Resource-efficient parallel acquisition architectures for
modernized GNSS signals

THESE N° 6190 (2014)

PRESENTEE LE 26 JUIN 2014
A LA FACULTE DES SCIENCES ET TECHNIQUES DE L'INGENIEUR
LABORATOIRE D'ELECTRONIQUE ET TRAITEMENT DU SIGNAL
PROGRAMME DOCTORAL EN MICROSYSTEMES ET MICROELECTRONIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Jérome LECLERE

acceptée sur proposition du jury:

Prof. H. P. Herzig, président du jury
Prof. P.-A. Farine, Dr C. Botteron, directeurs de thése
Prof. R. Garello, rapporteur
Dr C. Macabiau, rapporteur
Prof. Y. Perriard, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2014






Chaque fois que j'utilise la raison,
chaque fois que j'utilise la logique,
je suis tres pessimiste.

Quand j'écoute mon coeur,

quand j'écoute ma foi

- etj’ai la foi en ’humanité -

alors je deviens trés optimiste.

— Jacques-Yves Cousteau






Acknowledgements

If this Ph.D. thesis has been completed, it is thanks to many people, that I would like to thank
today.

I first thank Prof. Pierre-André Farine, for giving me the opportunity to work in the ESPLAB
and offering very good conditions of work.

I sincerely thanks my supervisor, Cyril Botteron, for his time, for his advice, his suggestions,
his reviews, and for giving me the freedom to explore my ideas. It was a real pleasure to work
with him.

I would like to thank the colleagues from ESPLAB, especially the GNSS group, Youssef, Alek-
sandar, Vincenzo, Miguel, Marcel and Grégoire, for all the interesting discussion, and my first
officemate Patrick Stadelmann, for all the music I discovered thanks to him and for the many
questions I asked him during these years.

I spare a thought for Paulo, Sébastien, Myriam, Leslie and Sébastien that made the ION GNSS
2012 a so nice conference. And I must confess that I regret not meeting you again in other
conferences. I have a special thought for Myriam, because I have really appreciated all the
discussions, the exchanges, the questions, and I thank her to have review this thesis (and also
some of my papers). I am really happy to have met her, and to have been able to discuss very
technical points about GNSS and acquisition. I am also pleased that our common work will
materialize in a near future.

I would like to thank also Henri Nussbaumer for his kindness, his time, and his useful advices.
In a certain way, it’s thanks to him that I am now raring to explore the fascinating worlds of
modular arithmetic and number theory. I also thanks Rick Lyons for his kindness, and I am
impatient to share a drink during my next travel to USA.

I also thank the people from the Altera forum, which helped me a lot during the development
of my GPS receiver.

I thank Virginie, because her love and her sweet nothings were really important during these
last months far from each other.

Et pour finir, je remercie ma mere, car c’est grace a elle si j’en suis la aujourd’hui. Qui l'aurait
criilyalOoul5ans?






Abstract

The acquisition of global navigation satellite system (GNSS) signals is an extremely computa-
tionally intensive task. This explains that the first GPS receivers needed a very long time to
obtain a position. Thanks to technological advances, it is now possible to use highly parallel
implementations and efficient algorithms based on the fast Fourier transform (FFT), and thus
reduce significantly the processing time. Indeed, today, it takes less than a second to detect a
GPS L1 C/A signal with a clear view of the sky. However, this case does not correspond to all
the situations, and does not mean that the research on this topic is completed. For example, it
is always necessary to reduce the power consumption of GNSS devices embedded in portable
electronics equipment to further improve their battery autonomy. Sometimes, it is necessary
to detect very weak signals, such as in space applications because of the long distances and
the bad geometry, or with receivers embedded in smartphones where the antenna must meet
aesthetic criteria, which leads to poor performance in terms of gain. And finally, the recent
introduction of new GNSS signals will lead to better performance, but at the same time will
require a much more complex signal processing. Therefore, it is still necessary to find new
algorithms in order to meet the current needs of the society and scientists.

The goal of this Ph.D. thesis has been to search algorithms to reduce the complexity of the
acquisition, in order to reduce the processing time or the resources used, depending on
the context. The research has focused on the computation of the correlation using FFTs,
and on reducing its complexity by exploiting the characteristics of the GNSS signals. This
research has been performed with a hardware implementation in mind rather than a software
implementation, because this Ph.D. thesis started with a project where the goal was to develop
a GPS receiver on a programmable circuit (more specifically on a field programmable gate
array, or FPGA).

In this thesis, first we show simple methods to reduce the complexity of the FFT or of a
correlation computed by FFT (or of a convolution) on Altera FPGAs. In particular the methods
we propose allow a significant reduction of the memory resources. Moreover, the application
of these methods is not restricted to GNSS signals, but in fact apply to any other systems
computing FFTs, convolutions, or correlations, since no assumption is made on the signals.

Afterwards, we focus on the acquisition of modern signals having a secondary code using the
parallel code search, and especially on the acquisition of the GPS L5 signal. Two cases are
considered :



Abstract

First, we discuss the acquisition where the correlation is performed over one period of the
primary code. This case is useful if we want to receive a modern GNSS signal and a fast
processing is preferred to a high sensitivity for example, or if we want to use one period of
the secondary code (which is longer than a period of the primary code), but it is not possible
to compute directly so large FFTs. Starting from an existing solution, two algorithms are
proposed in order to reduce the complexity under some conditions (e.g. the FFT length must
be a power of two).

Second, we discuss the case where the correlation is performed over one period of the sec-
ondary code. We seek to reduce the complexity by exploiting the fact that the tiered code
contains a repetition of the primary code, and that the secondary code is short and common
to all the satellites (for the considered signal). In search for an exact algorithm, we found an
approximation that reduces the complexity in exchange of a reduction of the signal-to-noise
ratio (SNR).

Keywords : Acquisition, Algorithm, Complexity, Convolution, Correlation, fast Fourier trans-
form, FFT, FPGA, Hardware receiver, Implementation, Galileo, Global navigation satellite
system, Global positioning system, GNSS, GPS, Parallel code search, Sensitivity.
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Résumé

Lacquisition des signaux GNSS est une tache extrémement gourmande en calculs. Ceci ex-
plique que les premiers récepteurs GPS obtenaient une position apres un temps tres long.
Grace aux progres technologiques, il est devenu possible d’utiliser des implémentations haute-
ment paralleles et des algorithmes efficaces basés sur la transformée de Fourier rapide (FFT),
et donc de réduire le temps de calcul de maniere significative. En effet, a 'heure actuelle,
détecter un signal GPS L1 C/A avec une vue dégagée du ciel prend moins d'une seconde.
Cependant, ce cas ne s’applique pas a tous les contextes, et ne signifie pas que la recherche
sur ce sujet soit terminée. Entre autres, il y a toujours la nécessité de réduire la consommation
des appareils GNSS intégrés aux équipements portables afin d’améliorer I’autonomie. 1l est
parfois nécessaire de détecter des signaux trés faibles, comme pour les applications spatiales
a cause des longues distances et de la géométrie défavorable, ou avec les récepteurs intégrés
aux téléphones portables o1 'antenne doit répondre a des exigences esthétiques, ce qui est
fortement préjudiciable pour le gain de 'antenne. Et pour finir, 'introduction récente de
nouveaux signaux GNSS décuple les possibilités et les performances mais rend également les
traitements beaucoup plus complexe. Il est donc toujours nécessaire de trouver de nouveaux
algorithmes afin de répondre aux besoins actuels de la société et des scientifiques.

Le but de ce doctorat a donc été de rechercher des algorithmes qui permettent de réduire la
complexité de I'acquisition, afin de réduire le temps de calcul ou les ressources utilisées, selon
le contexte. La recherche s’est articulée principalement autour de I'opération de corrélation
calculée par FFT, et des moyens d’exploiter les caractéristiques des signaux GNSS afin d’en
réduire la complexité. Cette recherche a été effectuée en ayant a I'esprit plutdt une implémen-
tation matérielle que logicielle des algorithmes, car ce doctorat a débuté avec un projet dont
le but était de développer un récepteur GPS sur un circuit programmable (FPGA).

Dans cette theése, dans un premier temps des méthodes simples sont présentées pour réduire
la complexité d'une FFT ou d'une corrélation par FFT (ou d'une convolution) sur des FPGAs de
chez Altera. En particulier, ces méthodes permettent une réduction significative de la mémoire
nécessaire. De plus, I'application de ces méthodes n’est pas limitée aux signaux GNSS, mais
s’applique a tout systéme calculant des FFT, des convolutions ou des corrélations, car elles
n’utilisent aucune propriété concernant les signaux.
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Résumé

Ensuite, nous nous concentrons sur I’acquisition des nouveaux signaux comportant un code
secondaire en utilisant la recherche paralléle du code, et en particulier sur I’acquisition du
signal GPS L5. Deux cas sont étudiés :

Tout d’abord, celui ol la corrélation est calculée sur une période du code primaire. Ce cas est
utile si 'on souhaite par exemple recevoir un des nouveaux signaux GNSS et que la rapidité
est privilégiée sur la performance en matiere de sensibilité, ou sil’on souhaite utiliser une
période du code secondaire (qui est plus longue qu'une période du code primaire) mais
qu’il n’est pas possible de calculer des FFT de si grande longueur directement. Partant d'une
solution existante, deux algorithmes sont proposés afin de réduire la complexité sous certaines
conditions (par exemple que la longueur des séquences pour les FFT soit une puissance de
deux).

Ensuite, nous étudions le cas o1 la corrélation est calculée sur une période du code secondaire
directement. En exploitant le fait que le code local complet contient une répétition du code
primaire et que le code secondaire est court et commun a tous les satellites (pour le signal
considéré), nous essayons de réduire la complexité. A défaut d’avoir trouvé une méthode
de calcul exact, nous proposons une approximation qui permet de réduire la complexité en
contrepartie d'une baisse du rapport signal sur bruit.

Mots-clés : Acquisition, Algorithme, Complexité, Convolution, Corrélation, FFT, FPGA, Implé-
mentation, Galileo, GNSS, GPS, Récepteur matériel, Recherche parallele du code, Sensibilité,
systeme de positionnement par satellites, transformée de Fourier rapide.
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Notations of signals

A continuous signal is denoted x(¢), where ¢ represents the time. A discrete signal is denoted
x(nTs), where n is an integer and Ty is the sampling period. If the knowledge of the sampling
frequency is not needed, a discrete signal is then denoted x,. The same notation is used to
denote the sequence x, and the nth sample of this sequence, since the context is usually clear
enough to prevent any confusion. The transform of a sequence is denoted with a capital letter,
for example the discrete Fourier transform of x,, is denoted X}, and the z transform of x, is
denoted X(z). Vectors are denoted with small letters in boldface, and matrices are denoted
with capital letters in boldface. Below is a summary of the notations used.

x(1) Continuous signal
x(nTs) Discrete signal sampled with a period Ts
Xn Discrete signal, or nth sample of the sequence
Xk Discrete Fourier transform of the sequence x;
X(z) z transform of the sequence x,
X Column vector corresponding to the sequence x;,
X Matrix generated from the sequence x,
x* Conjugate of the vector x
X* Conjugate of the matrix X
XT Transpose of the matrix X
Rule for subscripts

A subscript is written in capital letters if :

1. the symbol corresponds to an element fixed by design (e.g. f1; for the L1 carrier fre-
quency, fs for the sampling frequency, frpr for the reference frequency).

2. the subscript corresponds to an acronym (e.g. fio for the local oscillator frequency).
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A subscript is written in lower case if :

1. the symbol describes a time-varying element (e.g. s, for the signal emitted, s;, for the

signal in baseband, ¢, for the primary code).

2. the symbol describes an element whose actual value differs from the theoretical one
(e.g. fs for the actual sampling frequency, fr.r for the actual reference frequency).
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Introduction

Genesis of this thesis

I started my Ph.D. thesis working on a European project, where my objective was to develop a
high-sensitivity GPS receiver with a fast time-to-first-fix (TTFF) implemented into an FPGA.

Since one of the target was to obtain a fast TTFFE I focused my attention on the acquisition,
the most time consuming operation when we turn on a GPS receiver. What I was looking for,
a comparison between different acquisition methods for an FPGA implementation, was not
available in the literature, thus I performed this comparison myself.

After this comparison, I chose one of the best methods, with the intuition that it was possible
to obtain more efficient implementations. This was the starting point of the real research.

Motivations

As mentioned above, the acquisition is a computational intensive task. The technology
improvements have allowed the use of efficient and highly parallel algorithms, so that it is
now possible to acquire a sufficient number of satellite signals in less than a second. However,
there are still many reasons to perform additional research on this topic :

1. Although the power consumption is not so critical for GNSS receivers for cars, boats, or
planes, this is highly critical for embedded systems, such as mobile phones, satellites, or
robots.

2. There are applications where the power of the GNSS signals received is very low, which
requires much more processing to detect the signals. This can be due to the environ-
ment, like for indoor positioning where there are obstacles, or like for space navigation
where the main lobe of the GNSS satellite antenna may not be in the direction of the
receiver and where the distances may be much longer. It can also be due to the receiver
components, like with mobile phones where the antenna must meet aesthetic require-
ments that lead to poor performance (the gain can be 10 dB lower compared to an ideal
3 dBi antenna, which means that 90 % of the power is lost before reaching the front-end
(van Diggelen [2009], p. 216)).
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3. Several new signals are now available, and although they offer better performance, the
complexity for the acquisition is much higher, especially because of a higher chipping
rate, the use of longer codes, and the presence of a secondary code (van Diggelen [2014]).

4. With four GNSS constellations in the sky soon, the performance of GNSS receiver will
be improved significantly (e.g. the number of satellites in view will increase and the
geometry will be improved, leading to a better positioning accuracy and availability).
However, each constellation provides signals with different characteristics, it is thus a
challenging task to find implementations that can process several signals in an efficient
way (e.g. by sharing some processing units).

For all these reasons, the research of more efficient algorithms for the acquisition is still
necessary. Here, by more efficient, we mean that the complexity of the algorithms should be
reduced, which can lead to different improvements according to the objective. For instance, it
can result in a reduction of the processing time (thus allowing to get a position more quickly),
or in a reduction of the resources used (e.g. memory), leading to a reduction of the energy
consumption.

Therefore, during this Ph.D. thesis, | focused my research on the acquisition, and on how to
reduce its complexity. The acquisition includes additional topics, such as ways to increase the
sensitivity (coherent vs. non-coherent vs. differential integration, combination of data and
pilot channels), or the methods of detection. Here, these topics are not addressed, and the
focus is only on the computation algorithms, and more specifically on the ways to compute
the correlation of two signals through FFTs in the GNSS context.

I specify in the GNSS context because the aim was to use the specificities of the GNSS signals
and the application context to find more efficient algorithms, and not to find the solution
of general problems, because the question of the fast computation of the DFT and of the
convolution has already been discussed extensively since the 1970s (see e.g. Winograd [1980],
Nussbaumer [1982], Burrus and Parks [1985], Garg [1998], Blahut [2010]).

The focus is also more on hardware receivers than on software receivers, because I started my
Ph.D. thesis implementing a hardware receiver. Nevertheless, we discuss also the applicability
of some of the proposed algorithms for software receivers.

Mathematical tools used during this thesis

During the thesis, different mathematical tools have been used, because the correlation
between two discrete signals can be expressed in various ways. The correlation is usually
expressed in the time domain. But it can also be expressed as the product of two polynomials
(through the use of the z transform for example), or using matrices, which involves circulant,
skew-circulant, Toeplitz and Hankel matrices. And finally, the correlation is deeply related to
the discrete Fourier transform.
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Then, there are also different ways to manipulate the signals, as for example using a downsam-
pling or a segmentation, or applying the Chinese remainder theorem.

Outline

This thesis is separated in two parts. The first part, which includes Chapters 1, 2 and 3, intro-
duces GNSS signals and receivers with a closer look on the acquisition block, and presents
a comparison of different known methods for the acquisition. The second part, which in-
cludes Chapters 4, 5 and 6, presents the proposed algorithms to reduce the complexity of the
acquisition in different contexts.

Chapter 1 introduces some basic notions about GNSS, by describing the concepts, the current
systems, the GNSS signals, and the different elements of a GNSS receiver. More importantly,
this chapter introduces the model used for the discrete GNSS signals. Chapter 2 focuses on
the acquisition, describing the operation performed, presenting different known methods,
and briefly introducing some concepts that are part of the acquisition but not considered
in this thesis. The content of these two chapters is not really new, but is presented in a
rigorous way. In Chapter 3, and using results provided in Appendix C, we propose a new
comparison framework to compare the implementations of the main GNSS signals acquisition
architectures on FPGAs.

Using known algorithms, Chapter 4 presents some implementations to reduce the complexity
of the FFT and of the correlation implemented on Altera FPGAs, using the Altera FFT. Chapter
5 discusses the problem of the acquisition in presence of sign transitions due to a secondary
code (or data). We present two algorithms to reduce the complexity. These algorithms compute
the output exactly and are thus not approximations. However, they are efficient only under
certain conditions. Chapter 6 discusses the problem of the high sensitivity acquisition using
the secondary code. We discuss implementations to use smaller FFTs (which will bring us
back the Chapter 5), and then implementations to reduce the complexity (which will lead to
approximations).

Chapter 7 concludes this work and provides some comments for future research.

Several appendices complete this thesis. Appendix A summarizes the definition of some
operations (DFT, z transform, convolution, correlation) in different ways (time domain, matrix
view, z transform view), and provides the relations between them. Appendix B gives some
tips to reduce the complexity when we deal with FFT and correlation, which can be useful
for GNSS receivers. Finally, Appendix C contains the details of the estimation of the FPGA
resources for the implementations discussed in Chapter 3.

Overall, I tried to gather in this manuscript all the information I learnt and that someone
would need to continue this research in the same direction.
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|§ Some basics about GNSS

1.1 General principle of GNSS

The positioning in GNSS is based on trilateration, i.e. the measurement of distances from
references whose positions are known. An example in two-dimension is given Fig. 1.1. If
the receiver R knows that its distance from the reference S1 is d;, it knows that its position
is on the circle of radius d; and centered at S1. Moreover, if then the receiver knows that its
distance from the reference S2 is d», it knows that its position may be on two points, namely
the intersection of the two circles. Finally, the same information for the third reference S3 will
indicate the true receiver position.

In GNSS, the references are the GNSS satellites, the distances are determined by measuring
the travel time of the signals, and we have three dimensions instead of two. Therefore, the
measure of the distance from a first satellite reduces the possibilities for the receiver position
to a sphere; a second measure reduces the possibilities to a circle; a third measure reduces the
possibilities to two points; and a fourth measure reduces the possibilities to one point, the
receiver position. Consequently, the signals from at least four GNSS satellites are needed to
obtain a position. Actually, a GNSS receiver needs at least four satellites, but for additional
reasons. After the third measure, there are two possibilities for the position, but one of them
is on the surface of the Earth, while the other is on an impossible place (e.g. far below the
surface or in space (note that this is an impossible place for a terrestrial receiver, but not for
a satellite)). Thus, with a clever algorithm, three satellites would be sufficient. However, the
time of arrival of the signals is measured with the clock of the receiver, which has a limited
accuracy (whereas GNSS satellites use atomic clocks). An error in the estimate of the travel
time results in an error of the satellites position and in the estimates of the distances (in 1 s
the waves travel about 300 m), and thus in the estimate of the receiver position. To resolve this
error, an additional measure is needed. Therefore, four satellites are needed to get a position.
Nevertheless, a receiver usually uses more than four signals to improve the accuracy.

Regarding the GNSS satellites, they send their current time and their ephemeris (parameters
that define their orbit), which allows the receiver to compute their position. Afterwards, to
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S3

Figure 1.1: Illustration of the trilateration principle in a two-dimension case.

determine the distance from each GNSS satellite, the receiver determines the travel time
(time between the reception and the emission of the signal) and multiplies it by the speed of
propagation.

For more details, see for example http://www.navipedia.net/index.php/An_intuitive_approach_
to_the_GNSS_positioning, or (Kaplan and Hegarty [2005] Chap. 2, El-Rabbany [2006]).

1.2 Overview of the terrestrial GNSSs

A GNSS is composed of three segments : the space segment, the control segment, and the user
segment.

The space segment consists in the GNSS satellites themselves, which are in almost circular
orbits around the Earth, at an altitude of about 20 000 km in a region called medium Earth
orbit (MEO). The constellations rely on 24 to 30 satellites, distributed between several planes.
The GNSS satellites send permanently signals in direction of the Earth.

The control segment consists in a network of stations on Earth, which includes a master
control station, several stations that monitor the GNSS signals, and some stations that upload
new data to the GNSS satellites (e.g. to adjust the orbit parameters of the satellites).
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1.3. Signals transmitted by GNSS satellites

The user segment consists in all the equipments that receive and process the GNSS signals.
This thesis, which discusses about the processing of GNSS signals, is thus in this category.
For a thorough review of the application of GNSS, see (Jacobson [2007]) and (Gleason and
Gebre-Egziabher [2009]).

In the next years, there will be four GNSSs fully operational. Two of them are currently fully
operational (GPS and GLONASS), and two of them are in development (Galileo and BeiDou).

