes of 20
bits and repartition (the first maximum being 20 when the code is aligned with itself).

Number of peaks 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of codes 45 82 0 184 768 648 0 648 852 752 0 314 176 96

Table 6.8: Number of peaks at ±4 in the autocorrelation of the 4564 codes whose the magnitude
of the second maximum is 4, and repartition.

6.4.3 Applicability to other binary codes of 20 bits

In this section, we perform the same study as before for the other binary codes of 20 bits, in

order to evaluate the potential of the proposed method for other codes.

Binary codes of 20 bits

There are 220 = 1048576 binary codes of 20 bits. Among these codes, some are equivalent

from the correlation point of view, like a code where each bit is the opposite of each bit of

another code, or like two codes where one is a shifted version of the other one. Once these

redundant codes have been removed, there are 26 272 binary codes that are unique for our

discussion. These 26 272 codes have different autocorrelation properties. Table 6.7 gives the

number of codes according to the value of the second maximum in the autocorrelation (the

first maximum being 20 when the code is aligned with itself).

For the 4565 codes where the magnitude of the second maximum is 4, the autocorrelation can

have as value only 20, 4, 0 and −4. For these 4565 codes, the repartition of the codes according

to the number of peaks of ±4 in their auto-correlation is given in Table 6.8. Interestingly, the

GPS L5 secondary code is one of the 82 codes having 5 peaks of magnitude 4.

Among these 4565 codes, none of them gives a sub-code s00,n null or constant. Consequently,

as before, we need to modify the local secondary code to reduce the complexity. For the

following we concentrate on the 45 codes having 4 peaks and the 82 codes having 5 peaks.

Reduction of the complexity

As before, we performed an exhaustive search considering all the codes giving s0,n = 0 or

s1,n = 0, to have a reduction of the complexity of 50 %. The minimum loss that can be obtained

depends on the code. For the 82 codes having 5 peaks, the minimum loss can be 1.69 dB, 1.87

dB , 2.33 dB, or 3.01 dB. Therefore, the L5 secondary code is among the best codes for this
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application. For the other reductions of complexity (25 % and 33 %), the L5 secondary code is

also among the best codes.

6.4.4 Applicability to the Galileo E5 and E1 signals

The secondary code of the Galileo E1 signal has an odd number of chips, which prevents the

use of the proposed algorithms. The secondary codes for the Galileo E5a and E5b are 100-ms

long, therefore the Doppler effect prevent to use the proposed algorithms, since Eq. (6.3)

assume that the samples for each primary code period are identical.

6.5 Summary

In this chapter, we have discussed the problem of the parallel code search acquisition consid-

ering the secondary code, and we have explored two directions to solve it.

First, we have presented different ways to use smaller FFTs, by either downsampling or seg-

menting the sequences. In some cases, it is possible to use the repetition of the primary

code, in some cases not. But it is not because we can use the repetition that the complexity is

reduced (as shown with a downsampling by a factor NP ). The less complex implementation

requires about 11 to 15 % more multiplications and 39 to 45 % more additions compared to

the direct implementation of the circular correlation. However, it has been shown that the

elementary operation obtained is the same as the one in Chapter 5, therefore the algorithms

proposed in Chapter 5 can be applied here as well. Note that it was not possible to make a more

accurate comparison for an FPGA implementation of the proposed methods as compared

to the direct correlation since it is currently not possible to implement the direct correlation

because of the large FFTs required.

Second, we have proposed to change the initial circular correlation into smaller circular and

skew-circular correlations by combining some sections of the secondary code in order to be

able to reduce the complexity. Unfortunately, it was not possible to reduce the complexity for

the L5 secondary code and for any binary code of 20 bits without making an approximation

(namely a modification of the local secondary code). To find the best approximation, i.e. the

one leading to the lowest SNR loss, we performed an exhaustive search, which was possible

thanks to the small size of the problem. The main results for the L5 signal is that it is possible

to reduce the complexity by about 50 % in exchange of a SNR loss of 2.2 dB with a protection

(ratio between the first and second maximum of the cross-correlation between the received

and local secondary code) of 15.56 dB (compared to the 13.98 dB of the L5 secondary code

autocorrelation), or it is possible to reduce the complexity by about 33 % in exchange of a SNR

loss of 1.69 dB with a protection of 12.04 dB, or of a SNR loss of 1.75 dB with a protection of

14.40 dB.

To have a more accurate evaluation of the performances of the proposed algorithms, the

acquisition time should be evaluated. However, as indicated in Section 2.3, this depends on
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many parameters, and thus was not undertaken here to concentrate on the computational

aspect.
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7 Conclusions

7.1 Thesis achievements

In this thesis, we have addressed the problem of the acquisition of GNSS signals using FFT-

based parallel architectures, and more specifically the complexity of the acquisition and the

ways to reduce it.

In Chapter 3, with the comparison of the implementation on a FPGA of different acquisition

methods, we were able to point out the advantages and drawbacks of each implementation.

Although the parallel frequency search and the parallel code search may provide similar

performance, the parallel code search appeared to be more suitable to process the future GNSS

signals and for the future GNSS applications. Indeed, due to its inability to compensate the

code Doppler, the parallel frequency search becomes less efficient if we want high sensitivity

that requires long integration times, or if we use codes with high chipping rate, or if the

frequency search space is very large (which is a bit bothersome for a method whose aim is

to search all the frequencies in parallel). Moreover, in case of assistance (self-assistance or

external assistance), it is much easier to obtain a rough estimate of the carrier Doppler than

an estimate of the code delay, whether we are on Earth, in the air or in space.

In Chapter 4, we have shown different ways to compute an FFT and an FFT-based circular

correlation in Altera FPGAs using the Altera FFT, where the resource usage may be reduced,

especially for the memory (up to 45 % of reduction), for the same processing time. Although

one may think that the FFT proposed by Altera should be optimized for its devices, this work

has shown that there is still room for improvement. The algorithms presented are not only

useful for a GNSS receiver that needs to perform FFTs or correlations, such as in the parallel

code search, but can also be applied to any system that performs a correlation or convolution,

since we do not make any assumptions about the input or output signals. Therefore, we hope

that this will help either to improve the Altera FFT itself, or the other users of the Altera FFT by

reducing the resource usage of their systems.

In Chapter 5, we have proposed two algorithms to reduce the complexity of the parallel code
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search acquisition in presence of sign transitions, that may remind the overlap-and-add

method usually used for the linear convolution. It has been shown that for an implementation

on a FPGA, the algorithms may reduce the resource usage, especially the memory (typically

50 %), for the same processing time. The advantage of these algorithms compared to the

other solutions proposed in the literature is that the correlation is computed exactly, i.e.

no approximation is done and thus the SNR is not affected. The drawback is that these

algorithms do not reduce the complexity all the time, but only under certain conditions. The

first condition is to have an FFT that requires a length that is a power of two (which is the

case of the FFT provided by FPGA and DSP companies, but not the case on computers where

softwares can compute FFT of any lengths). The second condition is linked to the length of the

sequences, i.e. to the sampling frequency. However, it is easy to determine if the algorithms

are efficient or not with a simple look on a table or on a figure (Table 5.3 p. 116, Fig. 5.11 p.

128). It has been shown that the usual sampling frequencies used for the GPS L5 and Galileo

E5a and E5b signals (between 20 to 21 MHz) are in a range where the proposed algorithms

reduce the complexity. The algorithms are thus well suited for these signals.

In Chapter 6, we have discussed the problem of the parallel code search acquisition using the

secondary code. First we have discussed different implementations that use small FFTs (same

order of magnitude as the length of the primary code), because the use of very large FFTs

(> 218 points) may be not possible. Such implementations require slightly more operations

than the direct implementation of the correlation, even if they are able to exploit the repetition

of the primary code. However, it has been shown that one of the implementation was related

to the problem discussed in Chapter 5. Therefore, the algorithms proposed in Chapter 5 can

be applied here as well, to potentially reduce the complexity. Second, we have discussed

implementations to specifically reduce the complexity. For this, we have proposed to build

some sub-codes from the secondary code in the hope to obtain some sub-codes that contain

only zeros, which would allow us to remove some FFTs. Unfortunately, it was not possible to

obtain such sub-codes for the L5 secondary code, or for any binary codes of 20 bits. Therefore,

we looked for an approximation, where the local secondary code is different than the received

secondary code, for which we have evaluated the impact on the SNR. It has been shown

amongst other results that it is possible to reduce the complexity by about 50 % in exchange of

a loss of 2.22 dB in the SNR, or to reduce the complexity by about 33 % in exchange of a loss of

1.69 dB.