The GPS is an American system, started in the late 1970s by the Department of Defense for
military applications. Later, in the 1990s, it was open to civil applications, but it’s mainly
when the selective availability was removed (making the positioning accuracy within 10 m
instead of about 100 m (Adrados et al. [2002])) that the GPS has been democratized. Since the
beginning, the system is evolving progressively, each new generation of satellites bringing new
performances (e.g. using better clock and increasing the life span) or new signals. As of March
2014, the GPS constellation includes 31 satellites (http://www.gps.gov/systems/gps/space),
whereas the baseline was 24 satellites.

GLONASS is a Russian system developed approximately at the same time as the GPS. How-
ever, due to a lack of maintenance, the system was no more fully operational, until a re-
cent renovation. As of March 2014, GLONASS is fully operational with 24 satellites (http:
/Iwww.glonass-center.ru/en/GLONASS). As GPS, GLONASS evolves, and the next generation
of satellites will include new signals. Until now, GLONASS satellites used FDMA (frequency
division multiple access) for the multiple access, i.e. each satellite uses a specific frequency.
This is the only GNSS to use this technology, all the others using only CDMA (code division
multiple access), where all the satellites use the same frequency but they have a specific code
(GLONASS uses also such codes but only for ranging purpose). The new GLONASS signals will
be based on CDMA only.

Galileo is a European system in development. As the modernized GPS, the Galileo satellites
will transmit several signals for civil applications and governments, including wide band
signals. According to the latest estimations, the system should be fully operational in 2018.
BeiDou is a Chinese system in development. Most of the signals will be similar to those of
Galileo or GPS. According to the latest estimations, the system should be fully operational in
2018. For a summary of the GNSS signals, see (Hegarty [2012]).

1.3 Signals transmitted by GNSS satellites

The GNSS satellites continuously send signals in direction of the Earth. Those signals have
three essential components (Langley [1990]) :

* A carrier, which is a sinusoidal signal whose frequency is in the L band (band between 1
and 2 GHz).

* A spreading code, which is a known long binary sequence of +1 and —1 specific to each
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Figure 1.2: Tllustration of the data (d(¢)) and code (c(#)) synchronization for the GPS L1 C/A
signal. The values inside boxes indicate the chip number.

satellite and transmitted at high rate. This sequence, also called pseudo-random noise
(PRN) code, allows precise ranging and lets the satellites to broadcast signals at the same
carrier frequency (see e.g. (Viterbi [1995]) for more details about CDMA). The values of
a PRN code are usually called chips instead of bits, to emphasize that they do not carry
information.

» Navigation data, which is a binary-coded message of value +1 or —1 transmitted at low
rate to provide the information necessary for the navigation, such as time and orbital
information (called ephemeris). The duration of one data bit is equal or is a multiple of
the duration of one period of the PRN code (see Figs. 1.2 and 1.3).

The famous GPS L1 C/A signal has these three components, and the signal emitted by the
satellite u is defined as

sg (1) =\/2P, (1) d" (1) cos@m fr1t+¢pl), (1.1)

where t is the time, P, is the signal power, c(t) is the PRN code, d(t) is the data, f7; is the L1
carrier frequency, and ¢, is a phase. The synchronization between the code and the data is
illustrated in Fig. 1.2. The modulation used for this signal is called binary phase shift keying,
or BPSK (Ziemer and Tranter [2008] pp. 403—408).

Modern signals, on the other hand, have introduced some new components (Turunen [2007]) :

* A secondary code, which is a known binary sequence transmitted at low rate. This
means that two codes (usually called primary and secondary codes) are combined to
form a tiered spreading code (see Fig. 1.3). The secondary code helps, among others, for
the synchronization with the data bits.

¢ A sub-carrier, which is a square wave multiplying each chip of the PRN code. This leads
to a new modulation family (binary offset carrier, or BOC) and modifies the spectrum of
the signals (Betz [2001]).

A pilot channel, that includes only the spreading code and the carrier, and not the data.
This provides a lot of advantages for the signal detection since it is fully deterministic. For
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10 ms = 1 data bit
=1 secondary code period
=10 secondary code chips
=10 primary code periods

d(1) ‘

cs(1) 0 ‘ 1 ‘ oee ‘ 9 ‘ 0 ‘

cp(t) 0 ‘ 1 ‘ 10229 Q ‘ 1 ‘ 10229 ‘ 0 ‘ 1 ‘ 10229 0 ‘ 1 ‘ 10229
1 primary code chip ~ 97.75 ns 1 ms = 1 secondary code chip

=1 primary code period
=10 230 primary code chips

Figure 1.3: Illustration of the data (d(¢)) and codes (c¢;(#) and ¢, (#)) synchronization for the L5
signal. The values inside boxes indicate the chip number.

some signals (e.g. the GPS L5 and the Galileo E5a and E5b), the data and pilot channels
are in quadrature, in this case, if each channel is BPSK modulated, the modulation
is a quadrature phase shift keying (QPSK), and the data channel is usually denoted
the I channel, and the pilot channel the Q channel. Otherwise, the two channels are
transmitted in a different way, like time multiplexing (e.g. TMBOC for the GPS L1C
signal) or code multiplexing (e.g. CBOC for the Galileo E1 signal). See (Avila Rodriguez
et al. [2006]) for more details.

So, the signal emitted by a GNSS satellite u when the data and pilot channels are in quadrature
is defined as

S (1) = /2P ¢ (1) d" (1) cosRmfrt+@g) + /2P ¢y (1) SN frt + @), (1.2)

where PY is the emitted power on each channel (assuming the same power on both channels),
f1 is the carrier frequency in the L band, and c;(¢) and c4(¢) are the PRN codes of the data and
pilot channels defined as

¢ (1) =c,,; (1) cg; (1) sci' (1), (1.3)
and
g (D)= cp (1) g (D) scq (1), (1.4)

where ¢),; and ¢, 4 are the primary codes of the data and pilot channels, c;; and c; 4 are the
secondary codes of the data and pilot channels, and sc; and sc, are the sub-carriers of the
data and pilot channels. The synchronization between the codes and the data is illustrated in
Fig. 1.3.

A summary of the properties of some GNSS signals is given Table 1.1. It can be seen that
there are only two different chipping rates used for the primary code, 1.023 MHz and 10.23
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GalileoE1 GPSL5 Galileo E5a Galileo E5b

Signal GPSL1C/A D p I Q 1 Q I Q
Carrier frequency 1575.42 157542 117645  1176.45 1207.14
(MHz)
Modulation BPSK CBOC QPSK QPSK QPSK
Primary code 1.023 1.023 10.23 10.23 10.23

chipping rate (Mchip/s)

Primary code

length (chip) 1023 4092 10230 10230 10230

Primary code
length (ms)

Secondary code

chipping rate (chip/s) - - 250 1000 1000 1000

Secondary code

length (chip) - - 25 10 20 20 100 4 100

Secondary code

- - 100 10 20 20 100 4 100
length (ms)

Data rate

2 -1 - -2 -
(bit/s) 50 50 00 50 50

Table 1.1: Properties of some GPS and Galileo signals.

MHz, and that the primary code length is always a multiple of 1023. Regarding the secondary
codes, those for the Q channel of the E5a and E5b signals are specific to each Galileo satellite
(there are 100 codes defined), while the other secondary codes are unique (for example the
secondary code for the I channel of the E5b signalis -1 —1 —1 +1). For details on other
signals, the reader can refer to (Hegarty [2012]) or (Avila Rodriguez [2008]).

The spreading codes used in GNSS have not been randomly chosen, but have been carefully
selected according to their auto-correlation (correlation of a signal with itself) and cross-
correlation (correlation between two signals) properties. The codes are selected in order to
have cross-correlation values as low as possible, and auto-correlation values as low as possible
except for one case, when the code is aligned with itself. This is illustrated in Fig. 1.4 for the
auto-correlation of some primary codes, in Fig. 1.5 for the cross-correlation of some primary
codes, and in Fig. 1.6 of some secondary codes. It can be seen that the longer is the code, the
better are the correlation properties.

Regarding the spreading codes composed of a primary and a secondary code, it can be
tempting to think that the protection is the addition of the protection of each codes (if it was
true, the minimum protection of the L5 spreading code would be about 27 + 14 = 41 dB for
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Figure 1.6: Auto-correlation of the L5 secondary code (20 chips), the E1 secondary code (25

chips) and an E5Q secondary code (100 chips).

17



Chapter 1. Some basics about GNSS

0.8 4

0.6 1

0.4 1

0.2 ‘ ‘ b

Normalized auto-correlation of the L5 spreading code
Normalized auto-correlation of the L5 spreading code (dB)

I ‘ ‘ ‘ -
02} B [
C . 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2 . . 0.6 0.8 1 1.2 1.4 1.6
Delay (chip) x10° Delay (chip) x10°
@ (b)
0
o If i B
3 3
oo <1
£ oal | f
E 0.6F g g
Pt
é 041 1 g
g 02f — g
E s r
B 0 w (- R e | - m, ]
T T 1
g ]
E L
|11 |
(; ‘1 é C"» ; g é ; é é 1‘0 0 1 2 3 4 5 6 7 10
Delay (chip) x10* Delay (chip) x10*

(c) (d)

Figure 1.7: Auto-correlation of the L5 spreading code (204 600 chips) and the E1 secondary
code (102 300 chips).

example). However, this is not the case as shown in Fig. 1.7. It can be seen that around the
correct alignment, the correlation value is higher. Indeed, in this case the secondary code is
nearly aligned since a shift of 1 chip of the L5 primary code is equal to a shift of ﬁ chip of
the L5 secondary code, thus the correlation value is mainly due to the primary code. Then,
when the secondary code is sufficiently shifted, the correlation value is much lower, except
for some delays. These delays correspond to a correct alignment of the primary code, thus
in these cases the correlation value is given by the secondary code, which explain the higher

values.

Finding a set of codes with very good characteristics is not an easy task. Indeed, the number of
possibilities is too large to make an exhaustive search. For example, for a length of 1023 chips,
there are 2'922 code possible. With an imaginary supercomputer that could check the auto-
correlation of 10'° codes in one second, it would still require about 10?”° times the universe
age to test all of them. And this does not take into account the research of a set of several codes
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1.4. Space travel

with good cross-correlations properties. Therefore, smart approaches have to be used, and
today they are known ways to generate some code families having good properties using shift
registers (Holmes [2007] Chap. 2). The most well-known codes are probably the Gold codes
(Gold [1967]), which are used with the GPS L1 C/A signal. However, other characteristics can
be included in the search of good codes, such as the correlation in presence of a transition, or
the correlation in presence of a residual carrier (which affects a lot the short secondary code
(Macabiau et al. [2003])). See (Soualle et al. [2005]) for more details.

1.4 Space travel

During the travel in space, the GNSS signals are affected by different elements, as well sum-
marized in (MacGougan et al. [2001]). Here we describe two important effects, which are the
reasons of the acquisition, and we mention some other effects.

1.4.1 Free spaceloss

Like every propagating signal, the GNSS signals are affected by a loss of power during the
travel. This loss, usually called free space loss, is defined as

dmdf )

Lf=(”f), (1.5)
c

where d is the distance in m, f the carrier frequency in Hz, and c the speed of light in m/s

(Ziemer and Tranter [2008], pp. 695-698). This loss can also be expressed in log scale, which

gives
L;(dB) =101 (4”df)2
= (o)  —
f 810 c (1.6)
= 20log,o(d) +20log, o (f) — 147.55.
Therefore, for the signals at the L1 frequency, the loss is
Ly, (dB) = 20log; o(d) +183.95 — 147.55 -
= 20log; o (d) +36.40, '
and for the signals at the L5 frequency, the loss is
Ly (dB) = 20log;,(d) +181.41 —147.55 1.8)

= 20log, (d) +33.86.
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. Galileo E1 GPS 15 Galileo E5a Galileo E5b
Signal GPSL1C/A D p I 0 I Q I Q
Receivedpower .00 130 _130 _127* -127* 128 -128 —128 —128
(dBm)

Table 1.2: Minimum received power on Earth (for a 3-dB gain linearly polarized antenna or a
unity gain RHCP antenna). *For block III GPS satellites (—127.9 dBm for block IIF satellites.)

Using d = 20200 km (the approximate altitude of the GPS satellites), this gives

Ly, (dB) =~ 146.11 +36.40
~182.50

(1.9

and

Ly, (dB) = 146.11 +33.86
~179.97

(1.10)

Of course, the distance traveled by the signals depends also on the position of the receiver on
Earth. Thus, according to the position of the receiver, the free space loss is different. However,
the pattern of the satellites antenna is designed to partially compensate this (Kaplan and
Hegarty [2005] pp. 133-135, van Diggelen [2009] pp. 10-12). In the end, the minimum signal
power received on Earth is given in Table 1.2 for different GNSS signals. But in presence of
obstacles (e.g. glass, wood, concrete), the signals are strongly attenuated and the power can
drop to —160 dBm (van Diggelen [2009] pp. 215-217). Furthermore, with a poor performance
antenna (such as in mobile phones), this power can be reduced again by 10 dB to reach —170
dBm, which represents a factor of about 10 000 compared to the nominal value. It will be then
the job of the signal processing in the receiver to compensate these losses. Of course, lower is
the received signal power, higher is the processing required.

1.4.2 Doppler effect

Another important effect is the Doppler effect. The Doppler effect implies a time compression
or expansion of the signals due to the relative motion between a transmitter and a receiver.
Thus, a signal s(#) will be seen as s((l +a) t), where a = %, with v the relative velocity between
the emitter and the receiver, and c the speed of light. Consequently, this means that the
period T of a periodic signal is divided by 1 + a, and that its frequency f is multiplied by
1+ a, asillustrated in Fig. 1.8. The difference between the received frequency and the emitted
frequency, equal to a f, is usually called the Doppler frequency or the Doppler shift.

According to (Tsui [2005] pp. 34-37), the GPS satellites are moving at a speed of about 3874
m/s, and the maximum relative speed between a GPS satellite and a static user on Earth is
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Figure 1.8: Illustration of the Doppler effect on a periodic signal when (a) the emitter and the
receiver go away from each other (the relative speed between them is negative, thus a < 0); (b)
the relative speed between the emitter and the receiver is zero; (c) the emitter and the receiver
are getting closer (the relative speed between them is positive, thus a > 0).

928.7 m/s. If we follow the same procedure, the relative speed between a Galileo satellite and
a static user on Earth is 17/20 the one with GPS (17/20 is the ratio between the altitude of
GPS satellites and the altitude of Galileo satellites), i.e. 789.4 m/s. This leads to the Doppler
shifts indicated in Table 1.3. It can be seen that the GNSS signals are not equivalent from the
Doppler effect point of view. Regarding the code Doppler, even if it seems very low, it still plays
an important role as will be shown in Chapter 2.

For a moving receiver, the relative speed between the satellites and the receiver is higher. Table
1.4 provides the maximum supplementary Doppler shift for an aircraft having a speed of 1000
km/h and a spacecraft in low Earth orbit (LEO) having a speed of 7.7 km/s. Note that the
total Doppler shift in the case of the LEO is not the sum of the Doppler shifts of Tables 1.3
and 1.4, since Table 1.3 takes into account the geometry for a user on Earth. For example, the
maximum carrier Doppler shift measured by a LEO receiver having a speed of 7.7 km/s in
(Dion et al. [2008]) was 42 kHz for the L1 C/A signal.

1.4.3 Doppler rate of change

Since the GNSSs are dynamic systems, the relative velocity between the GNSS satellites and
the user is changing over the time. According to (Tsui [2005] pp. 39-40), the maximum rate of
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Carrier Doppler Code Doppler

Signal (KH2) (Hz)
GPS L5 3.64 31.7
GPS L2 3.80 3.17
GPS L1 4.88 3.17
Galileo E5a 3.10 26.9
Galileo E5b 3.18 26.9
Galileo E1 4.15 2.69

Table 1.3: Maximum Doppler shift for GNSS signals for a static user.

Aircraft Spacecraft
Signal Carrier Doppler Code Doppler Carrier Doppler Code Doppler
(kHz) (Hz) (kHz) (Hz)
GPS L5 1.09 9.48 30.2 263
GPS 12 1.14 0.95 31.5 26.3
GPSL1 1.46 0.95 40.5 26.3
Galileo E5a 1.09 9.48 30.2 263
Galileo E5b 1.11 9.48 31.0 263
Galileo E1 1.46 0.95 40.5 26.3

Table 1.4: Maximum supplementary Doppler shift for GNSS signals for an aircraft (speed of
1000 km/h) and for a spacecraft (speed of 7.7 km/s).

change of the carrier Doppler shift is about 0.94 Hz/s for a static user on Earth considering the
L1 frequency. In fact, the range of values of the rate of change depends on the latitude of the
user (van Diggelen [2009] pp. 45-46).

For a moving receiver, the rate of change can be much higher. For example, when a car is
on a roundabout, the relative speed between the receiver and the emitter changes rapidly
and can imply a change of the carrier Doppler of dozens of Hz in few seconds. The rate of
change can be quite high also in space. For example, considering the L1 C/A signal, the rate of
change of the carrier Doppler shift can reach at least 62 Hz/s for a receiver on LEO (Dion et al.
[2008]), 14 Hz/s for a receiver on a medium Earth orbit (MEO) and 5.5 Hz/s for a receiver on a
geostationary Earth orbit (GEO) (Capuano et al. [2013]).

The code Doppler shift is also evolving over the time, although the change is not so significant
(with the L1 C/A signal, a rate of change of 0.94 Hz/s for the carrier Doppler means a rate of
change of 0.61 mHz/s for the code Doppler). The impact of the rate of change of Doppler is
discussed in Chapter 2.
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1.4.4 Other effects

There are also other effects, not so important for the acquisition, but important for the posi-
tioning. For example, there are perturbations coming from the atmosphere of the Earth, and
more particularly from the ionosphere and the troposphere, that affect the speed of the signal
(and consequently the distances that will be measured). However, some models have been
developed to correct these effects, and the use of signals at different frequencies (L1 and L2 (or
L5) for example) also allows us to correct them (Hoque and Jakowski [2012]).

1.5 Basic operation of a GNSS receiver

In this section, we describe the different elements of a GNSS receiver, and we provide the
signal model at each stage. Here we consider two models : the first one takes into account the
impact of the Doppler effect and of the reference frequency accuracy on both carrier and code.
Whereas the second model takes into account only the major impacts on the carrier. A tilde is
used to denote this simplified model.

The first model is typically required when we want to detect weak signals or when the speed of
the receiver is high (like on an aircraft or a spacecraft), while the simplified model is enough
for strong signals when the speed of the receiver is low (like on a boat or a car).

1.5.1 Antenna

The antenna is the element that converts the received electromagnetic wave into an electrical
signal. The design of an antenna for GNSS can be quite complex and involves many parameters
such as the bandwidth (it is not the same if we want to receive signals at a specific frequency
(only L1 for example) or to receive signals at different frequencies (L1 and L5 for example)),
the gain, the polarization, the phase center, etc. The reader can refer to (Wang [2012]) for an
introduction on this topic, or to (Grewal et al. [2013] Chap. 5, Rama Rao et al. [2012], Chen
et al. [2012]) for detailed information.

After the antenna, the received signal is the combination of signals coming from U different
satellites plus a noise term (discussed later in Section 1.5.2), it is thus defined as

U
sr(0) =) s¥(t)+n,(0). (1.11)
u=1

The signal coming from a satellite u when the data and pilot channels are in quadrature is
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defined as
$40) = 2P (1 +aty i —1) d*((L+ @)t - 7") cos(2r fi((1+a™y—7") + gl
#yf2pE i+ atyi-1Y) sin(27 f1((1+ @™y =) + )
= @C?((l +a)r—1") d*(A+a")r—1Y) cos(2n(f + f)t+@})
+ \/ﬁ cg(A+a"t—1") sin(2n(fL+ f )t + o)),

(1.12)

where P} is the received power on each channel, a* = ”TM with v" is the relative velocity
between the satellite u and the receiver, [ = a"f1 is the carrier Doppler frequency, " is
the delay due to the distance traveled by the signal, and ¢¥ = ¢% — 27 f;7" the phase of the
received carrier.

For the simplified model, the Doppler effect on the code is neglected, and the expression
becomes

5P =1/2PF ¢} (t—1") d*(t—1") cos(2n(fr+ [t +p¥)

(1.13)
+/ 2P} cg(t—1") sin(2n(fr+ f)t+ ).

1.5.2 Front-end

After the antenna, the received signal goes through the front-end, which is depicted in Fig.
1.9, where frgr is the reference frequency of the receiver, f; is the local oscillator frequency,
fir = fL — f1o is the intermediate frequency, and f5 is the sampling frequency. The signal is
first amplified by a low-noise amplifier (LNA) and filtered around the frequency of interest.
Then, the signal is mixed with a local sine wave of frequency f1o and filtered, which brings the
signal to baseband (i.e. the signal is now centered on the intermediate frequency f7). After,
the signal is amplified by an amplifier with an automatic gain control (AGC). And finally, the
signal is sampled and quantized by the analog-to-digital converter (ADC).

Of course, Fig. 1.9 depicts the principle, however the design of a real front-end depends on
many parameters such as the reception of one or several signals, power consumption, size,
etc. (see e.g. (Chastellain [2010], Chastellain et al. [2011], La Valle et al. [2011], Ruegamer et al.
[2012])).

Downconversion

The local oscillator frequency is defined as

fro=Mio freF, (1.14)
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Figure 1.9: Illustration of a front-end.

where Mo is a rational number. The intermediate frequency is defined as the difference
between the frequency in the L band and the local frequency, we have thus

fi=fi-Jo
= fr = Mio freF.