In Appendix A, we have summarized a lot of definitions and relations, about the DFT, the

convolution and the correlation. We have detailed the computation of special matrix-vector

products with FFTs (circulant, skew-circulant, Toeplitz, and Hankel matrices), and expressed

the convolution and the correlation in different ways (in time domain, using matrix, and poly-

nomial (z transform)). To the best knowledge of the author, such a summary cannot be found

in one publication, but the information are spread over the literature. Therefore, we hope to

have filled this small gap. Appendix B gives some useful tips regarding the implementation of

the FFT and of the correlation applicable in GNSS. Finally, Appendix C provides models for

the FPGA implementation of the acquisition architectures, which can help other designers.
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7.2. Recommendations for future research

In this thesis, we have tried to show the problems and operations in different ways, including

the time domain, using matrices and using polynomials (with the z transform). First, because

viewing a problem from different points of view helps to better understand the problem.

Second, because the different domains provide different mathematical tools and insights.

7.2 Recommendations for future research

The research performed and presented in this thesis is of course not exhaustive, and future

improvements are possible.

Use of a priori information

Regarding the problem of the acquisition in presence of sign transitions (Chapter 5), the

proposed algorithms used two facts, half of the local code values are zeros (due to zero-

padding), and half of the output is not needed. However, we know that the input signal

contains two code periods with two possible transitions. This third a priori information could

be used to obtain a better algorithm. This, however, would lead to an approximation algorithm,

since the input signal actually also includes a residual carrier and a noise, but the impact on

the SNR should not be significant.

Regarding the problem of the acquisition over a secondary code period (Chapter 6), we were

not able to find a more efficient algorithm that is not an approximation. However, we deeply

think that it may be possible to find one, because in this problem we know a lot of a priori

information. For the local code, first we know that the primary code is repeated several times;

second the secondary code is short, which may allow the use of its specificity; third the codes

are binary. With all these information, we really believe that it should be possible to find an

algorithm less complex than the classic circular correlation by FFTs that does not use any

information about the signals.

Number theory

The fast algorithms developed to compute the DFT or the convolution of sequences are often

related to the number theory. Moreover, having a sequence with a length that is a power of

two, or a length that is a prime number, or a length that can be expressed as the product of

two coprime numbers leads to different properties and algorithms. Therefore it could be

interesting to have a deeper look on number theory, for the selection of future secondary

codes that would allow efficient computation of the tiered code correlation.
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A Transforms, special matrix-vector
products, convolutions and correla-
tions
The goal of this appendix is to provide a summary of some definitions, expressions and

relations that have been used during this Ph.D thesis. These information can be found in

many books, however, usually a book uses one representation whereas the operations can

be represented in several ways. Also, some definitions are not unique (like the definition of a

circulant matrix based on a vector), therefore, we clarify the operations corresponding to the

different definitions.

A.1 Transforms

A.1.1 z transform

The z transform of a sequence xn of N points is defined as

X (z) =
N−1∑
n=0

xn z−n

= x0 +x1z−1 +x2z−2 +x3z−3 +·· ·+xN−1z−(N−1),

(A.1)

with z ∈ C∗. X (z) is thus a polynomial of degree N −1. See (Proakis and Manolakis [2007],

Chapter 3) or (Oppenheim and Schafer [2009], Chapter 3) for more details about the z trans-

form.

The z transform is mainly used for digital filters design, but it is also used to express the

convolution of two sequences in a simple way (see next sections). In this last case, the idea is

simply to represent a sequence with a polynomial. To do so, it is then also possible to consider

the following expression,

X (z) =
N−1∑
n=0

xn zn

= x0 +x1z +x2z2 +x3z3 +·· ·+xN−1zN−1.

(A.2)
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Both expressions can be used with convolutions, but the second one is usually preferred

because of its simplicity of writing (no minus sign). However, in this thesis, the z transform is

used.

A.1.2 Discrete Fourier transform

Time domain view

The discrete Fourier transform (DFT) of a sequence xn of N points is defined as

Xk =
N−1∑
n=0

xne−
j 2πkn

N , (A.3)

with k = 0,1, . . . , N −1. Note that the DFT of a sequence is periodic, i.e. Xk+mN = Xk with

m ∈Z. The DFT can be computed efficiently using fast Fourier transform (FFT) algorithms,

which have a complexity in O(N log N ) instead of O
(
N 2

)
. See (Brigham [1988], Smith [2007],

Chu [2008], Burrus [2012]) for more details about the DFT and the FFT algorithms.

Matrix view

Using matrix notation, the DFT can be expressed as


X0

X1
...

XN−1

=


e−

j 2π·0·0
N e−

j 2π·0·1
N · · · e−

j 2π·0·(N−1)
N

e−
j 2π·1·0

N e−
j 2π·1·1

N · · · e−
j 2π·1·(N−1)

N

...
...

. . .
...

e−
j 2π·(N−1)·0

N e−
j 2π·(N−1)·1

N · · · e−
j 2π·(N−1)·(N−1)

N




x0

x1
...

xN−1


X = F x,

(A.4)

where F is called the DFT matrix (sometimes there is a factor 1p
N

included for normalization

purpose). The bar over X in Eq. (A.4) is simply to differentiate it from a matrix. It can be noted

that the DFT matrix is symmetric, i.e. FT = F.

z transform view

The DFT can also be obtained from the z transform. Indeed, if we evaluate the z transform for

z = e
j 2πk

N with k = 0,1, . . . , N −1, we obtain

X
(
z = e

j 2πk
N

)
=

N−1∑
n=0

xn

(
e

j 2πk
N

)−n

=
N−1∑
n=0

xne−
j 2πkn

N

= Xk

(A.5)
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A.1.3 Inverse discrete Fourier transform

Time domain view

The inverse discrete Fourier transform (IDFT) of a sequence Xk of N points is defined as

xn = 1

N

N−1∑
k=0

Xk e
j 2πnk

N , (A.6)

with n = 0,1, . . . , N −1. Note that the IDFT of a sequence is periodic, i.e. xn+mN = xn with

m ∈Z.

Matrix view

Using matrix notation, the IDFT can be expressed as


x0

x1
...

xN−1

= 1

N


e

j 2π·0·0
N e

j 2π·0·1
N · · · e

j 2π·0·(N−1)
N

e
j 2π·1·0

N e
j 2π·1·1

N · · · e
j 2π·1·(N−1)

N

...
...

. . .
...

e
j 2π·(N−1)·0

N e
j 2π·(N−1)·1

N · · · e
j 2π·(N−1)·(N−1)

N




X0

X1
...

XN−1


x = F−1 X.

(A.7)

It can be noted that F−1 = 1
N F∗, therefore the IDFT (IFFT) can be computed using the DFT

(FFT).

z transform view

In the same way as the DFT, the IDFT can be obtained from the z transform by evaluating it

for z = e−
j 2πk

N with k = 0,1, . . . , N −1, not taking into account the factor 1
N .

A.2 Special matrices

A.2.1 Circulant matrix

A circulant matrix is a matrix where each row is obtained by shifting the previous row by

one element (or by shifting the previous column by one element). Considering a vector

h = [h0 h1 · · · hN−1], there are three main ways to define a circulant matrix. First, the vector

h can correspond to the first column or to the first row. Second, the shift between two

consecutive rows can be on the right or on the left direction. Therefore, we differentiate these

cases, and indicate the result of the diagonalization for each one. See (Davis [1979]) for more

details about the circulant matrices.
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In the following, the matrices are denoted with a subscript that contains up to three elements

between curly brackets. The first element indicates the type of matrix (C for circulant, S for

skew-circulant, etc.); the second element indicates if the vector used to "generate" the matrix

corresponds to its first column (symbol |) or its first row (symbol −); and the third element

indicates the direction of the shift, ↘ is used for a right shift between consecutive rows (or

equivalently a down shift between consecutive columns), and ↙ is used for a left shift between

consecutive rows (or equivalently a up shift between consecutive columns).