(1.15)

However, the reference oscillator is not perfect, it has a certain accuracy (van Diggelen [2009]
Chap. 3) and phase noise (Thombre et al. [2011]), and consequently its actual frequency is not
exactly frgr. To take into account the accuracy of the reference oscillator, we will denote f;.¢
the actual reference frequency, which is defined as

fref = frRer(1+ ), (1.16)

where § represents the oscillator accuracy. The accuracy of an oscillator depends mainly
on the type of oscillator used, and is usually defined in ppm. For example, if the oscillator
accuracy is 1 ppm, § = 1075, Consequently, this impacts the local oscillator frequency and thus
the intermediate frequency. The actual intermediate frequency, denoted f;, is thus defined as

fi= fL_MLOfref
= fr—Mio frer(1+ B) (1.17)
=fi—Afi

where Af; = B Mio frer = B fro, and represents the difference between the theoretical and
the actual intermediate frequency. Let’s make an example to give an insight into the impact of
the oscillator accuracy. Let’s consider that frgr = 16.384 MHz with an accuracy of + 1 ppm,
and Mo = 96. We have then f; =2.556 MHz and A f; = 1572.864 Hz. So, the offset implied by
the local oscillator may represent a significant amount, and this shows the importance to have
a good oscillator. It can be noticed that A f; is proportional to the local oscillator frequency but
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Chapter 1. Some basics about GNSS

not to the reference frequency (because if we change the reference frequency, we also need to
change the factor M;p). This means that A f; will be lower considering the L5 frequency than
the L1 frequency, but using a lower reference frequency will not change anything.

The baseband signal for a satellite u is thus defined as
sp(0) =y [2P} c(A+a“yt—1") d*(A+a")yr—1¥) cos(2nfit+})
+/2P}! c;‘((l +a')yr—1") sin(2nfi t+ @y,

where P} is the power on each channel, f,’ = fi— Afi + f} is the baseband frequency, which

(1.18)

contains two unknowns, one common to all the satellite signals (A f;), and one specific to each
satellite signal (f}), and ¢, is the phase of the carrier.

For the simplified model, the expression of the baseband signal for a satellite u is

50 = \/2P} ci(t—1") d*(t—1") cos(2n flt+¢})

(1.19)
+1/2P) cy(t—1") sin(2m f' t + ).
Sampling
The sampling frequency is defined as
fs = Ms frer, (1.20)

where My is a rational number. In the same way as for the intermediate frequency, the
reference oscillator accuracy impacts the actual sampling frequency, which is defined as

fs=Ms fref
= Ms frer(1+ ) (1.21)
= fs(1+ ).

Consequently, the actual sampling period is Ts = lﬁ—sﬁ, where T = % and Ts = % Therefore,

after the ADC, the discrete baseband signal for a satellite u is

sp(nTy) = \/ 2P} cHA+a“nTs—1%) d" (1 +a“)nTs—1") cos(2n finTs + ¢})

(1.22)
+1/2Py cg((L+a")nTs—7") sin(2m fi' nTs + py),
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1.5. Basic operation of a GNSS receiver

where 7 is the index of the samples. This signal can also be expressed using the theoretical
sampling period,

sp(nTy)=/2P¥ ¢ (4 +/3 nTs—t") d" (111‘;3 nTs—1 )COS(ZﬂfﬁnTs-i-(p )

+1/2P} Z(Hﬁ nTs—1") sin(2n fﬁnT5+(pb)

Egs. (1.22) and (1.23) are strictly equivalent, but they provide a different interpretation. With
Eq. (1.22), we consider that the input signal is not modified, and that it is sampled with the
actual sampling frequency. With Eq. (1.23), we consider that the input signal is modified, and
that it is sampled with the theoretical sampling frequency. In this last case, the modification

(1.23)

acts as a Doppler effect, but identical for all the satellite signals.

The first question is when Eq. (1.22) is more appropriate, and when Eq. (1.23) is more ap-
propriate ? In short, the answer is with hardware receivers for Eq. (1.22), and with software
receivers for Eq. (1.23). Indeed, for a hardware receiver, the clock signal used for the sampling
is provided to the next stages of the receiver. So all the signals that will be generated by the
receiver will be based on the actual sampling frequency, this is why it is better to consider the
actual sampling frequency. However, for a software receiver, the sampling frequency is written
in hard in a program. And this value corresponds to the theoretical sampling frequency of
course, this is why in this case it is better to consider the theoretical sampling frequency.

The second question is what is the impact of this Doppler like effect ? In a perfect world, we
should receive a signal sampled at the theoretical sampling frequency, and we should generate
local signals sampled at the theoretical sampling frequency. In the reality, with a hardware
receiver, we receive a signal sampled at the actual sampling frequency, and we generate local
signals sampled at the actual sampling frequency, thus the effect is automatically compensated.
But with a software receiver, we receive a signal sampled at the actual sampling frequency, and
we generate local signals sampled at the theoretical sampling frequency, thus the effect is not
compensated.

Let’s take an example with 8 = 107%, where we receive a code with a chipping rate of 1.023
Mchip/s and where we want to generate a code with a chipping rate of 1.023 Mchip/s. For a
hardware receiver, after the ADC, the code chipping rate is indeed 1.023 Mchip/s considering
a sampling frequency f;, when the local code chipping rate will be 1.023 Mchip/s considering
a sampling frequency f;. Whereas, for a software receiver, after the ADC, the code chipping

L. 0%3 ~1.022998977 Mchip/s considering a sampling frequency fs, when the local code

rate is
chipping rate will be 1.023 Mchip/s considering a sampling frequency fs, which may cause
a problem. Consequently, this effect needs to be taken into account during the design of

software receivers.

Note that nevertheless, the offset due to the oscillator (A f;) can be estimated once the receiver
has computed its position and tracks several signals, and thus the actual sampling frequency
can be estimated too. However, if the receiver is switched off, and switched on later, the
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Chapter 1. Some basics about GNSS

oscillator offset has changed, so the uncertainty can be reduced but never cancelled when
starting the receiver.

The carrier Doppler shift is also affected by the sampling, but in a lesser extent. For example, if
B =107 and the baseband frequency [, is 2.56 MHz, after the ADC, the baseband frequency
will be shifted by be about 2.56 Hz, which is negligible compared to the range of the carrier
Doppler shift.

For the simplified model, we can consider only the theoretical sampling frequency, thus the
discrete baseband signal for a satellite u is

§y(nTg) =/2P}) c}'(nTs—1") d"(nTs—1") cos(2n f;' nTs +¢p)

(1.24)
+/2P} cg(nTs—1") sin(2m i nTs + p).

Complex sampling

In Fig. 1.9, the local oscillator generates one sine wave. It is also possible to generate two
sine waves in quadrature, in order to obtain two sequences at the output of the front-end, as
illustrated in Fig. 1.10. In this case, the discrete baseband signal s;,(nT;) can be modeled as a
complex signal, where s;(nTs) is the real part and s, (nT;) is the imaginary part. For a satellite
u, these two signals are defined as

si(nTs) = /2P cf' (1 +a“)nTs—1") d“((1 + a“)nTs—1") cos(2nfy' nTs+¢p})

(1.25)
+1/2P) cg(A+a")nTs—1") sin(2n fy' nTs+¢})
and
sg(nT9 = /2Py cf (A +a"InTs=7") d“((1+a")nTs—1") sin(27 f;'nTs + ) (1.26)
1.26

—/2P} ¢ (A +a")nTs—1") cos(27 fy' nTs+py,).
Therefore, the discrete baseband signal for a satellite u is

sp(nTs) = st (nT) + j sZ(nTs)
= \/2PE (e (a +a"nT,-7") d"((+ a")nTs - 7") (1.27)

—jeg(A+a"ynTs— T”)) o CnfinT )

where j=v-1.

In the same way, for the simplified model of the discrete baseband signal for a satellite u, we
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Figure 1.10: Illustration of a front-end using complex sampling.

have
§{(nTy) = \/2P} ci'(nTs—1") d"(nTs—1") cos(2n f'nTs + ¢}) 128
+1/2P} cy(nTs—1") sin(27 fy'nTs +@})
and
§q(nT9) =1/2P} cf'(nTs—1") d“(nTs—1") sin(2n f' nTs + ¢p) 1.29)
—\/2P} cy(nTs—1") cos(2n f;'nTs +¢}),
and thus
S“Z(nTS) = §ly(l’lTS) +7 §Z(nTs)
(1.30)

=/2P} (C?(nTs—Tu) d“(nTs—t")—j cZ(nTS—T”)) el @y nTs+py)

The use of complex sampling presents some advantages and drawbacks for the front-end
design (e.g. it resolves the image frequency problem, but it requires two paths instead of
one. See e.g. (Chastellain et al. [2011]) for more details). It also allows us to have a lower
intermediate frequency (it can be even 0 Hz) and a lower sampling frequency than for a real
sampling (the minimum sampling frequency corresponds to the signal bandwidth, whereas it
is twice the signal bandwidth for a real sampling).

Note that in Fig. 1.10, the local sine wave of the bottom branch is ahead compared to the sine
wave of the top branch, i.e. there is a difference of phase of —90°. However, it is possible to have
itlate by removing the minus sign of the sine wave of the bottom branch, leading to a difference
of phase of +90°. In this case, there are two differences with the model established by Eqgs.

29



Chapter 1. Some basics about GNSS

(1.27) and (1.30). The first is that the data and pilot channels are combined with + j instead of
—j, and the second is the insertion of a minus sign in the complex exponential, which implies
areversal of the spectrum. For example, if the carrier Doppler shift for a satellite is 1000 Hz,
the baseband signal will be shifted by —1000 Hz, which implies additional corrections in the
later processing.

Noise

As indicated previously, the received signal is the combination of several signals coming from
different satellites, plus a noise term. The discrete baseband signal is thus

U
sp(nTs) = ) sy (nTs) +np(nTy), (1.31)
u=1

where 1, (nTs) is a noise. This noise comes from the thermal noise induced by the antenna
and the front-end themselves. The thermal noise is assumed to be an additive white Gaussian
noise (AWGN) (Ziemer and Tranter [2008] pp. 341-342). The two-sided power spectral density
value of an AWGN is constant and equal to % (Ziemer and Tranter [2008] pp. 313-314), where
Ny is defined as

No = kg Tgrr, (1.32)

with kp the Boltzmann constant and Tgrr the effective temperature of the entire front-end,
therefore Ny is expressed in W/Hz (equivalent to joule). The effective temperature of the
front-end depends on the noise figure of the front-end, on the ambient temperature and on
the effective temperature of the antenna (van Diggelen [2009] pp. 133-137). This means that
the front-end itself plays an important role in the noise level present at the output.

Before the ADC, the signal is filtered, and therefore the noise too. If we assume an ideal filter
of two-sided bandwidth 2B, the noise before the ADC is a bandlimited white noise (Ziemer
and Tranter [2008] pp. 342-343). In this case, the noise power is

o5 =—2B=NyB. (1.33)

Therefore, the noise power is proportional to the bandwidth of the filter front-end. This means
that the noise power depends on the signal we want to receive (e.g. the bandwidth of the GPS
L5 signal is ten times the bandwidth of the a GPS L1 C/A signal).

After the ADC, the spectrum is replicated at each multiple of the sampling frequency, as
illustrated in Fig. 1.11a, which shows the power spectral density (PSD) of a bandlimited white
noise when B < f/2. It can be seen that after the sampling the noise is still a bandlimited
white noise. However, if we consider the special case B = f;/2, illustrated Fig. 1.11b, after
the sampling the noise is a white noise. This difference is important because in the later
processing (acquisition and tracking), the samples will be accumulated. With a white noise,
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Figure 1.11: Illustration of the noise PSD before and after the sampling, (a) when B < f;/2, (b)
when B = f;/2.

the samples are uncorrelated and thus the variance of the noise increases linearly with the
number of samples accumulated, while with a bandlimited noise the samples are correlated
and the variance increases faster. If we do not take this into account, we may think that
keeping the same front-end bandwidth and increasing the sampling frequency will provide a
better signal-to-noise ratio (SNR), which is not the case, as demonstrated in (van Diggelen
[2009] pp. 146-154). Therefore, to consider n,(nT;) as an AWGN, we should consider B = é
for a real sampling, or B = f; for a complex sampling. Of course, in the real world, it is not
possible to build an ideal filter, consequently, a precise analysis can be performed only when
the transfer function of the front-end filter is known.

Since the noise power depends on the front-end bandwidth (or on the sampling frequency),
the SNR at the output of the front-end may be different for signals of same power but different
bandwidth. However, in the later processing, for the same accumulation time, the SNR will
be the same for signals of same power but different bandwidth (because whatever is the
bandwidth of the input signal, the bandwidth after the accumulation is reduced to the same
value). Therefore, the SNR at the output of the front-end is not providing a very meaningful
information. In order to get rid of the front-end bandwidth, we usually use the carrier power-
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Figure 1.12: Acquisition principle.

to-noise density ratio (Joseph [2010], van Diggelen [2009] pp. 137-140), defined as

P,
CINo= - (1.34)
0

The C/ Ny is usually expressed in log scale, thus we have

C/Ny =101 ( r)
10 No (1.35)

For example, considering a signal power of —160 dBW, an effective temperature of 300 K for the
front-end, which means Ny = —203.8 dBW/Hz, we have C/ Ny = 43.8 dBHz, which is a typical
value for open sky view. Note that the C/ N, does not depend on the front-end bandwidth, but
it still depends on the noise figure of the front-end.

1.5.3 Acquisition

After the front-end, the first stage of a GNSS receiver is the acquisition. Its purpose is threefold :
1) Detect the satellites in view; 2) Obtain a rough estimation of the baseband frequency f;
and 3) Obtain a rough estimation of the delay of the spreading code transmitted ¥ (in fact not
T% itself, but 7% modulo one code period).

The processing consists of four steps as shown in Fig. 1.12 : 1) Multiplication with a com-
plex exponential of frequency —fb ; 2) Multiplication with the spreading code of the satellite
searched with a delay T; 3) Accumulation of the signal samples in order to increase the SNR;
and 4) Computation of the magnitude (or the power) of the signal.

When we are looking for a satellite v, if fb is close to f;/ and if T is close to 77, the value
|r”(fb, 7)| will be high. Else if fp is far from [, orif 7 is far from 7", the value |r"(fb, 7)| is low.
The notion of close and far will be formally defined in Chapter 2.

Consequently, this process is repeated for different values of f;, and 7 until a peak exceeds a
predefined threshold for example, or until all the possibilities have been tested without success
(which means that the satellite is not in view or that we have missed it). So, the acquisition is a
two-dimensional search for each satellite. It is possible to compute r”(fb, 7) for one or several
couples (fb, T) at a time, as described more in details in Chapter 2.
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Figure 1.13: Tracking principle.

1.5.4 Tracking

Once a satellite has been detected during the acquisition, the estimates fh and T have to be
refined and followed, because they change over time since the satellites are constantly moving
and the receiver may also move.

The operation performed in tracking is similar to the one in acquisition, i.e. the incoming
signal is multiplied with a local carrier, then multiplied with a local code, and the result is
then accumulated. To follow the received carrier frequency, a frequency-locked loop (FLL) can
be used, but usually the receivers use a phase-locked loop (PLL) for better performance. To
follow the received code, a delay-locked loop (DLL) is used. The DLL generates three versions
of the local code (sometimes more, as with BOC modulations), called early, prompt and late,
which are slightly shifted versions of each other (less than one chip), in order to keep the
synchronization. This basic scheme is illustrated in Fig. 1.13. Of course, the design of the
tracking loops depends on many parameters, such as the sensitivity and the accuracy expected,
the oscillator noise, if we need to deal with multipath or not, etc. For more details on tracking,
the reader can refer to (Kaplan and Hegarty [2005] Chap. 5, Curran [2010]).

1.5.5 Navigation

Once a signal is tracked, the navigation data bits can be extracted. This usually requires
a significant amount of time. For example, for the GPS L1 C/A, the data essential for the
navigation are transmitted during 18 s, and they are repeated each 30 s. Therefore, in the
best case, 18 s are needed, while in the worst case 30 s are needed (assuming all the bits are
correctly decoded).
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Once the data have been extracted for at least four satellites, the position of the GNSS satellites
can be computed. Then, using the pseudoranges (apparent distances between the receiver and
the satellites), the position of the receiver can be determined. For more details on navigation,
see e.g. (Misra and Enge [2011] Chap. 6, van Diggelen [2009] Chap. 3).

1.6 Summary

In this chapter, we have presented in a general way the GNSSs and the GNSS signals, and more
in details the necessary elements to understand the following chapters. We have defined two
models for the discrete baseband signal. The first one takes into account the impact of the
Doppler effect and of the reference frequency accuracy on both carrier and code. Whereas the
second model, which is a simplified version, takes into account only the major impacts on the
carrier.

The simplified model can be largely sufficient for strong signals when the speed of the receiver
is low (as for a boat or a car). However, if we want to detect weak signals or if the speed of the
receiver is quite high, the simplified model is usually not sufficient. It is even worst with the
signals having a chipping rate of 10.23 MHz (since the code Doppler is ten times higher than
with the other GNSS signals).

Note that here we did not consider all the effects. For example, we did not show the impact of
the quantization during the digitization. Usually, a loss is added to take this into account (van
Diggelen [2009], p. 154), but it can also be the subject of deeper studies (Curran et al. [2009] ,
Curran et al. [2010]). We also mentioned the Doppler rate of change, however this does not
appear in the equations defining the received signal, mainly to not overload the equations.
But in case of high dynamics and high sensitivity, this should be taken into account.
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4 Acquisition of GNSS signals

In this chapter, we present in details the operations performed during the acquisition. We also
explain the principle, the advantages and drawbacks of different acquisition methods. And
finally, we introduce briefly some notions that are important but out of the scope of this thesis.

2.1 The cross ambiguity function

2.1.1 Exactderivation

As indicated in Section 1.5.3, for the search of a satellite v, there are four steps as shown in
Fig. 1.12: 1) Multiplication with a complex exponential of frequency —fb; 2) Multiplication
with the spreading code of the satellite searched with a delay 7; 3) Accumulation of the signal
samples in order to increase the SNR; and 4) Computation of the magnitude (or the power) of
the signal.

In the following developments, we will consider the simplified model with a complex input
signal. If we search for the satellite v, after an accumulation over N¢ samples, the signal can
be expressed as
R Nc-1 o
r'(fp )= Y. §(nTy) ¢’ (nTs—1) e J2m/nTs, 2.1)

n=0

Using Eq. (1.31), we can then write

=N Nc-1( U o
r'(fpT) = ) (Z §Z(nTs)+nb(nT3)) ¢V (nTs—7) e~ I2fonTs

n=0 \u=1
U (Nc-1 P
=) ( Yy §Z(nTs)c”(nTs—f)e_fz”fb"TS) (2.2)
u=1\ n=0
Ne-1 o
+ Y. mp(nTy) c¥(nTs—7) e /2 /onTs,
n=0
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r”(fb, 7) is called the cross ambiguity function (CAF). We can also express Eq. (2.2) as

Ne-1

r'fp® = ) STy ¢ (nTs—7) e /2rhnTs
n=0
rv,y(fbyf)
U (Ng-1 .
+ 3| Y snT)c (nTs—7)e /2 onTs
u=1\ n=0
U#v -~ )
ru,u(fb’f) (2.3)
Nc—-1
+ Y np(nTy) ¢’ (nTs—7) e i2nhnTs
n=0
(. 7)
~ U o~ o~
= (fp, D+ Y P (D + " (f, ),
=1
LL:#I)

where r”? corresponds to the CAF considering only the signal of interest, r* corresponds to
the CAF considering only a signal coming from another satellite, thus this can be considered
as an interference from our point of view, and " corresponds to the CAF considering only
the noise.

The number of samples used for the accumulation defines the coherent integration time T¢,
which is equal to T¢c = N¢ Ts. The coherent integration time impacts the sensitivity (i.e. the
minimum power of the input signal for which the signal can be detected) and some acquisition
parameters, as shown later.

For the acquisition, we can either use the data channel or the pilot channel, or both channels.
For the moment, we will consider the simplest case where we use only the pilot channel. In
this case, the local code corresponds to the code of the pilot channel, and ¥ becomes

=R Nc—1 PN
rV(fp )= Y. Sp(nTy) ch(nTs—7) e /2 honTs, (2.4)
n=0
Using Eq. (1.30), we can then write
Neg-1

UV (fp, 1) = Z \/2P} ( (nTs—1")d"(nTs-1")—j C;(nTs—TU)) ol 2 finTs+0})

cq(nTs—7) e~ J2mfonTs

Ng-1

=4/2P} Z [ (nTs—1") cqg(nTs—7) d"(nTs~1") ol @n(fy = FonTs+p}) (2.5)

NC 1 ) - ,
—Jj /2P Z (nTs—1") cl(nTs—7) e/ CrUi=fnTs+wi)

=r; FoD=jry’ (Fo?),
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2.1. The cross ambiguity function

where rl.”’” corresponds to an interference caused by the quadrature component of the same
satellite, and rL',"” corresponds to the signal of interest. Now, we will focus on the CAF of the
signal of interest, and consider different cases to clearly show how looks rg'”.