Right circulant matrix defined by its first column

Considering that the vector h corresponds to the first column, and that the shift is on the right

direction, we obtain the following matrix,

H{C |↘} =



h0 hN−1 · · · h2 h1

h1 h0 · · · h3 h2
...

...
. . .

...
...

hN−2 hN−3 · · · h0 hN−1

hN−1 hN−2 · · · h1 h0

 . (A.8)

Such a matrix is used in the circular convolution of two sequences (see Section A.3.2). It can

be diagonalized by the DFT matrix (see Eq. (A.4)), i.e. we can write

H{C |↘} = F−1 diag(F h) F, (A.9)

or

H{C |↘} = N F diag(F−1h) F−1. (A.10)

Right circulant matrix defined by its first row

Considering that the vector h corresponds to the first row, and that the shift is on the right

direction, we obtain the following matrix,

H{C−↘} =



h0 h1 · · · hN−2 hN−1

hN−1 h0 · · · hN−3 hN−2
...

...
. . .

...
...

h2 h3 · · · h0 h1

h1 h2 · · · hN−1 h0

 . (A.11)

Such a matrix is used in the circular correlation of two sequences (see Section A.3.3). It can be
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diagonalized by the DFT matrix, i.e. we can write

H{C−↘} = N F−1 diag(F−1h) F, (A.12)

or

H{C−↘} = F diag(F h) F−1. (A.13)

Left circulant matrix

Considering that the vector h corresponds to the first column or to the first row, and that the

shift is on the left direction, we obtain the following matrix,

H{C↙} =



h0 h1 · · · hN−2 hN−1

h1 h2 · · · hN−1 h0
...

...
. . .

...
...

hN−2 hN−1 · · · hN−4 hN−3

hN−1 h0 · · · hN−3 hN−2

 . (A.14)

Such a matrix is used in the circular correlation of two sequences (see Section A.3.3). It can be

diagonalized by the DFT matrix, i.e. we can write

H{C↙} = N F−1 diag(F h) F−1, (A.15)

or

H{C↙} = F diag(F−1h) F. (A.16)

A.2.2 Skew-circulant matrix

A skew-circulant matrix is a matrix where each row is obtained by shifting the previous row by

one element and the sign of the elements above the diagonal is changed.
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Right circulant matrix defined by its first column

Considering that the vector h corresponds to the first column, and that the shift is on the right

direction, we obtain the following matrix,

H{S|↘} =



h0 −hN−1 · · · −h2 −h1

h1 h0 · · · −h3 −h2
...

...
. . .

...
...

hN−2 hN−3 · · · h0 −hN−1

hN−1 hN−2 · · · h1 h0

 (A.17)

Such a matrix is used in the skew-circular convolution of two sequences (see Section A.3.4). It

can be expressed using a diagonal matrix and a circulant matrix as

H{S|↘} =Ω−1 HΩ{C |↘} Ω, (A.18)

whereΩ= diag
(
e

− jπ·0
N ,e

− jπ·1
N , · · · , e

− jπ·(N−1)
N

)
, and the first column of HΩ{C |↘} isΩh (Vaidyanathan

et al. [2010] pp. 771-775). Therefore, a skew-circulant matrix can be diagonalized by the DFT

matrix. Using Eq. (A.9), we can write

H{S|↘} =Ω−1 F−1 diag(FΩ h) FΩ, (A.19)

and using Eq. (A.10), we can write

H{S|↘} = N Ω−1 Fdiag(F−1Ω h) F−1Ω. (A.20)

A.2.3 Toeplitz matrix

A Toeplitz matrix is a matrix where each descending diagonal is constant, it is then defined by

2N −1 elements.

HT =



h0 h−1 · · · h−(N−2) h−(N−1)

h1 h0 · · · h−(N−3) h−(N−2)
...

...
. . .

...
...

hN−2 hN−3 · · · h0 h−1

hN−1 hN−2 · · · h1 h0

 (A.21)

Therefore, a right circulant matrix is a special case of Toeplitz matrix.

Change to a circular matrix

A Toeplitz matrix can be embedded in a circulant matrix by approximately doubling its size.
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Here is an example with N = 3. The following N ×N Toeplitz matrix,

HT =

h0 h−1 h−2

h1 h0 h−1

h2 h1 h0

 , (A.22)

can be embedded into the following 2N −1×2N −1 right circulant matrix,
h0 h−1 h−2 h2 h1

h1 h0 h−1 h−2 h2

h2 h1 h0 h−1 h−2

h−2 h2 h1 h0 h−1

h−1 h−2 h2 h1 h0

 , (A.23)

or into the following 2N ×2N right circulant matrix,

h0 h−1 h−2 · h2 h1

h1 h0 h−1 h−2 · h2

h2 h1 h0 h−1 h−2 ·
· h2 h1 h0 h−1 h−2

h−2 · h2 h1 h0 h−1

h−1 h−2 · h2 h1 h0


=

[
HT B

B HT

]
, (A.24)

where the · can be replaced by any values.

Expression with a circulant and skew-circulant matrix

A Toeplitz matrix can be expressed as the sum of a circulant matrix and a skew-circulant matrix

of same size, i.e. HT = HC +HS (Ng [2003]).

Here is an example with N = 3,

HT =

h0 h−1 h−2

h1 h0 h−1

h2 h1 h0

= 1

2

 h0 h2 +h−1 h1 +h−2

h1 +h−2 h0 h2 +h−1

h2 +h−1 h1 +h−2 h0



+ 1

2

 h0 −(h2 −h−1) −(h1 −h−2)

h1 −h−2 h0 −(h2 −h−1)

h2 −h−1 h1 −h−2 h0

 .

(A.25)
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A.2.4 Hankel matrix

A Hankel matrix is a matrix where each ascending diagonal is constant, it is then defined by

2N −1 elements.

HH =



h0 h1 · · · hN−2 hN−1

h1 h2 · · · hN−1 h−1
...

...
. . .

...
...

hN−2 hN−1 · · · h−(N−3) h−(N−2)

hN−1 h−1 · · · h−(N−2) h−(N−1)

 (A.26)

Therefore, a left circulant matrix is a special case of Hankel matrix. In the same way as a

Toeplitz matrix, a Hankel matrix can be embedded into a circulant matrix, or can be expressed

as the sum of a circulant and skew-circulant matrix.

A.3 Convolutions and correlations

A.3.1 Linear convolution

Time domain view

The linear convolution yn of two sequences hn and xn of N points is defined as

yn =
N−1∑
k=0

hk xn−k

=
N−1∑
k=0

xk hn−k ,

(A.27)

with n = 0,1, . . . ,2N −2. Note that the linear convolution is a commutative operation. See

(Winograd [1980], Nussbaumer [1982], Garg [1998], Blahut [2010]) for more details about the

convolution.
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Matrix view

Using matrix notation, the linear convolution can be expressed as

y0

y1
...

yN−2

yN−1

yN
...

y2N−3

y2N−2



=



x0 0 · · · 0 0

x1 x0 · · · 0 0
...

...
. . .

...
...

xN−2 xN−3 · · · x0 0

xN−1 xN−2 · · · x1 x0

0 xN−1 · · · x2 x1
...

...
. . .

...
...

0 0 · · · xN−1 xN−2

0 0 · · · 0 xN−1





h0

h1
...

hN−2

hN−1



=



h0 0 · · · 0 0

h1 h0 · · · 0 0
...

...
. . .

...
...

hN−2 hN−3 · · · h0 0

hN−1 hN−2 · · · h1 h0

0 hN−1 · · · h2 h1
...

...
. . .

...
...

0 0 · · · hN−1 hN−2

0 0 · · · 0 hN−1





x0

x1
...

xN−2

xN−1



y = XT h

= HT x.

(A.28)

z transform view

Using the z transform, the linear convolution is defined as

Y (z) = H(z)X (z), (A.29)

where Y (z), H (z) and X (z) are the z transforms of yn , hn and xn , respectively, i.e. polynomials

of degree 2N −2, N −1 and N −1 respectively. This means that the linear convolution of two

sequences can be treated as the product of two polynomials.

169



Appendix A. Transforms, special matrix-vector products, convolutions and correlations

A.3.2 Circular convolution

Time domain view

The circular convolution yn of two sequences hn and xn of N points is defined as

yn =
N−1∑
k=0

hk x(n−k) mod N

=
N−1∑
k=0

xk h(n−k) mod N ,

(A.30)

with n = 0,1, . . . , N −1, and mod denotes the modulo operation, i.e. (n +mN ) mod N = n with

m ∈Z. Note that the circular convolution is a commutative operation.

Matrix view

Using matrix notation, the circular convolution can be expressed as

y0

y1
...

yN−2

yN−1

=



x0 xN−1 · · · x2 x1

x1 x0 · · · x3 x2
...

...
. . .

...
...

xN−2 xN−3 · · · x0 xN−1

xN−1 xN−2 · · · x1 x0





h0

h1
...

hN−2

hN−1



=



h0 hN−1 · · · h2 h1

h1 h0 · · · h3 h2
...

...
. . .

...
...

hN−2 hN−3 · · · h0 hN−1

hN−1 hN−2 · · · h1 h0





x0

x1
...

xN−2

xN−1


y = X{C |↘} h

= H{C |↘} x.

(A.31)

The matrices X{C |↘} and H{C |↘} are right circulant matrices with x and h as first column,

respectively. Therefore, using the diagonalization given by Eq. (A.9), the circular convolution

can be computed as

y = H{C |↘}x

= F−1 diag(F h) F x

= F−1((F h)◦ (F x)
)
,

(A.32)
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Figure A.1: Computation of the circular convolution of two sequences of N points with FFTs,
(a) using Eq. (A.32), (b) using Eq. (A.33).

or using the diagonalization given by Eq. (A.10), as

y = H{C |↘}x

= N F diag(F−1h) F−1x

= N F
(
(F−1h)◦ (F−1x)

)
,

(A.33)

where ◦ denotes the Hadamard product (element by element product). Therefore, the circular

convolution can be computed efficiently using FFTs, as shown in Fig. A.1.

z transform view

Using the z transform, the circular convolution is defined as

Y (z) = H(z)X (z) mod (z−N −1), (A.34)

where Y (z), H (z) and X (z) are the z transforms of yn , hn and xn , respectively, i.e. polynomials

of degree N −1 (Nussbaumer [1982], pp. 22-23). Eq. (A.34) can also be written as

Y (z) = H(z)X (z)−Q(z)(z−N −1), (A.35)

where Q(z) is a polynomial of degree N −2. If we evaluate this equation for z = e
j 2πk

N with

k = 0,1, . . . , N −1, we have z−N −1 = 0 and thus

Yk = Hk Xk , (A.36)
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where Yk , Hk and Xk are the DFTs of yn , hn and xn , respectively. So, by computing the IDFT

of Hk Xk we obtain yn , as already shown in Fig. A.1.

A.3.3 Circular correlation

Time domain view

The circular correlation yn of two sequences hn and xn of N points can be defined as

yn =
N−1∑
k=0

h∗
k x(n+k) mod N , (A.37)

with n = 0,1, . . . , N −1, and mod denotes the modulo operation, i.e. (n +mN ) mod N = n with

m ∈Z.

Note that the correlation is not commutative. Indeed, in the following equation,

wn =
N−1∑
k=0

x∗
k h(n+k) mod N , (A.38)

with n = 0,1, . . . , N −1, wn is the conjugate of the sequence yn flipped, i.e. wn = y∗
−n mod N .

So, what follows applies also to if we commute hn and xn , but then yn will be flipped and

conjugated.

Matrix view

Using matrix notation, the circular correlation can be expressed as

y0

y1
...

yN−2

yN−1

=



x0 x1 · · · xN−2 xN−1

x1 x2 · · · xN−1 x0
...

...
. . .

...
...

xN−2 xN−1 · · · xN−4 xN−3

xN−1 x0 · · · xN−3 xN−2





h0

h1
...

hN−2

hN−1



∗

=



h0 h1 · · · hN−2 hN−1

hN−1 h0 · · · hN−3 hN−2
...

...
. . .

...
...

h2 h3 · · · h0 h1

h1 h2 · · · hN−1 h0



∗

x0

x1
...

xN−2

xN−1


y = X{C↙} h∗

= H∗
{C−↘} x.

(A.39)

The matrix X{C↙} is a left circulant matrix with x as first row and first column, and the matrix
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Figure A.2: Computation of the circular correlation of two sequences of N points with FFTs,
(a) and (b) using Eq. (A.40), (b) and (d) using Eq. (A.41).

H{C−↘} is a right circulant matrix with h as first row.

Therefore, using the diagonalization given by Eq. (A.15), this circular correlation can be

computed as

y = X{C↙} h∗

= N F−1 diag(F x) F−1h∗

= N F−1((F−1h∗)◦ (F x)
)

= F−1((F h)∗ ◦ (F x)
)
,

(A.40)

or using the diagonalization given by Eq. (A.16), as

y = X{C↙} h∗

= F diag(F−1x) F h∗

= F
(
(F h∗)◦ (F−1x)

)
= N F

(
(F−1h)∗ ◦ (F−1x)

)
.

(A.41)

Therefore, the circular correlation can be computed efficiently using FFTs, as shown in Fig.

A.2.

z transform view

Using the z transform, the circular correlation is defined as

Y (z) = H∗(1/z∗)X (z) mod (z−N −1), (A.42)
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where Y (z), H(z) and X (z) are the z transforms of yn , hn and xn , respectively. Eq. (A.42) can

also be written as

Y (z) = H∗(1/z∗)X (z)−Q(z)(z−N −1), (A.43)

where Q(z) is a polynomial of degree N −2. If we evaluate this equation for z = e
j 2πk

N with

k = 0,1, . . . , N −1, we have z−N −1 = 0 and thus

Yk = H∗
k Xk , (A.44)

where Yk , Hk and Xk are the DFTs of yn , hn and xn , respectively. So, by computing the IDFT

of H∗
k Xk we obtain yn , as already shown in Fig. A.2.

A.3.4 Skew-circular convolution

Time domain view

The skew-circular convolution yn of two sequences hn and xn of N points is defined as

yn =
N−1∑
k=0

sgn(n −k)hk x(n−k) mod N

=
N−1∑
k=0

sgn(n −k)xk h(n−k) mod N ,

(A.45)

with n = 0,1, . . . , N −1, and sgn the function defined as

sgn(m) =
1, for m Ê 0

−1, for m < 0
. (A.46)

Note that the skew-circular convolution is a commutative operation.
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Matrix view

Using matrix notation, the skew-circular convolution can be expressed as

y0

y1
...

yN−2

yN−1

=



x0 −xN−1 · · · −x2 −x1

x1 x0 · · · −x3 −x2
...

...
. . .

...
...

xN−2 xN−3 · · · x0 −xN−1

xN−1 xN−2 · · · x1 x0





h0

h1
...

hN−2

hN−1



=



h0 −hN−1 · · · −h2 −h1

h1 h0 · · · −h3 −h2
...

...
. . .

...
...

hN−2 hN−3 · · · h0 −hN−1

hN−1 hN−2 · · · h1 h0





x0

x1
...

xN−2

xN−1


y = X{S|↘} h

= H{S|↘} x.