Correct estimation of code delay and carrier frequency

In the first case, we consider that the delay of the local code is equal to the delay of the received
code, i.e. T= 1", and that the frequency of the local carrier is equal to the frequency of the
received carrier, i.e. f, = f{. In this case, we have cZ(nTs -1Y) cy(nTs—7) =1, and rb';’”
becomes

Nc-1

rol(fL T = /2PY Y el
n=0
= Nc\/2P} el%b.

The magnitude of 7%V is then
= Ncy/2P}. 2.7

Correct estimation of code delay

(2.6)

1234 v 14
rg (fy,17)

In the second case, we consider that only the delay of the local code is equal to the delay of the
received code, i.e. T=7V. In this case, r,';"’ becomes

Ne-1 .
VT 2 (fr-F)nTs+o!
rg (fp,7")=1/2P) 20 el @ny=JonTs+g;)
n=

o1 — el2nfy=fo)NcTs

=/2PV e/? —
b 1 — ei2n(fi=F)Ts

el =FNcTs p=jn(fy=fNeTs _ pin(fy=fo)NeTs (2.8)
=.,/2PYV /% — = —
b eI =TTs  p=in (=T Ts _ pin(fy=F)Ts
. v_ "
= 2P} el%h oI =T We-DTs sin (7(fy — J b)Ne TS)_
sin(z(fY - fu) Ts)
The magnitude of 7" is then
PO | sin (m(f! ~ fi) Nc Ts)
rg” (o, T =1/2P) | — —
sin (7 (f ~ fv) Ts)
sin (7 (f¢ - fo)NcTs) 2.9)

~./2P) —
ﬂ(fby—fb)TS

~ Ncy/2P} |sinc(n(f - f) Tc)|.
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Figure 2.1: Tllustration of the loss due to the frequency mismatch, (a) in linear scale, (b) in log
scale.

On the second line, we can make this approximation because f; — fb is several kHz at most
(or dozens of kHz for high speed context), while T is less than a microsecond, the product is
thus usually less than 1072, which allows the use of the small-angle approximation.

Eqg. (2.9) means that if the estimation of the code delay is correct but the estimation of the
carrier frequency is not correct, there is a loss proportional to the frequency mismatch and to
the coherent integration time, as illustrated in Fig. 2.1.

Correct estimation of carrier frequency

In the third case, we consider that only the frequency of the local carrier is equal to the
frequency of the received carrier, i.e. fj, = f/. In this case, ;" becomes

Ne-1
r,';’”(fb 7)=/2P) el Zo cZ(nTS—T”) cZ(nTs—f). (2.10)
n=

The magnitude of r”? is then
ety 0| = \ 2Py

This means that if the estimation of the carrier frequency is correct, the result is the correlation
of the two codes. The correlation for integer delays is defined by the codes themselves.
However, the shape of the correlation between integer delays is defined by the modulation
used. This is illustrated in Fig. 2.2 for the BPSK and BOC(1,1) modulations when the codes are
aligned within +1 chip.

N¢—-1
ZO cg(nTs—1") cg(nTs—7)|. (2.11)
n=
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Figure 2.2: Illustration of the loss due to the code delay mismatch, (a) in linear scale for a
BPSK modulation, (b) in log scale for a BPSK modulation, (c) in linear scale for a BOC(1,1)
modulation, (d) in log scale for a BOC(1,1) modulation.

2.1.2 Approximation

In the case when neither the code delay nor the carrier frequency are correct, there is no better
closed formed expression for r”? than Eq. (2.4). Since the two effects are interacting, the total
loss is not simply the product of the frequency loss and of the code loss. However, this is an
often used approximation, and in this case we have

R R Ne-1
r";'”(fb,f)| = /2P |sinc(n(f, - fu) Tc)| Zo cg(nTs=1") cy(nTs 7). (2.12)
n=

The question of the validity region of this approximation has been discussed in (Motella and
Lo Presti [2010]), but not in a fully satisfactory wayl. It can be checked that if we replace fb

Un this paper, different components are mixed : the errors due to the double frequency term (which is not
present anymore if we consider a complex sampling), the errors due to the cross-correlation with other codes, and
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by f, in Eq. (2.12) we find Eq. (2.11), and if we replace 7 by 7" in Eq. (2.12) we find Eq. (2.9).
Therefore Eq. (2.12) is exact when at least one of the estimates is correct.

In (Motella and Lo Presti [2010], Foucras et al. [2014b]), it is shown that the approximation is
very close to the exact value for any ﬁ, when |7¥ — 7| < 1 chip . Everywhere else, the approxi-
mation is not valid anymore, and it appears that the level is usually slightly higher than the
code correlation value (Foucras et al. [2014b]). Some works on this topic include (Soualle
et al. [2005], Wallner et al. [2007], Qaisar and Dempster [2007], Soualle [2009], Balaei and Akos
[2010]).

2.1.3 Step of the search

As seen previously, to detect the signal, the local carrier frequency and code delay should be
close to those of the received signal. Since those of the received signal are unknown, there is
no other choice than computing r? (ﬂ, 7) for different couples (ﬁ,, 7) until a peak is detected.

The step between two values tested should be as small as possible to reduce the loss described
previously and to have the best possible estimates. However, decreasing the step increases the
number of possibilities to test, and thus increases the computational burden and the required
processing time. Therefore, we must do a trade-off, which depends on the context (expected
signal power, computational power available, required TTFE etc.).

Frequency step

During the search, the parameter fb will take a finite number of values. This number depends
on the range of the frequency search space, and on the step between two consecutive values.

Usually, the values taken by fb are fr+ kof, where 6f is the step between two frequencies

tested, and k is an integer between — N”z’ L and ¥ F’Z*_l, with Npp the number of frequency

tested (called frequency bins). Thus, with this formula, there is a frequency bin centered on

the intermediate frequency, and the same number of frequency bins above and below this
frequency.

The best case that may happen during the search is when fj, = [}, i.e. when the received
frequency falls exactly on a frequency tested (f, = f7 + k6f), as illustrated in Fig. 2.3a. The
worst case that may happen is when the received frequency falls exactly on the middle of two
frequencies tested (f, = f; + (k+ %) 6f), as illustrated in Fig. 2.3b. In this case, the frequency
mismatch between f; and the closest frequency bin is %. So, depending on the step used,

the maximum loss will be different. In the literature (e.g. van Diggelen [2009], Kaplan and
2

3T¢’

whose corresponding losses are given in Table 2.1. The second case leads to a higher loss, but

Hegarty [2005]), we can find mainly two rules of thumb for the choice of 6f, ﬁ and

the errors due to the presence of the Doppler. This implies that at the end the real impact of the Doppler is not
better known.
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Figure 2.3: Illustration of the loss due to the frequency step, (a) in the best case, (b) in the worst
case. The frequency step oOf is Tic here.

Frequency step ﬁ % Tlc
Maximum frequency error ﬁ ﬁ ﬁ
Loss Linear scale 0.9003 0.8270 0.6366

Log scale (dB) -0.9121 -1.6500 -—3.9224

Table 2.1: Maximum loss due to the frequency mismatch for a coherent integration time T¢.

to fewer frequency bins.

Code step

Similarly as fj, during the search, the parameter 7 will take a finite number of values. The
values taken by 7T are k 1, where 67 is the step between two delays tested, and k is an integer
between 0 and N¢p — 1, with N¢p the number of code delay tested (called code bins).

The best case that may happen during the search is when 7= 1Y, i.e. when the code delay of
the received signal falls exactly on a code delay tested (¥ = kd7), as illustrated in Figs. 2.4a and
2.4c. The worst case that may happen is when the code delay of the received signal falls exactly
on the middle of two delays tested (t” = (k + 3) 67), as illustrated in Figs. 2.4b and 2.4d. In this
case, the code delay mismatch between 7V and the closest code bin is %’. So again, depending
on the step used, the maximum loss will be different. In the literature, the usual rule of thumb
for the choice of 47 is half a chip for a BPSK modulation, and one sixth of a chip for a BOC(1,1)
modulation (values chosen for Fig. 2.4 that give the same loss for both modulations), whose
corresponding losses are given in Table 2.2 (van Diggelen [2009] pp. 155-158).
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Figure 2.4: Tllustration of the loss due to the code step, (a) in the best case for a BPSK modula-
tion, (b) in the worst case for a BPSK modulation, (c) in the best case for a BOC(1,1) modulation,
(d) in the worst case for a BOC(1,1) modulation. The code step 67 is half a chip for (a) and (b),
and one sixth of a chip for (c) and (d).

2.1.4 Noise level
Regarding the noise part of the CAE we have
. Ne-1 o
rP(fp, )= Y. mp(nTy) ¢’ (nTs—1) e /27 fonTs
n=0

Ne-1 o (2.13)
= Y (mi(nTy +jng(nTy) c”(nTs—7) e J2m/omTs,
n=0

where 7);(nTs) and n4(nTs) are AWGN of zero mean and variance o?.

Multiplying a noise by a spreading code does not change its mean or its variance since the
code value is either +1 or —1.
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Code step i chip

chip % chip 1 chip
1 1
8 4
Linear scale 0.8750 0.8333 0.7500 0.5000
Logscale (dB) —1.1598 -1.5836 —2.4988 —6.0206

[ FONT ]

Maximum code delay error chip chip chip % chip

Maximum Loss

Linear scale 0.9375 0.9167 0.8750 0.7500

A L
VEIage LOSS 1 hgscale (dB) -0.5606 —0.7558 -—1.1598 —2.4988

Table 2.2: Loss due to the code delay mismatch for a BPSK modulation.

Then, the noises are multiplied by a complex exponential, and we have

p(nTy) e 12575 = (n,(nTy) + j g (nTy)) (cos@m fynTs) — jsin@n fynTs))
= (ni(nTy) cos(27 fynTs) + nq(nTy) sin(2nﬁ,nTs)) (2.14)
+j (ng(nTy) cos2n fynTs) —n;(nTs) sin(ZJbenTs))

Multiplying a noise by a cosine wave divides its variance by 2. Since 7;(nTs) and n,(nT) are
independent, n; (nTs) cos(anb nTs) and ng(nTs) sin(anb nTs) are also independent, and thus
the variance of their sum is the sum of their variance, i.e. 0. Therefore, we can write

Ne-1
rUN(F,,T) = (nTy) + ing1(nTy)
Iv nX::O ni1 s)t ] Tg1 s 2.15)

=ni2(nTs) + j ng2(nTs),

where 7;1(nT;) and 74, (nTs) are noises of zero mean and variance 0?, and n;i2(nTs) and

14,2(nTs) are Gaussian noises of zero mean and variance Nco?.
. . . 2 . .
If the result is normalized by N¢, the variance becomes ”—C Considering 02 = Ny fs (see

N,
Section 1.5.2), the variance is ]}]22 = ]}[—g Thus the longer is the coherent integration time, the

lower is the noise variance.

2.2 Evaluation methods of the cross ambiguity function

In this section, we detail different methods to compute the CAF for a single or for multiple
couples (ﬁ,, 7) simultaneously, and we present the advantages and drawbacks of each one.

2.2.1 Serial search

The simplest acquisition method is the serial search (or sequential search), where the CAF
is computed for one couple (fb, 7) at a time (called a cell), and the computation is repeated
for different f;, and different 7. This method is depicted in Fig. 2.5, which shows the two
possibilities for the order of the operations.

43



Chapter 2. Acquisition of GNSS signals

|
1 ‘ i
| |
| | UV =~ oA~ |
sb(nTs); | Nc " (fp,7) Irv 7)) |
—> (O ——> (X )—> > | | —— i
| A | A
| 1 |
1 T T 1
L _jenfynT !
eI (T -7) |
| | |
A N repeat for different 7|
| |
—~ |
.. repeatfordifferentf;
(a)
sp(nTy)

¢(nT-7) e ¥k

|
|
|
|
|
|
|
|
|
|
|
|
|
1
i |

repeat for different fi,l |
|

repeat for different T :

(b)

Figure 2.5: Principle of the serial search acquisition, (a) when we start by removing the carrier,
(b) when we start by removing the code.

The advantage of this architecture is its simplicity, because it requires very few elements for a
hardware implementation. However, this leads to an inefficient computation, and to a long
acquisition time because the operations are repeated Ngp N¢p times. This is especially true
when the frequency search space is large, as for fast moving receivers, or with modern signals
having long codes or modulations requiring a small code step.

2.2.2 Parallel code search

Direct approach

A first solution to reduce the acquisition time is to parallelize the search in the code search
space. The second part of the processing in Fig. 2.5a (multiplication by a known sequence and
accumulation for different delays) corresponds to a correlation. It is possible to implement
this correlation as a circular correlation due to the repetition of the incoming code.

The circular correlation between two sequences can be computed efficiently by means of
FFT (see Appendix A.3.3). Therefore, the acquisition can be done as depicted Fig. 2.6. This
means that using FFTs, it is possible to obtain the CAF for all the code delays (or code bins)
simultaneously for a specific fb ; hence the name of parallel code search (PCS).
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Figure 2.6: Principle of the parallel code search acquisition using a direct approach.
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Figure 2.7: Output of the parallel code search acquisition using a direct approach, computing
the circular correlation over 10 periods of the L1 C/A code.

However, if the integration is performed over several code periods, this approach is not the best
one. First, the length of the FFTs is N¢ and this can be quite large if the coherent integration
time is long, which may lead to implementation difficulties. Second, since the received and
the local codes are periodic, it is not necessary to make a circular correlation over several code
periods because this will lead to several identical peaks, as shown in Fig. 2.7.

Smart approach

To circumvent the drawbacks described previously, it is possible to perform the FFTs and the
IFFT over one code period, and then to add the results, as shown in Fig. 2.8, where N. 11,) 1(::; is the
FFT length and corresponds to the number of samples in one code period, Np is the number

of code period during the coherent integration time, and we have N¢ = Nﬁ gﬁ Np.

The advantage of the parallel code search is its very high gain in processing time, since the
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—irf *
e j2mf, nTs

Figure 2.8: Principle of the parallel code search acquisition using a smart approach.

circular correlation computed with FFT is far more efficient than a direct implementation
(Lyons [2010] Chap. 4, Smith [2002] Chap. 12). However, there are several drawbacks with this
architecture.

The first drawback is its dependence on the sampling frequency. Indeed, the length of the
FFT being the number of samples in one code period, it directly depends on the sampling
frequency. And the choice for the length is sometimes limited.

The first FFT algorithm was proposed by (Cooley and Tukey [1965]) for sequences whose
length is a composite number. The special case of sequences of length 2", with n a positive
integer, is very popular thanks to its efficient implementation on binary computers. Still today,
alot of FFT implementations require a length that is a power of two, such as the FFTs provided
by FPGA companies (Altera [2013], Xilinx [2013], Microsemi [2013]), the FFTs that we can find
on www.opencores.org, or the FFTs provided by DSP companies (Texas Instruments [2013]).
However, on computers, the flexibility is much higher than on embedded systems, and there
are libraries that allow the computation of FFTs of sequences of any length, such as the FFTW
library (Frigo and Johnson [2005]), even for sequences whose length is a prime number (Rader
[1968], Bluestein [1970]). However, the performance of the FFT depends on the length, and
typically it is better if the length is a composite number having small prime factors.

This is a problem because if the FFT length does not correspond to the length of a code period,
itis not possible to extend the sequences by using some more samples or zero padding. Indeed,
this may result in a reduction of the maximum peak, and thus in a reduction of the SNR. The
number of points should be at least twice the number of samples in one code period to ensure
that there will not be any loss (Lecleére et al. [2010]). For example, for the GPS L1 C/A signal
with a sampling frequency of 4 MHz, one code period result in 4000 samples. To avoid any
losses, the sequences must be padded up to 8192 points, and not up to 4096).

The second drawback is its sensitivity to bit transition. Unlike the serial search, one period
of the received code is sufficient to search all code delays (the serial search use two periods).
Therefore, if there is a transition, due to data or a secondary code, it may result in losses (as
shown in Chapter 5, Fig. 5.1). This problem can be resolved as the previous problem, by
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doubling the FFT size and zero-padding the local code replica (case discussed in Chapter 5,
see Fig. 5.2).

There exists modified versions of the parallel code search to reduce the complexity in exchange
of losses in the SNR, such as those proposed in (Starzyk and Zhu [2001], Sajabi et al. [2006],
Sagiraju et al. [2006], Qaisar et al. [2008]).

2.2.3 Parallel frequency search

Direct approach

A second solution to reduce the acquisition time is to parallelize the search in the frequency
search space. To see this, it can be observed that the operation performed after the code
removal in Fig. 2.5b is

R N¢-1 o
r'(fp )= Y. (sh(nTy) ¢”(nTs—7)) e /2mhonTs, (2.16)

n=0

for different ﬁ. We can make a parallel with the discrete Fourier transform of a sequence x;, of
N¢ points, which is defined as

Nc-1 _ j2mkn

Xe= ) xpe N, (2.17)
n=0

with k=0,1,..., N¢c —1. So, Eq. (2.16) can be seen as a DFT of N¢ points with sZ(nTS) c’(nTs—

T)=xyand fpnTs = 1’%—?, ie.

k

fo= = 2.18)

k
NcTs  Tc'

This is interesting because a DFT can be computed efficiently with an FFT algorithm. The
corresponding implementation is given in Fig. 2.9. In this case, we obtain the CAF for all the
frequencies (or frequency bins) simultaneously for a specific 7. This approach is presented for
example in (Borre et al. [2007]). However, this approach has three drawbacks.

The first drawback of this method is that it can involve FFT of large size, depending on the
sampling frequency and on the coherent integration time, and this may be a limitation for
some implementations.

The second drawback is that the frequency search space is imposed by the FFT and is too large.
Nc-1
N
about fj, i.e. several MHz, while the useful frequency search space is several kHz, as illustrated

Indeed, the frequencies searched by the FFT goes from 0 Hz up to f; . The span is thus

in Fig. 2.10. So, most of the points computed are in fact not used, which is inefficient, and
using pruning methods would not help because they are usually efficient only for small length
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Figure 2.10: Output of the parallel frequency search acquisition using a direct approach.

(Sorensen and Burrus [1993], Huang et al. [2008], FFTW).

The third drawback is that the frequency step is TLC, which may imply a loss of about 3.92 dB
(see Table 2.1). However, the frequency step may be reduced by zero-padding the sequence
before performing the FFT. Indeed, adding (P — 1) N¢ zeros reduces the frequency step to PLTC.
Nevertheless, we have mentioned just before that the length of the FFT may be already large,
so increasing it is not the best option.

Smart approach

To circumvent the drawbacks described previously, the idea consists of performing a short
accumulation before the FFT (Mathis et al. [2003]), as illustrated in Fig. 2.11. In this way, the
length of the FFT is reduced to scale to the frequency search space. In this case, the local
carrier is generated only to remove the intermediate frequency. The comparison between the
two approaches is illustrated in Fig. 2.12.

However, the accumulation before the FFT has an impact. Let’s consider that the local code is
aligned with the received code. After the code and IF removal, if we perform accumulations
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Figure 2.11: Principle of the parallel frequency search acquisition using a smart approach.
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Figure 2.12: Comparison of the parallel frequency search using (a) the direct approach, (b) the

smart approach, with N¢ =30, Ny =5 and N;ﬁ? =6.

over N4 points, we obtain

(m+1)Ny—-1

jrAf!nT. v
ro(m)=4/2P) 3 el CmAfy nTs+gy)
n=mNy
_[m+DNg-1 , mNy—1 ,
— /ZPZ el Z e]2nAfb nTs _ Z eJZJTAfb nTs
n=0 n=0

(2.19)

\/@ ](pZ 1- ejZHAfbu(m+l)NATs 1- ejZHAfbvaATs
= e - _ -
b 1 _ ejZnAfh“Ts 1 _ e]ZHAbeTS

_ jZJTAfVNATS i
= ZPU ej(pzle—beJZHAfbymNATS
b 1 _ ej27rAfb"T5

3 v
— [opv e](pz ejnAfby(NA—l)Ts Sln(ﬂ:Afb NATS) ejZHAfbvaATS
Vo sin(mA f}! Ts) ’

PFS PFS _
NFFT NFFT -

still contains a complex exponential with the same frequency A f,” but with a sampling period

withm =0,1,..., , where %—j, and Af,’ = f,'— f1. This means that the output signal

NaTs, and there is a loss proportional to N4 due to the sinc function. Now, to remove the
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complex exponential, we have

PFS_
Nppp—1

rU(Efb) — Z rél(m)e—jZTIAfmeATs
m=0

PFS
C oy Sin(TAfY N4 Tg) Nerr=1 _
— [opv i} GInDf) (NA=DTs (mAfy NaTs) oI 2 f) =B )mNAT;
b sin(zAf! Ts)

m=0

_ [opy g} pindflNa-nTy SROFASy NaTs) 1 MMM NN (2.20)
b SINAfYTs) | _ gi2n(Afy~AF)NaTs

= \[2PV ei¥h A (NA=DTs /MBS =AFNANEES -1 T

FFT
sin(mAf,' Ts) sin(m(Af) - E}Cb)NA Ts)

sin(mAf NaTs) sin(w(Af,) - Af,)NANEESTS)

The magnitude of r”(&?C p) is then
sin(mA fY NaTs) sin(m(Af) — AAfb)NANZ{fg“; Ts)

r'@fy|= 2Py | — : b
| sin(AfyTs)  sin(r(Af - Af,)NaTs)
~\[2PLNA NEES [sinc(na fy NaTs) sinc(n(Afy - AT ) NaNEESTS)|

~/2P!N¢ |sinc(7tA FLTa) sincGu(Af) —AF ) TC)’ :

(2.21)

where Ty = NaTs = % corresponds to the integration time of the accumulator before the

FFT. If we compare Eq. (2.21) to Eq. (2.9), we see that there is an additional loss that depends
on T4 and on the received frequency Af.