(A.47)

The matrices X{S|↘} and H{S|↘} are right skew-circulant matrices with x and h as first column,

respectively. Therefore, using the diagonalization given by Eq. (A.19), the skew-circular

convolution can be computed as

y = H{S|↘}x

=Ω−1 F−1 diag(FΩ h) FΩ x

=ω∗ ◦F−1
((

F(ω◦h)
)◦ (

F(ω◦x)
))

,

(A.48)

or using the diagonalization given by Eq. (A.20), as

y = H{S|↘}x

= N Ω−1 F diag(F−1Ω h) F−1Ω x

= N ω∗ ◦F
((

F−1(ω◦h)
)◦ (

F−1(ω◦x)
)) (A.49)

withω=
[

e
− jπ·0

N e
− jπ·1

N · · · e
− jπ·(N−1)

N

]
. Therefore, the skew-circular convolution can be computed

efficiently using an FFT, as shown in Fig. A.3.

z transform view

Using the z transform, the skew-circular convolution is defined as

Y (z) = H(z)X (z) mod (z−N +1), (A.50)
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Figure A.3: Computation of the skew-circular convolution of two sequences of N points using
FFTs.

where Y (z), H (z) and X (z) are the z transforms of yn , hn and xn , respectively, i.e. polynomials

of degree N −1.
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B Useful tips for the use of FFTs in
GNSS

In this appendix, we have collected some useful tips when the FFT is used to compute the

correlation of sequences, which can therefore be applied to the parallel code search acquisition

of GNSS signals.

B.1 Data order with the radix-2 FFT

The radix-2 FFT algorithm naturally scrambles the order of the samples of the input sequence

or of the output sequence. More specifically, we talk about bit-reversed indexing (Lyons [2010],

pp. 135-159). This is illustrated in Table B.1 considering an 8-point FFT. This means that to

have the natural index order for both the input and the output, an additional stage is needed.

This stage of course implies a longer time for software FFTs, and more memory and latency

for hardware FFTs (Altera [2013]).

However, if we compute a circular convolution or correlation using FFTs, it is not needed to

reorder the sample for each FFT and IFFT. Indeed, for the product of the FFT results, there

is no need to have the samples in the natural order, thus it is sufficient to select cleverly the

index order for the input and output samples of the FFTs, as shown in Fig. B.1.

xn Xk yn

hn Hk

Yk

FFT

FFT*

IFFT

H*

N

N N

Natural
order

Bit-reversed
order

Natural
order

Figure B.1: Circular correlation of two sequences computed by FFT using smart choice for the
index order of the FFT input and output samples.
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Natural order of index n Bit-reversed order of index n

0 (000) 0 (000)

1 (001) 4 (100)

2 (010) 2 (010)

3 (011) 6 (110)

4 (100) 1 (001)

5 (101) 5 (101)

6 (110) 3 (011)

7 (111) 7 (111)

Table B.1: Natural and bit-reversed index order for an 8-point FFT. Between parenthesis is the
value in binary.

For the Altera FFT, it is possible to select the order of the samples only with the variable

streaming I/O data flow. Table B.2 gives the estimates of the resources of a 4096-point FFT for

the different index orders. Therefore, implementing a correlation using only the natural index

order requires 3×452904 = 1358712 bits, whereas using the order depicted in Fig. B.1 requires

2×182568+1×271626 = 636762, i.e. a reduction of about 53 %. Therefore, if the variable

streaming I/O data flow is used, it is definitely worthy to consider different index order for the

convolution or correlation of sequences implemented by FFTs.

B.2 FFT of real sequences

The FFT is an algorithm considering complex sequences as input. However, it may happen

that we have to compute the FFT of a real sequence, as in GNSS with the parallel code search

where we compute the FFT of the local code. Using directly the FFT with the imaginary part of

the input equal to zero is thus a waste. However, with some manipulations, it is possible to

use one FFT of N points to compute the FFT of two real sequences of N points, or to compute

the FFT of a real sequence of 2N points (Sorensen et al. [1987], Lyons [2010] pp. 687-699).

B.2.1 Computing the N-point FFT of two real sequences using one N-point FFT

Let’s consider two real sequences, h0,n and h1,n of length N , and their corresponding FFT, H0,k

and H1,k . Now, let’s consider the complex sequence hn defined as hn = h0,n + j h1,n , and its

FFT Hk . Then, H0,k and H1,k can be obtained from Hk as

H0,k = H∗
N−k +Hk

2

= Re(HN−k )+Re(Hk )

2
+ j

Im(Hk )− Im(HN−k )

2
,

(B.1)
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Function
Logic usage Memory usage Multipliers usage

(ALUT) (bits) (DSP element)

4096-point FFT with
input and output in

natural order
8534 452 904 40

4096-point FFT with
input in natural order and

output in bit-reversed order
8534 182 568 40

4096-point IFFT with
input in bit-reversed order
and output in natural order

8534 271 626 40

Table B.2: Resources estimated with the MegaWizard Plug-in Manager for an FFT of 4096
points implemented on a Stratix III FPGA, considering the variable streaming I/O data flow,
and 18 bits for the data and twiddle precision.

and

H1,k = j
H∗

N−k −Hk

2

= Im(HN−k )+ Im(Hk )

2
+ j

Re(HN−k )−Re(Hk )

2
,

(B.2)

where Re and Im denotes the real and imaginary part, respectively. For the case k = 0, remem-

ber that HN = H0 (see Section A.1.2).

For a hardware implementation, since we have to add and subtract the sequence Hk and its

reverse HN−k , we need to store the samples at the output of the FFT. The implementation is

given Fig. B.2, and its corresponding timing diagram in Fig. B.3, where consecutive FFTs are

computed. It can be seen that the writing of the samples of the second period starts while the

reading of the reversed samples of the first period is not yet finished, which prevents to use

only one memory. This implies to use two memories of N complex words with a write access

and a double read access, and these memories will be written and read alternatively. The

combination block implements Eqs. (B.1) and (B.2), it is then composed of four real adders.

Note that this implementation requires an extra latency of N cycles compared to the use of

two FFTs. Note also that if the FFTs are not performed directly one after the other, it is possible

to use only one memory.

Let’s see an example with the Altera FFT. Considering the case N = 4096 and the streaming I/O

data flow, the Altera FFT uses 6906 ALUTs, 38 M9Ks, and 24 DSP elements (considering the

same parameters as in Chapter 4, see p. 79). Therefore implementing two FFTs would requires

13 812 ALUTs, 76 M9Ks, and 48 DSP elements. Whereas using the implementation of Fig. B.2,

there would be one FFT and two memories. Each memory requires 2×18×4096 = 36864 bits,

which can be stored with 4 M9Ks. Therefore, the implementation of Fig. B.2 requires 56 M9Ks,
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which means 29 % less than using two FFTs. But the number of DSP elements is divided by

two, and the logic usage is also almost divided by two, since the addressing of the memory

requires few logic but not that much.

h0,n+j h1,n
  FFT

N

Hk

Combination

Memory 1

wAddress1

rData1D

rAddress1D

wData1

rAddress1R

rData1R

H0,k

H1,k

Memory 2

rData2D

wAddress2 rAddress2D

wData2 rAddress2R

rData2R

rAddressD

rAddressR

rDataD

rDataR

Figure B.2: Hardware implementation to compute simultaneously the FFTs of two real se-
quences.

clock

Hk H0 H1

rAddressD 0 1

HN-2HN-1 H0 H1 HN-2HN-1 H0 H1 HN-2HN-1··· ··· ···

0wAddress1 1 N-2

wAddress2

N-1

0 1 N-2 N-1

0 1 N-2 N-1

rAddressR 0 1

N-2

N-1

···

···

N-1

2

H0 H1 HN-2HN-1···

H0 H1H2HN-1 ···

0 1

0 1

N-2

N-1

···

···

N-1

2

H0,0 H0,1 ···

H1,0 H1,1 ···

HN-3

N-3

HN-3

N-3

···

···

 H1,
      N-1

 H0,
      N-1

 H0,
      N-2

 H1,
      N-2

···

HN-3

N-3

0 1

0 N-1

H0

H0

rDataD H0 H1 HN-2HN-1···

H0 H1H2HN-1 ···

H0,k

H1,k

H0,0 H0,1 ···

H1,0 H1,1 ···

H0 H1 HN-2HN-1···

H0 H1H2HN-1 ···

H0,0 H0,1 ···

H1,0 H1,1 ··· H1,
      N-1

 H0,
      N-1

 H0,
      N-2

 H1,
      N-2

 H1,
      N-1

 H0,
      N-1

 H0,
      N-2

 H1,
      N-2

H0

H0

H0,0

H1,0

rData1D

rData1R

rData2D

rData2R

rDataR

H1

HN-1

H1

HN-1

H0,1

H1,1 ···

···

···

···

···

···

···

···

H0 H1

0 1 ···

···

···

Figure B.3: Timing diagram of Fig. B.2.
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B.3. Conjugate of the FFT of a real sequence

B.2.2 Computing the 2N-point FFT of a real sequence using one N-point FFT

Let’s consider a real sequence, hn of length 2N , and its corresponding FFT, Hk . Now, let’s

consider the complex sequence hC ,n defined as hn = h2n + j h2n+1, and its FFT HC ,k .

Then, in a similar way as previous, Hk can be obtained from HC ,k using combinations of its real

and imaginary part. However, an additional step is needed, which involves the multiplication

by a cosine and a sine (see Lyons [2010]). Therefore, the complexity will be a little bit higher

than previously, because of the generation of the cosine and sine wave, but there will still be a

significant reduction in terms of logic and memory.

B.3 Conjugate of the FFT of a real sequence

In Section A.1.3, it has been shown that F−1 = 1
N F∗, with F the DFT matrix. Using this relation,

we can write

FFT∗(hn) = N IFFT(h∗
n). (B.3)

In GNSS, with the parallel code search, the circular correlation implies to compute the con-

jugate of the FFT of the local code. Since the local code is real, using (B.3), we can avoid to

perform the conjugate operation, as shown in Fig. B.4 (this was already shown in Fig. A.2d

without assuming hn real). This is not a significant reduction of the complexity, but it’s still

better than nothing, and the additional multiplication by the factor N is not compulsory since

it is just a question of normalization (moreover, for Altera FPGAs, this factor is not considered

in the IFFT computation, so the multiplication by N is not required).

xn Xk yn

hn Hk

Yk

FFT

FFT*

IFFT

H*

N

N N

xn Xk yn

hn Hk

Yk

FFT IFFT

H*

N N

IFFT
N

N

Figure B.4: Circular correlation of two sequences computed by FFT when hn is real.
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C Estimation of the resources for an
implementation on FPGAs

In this appendix, we provide the details of the resource usage estimates of different functions,

and then evaluate the resources for the acquisition implementation presented in Chapter

3. The estimates are based on FPGAs from Altera, and are given in terms of logic, memory

and DSP elements. Among the Altera FPGAs, we find two different basis blocks for the logic,

LEs (logical elements) used in the Cyclone and old Stratix series, and ALMs (adaptive look-up

tables) used in recent Cyclone, Arria, and Stratix series. An LE consists of one register and a

4-input LUT, whereas an ALM consists of two registers and two 4-input ALUTs (adaptive LUTs).

The conversion ratio stated by Altera is 1 ALM = 2.5 LEs, but it is not an exact formula that

works all the time. According to our experience the ratio tends to be rather 1 ALM = 2 LEs most

of the time, which is the ratio of the number of register. In order to obtain the most accurate

results possible, the estimate of the different functions is done for both basis blocks.

The formulas provided here are empirical and obtained by analysis and verifications of com-

pilation. Implementation inside a complete system would affect the real resources usage

as well as the different optimizations performed during compilation (e.g. maximizing the

clock frequency or minimizing the area). Note that the most important estimates are those of

duplicated functions (or those linked to duplication), namely the code mixer, the coherent

accumulator, the multiplexer, the FFT, and the coherent and noncoherent memory-based

accumulators, which are not the most difficult functions to estimate.

For the following, we use L· to denote the resources in terms of logical blocks, M· for the

resources in terms of memory blocks, D · for the resources in terms of DSP blocks, and R· for

the resolution of a signal in bit.
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C.1 Estimation of the resources

C.1.1 Resource estimates of blocks

Carrier Generator

The carrier generator is composed of an NCO and a mapping to generate sine and cosine

waveforms. Taking a 32-bit counter, the NCO thus needs 64 bits (32 bits for the counter

increment and 32 bits for the counter value). The mapping is a very simple combinatorial

function, requires nothing or just a few elements, and is neglected here. The resources can

thus be estimated as

LC aGe = 64 LEs

= 32 ALMs.
(C.1)

Carrier mixer

The carrier mixer is composed of four mixers, one adder, and one subtractor (this is for a

complex input signal; if the input signal is real, only two mixers are required). The resolution

after the adder and the subtracter is denoted R0, and the resolution at the output of the mixers

is then R0 −1. This directly provides the number of LEs, but the number of ALMs is the same

as the number of LEs for the mixers. The resources can thus be estimated as

LC aMi = 2R0 +4(R0 −1) = 6R0 −4 LEs

= R0 +4(R0 −1) = 5R0 −4 ALMs.
(C.2)

Code generator

Like for the carrier generator, the code generator is composed of an NCO, plus a memory

where the code is stored. This requires more logic elements to access the memory. If several

shifted versions have to be generated (denoted as NB in the formula since it corresponds to

the number of branches in the implementations), this will require one register per delay. The

resources can thus be estimated as

LCoGe = NB +64+ log2(Nchi p ) LEs

= NB

2
+32+ log4(Nchi p ) ALMs.

(C.3)

Regarding the memory we need as many bits as there are chips in the code (insofar as the code

has only two levels):

MCoGe = Nchi p bits. (C.4)
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Code mixer and logic-based coherent accumulator

These blocks are used only in the SS and PFS implementations. The code mixer consists in

inverting the I and Q signals according to the value of the code, and it is followed by a complex

accumulator. In order to optimize the implementation, both blocks can be combined to build

an accumulator that adds or subtracts the input value according to the value of the code. This

optimization works well with ALM-based FPGAs since it does not require more resources than

the accumulator alone. However, for LE-based FPGAs, it uses slightly more resources than

the two blocks apart, so in this case, it is better to keep them separate. The accumulators also

need a signal to start/restart the integration. The resources can thus be estimated as

LCoMi = 2R0 LEs

LCo Acc = 2RC +1 LEs

LCoMi Acc = RC +0.5 ALMs.

(C.5)

Multiplexer

This block is used only in the SS and PFS implementations. The multiplexer is fully combina-

torial, consequently, its resources have been evaluated empirically. The resources with NB

inputs of RC bits can be estimated as

LMU X = NB RC

0.75
LEs

= NB RC

1.5
ALMs.

(C.6)

Magnitude computation

There are many possible algorithms for the computation of the magnitude. Here, we consider

the Robertson approximation (Robertson [1971], Lyons [2010]). The estimate is obtained

empirically, and it is a piecewise function that depends on the resolution of the input R.

LM ag = 3R + f1(R) LEs

= 1.5R + f2(R) ALMs.
(C.7)

with

f1(R) =


33, for 10 ≤ R ≤ 16

67, for 17 ≤ R ≤ 32

99, for 33 ≤ R ≤ 49

, (C.8)
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and

f2(R) =
22, for 12 ≤ R ≤ 20

42, for 21 ≤ R ≤ 40
. (C.9)

Complex multiplier

This function is used only in the PCS implementation. It consists of four multiplications and

addition/subtraction. This is done by a DSP block. If the resolution of the input is less than or

equal to the basis DSP elements (18 bits for Altera FPGAs), it requires four blocks, otherwise, it

requires sixteen blocks.

DC Mul =
4, for R ≤ 18

16, for 18 > R
DSP elements. (C.10)

Ping-pong buffer

This function is used only in the PFS implementation. It is composed of two memories. The

number of addresses of each buffer corresponds to the number of branches multiplied by the

number of signal points in the FFT, and four address buses are needed to write and read both

buffers.

LPPB = 4log2(NB NF F T,S) LEs

= 2log2(NB NF F T,S) ALMs.
(C.11)

The number of bits needed corresponds to the number of addresses multiplied by four times

the resolution of the input signal (I and Q path, in two memories to avoid the overwriting of

data not yet read).