Eqg. (2.20) corresponds to a DFT of NPES points with Efb mNaTs = %, i.e.
FFT

FFT
_ k k k
Afp=—553 = =—. (2.22)
N E2NsTs NcTs Tc

FFT

So the resolution is the same as with the direct approach. Therefore the loss due to the
frequency step is the same as with the direct approach. To cope with this problem, as before
zero-padding can be used.

With this architecture, the length of the FFT is thus divided by N4 and the frequencies tested
are from 0 Hz to NLSA % This means that the choice of N4 depends on the frequency search
space. On one hand, Z{IZTshould be as high as possible to reduce the length of the FFT. But, on
the other hand, there is a loss proportional to N4. There is thus a trade off to do. If the FFT
search space is scaled exactly to the frequency search space, the loss can reach 3.92 dB for the
maximum frequency. If the FFT search space is scaled to twice the frequency search space,

the loss becomes 0.9 dB.

The main drawback of this architecture is the loss linked to the mismatch between the replica
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code chipping rate and the received code chipping rate which is also affected by the Doppler
effect (we called this code Doppler, see. Ziedan and Garrison [2004], Foucras et al. [2014a]).
Indeed, several carrier frequencies are tested through the FFT whereas there is only one code
chipping rate tested. For example, with the GPS L5 signal, if the carrier frequency is shifted by
2300 Hz due to the Doppler effect, the code chipping rate will be shifted by 20 chip/s. This
means that the code replica and the received code will shift by 20 chips every second, or half a
chip after 25 ms. Without compensation, this will imply a loss. So to reduce this effect, the
frequency search space must be cut into several smaller spaces (Cheng et al. [1990]).

2.2.4 Other methods

A method that mixes the PCS and the PES is called the double-block zero-padding (DBZP)
(Ziedan and Garrison [2004], Ziedan [2005], Foucras et al. [2012]). This method search simulta-
neously several carrier frequencies as the PES does, but the small accumulation performed
before the FFT is now computed for several code delays using small FFTs. Since the correlation
is not circular, it is needed to pad with zeros the portions of local code.

Another method that also mixes the PFS and the PCS has been presented in (Akopian [2005]),
that uses FFT to search both the frequency and the code dimension at the same time, at the
expense of an increase of the memory required to store intermediate results.

2.3 Sensitivity issues

The sensitivity of a receiver is a major feature. It depends on many parameters, such as the
front-end noise figure, the integration time, the detection process (Paonni et al. [2009], van
Diggelen [2009] Chap. 6). It has also been shown that the sensitivity depends on the acquisition
search space, independently of the receiver architecture (Turunen [2010]). In this section,
we discuss briefly some elements that contribute to the sensitivity, and provide interesting
references for each element.

2.3.1 Integration time and integration methods

In the previous sections, we have considered a coherent integration time T¢. As shown before,
in order to reduce the noise, and thus to detect signals with a power as low as possible, we
need to increase the coherent integration time. However, T¢ impacts the frequency mismatch
loss (Eq. (2.9)), and thus the frequency step (Table 2.1). Doubling the coherent integration
time means halving the frequency step. Thus the processing time is multiplied by a factor 4
(twice more data to process, and twice more frequency bins to test).

A solution to this problem is the use of non-coherent integration, which consists in accumu-
lating the signal after the magnitude (or power) computation. This has the advantage to not
impact the width of the sinc function in Eq. (2.9), thus the frequency step can stay the same.
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The drawback is that the performance in terms of output SNR are lower than for the coherent
integration (van Diggelen [2009] Chap. 6, Borio and Akos [2009], Jayaram and Murthy [2013]).
This means that in terms of SNR, it’s better to perform a coherent integration of 10 ms than 10
non-coherent accumulations of coherent integrations of 1 ms.

Another solution to this problem is the differential integration (Elders-Boll and Dettmar [2004],
Ayaz [2005]), whose performances are close to the non-coherent integration (Esteves et al.
[2012]).

2.3.2 Detection

Until now, we have discussed the computation of the CAE The step after the computation is
the detection of the satellite signal.

Quite often, the detection problem is addressed in a simple way using the probability of
detection, the probability of false alarm and the SNR (van Diggelen [2009] Chap. 6). However,
this is only an approximation, and the theory about detection is relatively complex. Indeed, a
lot of parameters are involved in the detection performance, the SNR of course (Borio et al.
[2008c]), but also the acquisition strategy (Borio et al. [2006], Borio et al. [2008a], Geiger et al.
[2010]), the correlations between cells (Ta et al. [2012]), the detection method (threshold or
ratio based, Geiger et al. [2012]), and the Doppler effect (Geiger and Vogel [2013]).

This shows the complexity of the topic, which may require a thesis for itself (O’Driscoll [2007],
Borio [2008]). Therefore we do not discuss this topic here, and recommend the above refer-
ences for the reader interested in this topic.

2.3.3 Time-to-first-fix

The TTFF is an important feature of GNSS receivers since it indicates the time required to
obtain a position. The TTFF depends on several elements, such as the time to acquire the
signals, the time to decode the data, the availability of any assistance, or the strategy used.

The acquisition time is not so easy to determine. Of course, during the design of a GNSS
receiver, we know the number of code and frequency bins to test and we know the computa-
tional power, so it is easy to determine the time to explore the entire acquisition search space.
The mean acquisition time depends on the time-frequency search space, but it also depends
on the detection method, on the acquisition strategy (Holmes and Chen [1977], Park et al.
[2002]), and on the Doppler (Lozow [1977]).

Therefore, the TTFF is also not easy to determine. However, some methodologies have been
proposed (Anghileri et al. [2009], Anghileri et al. [2010], Paonni et al. [2010]).
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2.4 Summary

In this chapter, we have presented the mathematical model behind the acquisition. We have
also discussed the difference between the exact result and the approximation often considered.

Then, we have presented rigorously different acquisition methods, and discussed their advan-
tages and drawbacks.

Finally, we discussed briefly some topics related to the acquisition, such as the integrations
other than coherent, the detection process and the TTFE
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8] Comparison of GNSS signals
acquisition architectures on FPGAs

In this chapter, the implementation on a FPGA of each acquisition method - serial search,
parallel code search, and parallel frequency search - is presented and analyzed in details.

The parallel code search is much faster than the serial search, since it tests all the code delays in
one time. However, for an implementation on a FPGA, the FFTs of the parallel code search will
require much more resources than the simple accumulator of the serial search. Therefore, to
compare the methods in a fair way, we should consider a given area (or amount of resources),
and duplicate the basis structure of the methods to use all this area. Like this, the three
implementations will require the same amount of resources, and then we can determine the
performance by evaluating their processing time.

First, we introduce some notions about FPGAs and describe the elementary blocks that
compose them. Then, we discuss briefly the implementation of GNSS receivers. After this, we
describe the implementation of the different acquisition methods. Finally, we determine the
parallelization and the processing time of each implementation, and we conclude by looking
at the drawbacks of each implementation.

The initial work on this topic has been published in (Leclére et al. [2010]), and the final results
have been published in (Lecleére et al. [2013b]).

3.1 A fewwords on FPGAs

An FPGA is a programmable device containing mainly three types of resource (Maxfield
[2008]) :

1. Logical blocks. These are small blocks containing a look-up table (to make logic func-
tion), a full adder, and one or several registers. These blocks are different for each
manufacturer, and also sometimes between some FPGA families (low-cost, mid-range,
high-end).
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2. Memory blocks. These are memories of small size, typically between 0.5 and 128 Kibit'.

3. DSP blocks. These blocks contain hardware multipliers, typically of 18 bits x 18 bits.

To evaluate the complexity of a system implemented on an FPGA, we must thus evaluate
the resources in terms of logic, memory and DSP blocks. It is relatively easy to estimate the
resource usage for the memory and DSP blocks because it is simple to determine the number
of bits and the number of multiplications required in a system. However, for the logical blocks,
the resource usage is more difficult to estimate for several reasons. First, these blocks contain
logic and registers, and a block can use one or the other, or both, depending on the function
implemented. Thus, if there are some functions (like an accumulator or a counter) whose
resource usage is easy to evaluate, some other functions (like multiplexing or magnitude
computation) are more difficult to evaluate and empirical formulas have to be used. Second,
the compilation tools perform various optimizations that can affect the final implementation.
And third, these blocks are different according to the manufacturer or even between different
families, with different performances, which means that it is not possible to make a perfect
and universal estimation.

Here, we consider the FPGAs from Altera, and more particularly the low-cost Cyclone III family
(Altera [2012]) and the high-end Stratix III family (Altera [2011]). The logical blocks of the
Cyclone III FPGAs are logical elements (LE) that contain one register, whereas the logical
blocks of the Stratix IIT FPGAs are adaptive logic module (ALM) that contain two registers. The
same estimation can be performed with FPGAs from other manufacturers, and approximate
conversions can be applied between them although this is not undertaken here. The details of
the resource estimation of the implementation are given in Appendix C.

3.2 A few words on GNSS receivers

The different satellite signals can be processed in parallel through several acquisition channels
or sequentially using one bigger acquisition channel. Here, we consider a system with one
acquisition channel, because it is more efficient in terms of resource sharing. However, the
analysis proposed here can be adapted for several acquisition channels.

Also, the acquisition can be done in a streaming way by processing the signal at the sample
rate, as shown in Fig. 3.1a, or the input signal can be stored in a buffer and then accessed
at a higher rate, as shown in Fig. 3.1b. The second option requires of course an additional
memory, but it allows a significant gain in processing time if the clock of the processing unit is
much higher than the sampling frequency, as shown in Fig. 3.2. For example, if the sampling
frequency is 5 MHz and the clock frequency of the processing unit is 200 MHz, once the
signal is stored, the processing time will be divided by about 40. Four our comparison, we will
consider the signal buffering.

17 Kibit = 1024 bits. See http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html
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Figure 3.1: Overview of a GNSS receiver, (a) processing the samples at the sampling rate f;s,
(b) using a buffer to process the samples at the FPGA rate (i.e. clock frequency of the FPGA,
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Figure 3.2: Tllustration of the processing, (a) without buffer, (b) with a buffer when frpga =4fs.

The signal buffering can also be used to share the hardware between the tracking channels
and save resources, however it is more difficult to manage than for the acquisition (because
in tracking, the accumulation must start at the first chip of the code, which corresponds to
different instants for the different satellites).

3.3 Implementations

3.3.1 Serial search implementation

The direct implementation of the serial search method is given Fig. 3.3. It follows closely
Fig. 2.5, but now we show how the local signals are usually generated, and we show the
non-coherent accumulation. A numerically controlled oscillator (NCO) is a counter whose
the input frequency is the sampling frequency, and whose the increment specifies the output
frequency. The number of bits of the counter defines the resolution of the output frequency,
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Figure 3.3: Implementation of the serial search architecture.

and is typically between 24 and 32 bits. The value of the NCO is then used to generate cosine
and sine waves, or to generate the PRN code (Kaplan and Hegarty [2005] pp. 155-164).

This implementation tests the possible couples (ﬂ,f) one by one. In order to reduce the
processing time, the blocks can be duplicated in order to have several branches (denoted as Np
in the following). There are two possibilities to do so, either testing several carrier frequencies
simultaneously, or testing several code delays simultaneously. Generating different carrier
frequencies requires as many NCOs as there are frequencies, while generating shifted versions
of the code replica requires only one NCO and one register per delay. Since a NCO requires
many registers, it is more efficient to test several code delays simultaneously.

The corresponding implementation considering Np branches is shown in Fig. 3.4, which thus
tests Np code delays simultaneously. At the bottom of the figure, the data rate or the average
data rate (when there is not a new sample at each clock cycle) is shown. The mixers and the
coherent accumulators run at the frequency frpca. The rate at the output of the coherent
accumulators is then divided by N¢ (the number of samples used for the coherent integration
and equal to fsT¢). Since the accumulation of the different accumulators starts and ends at
different clock cycles (because an accumulation always starts at the first sample of the code),
it is possible to use a multiplexer to share the following blocks, i.e. magnitude computation
and non-coherent accumulation. To clarify this, a timing diagram is given Fig. 3.5, considering
N¢c =6, Nyc =4, and Ng = 3.

Note that there is nevertheless a limitation with the implementation of Fig. 3.4. After the
accumulator, the data rate is divided by N¢, and after the multiplexer the data rate is multiplied
by Np. Since the data rate cannot be superior to the FPGA rate (frpga), we must have Np < N¢.
Therefore, the number of branches is limited by the number of accumulations performed
by the coherent accumulator. But since N¢ corresponds to the number of samples in one or
several code periods, its value is high enough to not have this problem. Otherwise, this limit
may be easily circumvented by duplicating the blocks after the coherent accumulators, i.e. the
multiplexer, the magnitude computation and the non-coherent accumulator.
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Now, let’s have a closer look at the implementation of each element. Although the mixers
perform a multiplication, they should be implemented with logical blocks instead of DSP
blocks. Indeed, the input signal and the local carrier are quantized with few bits (between
two and four usually), thus it would be a waste to use 18-bit multipliers for this. This is also
true for the multiplication with the local code, since the code value is +1 or —1. The coherent
accumulators are classical adders implemented with logical blocks. It is possible to optimize
the implementation by fusing a code mixer and an accumulator into an accumulator that
can add or subtract the input value according to the value of the code. This optimization is
discussed in Section C.1.1 of Appendix C. The multiplexer is implemented with logical blocks.
The magnitude computation can be performed using different approximations (Lyons [2010]
pp. 679-683), the simplest being the Robertson approximation (Robertson [1971]). Finally,
since the samples are in series, the non-coherent accumulator can be implemented using
only one adder and a memory to save the accumulator value for each branch, in order to save
logical blocks. The schematic of such accumulator is given Fig. 3.6a, and a timing diagram is
given Fig. 3.6b for illustration. Each address is associated to a branch, and is accessed Ny¢ —1
times to perform the accumulation. The memory has thus Np addresses. To differentiate the
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memory-based accumulator from the logic-based accumulator, the letter M is added in the
bottom left corner of the block in figures.

In the serial search implementation, the duplicated elements are thus the code mixer and
the coherent accumulator, and the multiplexer is proportional to the number of branches.
The most-used resources are clearly the logical blocks, as the memory is used only with the
non-coherent accumulator and to store the PRN code, and the DSP blocks are not used at all.

3.3.2 Parallel code search implementation

The direct implementation of the parallel code search method is given Fig. 3.7. It follows closely
Fig. 2.8, but as previously, we show the generation of the local signals and the non-coherent
accumulation. Since the samples at the output of the IFFT are in series, the accumulators for
the coherent and non-coherent accumulations can both use a memory. The memories have

thus NP3 addresses.

Following the same idea used in the previous section, we can duplicate the elements to have
several branches in order to test several carrier frequencies simultaneously. The corresponding
implementation considering Ny branches is shown in Fig. 3.8.

Regarding the implementation of the elements, the carrier and code generators are identical
to those seen previously, as well as the carrier mixers. The FFTs use logical, memory and DSP
resources. The complex multipliers in the frequency domain use DSP blocks. And as said
before, both the coherent and non-coherent accumulators are implemented with memory
blocks. In this implementation, no multiplexing can be performed because the accumulation
on the different branches starts at the same time. However, the addressing of the accumulators
can be share, as well as the control signals of the FFTs.

This implementation has a better balance between the resources than the implementation of

Code
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Carri +
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NGO gengraior
v
sin/cos \ 4
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Figure 3.7: Implementation of the parallel code search architecture.
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Figure 3.8: Implementation of the parallel code search architecture using duplication.

the serial search, because it uses logical (local signals generation, carrier mixers, magnitude,
FFTs), memory (FFTs, accumulators), and DSP blocks (FFTs and FFT mixers).

With this implementation, there are several carriers (and thus carrier frequencies) generated
while there is only one code (and thus one code frequency) generated. Therefore, there may
be a code mismatch due to the Doppler effect. However, since the FFT uses a lot of resources,
the number of branches is rather small, and thus the carrier frequencies may be close. For
example, considering the GPS L1 C/A signal, if the carrier frequencies cover a Doppler range
of + 150 Hz, the maximum difference between the chipping rate that we should use and the
one used is % =~ 0.097 chip/s, which means a shift of one quarter of a chip after about 2.6
seconds, which gives a comfortable margin. Otherwise, the effect can be compensated by
generating a code for each carrier frequency tested, at the expense of additional FFTs, or
smarter by applying a correction during the coherent accumulation stage (shift of the IFFT
outputs or multiplication by a carrier in the frequency domain, see (O’Driscoll [2007]) for

more details).

An optimization of this architecture is possible if the frequency search space is wide enough.
Instead of multiplying the input signal by different local carriers and performing several FFTs,
only one local carrier and two FFTs can be used (one for the input signal and one for the code
replica), and the multiplication by the different carriers is replaced by shifts of the FFT output
(thanks to DFT shift theorem (Oppenheim and Schafer [2009] pp. 564-567)), as shown in Fig.
3.9. A shift of one sample is equivalent to a multiplication by a 1 kHz carrier if the FFT length
is 1 ms. For example, considering five branches, it means that it would be possible to test
simultaneously the following carrier frequencies, —2000, —1000, 0, 1000, 2000 Hz; and if no
signal is found, to continue with the next frequencies, e.g. —1950, —950, 50, 1050, 2050 Hz,
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Figure 3.9: Implementation of the parallel code search architecture using shift in the frequency
domain.

and so on and so forth. But in this case, the Doppler effect is more important, since with a
Doppler range of + 2 kHz, a shift of one quarter of a chip may happen after 192.5 ms only. This
implementation is denoted PCS* in the following.

3.3.3 Parallel frequency search implementation

The direct implementation of the parallel frequency search method is given Fig. 3.10a. It
follows closely Fig. 2.11, but as previously, we show the generation of the local signals and the
non-coherent accumulation.

Following the same idea used in Section 3.3.1, we can duplicate the elements to have several
branches in order to test several code delays simultaneously. The corresponding implementa-
tion considering N branches is shown in Fig. 3.10b.

Regarding the implementation of the elements, there is nothing new except the ping-pong
buffer. This is a buffer, which has a writing order different from the reading order. This is
because after the multiplexer there are first the first points of each branch, then the second
points of each branch, etc., whereas the FFT should be first fed with all the points of the first
branch, then with all the points of the second branch, etc. Also, since data can be written at
addresses not yet read, it is necessary to use two buffers, one being read while the other is
written to, which alternate their roles (which is often called a ping-pong buffer).

NPFS

As mentioned in Chapter 2, according to the values selected for N4 and FET !

only a portion
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Figure 3.10: Implementation of the parallel frequency search architecture, (a) direct, (b) using
duplication.

of the FFT bins may be necessary to cover the search space. The number of bins kept is
then denoted Npps, which is equal to the number of frequency bins Nrp only if the entire
frequency search space is covered by the FFT. The rate after the FFT is thus reduced by
N f If?/ Nrps. Finally there are the magnitude computation and the non-coherent accumulator
based on memory blocks. The memory inside the non-coherent accumulator has Ng Nrgs

addresses in this case.

In this implementation, the resource usage of the logical elements is relatively similar to the
serial search architecture because the accumulators are a little bit smaller and there is just one
supplementary FFT, but the memory is far more used. However, there are two limitations with
the implementation depicted in Fig. 3.10b. First, as for the serial search implementation, the
number of branches is limited by the number of accumulations performed by the accumulator
before the multiplexer. But here N4 is much lower than N¢c. However, as before, this limit
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may be easily circumvented by duplicating the multiplexer and the latter blocks. The second
limitation is if zero-padding is used, because in this case the data rate after the FFT is higher
than the data rate after the multiplexer. So, we should take care also to not obtain a rate higher
than the FPGA rate. Otherwise, this limit can be circumvented in the same manner as before
by duplicating the multiplexer and the latter blocks.

3.3.4 Parallelization

Now that the implementations of the different acquisition architectures have been described,
we can determine the parallelization of each implementation, and the time needed to explore
the entire acquisition search space.

With a coherent integration time of T¢c = N¢ Ts and a number of non-coherent accumulations
Ny, the total integration time is Tt = T¢Nnc¢, and the number of samples to process is
N¢Npc. For a system running at the sampling frequency and using not any parallelism
(i.e. the serial search without duplication), the time to test one code delay and one carrier
frequency is thus NcNncTs = Tt, and the time to explore the entire search space is thus
Tt Ncg Ngg, with Ncp the number of code bins and Ngp the number of frequency bins.

Until now, we did not discuss the question of the data transition. So here, we will consider two
cases, either the data are ignored which implies a loss, or the alternate half-bits method is used,
which requires to double the length of the input signal (see (van Diggelen [2009] and (Psiaki
[2001]) respectively for more details). To differentiate these two cases, we use a parameter d,
which is equal to 2 for the alternate half-bits method, and 1 otherwise.

Now, if we consider a system running at a higher frequency, the processing time will be divided
by a factor Grpga = % Then, if we consider a parallelism, the processing time will be
divided by a factor P that indicates the number of bins processed in parallel. Therefore, the

time to explore the entire search space is

dTr NcpNrB

= 3.1
Grpga P

E

Note that the time to load a new code or to modify the carrier and code frequencies on the
channel, and the latency in the processing are not taken into account in this formula. Indeed,
the loading time is very small, typically on the order of dozens of cycles. The latency is mainly
due to the FFTs and corresponds to the size of the elements, i.e., a few thousands of clock
cycles, whereas the input signal used is typically composed of hundreds of thousands of
samples if high sensitivity is intended (since high sensitivity requires long integration times).
Therefore, the latency represents only a low percentage of Tr. Note also that the time needed
to store the signal into a memory before the processing (which is equal to d T7) is also not
taken into account in Eq. (3.1).

For the serial search (SS), the parallelization comes from the duplication of the elements, and
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corresponds to the number of branches implemented. Therefore,

dTr NcpNrB
Tgss= . (3.2)
Grpga NBass

For the parallel code search (PCS), the parallelization comes from the duplication of the
elements and from the FFTs for the correlation. Therefore,
dTr  NcpNrs

Tgpcs= . (3.3)
GFPGA NB,pclegg]‘?

If the length of the FFT corresponds to the number of code bins, the equation simplifies to

Grpga N,pcs’

Tg pcs = (3.4)

For the parallel frequency search (PFS), the parallelization comes from the duplication of the
elements and from the FFT. Therefore,

dTr  NcpNrp

TE,prs = . (3.5)
GrpGa N,prsNEBs
If the FFT covers all the frequency bins, the equation simplifies to
arT N,
Tg,prs = L <8 (3.6)

Grpca NB,prs

3.4 Application example

Now that the different parameters and implementations have been described, the performance
of the three implementations is compared through an application example.

For this application, the implementation on a low-cost FPGA (the Altera Cyclone III EP3C120)
and on a high-end FPGA (Altera Stratix III EP3SE260) is considered.

Then the signal considered is the GPS L1 C/A, with two cases. A stand-alone case where the
receiver has no a priori information, and an assisted case where the receiver has a priori
information on the Doppler frequency of the satellites, which reduces the frequency search
space (Leclere et al. [2010]).

A sampling frequency of 4.096 MHz is selected, which is a good compromise between com-
plexity and accuracy. The FPGA frequencies selected are multiples of the sampling frequency,
and are realistic values obtained from real designs.

A sensitivity of —150 dBm is assumed, because this is the start of high sensitivity. The required
coherent integration time and the number of non-coherent accumulation are then obtained
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fs 4.096 MHz
FPGA  EP3C120 EP3SE260

frpga 98.304 MHz  196.608 MHz
GFrpGa 24 48

Table 3.1: Summary of the FPGA parameters selected for the application.

Sensitivity —150 dBm

Tc 10 ms

N¢ 40960
Nnc 40

Tt 400 ms

Table 3.2: Summary of the sensitivity parameters selected for the application.

Case Assisted Stand-alone

Frequency search space 1360 Hz 11020 Hz

Frequency step (6 f) 50 Hz
NFp 29 221
Code step (6¢) 1 sample
Ncg 4096 samples

Table 3.3: Summary of the search space parameters selected for the application.

using the method from (van Diggelen [2009]), considering the alternate half-bits method for
managing the data bit transitions (i.e. d = 2). These parameters are summarized in Tables 3.1,
3.2,and 3.3.

With such a long integration time, the maximum error allowed for the code chipping rate
is about 0.156 chip/s (this ensures to have a shift smaller than half a sample). The PES can
thus search only £240 Hz (0.156 x 1540) of the frequency search space simultaneously, i.e.
NFBS =11.

3.4.1 Results

The details of the calculations are provided in Appendix C, and the results in terms of number
of branches, parallelization, and time to explore the entire search space are given in Table 3.4.
The number of branches gives the degree of duplication in the implementations depicted in
Figs. 3.4, 3.8, 3.9, and 3.10b. The parallelization is the number of cells tested simultaneously,
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Low-cost FPGA

High-end FPGA

EP3C120 EP3SE260
Assisted Stand-alone Assisted Stand-alone
case case case case
Ng,ss 971 2911
Number of Np,pcs 2 8
branches Ng,pcs: _ 4 _ 11
Np,pFs 1095 3385
Pss 971 2911
p 8192 32768
Parallelization bes
Ppcs+ - 16384 - 45056
Pprs 12045 37235
Tgss 4078 31075 680.1 5183
Time to Tgpcs ~ 483.3 3683 60.42 460.4
explore the
search space (ms) Tg,pcs* - 1842 - 334.8
TE pFs 328.7 2505 53.17 405.2

Table 3.4: Results and performance of the implementations.

and can be used to compare the implementations. The time to explore the entire search space
is maybe more meaningful for GNSS users since it gives an idea of the processing time, and it
can also be used to compare the implementations.

From Table 3.4, it can be seen that the SS implementation is the least efficient. Even with
assistance, the result is worse than for the other implementations in the stand-alone case. The
PFS implementation is slightly more efficient than the PCS implementation. But if the PCS
implementation is optimized with shift in the frequency domain (PCS* implementation), then
it becomes slightly better than PFS for the stand-alone case. In the assisted case, most of the
frequencies that can be tested through the different branches fall outside of the frequency
search space, and are thus useless.

3.4.2 Observations
Why the PFS and PCS are better than the SS ?

The SS and PFS implementations are identical until the multiplexer, except that the accumula-
tors of the PFS are smaller since the integration length is smaller. Since the PFS has an FFT,
the resource usage of the logical blocks is then almost equivalent for the two implementations.
Since the PFS tests also several frequency bins simultaneously, it has a higher parallelism.
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3.4. Application example

Regarding the PCS, it is well known that performing a convolution using an FFT is more
efficient than with traditional filters, as soon as the filter length is more than 64 (Smith [2002]
pp. 311-318). Therefore, it is not a surprise if the PCS is better than the SS.

Comparison of the PFS with the PCS

Each implementation has some drawbacks. Here we list them in order to determine weak
point of the implementations, and when they are not suitable.

Regarding the PCS, the first drawback is that it uses a lot of DSP blocks with the FFTs. Although
the high-end FPGA used was very rich in DSP blocks, it can be the element limiting the
duplication (see Appendix C.2).

Second, the resolution for the data and the twiddle factors of the FFT in the PCS architecture
needs to be higher than in the PFS, because the longer chain to compute the correlation
(FFTs, multiplication, normalization to reduce the signal resolution and then IFFT), results in
a propagation of the quantization errors.

Third, the PCS is more sensitive to the sampling frequency than the PFS. With the PFS im-
plementation, to double the sampling frequency results in adding one bit in the coherent
accumulators, i.e. R+ 1 bits to store instead of R. Thus we can interpolate roughly by saying
that keeping the same hardware resources, the number of branches would be divided by %.
Whereas with the PCS architecture, to double the sampling frequency doubles the size of the
FFT and of the accumulators. Thus, the number of branches would be divided by 2. This
means that using a higher sampling frequency than 4.096 MHz would be better for the PFS, but
using a sampling frequency lower would be better for the PCS. However, this may be avoided
if a resampling block is included in the acquisition channel, but this block would still require

additional resources.

Regarding the PFS, the first drawback is a small loss of sensitivity. As discussed in Section 2.2.3,
due to the small accumulation performed before the FFT, there is a loss proportional to the
input carrier frequency. This loss depends on the accumulation time, but can easily reach
more than 1 dB. In our application, we did not take into account this loss, this means that the
actual sensitivity for the PFS would be slightly lower than —150 dBm.

But the main drawback of the PES is that it cannot handle the Doppler effect on the code. If
the code chipping rate was not altered, the entire frequency search space would be covered
by the FFT, regardless of the total integration time used, and the PFS would be clearly better
than the PCS. But since the code chipping rate is altered, the space searched by the FFT must
be reduced. In our application, where a relatively long total integration time was considered,
the PFS searches only 11 frequency bins simultaneously while the frequency space contains
221 bins in the stand-alone case. With a GNSS signal having a chipping rate of 10.23 Mchip/s
instead of 1.023 Mchip/s, the effect of this drawback will be worst, and the number of bins
searched simultaneously would be divided by the same factor.
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Chapter 3. Comparison of GNSS signals acquisition architectures on FPGAs

Influence of the FPGA

From Table 3.4, it can be seen that despite the large differences in the absolute results for the
two FPGAs, the ranking of the implementations is the same.

Generally, inside an FPGA family, the ratio between the different types of resources is relatively
similar, i.e. using a bigger FPGA will provide an equivalent increase of the logical, memory
and DSP blocks. Consequently for different FPGAs of the same family, we do not expect the
ranking to change significantly.

Between different families, the ratios between logical and memory, as well as logical and DSP
blocks, are different. For the same amount of logical blocks, a high-end FPGA will have more
memory and DSP blocks than a low-cost FPGA. High-end FPGAs are consequently more suited
for FFT-based implementations. However, this should not impact the ranking since the SS
implementation is far inferior to the others in terms of performance.

High-end FPGAs also allows the use of a higher clock frequency, which improves the perfor-
mance of all the implementations in the same manner.

3.5 Summary

In this chapter, we have presented a framework to compare the implementations of the
main GNSS signals acquisition architectures on FPGAs. The implementations have been
optimized towards achieving maximum parallelization for a single acquisition channel and
fixed resources.

Considering the GPS L1 C/A signal and long integration times, it has been shown that the two
FFT-based implementations are far more efficient than a simple duplication of mixers and
accumulators. Then, these two implementations have provided similar results, with a slight
advantage to the PFS over the PCS. However, we have shown the parameters that influences
each implementations, and depending on those, the PCS can sometimes be more efficient
than the PFS.

Moreover, the implementation of the PCS discussed here is straightforward, in the sense that
no additional techniques are used. However, it is possible to use techniques to reduce the
complexity, as those proposed in (Sajabi et al. [2006], Sagiraju et al. [2006], Qaisar et al. [2008])
for example. Also, here we did not use the fact that the local code is real, whereas we can use
this fact to reduce the complexity of its FFT (see Appendix B).

After this comparison, we decided to direct our research towards the PCS rather than the PFS,

for the following reasons :

1. The PES cannot handle the code Doppler, which is important with long integration
times, high Doppler, and high chipping rate. Long integrations are needed for high
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3.5. Summary

sensitivity receivers. A high Doppler is usual in space applications, where GNSS is more
and more used. And a high chipping rate is available with modern signals that allow a
higher positioning accuracy. Therefore, the PFS does not seem adapted to answer these
challenges.

. Itis relatively easy to have an estimate of the Doppler on the carrier frequency when
we start a receiver. For a terrestrial user, the last position obtained by the receiver can
be used and the almanac can be used to determine a rough position of the satellites.
Therefore, the frequency search space can be reduced to dozens or hundreds of Hz
instead of thousands of Hz. For a space user, the user position can be obtained using an
orbital filter, and thus in the same way the frequency search space can be reduced to
hundreds of Hz instead of dozens of thousands of Hz. Whereas having an estimate of
the code delay is much more difficult to obtain.

. Additional properties or methods can be used to reduce the complexity of the PCS, as
stated before. Especially, using the fact the the local code is real allows a reduction of
the resources without any degradation.
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The question of the reduction of the complexity for the acquisition of GNSS signals has been
discussed for a long time, and a large variety of solutions have been proposed.

For example, some people tried to exploit the fact that the local code is binary for the design of
fast correlation algorithms (Guo et al. [1991b], Guo et al. [1991a]). Theoretically, this means that
itis possible to not have any multiplications. However, the number of additions is much higher
as compared to an FFT algorithm, making the proposed method not efficient in practice.

Regarding the parallel code search, different methods have been proposed to reduce the
complexity. For example, (Starzyk and Zhu [2001]) proposed to perform an average over few
samples in order to get one point per chip, and thus a smaller FFT (however the codes length
contain high prime factors). (Sajabi et al. [2006]) proposed to use only half of the samples
to compute the IFFT in the correlation, and (Sagiraju et al. [2006]) proposed to sum samples
to reduce the IFFT length. (Qaisar et al. [2008]) proposed to simply filter and downsample
the signal before performing the correlation. (Hassanieh et al. [2012]) and (Rao and Ratnam
[2013]) proposed algorithms based on the sparse FFT. Of course, the price to pay is usually a
reduction of the SNR.

Then, the advent of new GNSS signals has brought new constraints (longer codes, tiered codes,
higher chipping rate, new modulations), which has thus required new algorithms. For some
specific context, like the acquisition in presence of transition (due to a secondary code or
data), specific solutions have been proposed (detailed in Chapter 5), but most of the time at
the expense of a reduction of the SNR (and thus a reduction of the probability of detection).

Therefore, when we have carried out this research, the idea was to exploit the characteristics
of the GNSS signals to compute the circular correlation accurately and efficiently, and not
to obtain approximations that impact the detection performance. In this part of the thesis,
we thus concentrate only on the circular correlation, represented in Fig. 3.11, where x,
corresponds to the signal after the multiplication with the local carrier, #,, is the local code,
and yj, is their circular correlation. Moreover, we do not discuss side problems, such as the
impacts of the oscillator effects such as phase noise or the user dynamics (because the coherent
integration times considered are short enough (van Diggelen [2014])), or interferences.

In Chapter 4, we propose some ideas to reduce the processing time or the resource of the FFT
and of the circular correlation on Altera FPGAs. These algorithms can be used with any GNSS

hy, « Hj

—s FFTNj
Xn Xk Yk Yn

— FFT —X— IFFIV—>

N|

Figure 3.11: Operation considered for the next chapters : The circular correlation computed
using FFTs.
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signal, and even with any signal, since we simply use the properties of the Altera FFT, and not
the characteristics of the signal.

In Chapter 5, we focus on the acquisition of GNSS signals in presence of sign transition where
the coherent integration time corresponds to a period of the primary code. We start from a
known solution to the problem, and improve it to reduce the complexity.

In Chapter 6, we focus on the acquisition of GNSS signals where the coherent integration time
corresponds to a period of the tiered code. We discuss first implementations to use small FFTs
(because large FFTs are sometimes not possible to implement), and then implementations to
reduce the complexity using the specificities of the secondary code.
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Efficient FFT and correlation imple-
mentations on Altera FPGAs

In this chapter, we discuss the implementation of the FFT on Altera FPGAs, and the implemen-
tation of the circular correlation using FFTs (the discussion can also be applied to the circular
convolution). Using known algorithms, it is shown that is is possible to obtain more efficient
implementations than the traditional ones, by reducing the amount of resources, especially
the memory.

Some of the work presented here — the implementation of the correlation with a separation by
downsampling — has been published in (Lecleére et al. [2012]).

4.1 Description of the Altera FFT

The implementation of an FFT algorithm on an FPGA is not an easy task. Hopefully, FPGA
companies provide an FFT as Intellectual Property (IP). In this thesis, we will discuss of the
FFT provided by Altera, because we use Altera FPGAs in our research projects. However the
characteristics of the FFT provided by Xilinx are probably similar.

The Altera FFT is highly configurable, for example we can select :

e The transform length, which must be a power of two. Currently, the minimum length
is 8 points and the maximum length is 262 144 points (this is for the version 13.0 of
November 2013, the maximum length may grow in the next years).

e The input/output (I/0) data flow (more details about this are provided below).
* The number of bits to quantify the input and output data, and the twiddle factors.

* The order of the input and of the output (natural order or bit-reversed order, see Section
B.1 for more information on this).

* Some options for the FFT engine.
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Chapter 4. Efficient FFT and correlation implementations on Altera FPGAs

¢ Some options for the implementation of the complex multipliers (we can use 4 multipli-
ers and 2 adders or 3 multipliers and 5 adders, and we can implement them using DSP
blocks or logic cells).

¢ The repartition of the memory between the different memory types.

There are four I/0 data flows available : variable streaming, streaming, buffered burst, burst.
For the variable streaming and the streaming I/0O data flows, the input and output data flow
can be continuous, without any break between consecutive transforms. The corresponding
timing diagram of an N-point FFT (shown in Fig. 4.1a) is given Fig. 4.1b. Between the last
input sample and the first output sample of the FFT, there is a latency, denoted Ly, which
depends on the transform length. Therefore, in this case, the Pth FFT result is fully available
after N+ Ly + PN = (P+1)N + Ly clock cycles. For the burst I/0 data flow, it is possible to
load a new input only when the output is completely unloaded, as shown in Fig. 4.1c. This
means that the throughput is reduced compared to the variable streaming and streaming
implementations. The buffered burst data flow is between the two previous cases. The flow

(a)

« N,
A
Xn 1 2 | 3 | 4 -
x| I S S NN N R N
\ P .
1{_}1
Ly
(b)
« N,

A\ 4

W T
x| . =

\/

Ly
(c)

Figure 4.1: (a) N-point Altera FFT, (b) timing diagram of an N-point Altera FFT with the
streaming I/O data flow, (c) timing diagram of an N-point Altera FFT with the burst I/0 data
flow. The number in the boxes identifies the sequences.
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4.2. How to compute an FFT on Altera FPGAs more efficiently than the Altera FFT

T e
Streaming 4096 7326 76 24
Buffered Burst 4608 7607 60 24
Burst 10861 7151 28 24

Table 4.1: Resources estimated with the Altera MegaWizard Plug-in Manager for an FFT of
4096 points implemented on a Stratix III FPGA, considering 18 bits for the data and twiddle
precision, and 2 FFT engines with quad output. “The inverse of the throughput is defined as
the minimum number of cycles between the start of two consecutive periods. “One M9K is a
memory of 9 Kibit = 9216 bits.

cannot be continuous, but it is not required to wait for the complete unload of the output
samples before loading new input samples.

Of course, the higher is the throughput, the higher are the required resources. For example,
an estimate of the resources is provided Table 4.1 for three I/O data flows. Playing with the
engine options may lower the resources (logic, memory and DSP) for the buffered burst and
burst I/0 data flows, in exchange of a reduced throughput.

Due to the large number of possibilities for the FFT implementation, for the evaluation of the
resources in the following sections, we will consider a Stratix III FPGA, a transform length of
2048, the streaming I/O data flow, a data and twiddle precision of 18 bits, complex multipliers
implemented in DSP blocks using four real multipliers, and no logic function implemented in
memory. However, the discussion of this chapter can be applied to other FPGA families and
with other FFT parameters.

Note that the Altera FFT can be used to compute the FFT or the IFFT. More details about the
Altera FFT can be found in (Altera [2013]).

4.2 How to compute an FFT on Altera FPGAs more efficiently than
the Altera FFT

4.2.1 Computing an FFT of N points using two FFTs of N/2 points

The DFT of a sequence x, of N points is defined as

Xp=) xpe” N, 4.1)
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Chapter 4. Efficient FFT and correlation implementations on Altera FPGAs

Input separated by parity, output separated by section
If we separate the input sequence in even and odd samples, we have

N/2-1 _ j2mk@2n) N/2-1 _ j2mk@n+1)
Xe= ), Xone N+ Y Xpppre N
n=0 n=0
N/2-1 _ j2mkn _ jemk Ni2-1 _ J2mkn
= Z Xope N2 4+e N Xopi1€ NIZ,
n=0 n=0

4.2)

Of course, this requires that N is divisible by 2, which will be assumed throughout this chapter.
The first half of the DFT is

N/2-1 ke ok NI271 ok
Xe= ), Xppe NZ +e N Y xppe N2, (4.3)
n=0 n=0

with k=0,1,..., N/2 -1 (the equation is the same, only the range of k has changed). The two
sums correspond to the DFT of the sequences x», and x,,+1, respectively. The second half of
the DFT is

N/2-1 N/2-1

_ j2n(k+N/2)n _ Jj2m(k+N/2) _j2n(k+N/2)n
Xesni2= Y, Xope N2 +e N Xoppr1€ N2
n=0 n=0 (4.4)
N/2-1 ek jenk NI2-1  Jonkn
= Z Xope N2 —e N Xope1€ NZ,
n=0 n=0

with k=0,1,...,N/2—1. The two sums also correspond to the DFT of the sequences x,, and
X2n+1, respectively. Therefore, an FFT of N points can be computed using two FFTs of N/2
points as shown in Fig. 4.2a.

Input separated by section, output separated by parity

If we separate the input sequence in two sections, we have

N/2-1 _ j2mkn N-1 _ j2mkn
Xe= ), Xxpe N + ) xpe N
n=0 n=N/2
N/2-1 _ Jj2nkn N/2-1 _ Jj2nk(n+N/2)
= Y xXpe N + ) Xpinpe N
n=0 n=0
N N (4.5)
_ 12-1 _ j2mkn —jnk 12-1 _ j2mkn
= ) xpe N +e Y. Xpinrpe N
n=0 n=0
N/2-1 .  Jonkn
= Z (xn+e J xn+N/2)e N
n=0
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4.2. How to compute an FFT on Altera FPGAs more efficiently than the Altera FFT

The even samples of the DFT correspond to

N/2-1 ;
itk _ Jj2mn2k)n
Xop= ). (xn +e It )xn+N/2)e N

n=0
(4.6)
N/2-1 j2nkn

= Y (Xp+Xpinp)e NZ,
n=0

with k=0,1,...,N/2—1. This corresponds to the DFT of the sequence x;, + x,+ /2. The odd
samples of the DFT correspond to

N/2-1 .
—ink+1 _]2n(2k+1)n
Xoks1= ) (xn+€ i )xn+N/2)e N
n=0
N/2-1 @7

j2nn j2nkn

= Z (Xn—Xp+n2)e N e Nz,
n=0

j2nn

with k =0,1,...,N/2— 1. This corresponds to the DFT of the sequence (x, — Xp+n/2)e” N .
Therefore, an FFT of N points can also be computed using two FFTs of N/2 points as shown in
Fig. 4.2c.