MPPB = 4NB NF F T,SRC bits. (C.12)

Memory-based coherent accumulator

This function is used only in the PCS implementation. It consists, for each signal path (I and

Q), of a memory, an adder, and a 2-input multiplexer. We also count the read and write address

buses needed to access the memory.

LCo Acc = 4RC +2log2(NF F T ) LEs

= 2RC + log2(NF F T ) ALMs.
(C.13)
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The number of bits corresponds to the number of points in the FFT multiplied by twice the

resolution of the input signal (I and Q path).

MCo Acc = 2NF F T RC bits. (C.14)

Memory-based non-coherent accumulator

This is the same block as the coherent accumulator except that there is now only one input

signal instead of two.

LNoCo Acc = 2RNC +2log2(N@) LEs

= RNC + log2(N@) ALMs,
(C.15)

where N@ is the number of addresses and is defined as

N@ =


NB , for the SS implementation

NB NF T , for the PFS implementation

NF F T , for the PCS implementation

. (C.16)

The number of bits corresponds to the number of addresses multiplied by the resolution of

the input signal.

MNoCo Acc = N@RNC bits. (C.17)

FFT

The resource usage of the FFT depends on a lot of parameters, and it is estimated with the

Altera Mega Wizard Plug-In Manager.

C.1.2 Resource estimates of the implementations

Serial search

The functions in the SS implementation and their sizes in terms of logical blocks are summa-

rized in Table C.1 for NB branches. The total number of logical blocks of the SS implementation

is obtained by summing all the elements of Table C.1 and is

LSS = NB

(
2R0 + 10

3
RC +2

)
+2log2(NB )+6R0 +3RC + f1(RC )+2RNC + log2(Nchi p )+124 LEs

= NB

(
5

3
RC +1

)
+ log2(NB )+5R0 +1.5RC + f2(RC )+RNC + log4(Nchi p )+60 ALMs.

(C.18)
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Function Number of LEs Number of ALMs

Carrier generator 64 32

Carrier mixer 6R0 −4 5R0 −4

Code generator NB +64+ log2(Nchi p ) NB
2 +32+ log4(Nchi p )

Code mixers 2NB R0 NB (RC +0.5)
Coherent accumulators NB (2RC +1)

Multiplexer NB RC
0.75

NB RC
1.5

Magnitude computation 3RC + f1(RC ) 1.5RC + f2(RC )

Non-coherent accumulator 2RNC +2log2(NB ) RNC + log2(NB )

Table C.1: Logical resource estimates of SS implementation.

The memory blocks are used only by the non-coherent accumulator, and the total number of

bits is

MSS = NB RNC bits. (C.19)

Parallel frequency search

The functions in the PFS implementation and their sizes in terms of logical blocks are summa-

rized in Table C.2 for NB branches. The total number of logical blocks of the PFS implementa-

tion is obtained by summing all the elements of Table C.2 and is

LPF S = NB

(
2R0 + 10

3
RC +2

)
+6log2(NB )+LF F T +4log2(NF F T,S)+2log2(NF T )

+6R0 +3RF F T + f1(RF F T )+2RNC + log2(Nchi p )+124 LEs

= NB

(
5

3
RC +1

)
+3log2(NB )+LF F T +2log2(NF F T,S)+ log2(NF T )

+5R0 +1.5RF F T + f2(RF F T )+RNC + log4(Nchi p )+60 ALMs.

(C.20)

The functions in the PFS implementation and their sizes in terms of memory blocks are

summarized in Table C.3 for NB branches. The total number of bits of the PFS implementation

is obtained by summing all the elements of Table C.3 and is

MPF S = NB (4NF F T,SRC +NF T RNC )+MF F T +Nchi p bits. (C.21)
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Function Number of LEs Number of ALMs

Carrier generator 64 32

Carrier mixer 6R0 −4 5R0 −4

Code generator NB +64+ log2(Nchi p ) NB
2 +32+ log4(Nchi p )

Code mixers 2NB R0 NB (RC +0.5)
Coherent accumulators NB (2RC +1)

Multiplexer NB RC
0.75

NB RC
1.5

Ping-pong buffer 4log2(NB NF F T,S) 2log2(NB NF F T,S)

FFT LF F T LF F T

Magnitude computation 3RF F T + f1(RF F T ) 1.5RF F T + f2(RF F T )

Non-coherent accumulator 2RNC +2log2(NB NF T ) RNC + log2(NB NF T )

Table C.2: Logical resource estimates of PFS implementation.

Function Number of bits

Code generator Nchi p

Ping-pong buffer 4NB NF F T,SRC

FFT MF F T

Non-coherent accumulator NB NF T RN B

Table C.3: Memory resource estimates of PFS implementation.

Parallel code search

The functions in the PCS implementation and their sizes in terms of logical blocks are summa-

rized in Table C.4 for NB branches. The total number of logical blocks of the PCS implementa-

tion is obtained by summing all the elements of Table C.4 and is

LPC S = NB
(
LF F T +L I F F T +7RC +2RNC + f1(RC )+6R0 +60

)
+LF F T +4log2(NF F T )+ log2(Nchi p )+65 LEs

= NB
(
LF F T +L I F F T +3.5RC +RNC + f2(RC )+5R0 +28

)
+LF F T +2log2(NF F T )+ log4(Nchi p )+32.5 ALMs.

(C.22)

The functions in the PCS implementation and their sizes in terms of memory blocks are

summarized in Table C.5 for NB branches. The total number of bits of the PCS implementation

is obtained by summing all the elements of Table C.5 and is

MPC S = NB
(
MF F T +MI F F T +NF F T (2RC +RNC )

)+MF F T +Nchi p bits. (C.23)
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Function Number of LEs Number of ALMs

Carrier generator 64NB 32NB

Carrier mixer NB (6R0 −4) NB (5R0 −4)

Code generator 65+ log2(Nchi p ) 32.5+ log4(Nchi p )

FFTs (NB +1)LF F T (NB +1)LF F T

Complex multipliers 0 0

IFFTs NB L I F F T NB L I F F T

Coherent accumulators 4NB RC +2log2(NF F T ) 2NB RC + log2(NF F T )

Magnitude computations NB
(
3RC + f1(RC )

)
NB

(
1.5RC + f2(RC )

)
Non-coherent accumulator NB 2RNC +2log2(NF F T ) NB RNC + log2(NF F T )

Table C.4: Logical resource estimates of PCS implementation.

Function Number of bits

Code generator Nchi p

FFTs (NB +1)MF F T

IFFTs NB MI F F T

Coherent accumulator 2NB NF F T RC

Non-coherent accumulator NB NF F T RNC

Table C.5: Memory resource estimates of PCS implementation.

The functions in the PCS implementation and their sizes in terms of DSP blocks are summa-

rized in Table C.6 for NB branches. The total number of DSP elements of the PCS implementa-

tion is obtained by summing all the elements of Table C.6 and is

DPC S = NB (DF F T +D I F F T +DC Mul )+DF F T DSP elements. (C.24)

C.2 Application example details

In this section, we provide the details of the application example used in Section 3.4. First, the

target FPGA is presented, then for each implementation, all the values (number of accumula-

tions, resolution of signals, and size of FFTs) are specified, and the formulas of the previous

section are used to determine the number of branches that can be implemented. The results

are given here and summarized in Table 3.4.
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Function Number of bits

FFTs (NB +1)DF F T

Complex multipliers NB DC Mul

IFFTs NB D I F F T

Table C.6: DSP resource estimates of PCS implementation.

C.2.1 Application with a low-cost FPGA series : Altera Cyclone III

The target device considered is the EP3C120 with the following resources,

• 119 088 LEs,

• 432 blocks of 9216 bits (9216 bits = 1 M9K),

• 288 18-bit multipliers.

Note that it is not possible to entirely fill an FPGA due to routing constraints. We then consider

the use of 85 % of the logical blocks inside the FPGAs (Altera [2007]).

Therefore, taking into account that only 85 % of the FPGA logical blocks can be used, and

considering the other functions in the FPGA such as the tracking channels, the management,

and the processor (evaluated to about 20 000 LEs according to our experience), this gives about

80 000 LEs available for the acquisition channel. Note that the assumptions made here impact

the absolute results (i.e. the performance), but not the comparison between the different

implementations (i.e. the ranking).

Serial search

The parameters of the SS implementation are summarized in Table C.7. Using Eq. (C.18) we

obtain

82NB +2log2(NB )+348 ≤ 80000, (C.25)

from which we deduce that the maximum number of branches implementable is NB = 971.

Parallel frequency search

The parameters of the PFS implementation are summarized in Table C.8. For an FFT of this

size, the implementation that uses the natural and bit-reversed order requires fewer logic

and memory resources (but more DSP resources) than the implementation that uses only the

natural order. Consequently, the evaluation is made for the first implementation (since the

DSP resources are not critical with the PFS implementation).
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Parameter Value

R0 5 bits

NC 40 960

RC 21 bits

NNC 40

RNC 27 bits

Table C.7: Parameters of the SS implementation.

Parameter Value

R0 5 bits

NA 2560

TA = NA
fS

625 µs

RC 17 bits

NF F T,S 16

NF F T 32

RF F T 18 bits

NNC 40

RNC 24 bits

LF F T 4359 LEs

MF F T 6 M9Ks = 55 296 bits

Table C.8: Parameters of the PFS implementation with a Cyclone III FPGA.

Using Eq. (C.20) we obtain

206

3
NB +6log2(NB )+4716 ≤ 80000, (C.26)

from which we deduce that the maximum number of branches implementable due to the

logic is NB = 1095. Using Eq. (C.21) we obtain

1352NB +7×9216 ≤ 432×9216, (C.27)

from which we deduce that the maximum number of branches implementable due to the

memory resources is NB = 2897. Consequently, the limitation comes from the logical blocks,

and the maximum number of branches is NB = 1095.
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Parameter Value

R0 5 bits

NF F T 4096

RF F T 18 bits

NP 10

RC 22 bits

NNC 40

RNC 28 bits

FFT with input
and output in
natural order

LF F T ,L I F F T 7756 LEs

MF F T , MI F F T 76 M9Ks = 700 416 bits

DF F T ,D I F F T 24 DSP elements

FFT with input
in natural order
and output in

bit-reversed order

LF F T 9962 LEs

MF F T 37 M9Ks = 340 992 bits

DF F T 40 DSP elements

IFFT with input
in bit-reversed order

and output in
natural order

L I F F T 10 149 LEs

MI F F T 48 M9Ks = 442 368 bits

D I F F T 40 DSP elements

Table C.9: Parameters of the PCS implementation with a Cyclone III FPGA.

Parallel code search

The parameters of the PCS implementation are summarized in Table C.9. We evaluate the

number of branches for both FFT index ordering. Let’s consider first the FFTs with only the

natural order. Using Eq. (C.22) we obtain

15879NB +7879 ≤ 80000, (C.28)

from which we deduce that the maximum number of branches implementable due to the

logic is NB = 4. Using Eq. (C.23) we obtain

1695744NB +77×9216 ≤ 432×9216, (C.29)

from which we deduce that the maximum number of branches implementable due to the

memory resources is NB = 1. Using Eq. (C.24) we obtain

52NB +24 ≤ 288, (C.30)
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from which we deduce that the maximum number of branches implementable due to the DSP

resources is NB = 5. Consequently, the limitation comes from the memory resources.

Now, let us consider the FFTs with the natural and bit-reversed order. Using Eq. (C.22) we

obtain

20478NB +10085 ≤ 80000, (C.31)

from which we deduce that the maximum number of branches implementable due to the

logic is NB = 3. Using Eq. (C.23) we obtain

1078272NB +38×9216 ≤ 432×9216, (C.32)

from which we deduce that the maximum number of branches implementable due to the

memory resources is NB = 3. Using Eq. (C.24) we obtain

84NB +40 ≤ 288, (C.33)

from which we deduce that the maximum number of branches implementable due to the DSP

resources is NB = 2. In this case, the limitation comes from the DSP resources. Thus, finally,

the FFT using different orders is preferable, and the maximum number of branches is NB = 2,

the limitation coming from the DSP blocks.

C.2.2 Application with a high-end FPGA series : Altera Stratix III

The target device considered is the EP3SE260 with the following resources,

• 135 200 ALMs,

• 864 blocks of 9216 bits (9216 bits = 1 M9K),

• 48 blocks of 147 456 bits (= 1 M144K = 16 M9K),

• 768 18-bit multipliers.

The remark made before regarding the space in the FPGA remains valid here, and we consider

that 105 000 ALMs are available for the acquisition channel. The number of accumulations

and the resolution of signals are identical to those already indicated and are not repeated here.

Serial search

Using Eq. (C.18) we obtain

36NB + log2(NB )+191 ≤ 105000, (C.34)
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Parameter Value

LF F T 1790 ALMs

MF F T 2 M9Ks = 18 432 bits

Table C.10: Parameters of the PFS implementation with a Stratix III FPGA.

FFT with input
and output in
natural order

LF F T ,L I F F T 3806 ALMs

MF F T , MI F F T 76 M9Ks = 700 416 bits

DF F T ,D I F F T 24 DSP elements

FFT with input
in natural order
and output in

bit-reversed order

LF F T 5083 ALMs

MF F T 31 M9Ks = 285 696 bits

DF F T 40 DSP elements

IFFT with input
in bit-reversed order

and output in
natural order

L I F F T 5146 ALMs

MI F F T 42 M9Ks = 387 072 bits

D I F F T 40 DSP elements

Table C.11: Parameters of the PCS implementation with a Stratix III FPGA.

from which we deduce that the maximum number of branches implementable is NB = 2911.

Parallel frequency search

The parameters of the FFT are summarized in Table C.10. Using Eq. (C.20) we obtain

88

3
NB +3log2(NB )+1970 ≤ 105000, (C.35)

from which we deduce that the maximum number of branches implementable due to the

logic is NB = 3511. Using Eq. (C.21) we obtain

1352NB +3×9216 ≤ 1632×9216, (C.36)

from which we deduce that the maximum number of branches implementable due to the

memory resources is NB = 11104. Consequently, the limitation comes from the logical blocks.

Due to the limitation in the multiplexing described in Section 3.3, it is necessary to use three

multiplexer chains. Taking this into account, the maximum number of branches is NB = 3385.
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Parallel code search

The parameters of the FFT are summarized in Table C.11. Let’s consider first the FFTs with

only the natural order. Using Eq. (C.22) we obtain

7812NB +3868 ≤ 105000, (C.37)

from which we deduce that the maximum number of branches implementable due to the

logic is NB = 12. Using Eq. (C.23) we obtain

1695744NB +77×9216 ≤ 1632×9216, (C.38)

from which we deduce that the maximum number of branches implementable due to the

memory resources is NB = 8. Using Eq. (C.24) we obtain

52NB +24 ≤ 768, (C.39)

from which we deduce that the maximum number of branches implementable due to the DSP

resources is NB = 14. Consequently, the limitation comes from the memory resources.

Now, let us consider the FFTs with the natural and bit-reversed order. Using Eq. (C.22) we

obtain

10429NB +5145 ≤ 105000, (C.40)

from which we deduce that the maximum number of branches implementable due to the

logic is NB = 9. Using Eq. (C.23) we obtain

967680NB +32×9216 ≤ 432×9216, (C.41)

from which we deduce that the maximum number of branches implementable due to the

memory resources is NB = 15. Using Eq. (C.24) we obtain

84NB +40 ≤ 768, (C.42)

from which we deduce that the maximum number of branches implementable due to the DSP

resources is NB = 8. In this case, the limitation comes from the DSP resources. Finally, both

FFT types gives the same maximum number of branches, NB = 8, in one case the limitation

comes from the memory and on the other case it comes from the DSP blocks.

The summary of the number of branches can be found in Table 3.4 on page 68.
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