4.2.2 Computing an IFFT of N points using two IFFTs of N/2 points
The IDFT of a sequence X of N points is defined as

1 N-1 j2nkn

Xp=— ) Xpe N, (4.8)
N %o

withn=0,1,..., N-1.

Input separated by section, output separated by parity

If we separate the input sequence in two sections, we have

1 N/2-1 jemkn 1 N-1 j2nkn
Xn=— Y Xpe' N +— Y Xge N
N = N N2
1 Ni2-1 s 1 NIZ7L j2ntkeNI2n
Z Xe ™ MY Z Xk+nNize N
(4.9)
1 N/2-1 jemkn i 1 N/2-1 j2nkn
Z Xe 8 +el N Y. Xiinpe ¥
k=0
1 N/2-1 jemkn
=N Z (Xk+ef Xk+N/2)e N
k=0
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Chapter 4. Efficient FFT and correlation implementations on Altera FPGAs

The even samples of the IDFT correspond to

1 N/2-1

. Jj2mnk(2n)
Xon =3 Y (Xk+€”(2n)Xk+N/2)€ N
k=0
1 Ni2-1 Dot (4.10)
=— ) (Xp+Xeinz)e ¥2,
N =

with n=0,1,..., N/2—1. This corresponds to the IDFT of the sequence X + Xy /2. The odd
samples of the IDFT correspond to

1 N/2-1

. j2mk(2n+1)
Xop+1 = N (Xk + e]”(2”+1)Xk+N/2) e N
k=0 4.11)
1 N/2-1 jenk  jomkn
=N Y Xi—Xiinp)e N enz,
k=0

Jj2nk

with n=0,1,...,N/2—1. This corresponds to the IDFT of the sequence (X; — Xy:n/2)e ~ .
Therefore, an IFFT of N points can be computed using two IFFTs of N/2 points as shown in
Fig. 4.2b.

Input separated by parity, output separated by section

If we separate the input sequence in even and odd samples, we have

1 N/2-1 jen2kn 1 Ni2-1 j2nk+Dn
Xp=— ) Xoxe N +— > Xogje N
N k=0 N k=0
(4.12)
1 N/2-1 jemkn jenn 1 Ni2-1 jemkn
= — Z Xore Nz +e N — Z Xopi1€ Nz,
N > N >
The first half of the IDFT is
1 N/2-1 jenkn Jj2nn 1 N/2-1 Jj2nkn
Xn=— ), Xoke Mz +e N — Y Xppe vz, (4.13)
N k=0 N k=0

with n=0,1,...,N/2 - 1. The two sums correspond to the IDFT of the sequences X,; and
Xok+1, respectively. The second half of the IDFT is

1 N/2-1 j2nk(n+N/I2) jenn+N/2) 1 N/2-1 j2mk(n+N/2)
XniNz=— ), Xoke N2 +e N — Y Xppe N2
NNk/ZOl N/2 1N . @19
1 . j2nkn j2nn 1 . Jj2mkn
= — Z Xore Nz —e N — Z Xopi1€ Nz
N k=0 N k=0

with n=0,1,..., N/2—1. The two sums also correspond to the IDFT of the sequences X, and
Xox+1, respectively. Therefore, an IFFT of N points can also be computed using two IFFTs of
N/2 points as shown in Fig. 4.2d.
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4.2. How to compute an FFT on Altera FPGAs more efficiently than the Altera FFT

X2 Xk X X
—> FFT > » ] >IFFT—
NI/2 - NI/2
X2n+1 — Xk+N/2 Xk+N/2 - X2n+1
FFT —(-4D > [FFT—5
[ N2 T T 2
e —j2nkIN ej27rk/N
(@) (b)
Xn - X Xok
» > FFT —5 “>IFFT

Xoks1  Xoks1

<— FFT — —>IFFT

T N/2 N/2

—j2nn/N pl2mnIN
(c) (d

Xn+N/2

Figure 4.2: Computation of an N-point FFT using two N/2-point FFTs, (a) where the input is
separated by parity and the output is separated by section, (c) where the input is separated
by section and the output is separated by parity. Computation of an N-point IFFT using two
N/2-point IFFTs, (b) where the input is separated by section and the output is separated by
parity, (d) where the input is separated by parity and the output is separated by section.

4.2.3 Theoretical complexity

Let’s consider that an N-point FFT requires g log, N complex multiplications and Nlog, N
complex additions (Lyons [2010] pp. 135-159). The implementations in Fig. 4.2 then require
2(&'log, §)+% = Xlog, N complexmultiplications, and 2 (5 log, §)+2% = Nlog, N complex
additions.

Thus, the number of operations is identical in both cases, which is normal since the separation
presented corresponds precisely to the first step of the radix-2 FFT algorithm. Therefore, at
first glance, the implementations of Fig. 4.2 seem useless, but actually not, as shown in the
next sections.

4.2.4 Application to reduce the processing time

For the following, we will consider the implementation of Fig. 4.2a, but the same results would
be obtained with any implementation of Fig. 4.2. The corresponding timing diagram using the
Altera FFT is depicted Fig. 4.3, where Ly, denotes the latency of the FFT when the transform
length is % It can be seen that the Pth FFT result is fully available after % + Ly + P% =
(P+1) % + L2 clock cycles. Therefore, compared to the direct implementation of an N-point
FFT, the processing time is approximately halved (see Fig. 4.1b).
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Figure 4.3: Timing diagram of the implementation of Fig. 4.2a using Altera FFTs. The number
in the boxes identifies the sequences.

Logicusage Memoryusage Multipliers usage

Implementation Function (ALUT) (MIK) (DSP element)
2 1024-point FFTs 2 x 5248 2x19 2x12
1 NCO 180 2 4
Fig. 4.2a 1 Multiplier 0 0 4
2 Adders 2 x 36 2x0 2x0
Total 10748 40 32
Fig. 4.1a 12048-point FFT 6906 38 24
Total 6906 38 24
Ratio 1.56 1.05 1.33

Table 4.2: Comparison of the resources for Fig. 4.2a and Fig. 4.1a using the Altera FFT with
N =2048.

For the evaluation of the resources, we consider N = 2048. The complex exponential in Fig.
4.2a can be generated using the NCO IP provided by Altera. Therefore, the resources for the
FFT and the NCO are estimated with the Altera MegaWizard Plug-In Manager (the parameters
for the NCO are keep to the default ones), and the models defined in Appendix C are used for
the other elements (multiplier and adder). The summary of the resources is given Table. 4.2. It
can be seen that the resources are higher for the implementation of Fig. 4.2a (two N/2-point
FFTs) than Fig. 4.1a (one N-point FFT). However, we have seen just before that the processing
time for Fig. 4.2a was divided by a factor two. Since the resources are increased by a factor less
than two, the implementation of Fig. 4.2a is more efficient than the implementation of Fig.
4.1a.
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4.3. Efficient implementation of the correlation on Altera FPGAs

4.2.5 Application to reduce the resources

In the previous section, the proposed implementation was more efficient, but the resources
were increased. In this section, we adapt it to use only one FFT, at the expense of an additional
memory. The implementation is given Fig. 4.4, and the corresponding timing diagram is given
Fig. 4.5. The idea is to first compute the FFT of the even samples of the sequence, and to store
the result in a memory. Then, we compute the FFT of the odd samples of the sequence. When
the result is available, we read the memory and we compute the first half and the second half
of the FFT of the initial sequence. The first half is outputted while the second half is stored in
the memory. Once the first half is fully outputted, the memory is read and the second half is
outputted. In this way the FFT result is provided in the exact same order as with Fig. 4.1a. In
this case, the Pth FFT result is fully available after & + Ly + ¥ + P = (P+1)N + L/ clock
cycles, which is slightly lower than for Fig. 4.1a because of the lower latency.

The corresponding resources are given Table 4.3. For the memory, we need to store twice
(because the signal is complex) 1024 x 18 bits, which requires 4 M9K memories, and we
consider few logic for the addressing. It can be seen that the resources are reduced, by 20 %
for the logic, 34 % for the memory, and 17 % for the DSP elements, which is not negligible.

If we extrapolate to larger transform lengths, the results regarding the logic and the memory
would be about the same, however for the DSP elements the results would be not as good
because the number of DSP elements does not increase when we increase the transform
length above 2048.
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Figure 4.4: Computation of an N-point FFT using one N/2-point FFTs and a memory.

4.3 Efficientimplementation of the correlation on Altera FPGAs

In this section, we propose alternative architectures to compute a circular correlation that
use smaller FFTs than the traditional architecture, in the same way as in the previous section.
We show different methods to obtain slightly different architectures, and then we perform an
evaluation with the most interesting one.
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Figure 4.5: Timing diagram corresponding to Fig. 4.4 using Altera FFTs. The colors inside the

boxes identify the sequences.

Imolementation Function Logic usage Memory usage Multipliers usage
P (ALUT) (M9K) (DSP element)
11024-point FFT 5248 19 12
1 NCO 180 2 4
1 Multiplier 0 0 4
Fig. 4.4
2 Adders 2 x 36 2x0 2x0
1 Memory 22 4 0
Total 5522 25 20
2048-point FFT 24
Fig. 4.1a 048-point 6906 38
Total 6906 38 24
Ratio 0.80 0.66 0.83

Table 4.3: Resources for Fig. 4.4 and comparison with the direct use of an N-point FFT, with

N =2048.
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4.3.1 Traditional correlation implementation with FFTs

The circular correlation y, of two sequences h;, and x, of N points is defined as

N-1
Yn= Z h]tx(n+k) mod N» (4.15)
k=0
with n=0,1,..., N —1, and mod denotes the modulo operation, i.e. (n+ mN) mod N = n with
m € Z. The circular correlation can also be expressed as

Y = Hy X, (4.16)

where Y, H; and X are the DFTs of y,, h, and x;,, respectively (see Appendix A.3.3). So,
by computing the IDFT of H; Xy we obtain y,. Therefore, the circular correlation can be
computed efficiently as shown in Fig. 4.6.

| —
—> FFT

N

v

oN
A
hy, 1 | 2 | 3 | 4 L
A
%n 1 T T T R
*
0o T S R T N N
| ,
X T S T T R
| .
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\
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. ] —

| | | |
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Figure 4.7: Timing diagram of Fig. 4.6 using Altera FFTs. The number in the boxes identifies
the sequences.
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The timing diagram corresponding to Fig. 4.6 using the Altera FFT is depicted Fig. 4.7. It can be
seen that the Pth correlation result is fully available after N+ Ly+N+Ly+PN = (P+2)N+2Ly
clock cycles.

4.3.2 FFT separation

It is possible to compute the circular correlation using the separations of the FFT and IFFT of
Fig. 4.2, to either obtain the implementation of Fig. 4.8a, where the inputs and the output are
separated in even and odd samples, or the implementation of Fig. 4.8b, where the inputs and
the output are separated in sections.

4.3.3 Separation using the Chinese remainder theorem

The circular correlation can also be expressed as
Y(z)=H*(1/z*)X(z) mod (z™ N -1), (4.17)

where Y (z), H(z) and X(z) are the z transforms of y,, h, and x,, respectively, and N is the
length of the sequences (see Appendix A.3.3). Noting that z7N —1 = (z7 N2 - 1)(z7 N2 + 1), we
can define

Yo(z)=Y(z) mod(zN?-1) (4.18)
Yi(2)=Y(z) mod(z N?+1) (4.19)

and using the Chinese remainder theorem (CRT) (see Nussbaumer [1982], Ding et al. [1996]),
we have

Yo(2) Y1(2)

-N
L N2_1 -N2ij CA

2Y (z) =

= (Yo(@) + Y1(@) + 2 V3 (Yo(2) - Y1(2).
Detailing Yy (z) and Y;(z), we have
Yo(2) = H*(1/2*)X(2) mod (z7 V2 —1) = H} (1/2*)Xo(z) mod (zV'?-1) 4.21)
Yi(2)= H*(1/2%)X(z) mod (z7V?+1)= Hf (1/2*)X1(2) mod (zV'? + 1), (4.22)

where

Ho(1/z*)=H(1/z*) mod (z N?-1), Hy(1/z")=H1/z*) mod (zV?+1), 4.23)
Xo(2) = X(z) mod (z7N?-1), X1(2)=X(z2) mod(z V?+1). 4.29)

88



4.3. Efficient implementation of the correlation on Altera FPGAs

*

h ¥ H;
—> FFT > D
Ni2
o | BFT LD,
Ni2 T - Hiiniz
o I2TkIN
X2n Xk ) 4 Yi Yen
—> FF'I[V‘/2 > 1 —>(X) > > IFF%—»
X241 . Xne Y Yieni2 . Vonel
—> FFT — »D > > —(—IFFT—>
NJ/2] T T N/2
e —j2nkIN ej27rk/N
(a)
h, # Hor
> > FFT
NI2
Bpaniz % Hapa
4&)—'%@% FFT
N2
e—j27m/N
Xn Xok 4 Yak Yn
> » FFT —>()—> [FFT
N/2 N/2
Xn+Ni2 Xogr1 Y Yors YneNi2
4&—'%% FFT — IFFT —(<~4—>
Ni2 Ni2 T
e —j2nn/N ejZnn/N
(b)

Figure 4.8: Computation of a circular correlation of N points using N/2-point FFTs, (a) where
the inputs and the output are separated by parity, (b) where the inputs and the output are
separated by section.

Eq. (4.21) corresponds to a circular correlation, and Eq. (4.22) corresponds to a skew-circular
correlation (see Appendix A.3.4). In Eq. (4.23), Hy(z) and H;(z) are the z transforms of kg ;,
and h; ,, where hyg ,, is the sum of the first N/2 samples and of the last N/2 samples of &,,, and
hy,, is the difference of the first N/2 samples and of the last N/2 samples of #,,. Idem for Eq.
(4.24).

The corresponding implementation is given Fig. 4.9. It can be seen that in fact, this architecture
is identical to the one of Fig. 4.8b.
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Figure 4.9: Computation of a circular correlation of N points using N/2-point FFTs (algorithm

based on the Chinese remainder theorem).

4.3.4 Separation by downsampling

Matrix view

Using the matrix notation, the circular correlation y, of two sequences &, and x, of length N

can be expressed as

[y | [ ho h h
n hn-1 ho h
Y2 hn-2 hn-1 ho
V3 hn-3 hn-2 hy-y
YN-4 hy hs hs
YN-3 h3 hy hs
YN-2 h hs3 hy

[yn-1] [ hy hs

y=H"x.

90

hs3
ha
hy
ho

h7
he
hs
hy

hN-4
hn-s5
hn-6
hn-7

ho
hn-1

hn-2
hn-3

hn-s hy-a hnoi| | %o ]
hn-2 hy-3 hn-2 X1
hn-s hn-a hn-3 X2
hn-6 hn-s hn-4 X3
) ) ) (4.25)
h hy hs XN-4
ho h ) XN-3
hn-1 ho h XN-2
hn-2 hn-1 ho | [xn-1]
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If we separate y, in even and odd samples, we have

Yo ho h
V2 hn-2  hn-1
YN-4 hy hs
YN-2 hy h3
ho ha
hn-2  ho
hy he
h hy
yo = Hg xo +HJ x1,
and
n hn-1 ho
¥3 hn-3  hn-2
YN-3 h3 hy
YN-1 h hy
hn-1 hy
hn-3  hn-1
h3 hs
hy hs
h h3
hn-1
hs hy
hs  hs

y1 =H] Pxo+Hj xq,

ha

he
hy

h3
hy
h7
hs

hN-4
hn-6

ho

hn-2

h

hN-1

hs
h3

)
ho

hg
hy

hn-5

xo
X1
N
hn-4 hn-3 hy-—2 hyn-1 x2
hn-¢  hn-5 hn-4  hn-3 X3
ho h h hs XN-4
hn-2  hn-1 ho h XN-3
N-2 (4.26)
XN-1
hn—2]" [ xo h h3 hn-s  hyo1]' [«
hN-4 X2 hn-1 hn-5  hN-3 X3
+ :
) XN-4 hs  hy h hs XN-3
ho XN-2 hs  hs hy-1 XN-1
X0
x1
N
hn-5 hn-4 hn-3  hn-2 X2
hn-7 hn-e hN-5 hN-a x3
hn-1 ho hy hy XN-4
hn-3  hn-2  hn- ho XN-3
XN-2
XN-1
hn-3]" [ xo ho  h2 hn-a  hno2]' [ x
hn-5 X2 hn-2  ho hn-e hN-a x3 | (4.27)
. : + : :
h XN-4 hy  hg ho h XN-3
hn-1] 1XN-2 hy  hy hn-2 ho XN-1
hn-1 X2 ho  h2 hn-a  hyo2]' [ x
hn-3 X4 hn-2  ho hn-6  hN-4 X3
. . + . .
h3 XN-2 ha  he ho hy XN-3
hy Xo hy  hy hn-2 ho XN-1

where Hy and H; are circulant matrices corresponding to the even and odd samples of £, xg
and x; are vectors corresponding to the even and odd samples of x,, and P is the following
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Figure 4.10: Computation of a circular correlation of N points using N/2-point FFTs (algorithm
obtained using matrices).

M

Y

(T

permutation matrix,

010 0 0
0 01 00
0 00 0 0O
P=|: it o (4.28)
0 00 010
000 - 001
00 - 00 0

The permutation matrix implies a circular shift of one sample of the signal. Since the matrices
Hj and H, are circulant, we can use the FFT to implement the matrix-vector products, which
gives Fig. 4.10. However, since a circular shift of one sample in the time domain of a sequence
of N samples corresponds to a multiplication by e’X" in the frequency domain (Oppenheim
and Schafer [2009], pp. 564-567), one FFT can be removed and then we obtain Fig. 4.11.

Z transform view

The circular correlation can also be expressed as
Y(z)=H*(1/z*)X(z) mod (z™ N -1), (4.29)
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Figure 4.11: Computation of a circular correlation of N points using N/2-point FFTs (al-
gorithm obtained using matrices replacing the time domain shift by a frequency domain
multiplication).

with Y (z), H(z) and X(z), the z transforms of y,, h, and x,, respectively, and N is the length
of the sequences. By separating the even and odd samples of the sequence x;,, we can write

N/2-1 N/2-1
X@= Y xnz "+ Y. xpperz @Y. (4.30)
n=0 n=0
Defining
N/2-1 N/2-1
Xo(@)= ), xn2", Xi(@= ) Xz ", (4.31)
n=0 n=0

which are the z transforms of the sequences from the even and odd samples of x;, we can

write
X(2) = Xo(2%) + 271 X1 (7). (4.32)

This is the polyphase representation (Vaidyanathan [1993] pp. 120-122). Note that Xp(z?) and
X1 (2?) contain only even powers of z. In the same way, we have

Y (2) = Yo(2%) + 271 vi(2%), (4.33)
with
N/2-1 N/2-1
Yo@= ), yanz ", Y@= ) yopnz ", 4.34)
n=0 n=0
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and
N-1
H*(1/z*)=)_ hyz"
n=0
N/2-1 N/2-1
4.35
= h;nZ2n+ Z h;n+lzzn+1 ( )
n=0 n=0
= Hy((1/2%)?) +z Hy ((1/2%)?),
with
N/2-1 N/2-1
Ho@)= ) hpz", Hi@= ) hpaz " (4.36)
n=0 n=0

Applying this to Eq. (4.29), we have

Yo(22) + 27! Wa(2) = (B (1/2)2) + 2 H} ((1/2")7)) (Xo(2%) + 27" Xa (7)) mod (27N -1)
= (H ((112")?) Xo(2%) + Hy ((1/2°)%) X1 (2%))  mod (27 -1)
+271(HG ((112%) X (%) + 22H; ((1/29)2) X (7)) mod (27 - 1)
(4.37)

Inside both parenthesis, there are only even powers of z. The second parenthesis being
multiplied by z~!, this term contains only odd powers of z. If N is even, after the modulo
operation, the parity of the powers of z are unchanged. Consequently, we have

Yo(2?) = (Hg((l/z*)z)xo(zz) +Hy ((1/29%) X (zz)) mod (z7V-1) (4.38)
and

Yi(2%) = (Hg((llz*)z)Xl (%) +z2H;‘((1/z*)2)X0(z2)) mod (27N -1). (4.39)

j2mk
Evaluating the previous equations for z = e~ with k = 0,1,...,N—1, we obtain
Yor = H(;kXO,k + Hl*,kXLk’ (4.40)
and
* LU
Yl,k = H() leyk + e N2 I‘I1 kXO,k’ (441)

where Yj ;. and Y; i are the DFTs of y», and y2,11, Ho x and H; . are the DFTs of hy, and hojq1,
and Xy x and X i are the DFTs of x,, and x2,+1. We obtain the same result as using the matrix
notation, and the corresponding implementation is in Fig. 4.11.

94



4.3. Efficient implementation of the correlation on Altera FPGAs

th * Hg,k
— FFT
N/2
h2ni ¥ Hig p &
—> FF’;[V:Z l > o J27KI(NI2)
X2n )Q),k 4 i
_> FFT ; X M P ;
N/2]
¥ v ¥ | Yu e
NP g% o> »IFFI —
A _A NI2
X2n+1 Xl,k ) 4 ) 4 Yl,k Yon+1
—> FF'sz:z >(x > > IFF'NI/;—>

Figure 4.12: Computation of a circular correlation of N points using N/2-point FFTs and the
minimum number of multipliers, where the inputs and the output are separated by parity.

Reduction of multipliers

The developments presented previously can be adapted to separate the sequences into 3, 4 or
more sub-sequences. If each sequence is split in S sub-sequences, the number of multipliers is
$%+8—1 (82 for the products between the FFTs, and S—1 for the products with the exponentials)
and the number of adders is S(S—1). However, it is possible to reduce the number of multipliers.
For example, noting that

(Hg, ot Hf o) (Xo ke + X1,k) = H(’)“y o Xok + Hf (X1 + Hy o Xy p+ H;j X0,k (4.42)
Eq. (4.40) becomes
YO,k = (Hg,k + Hl*,k) (X()_k + lek) - H(;kXLk — HikXO,k- (4.43)

Therefore, using Eqs. (4.43) and (4.41), the circular correlation can be computed using 4
multipliers and 5 adders as shown in Fig. 4.12, compared to 5 multipliers and 2 adders using
Egs. (4.40) and (4.41). These developments are based on the same principle as the fast FIR
(finite impulse response) algorithms (FFA) (Mou and Duhamel [1991], Parker and Parhi [1997],
Parhi [1999] Chap. 9), except that they are adapted to the circular correlation implemented
with FFTs.

However, the FFAs do not always provide the minimum number of multipliers, but only a
sub-optimal reduction. The minimum number of multipliers that can be obtained is 3S — 2.
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. Number of Number of Number of
Algorithm -
sub-sequences (S) complex multipliers complex adders

2 5 2

No reduction 3 11 6
of the multipliers

4 19 12

2 4 5

Sub-optimal reduction 3 8 13
of the multipliers

4 13 25

2 4 5

Optimal reduction 3 7 o5
of the multipliers

4 10 78

Table 4.4: Number of operations for the different algorithms.

Indeed, if we express the relation between the FFTs using matrices, we have

*
% Hy,x Hyk| | X
ol [ R Okl (4.44)
Y1k e Nz Hyp Hor| [Xuk
If we split the sequences in three sub-sequences, we have
*
Yok Ho,k Hi k Hyk| [Xox
j2nk
Vie|=|e M Hye  Hoe — Hyg| [Xukl- (4.45)
j2nk j2mk
Yok e~ Hy k e~ Hop Horl| [ X2k

It can be seen that the matrix in Eq. (4.45) is a Toeplitz matrix (see Section A.2.3), and it
is known that the minimum number of multiplications required to compute the product
between a Toeplitz matrix of size S x S and a vector of length Sis 25 -1 (Lafon [1974]). Since
there are also S — 1 multipliers needed for the multiplication with the complex exponentials,
the total minimum number of multipliers is 3S — 2. However, when the number of multipliers
is minimum, the number of adders increases very fast, as shown in Table 4.4 for the some
small values of S (Leclere et al. [2012]).

Note that when splitting the signals in two (i.e. S = 2), it could be possible to have only two
multipliers for the product between the FFTs, but this requires that the length of the sequences
be the product of two coprime numbers (Garg [1998] pp. 313-316). Therefore, this cannot be
applied when the length of the sequences is a power of two.
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Figure 4.13: Timing diagram corresponding to Fig. 4.12 using Altera FFTs. The number in the
boxes identifies the sequences.

4.3.5 Application to reduce the processing time

Implementations of Figs. 4.8 and 4.9 require 5 multipliers and 6 adders, and the implementa-
tion of Fig. 4.12 requires 4 multipliers and 5 adders. Since this last implementation uses less
DSP resources, we consider it for the evaluation of the resources in this section.

The timing diagram corresponding to Fig. 4.12 using the Altera FFT is depicted Fig. 4.13. It
can be seen that the Pth correlation result is fully available after % + Lyj2+ % + Ly + P% =
(P+2) % + 2L Ny/2 clock cycles. Therefore, compared to the traditional implementation of the
circular correlation (Fig. 4.6), the processing time is approximately halved (see Fig. 4.7).

For the evaluation of the resources, we consider N = 2048. As previously, the resources for the
FFT and the NCO are estimated with the Altera MegaWizard Plug-In Manager (the parameters
for the NCO are keep to the default ones), and the models defined in Appendix C are used
for the other elements (multiplier and adder). The summary of the resources is given Table
4.5. It can be seen that the resources are higher for the implementation of Fig. 4.12 than Fig.
4.6. However, we have seen just before that the processing time for Fig. 4.12 was divided by a
factor two. Since the resources are increased by a factor less than two, the implementation of
Fig. 4.12 is more efficient than the implementation of Fig. 4.6.
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Logic usage Memoryusage Multipliers usage

Implementation Function (ALUT) (MIK) (DSP element)
6 1024-point FFTs 6 x 5248 6 x 19 6 x 12
NCO 180 2 4
Fig. 4.12 4 Multipliers 0 0 4x4
5 Adders 5 x 36 0 0
Total 31848 116 92
3 2048-point FFTs 3 x 6906 3 x38 3x24
Fig. 4.6 1 Multiplier 0 0 4
Total 20718 114 76
Ratio 1.54 1.02 1.21

Table 4.5: Comparison of the resources for Fig. 4.12 and Fig. 4.6 using the Altera FFT with
N =2048.
4.3.6 Application to reduce the resources

In the previous section, the proposed implementation was more efficient, but the resources
were increased. In this section, we adapt it to use only three FFTs instead of six, at the expense
of an additional memory. In this case, the implementations based on the CRT (Fig. 4.9) is more
interesting because it requires less memory. Indeed, each IFFT output is obtained using only
two FFTs results, whereas in Fig. 4.11 the four FFTs results are needed to compute the each
IFFT output. The implementation is given Fig. 4.14, and the corresponding timing diagram is
given Fig. 4.15.

Here is a summary of how works Fig. 4.14 :

1. Compute the FFTs of hg , and xg p-
2. Compute the product of the FFTs.
3. Compute the IFFT to obtain yg ;.
4. Store yp , in a memory.

5. Repeat the first three steps for h; , and x;,, (which are before multiplied by the com-
plex exponential) to obtain y; , (which involved also a product with a the complex
exponential).

6. When y; , is available, read yy , from the memory and compute their sum and differ-
ence.
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Figure 4.14: Computation of the correlation using three N/2-point FFTs and a memory.

Logicusage Memoryusage Multipliers usage

Implementation Function (ALUT) (MIK) (DSP element)
3 1024-point FFTs 3 x 5248 3x19 3x12
1NCO 180 2 4
4 Multipliers 0 0 4x4
Fig. 4.14
4 Adders 4 x 36 0 0
1 Memory 22 4 0
Total 16 090 63 56
3 2048-point FFTs 3 x 6906 3 x 38 3x24
Fig. 4.6 1 Multiplier 0 0 4
Total 20718 114 76
Ratio 0.78 0.55 0.74

Table 4.6: Comparison of the resources for Fig. 4.14 and Fig. 4.6 using the Altera FFT with
N =2048.

7. Output their sum, which corresponds to y;, and store in the memory their difference,
which corresponds to y,4+n/2.

8. Read the memory to output y,+n/2-

In this way the correlation result is provided in the exact same order as with Fig. 4.6. In this
case, the Pth correlation result is fully available after g +Lyjo+ % ++ g +PN = (P+ %)N +2Ln/2
clock cycles, which is about N/2 cycles less than for Fig. 4.6 because of the lower latency.

The corresponding resources are given Table 4.6, still with N = 2048. For the memory, we need
to store twice (because the signal is complex) 1024 x 18 bits, which requires 4 M9K memories,
and we consider few logic for the addressing. It can be seen that the resources are reduced, by
about 22 % for the logic, 45 % for the memory, and 26 % for the DSP elements, which is not
negligible.
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Figure 4.15: Timing diagram corresponding to Fig. 4.14 using Altera FFTs. The colors inside
the boxes identify the sequences.

4.4 Summary

In this chapter, we have shown different ways to compute an FFT in Altera FPGAs, with lower
resources and the same processing time than the direct implementation of one Altera FFT.
Then, it was shown also that it is possible to reduce the resources for an FFT-based circular
correlation compared to the direct implementation that uses three FFTs.

It has been shown that all the resources can be reduced, i.e the logic, the memory and the
DSP blocks, but it is mainly the memory that is reduced (33 % for the FFT and 45 % for the
correlation with sequences of 2048 samples). If we extrapolate to other transform lengths, the
results regarding the logic and the memory would be about the same, however for the DSP
elements the results would be not as good because the number of DSP elements does not
increase when we increase the transform length above 2048.

The algorithms presented do not make any assumptions about the input or output signals,
therefore they can be applied not only for GNSS but for any other systems computing FFTs,
convolutions, or correlations. Besides, in addition to the implementations proposed in this
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chapter, it is possible to use the method for computing the FFT of two real sequences using
the complex Altera FFT (see Appendix B), which is useful in GNSS since the local code is real.
Some other examples are also given in (Leclére et al. [2012]).
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Acquisition of GNSS signals in
presence of transition

In this chapter, we discuss the problem of the parallel code search acquisition when one
primary code period is used, and when the received signal contains bit transitions, that can be
due to a secondary code or data modulation.

After discussing the proposition of two algorithms, we consider their application to different
GNSS signals, such as GPS L5 and Galileo E5a, E5b and E1 OS.

This work has been published in (Leclere et al. [2013a]) and (Leclere et al. [2014]), except for
the second proposed algorithm that has been discovered later.

5.1 Introduction

As indicated in Chapter 1, the recently introduced GPS and Galileo signals bring new features
compared to the initial civilian GPS L1 C/A signal, such as a higher power, longer codes for
a better cross-correlation between satellites signals, pilot channels that do not carry data to
facilitate long integrations and improve the sensitivity threshold, and secondary codes that
are usually short PRN codes to make the data synchronization easier.

The presence of a secondary code brings advantages and additional performance, but also
makes the acquisition more difficult (Shivaramaiah et al. [2008], Borio [2011]). Exploiting
the secondary code adds a third dimension to the acquisition search, besides the Doppler
frequency and primary code dimensions (or it increases the code dimension, depending on
the point of view), and implies the use of long coherent integration times, which impacts also
the search in the Doppler frequency dimension.

To acquire very weak signals, such as in indoor or urban environments (Ayaz et al. [2010]), the
coherent integration time should be as long as possible (Pany et al. [2009]). Therefore, with
modern signals this means that the secondary code must be synchronized too. However, it
is still possible to perform the acquisition using only the primary code, with the possibility
to synchronize with the secondary code afterwards if the sensitivity is not the priority. This
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Figure 5.1: Illustration of the problem due to the secondary code transition. The values inside
boxes indicate the chip number. (a) By chance, the incoming primary code starts with the
first chip, the correlation at the correct alignment is maximum. (b) The incoming primary
code does not start at the first chip (usual case), the correlation at the correct alignment is
reduced. (c) In the worst case, the incoming primary code starts at the middle of a period, the
correlation at the correct alignment is 0.

chapter focuses on this case. This case may happen if we want to process a modern signal to
get a better accuracy (the L5, E5a and E5b signals have a chipping rate of 10.23 MHz), or to get
a fast position (the E1 OS and E5b signals have a data rate of 250 bit/s). This case happens also
if we want to perform a coherent integration over a secondary code period, but the limited
resources prevent the computation of so large FFTs (as will be shown in Chapter 6, which also
discuss the case using large FFTs).

Even if the secondary code is not exploited, the potential transitions between consecutive
periods of the primary code prevent the direct use of the parallel code search acquisition.
Indeed, this can result in very high losses leading to the non-detection of the signal (Borio et al.
[2008Db]), as illustrated in Fig. 5.1. When the local replica of the primary code is aligned with
the incoming primary code, the magnitude of the correlation peak is maximum only if there
is no transition (Fig. 5.1 (a)). Else, in case of transition, the correlation peak is reduced (Fig.
5.1 (b)), or even vanishes if the incoming primary code starts at the middle of the period (Fig.
5.1 (c)). In fact, the problem is worse than a simple non-detection, because the correlation
peak may be detected at an incorrect frequency (Lo Presti et al. [2009]), which means that the
receiver will start tracking the signal incorrectly and waste time before performing again an
acquisition.

There were different propositions to overcome this problem. For example, people proposed
to perform a kind of average in the Doppler search space (Lo Presti et al. [2009]); to have two
steps to find first the code delay, and then the Doppler frequency (Sun and Lo Presti [2012]); or
to generate two local codes, one without a transition and one with a transition, requiring to
compute five FFTs instead of the usual three (Jeon et al. [2012]).
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Figure 5.2: Straightforward solution to the secondary code transition problem. The values
inside boxes indicate the chip number, and the gray area contains only zeros. The magnitude
of the first peak is always maximum, whereas the second peak can be reduced due to transition.

A straightforward solution exists and consists in using two consecutive periods of the incoming
primary code and one period of the primary code padded with zeros for the local code to
perform the correlation (Yang et al. [2004], Borio et al. [2008b]). In this way, there is always
one period of the incoming code free of transition, and thus a maximum correlation peak, as
illustrated in Fig. 5.2 (the sign of the peak is not important, only its magnitude is). It can be
seen that there is a second peak, similar to the one of Fig. 5.1 (b). Indeed, since there are two
periods of the incoming primary code, the local code is correctly aligned twice. However, the
magnitude of the first peak is always maximum, whereas the second peak can be reduced or
vanish due to the transition. Since the first peak always occurs in the first half of the correlation,
the second half of the correlation is discarded.

However, this solution increases the complexity and is not so efficient since half of the points
calculated are unused. To tackle this problem, we propose two new algorithms that reduce the
complexity by transforming the initial correlation into two sub-correlations. These algorithms
are not approximations, but other ways to compute the samples of interest. Therefore, there is
no degradation of the sensitivity. The concept has some similarities with classical divide-and-
conquer approaches such as the overlap-and-add or overlap-and-save methods (Proakis and
Manolakis [2006]), although different.

The straightforward and proposed algorithms are compared first for the acquisition of the GPS
L5, Galileo E5a and E5b signals, which are equivalent for this problem since their primary codes
have the same length and the modulation is the same. Then, the algorithms are compared
for the acquisition of the Galileo E1 OS signal, considering first the BOC(1,1) modulation
and then the BPSK modulation. The comparison of the algorithms is done for a software
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hy, « Hj

—> FFTNj
Xn Xk Yi Yn

—> FFT —><— IFFI;—»

N|

Figure 5.3: Implementation of the straightforward algorithm using FFTs. The second half of
h, contain only zeros, and the second half of y, is not used.

implementation using Matlab, and for a hardware implementation on an FPGA.

5.2 Proposed Algorithms

The idea of the proposed algorithms is to transform the initial correlation into two sub-
correlations of smaller size. The proposed algorithm exploits two facts for this : 1) Half of
the points of one of the signals are zero; and 2) Half of the points of the correlation output
are discarded. A third fact will be exploited for the reduction of the complexity, the usage of
additional zero-padding when it is needed to reach a specific sequence length.

Let’s first define the operation we want to perform. Using the matrix notation, the circular
correlation yj, of two sequences &, and x, of N points can be expressed as

r Yo 1 [ ho hy h%—l h% N N hN_l‘*— % ;
i hny-1  ho - hg_g hg_l o hn-3z hn- X1
yyoaf _ by hyy oo he e hyy hy | Xy
yg hl;l th hn-1 ho h%_z h%—l x¥ (5.1)
YN-2 hy hs hyyy hyg, ho h XN-2
YN-1 | h hy h% hﬂ+1 hn_1 hy | | XN-1 |
y=H"x,

where h,, corresponds to the local code, and x;, to the incoming signal after the carrier removal.
The corresponding implementation using FFTs is given Fig. 5.3.

Using the two conditions described previously, namely that the second half of /,, contains
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only zeros and that the second half of y, is not used, what we want to compute is

]
ho h h 0 s
Y0 o N
J’I 0 hO hﬂ_z th
— 2 2 Xy,
. 2
: P (5.2)
yn_ 4 0 O ho hy hN_l .2
| XN-2 |
yr =Hj x7.

It can be noted that the sample xy_; is not required to compute the first half of y,, since it is
multiplied by the samples from h x to hy-1, which are zero here. That is why we remove it in
Eq. (5.2). At this stage, yr (T stands for truncated) is a vector of N/2 points, Hr is a matrix of
N/2x N -1, and x7 is a vector of N — 1 points. We start from this equation to describe the two
proposed algorithms.

5.2.1 Algorithm1
Step 1 : Separation of the matrix

The first step consists in separating the matrix Hr in two matrices, Hrg and Hr;, where Hrg
is Hy with h, :Ofor% =n< %—1, and Hy; isHy with b, =0for0<n =< %—1, such that
Hr is the sum of Hyg and Hr;. Of course, this requires that N is divisible by 4, which will be
assumed throughout this chapter. We thus obtain

yr=Hp X7

= (Hp +H7)) X1

Yo hg hi -+ 0 0 - 0
1 0 hy - 0 0 - 0
yn_; 0 0 hy 0
%o ] (5.3)
X1
hg_l 0 i
2
hy_, hy_
+ 22 21 XN,
: 2
: Xy
00 0 0 hy_y N
| XN-2 ]
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Step 2 : Removing of columns of zeros

The last % columns of Hry and the first % columns of Hr; contain only zeros. Thus, we can

remove these columns to obtain Hy ¢ and Hyr; and then

yYr= (H;"() + H;l) Xr

— * *
=HproXo+Hypp Xq

Yo ho
»n 0
y%—l 0

hy

4

0

+ .

0

h
ho

By
S |z

=z

X0
% X1
XN
T_l
XN
4
a1 :
X3N
T_Z
%
hy
5 1

(5.4)

At this stage, Hr 19 and Hy7; are matrices of % X %V —1, and x¢ and x; are vectors of % -1

points.

Step 3 : Making the matrices circulant

The matrices Hrr¢g and Hrr; have a circular pattern. It is thus possible to include them into

circulant matrices by adding % — 1 rows, as shown in Egs. (5.5) and (5.6).

Hrro

Hy =
Hpo

108

'ho

h
ho

hy
Ny

hy
N_o

hy

1T

-1
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Hrr

H, =
Hp;

Eq. (5.4) can then be modified to obtain

yr
YD |

Ym =

Yo
N

2
YD,0

yn_ g | =

h% h%ﬂ hg-l
0 hy hg_z
4 2
= 0
h%—l
_h§+1 h%+2 0
H7rg X0 + Hiry X
H* % L
| H'po D
H;j xo +Hj x
[ hy hx_, 0
4
0 0
h§—1 0
| e 0 0
h% h§+1 hg—1
0 hﬁ hﬂ72
4 2
+ 0 0
h%—l 0
_h%ﬂ h%+2 0

0
hy_,
h%—l (5.6)
By
0 hn
4
X
h¥_1 -1
ha_,
: (5.7)
ho X3N_o
0 XN
4
h% 1 x%ﬂ
Pl R
hg_z _)Cg
0 h% th_ZA

At this stage, yys (M stands for modified) is a vector of % — 1 points, Hy and H; are circulant
matrices of % —1x % —1, and xy and x; are vectors of % —1 points. The vector y,, is composed
of the initial vector y7 of % points, and of the vector yp (D stands for discarded) of % —1 points.
Therefore, the first % points of the result are identical to those of the initial correlation, while
the other points are different, which is not important since they are discarded. This means
that this algorithm discards only about one third of the points calculated, instead of discarding
about half. However, the matrices contains about two third of zeros instead of about half.

109



Chapter 5. Acquisition of GNSS signals in presence of transition

The corresponding implementation using FFTs is given in Fig. 5.4, with

N/2-1
ho= [ hy M hyy 0 - 0]
hy=[hy hyy -+ hy, 0 0] (5.8)
Xg = [ X0 X1 X3N_2]
X; = [x% XN AN-2 |

If needed, the sequences can be zero-padded to reach a specific length, without impacting the
desired samples.
hO,n * Hg,k

—> FFT

3N/4-1

hl,n

—>FFT* k)

3N/4-1

3N/4-1 Yk

X1k =§‘é

Figure 5.4: Implementation of the first proposed algorithm using FFTs. The last two thirds of
ho,» and h;,, contain only zeros, and the last third of y,s , is not used.

,VM,n

IFFT—>

3N/4-1

e
A\ 4

3N/4-1

110



5.2. Proposed Algorithms

5.2.2 Algorithm 2
Step 1 : Separation of the output
The first step consists in separating the output vector yr in two, to obtain

*
yro=Hrpy X7

X0
X1
* XN
Yo ho hy_y hy_y 0 0 Ny
V1 0 hO h%—Z h%_z 0 .- 0 (59)
S N N RS
yy_4 o o0 --- ho o hy - hy 0 :
4 1 2
x¥_2
XN-2
and
yr1 =Hp, X7
r xo
X1
| x
y% 0 0 hy - h%—l h§—1 0 N
y%ﬂ oo o0 - h%_z h%_z 0 : (5.10)
: S S I
Y%—l o0 0 - ho h% h%—l
x%_l
| XN-2 |

At this stage, yro and y7; are vectors of % points, Hrg and Hr; are matrices of % x N—1,and
x7 is still a vector N — 1 points. Be careful to not confuse the matrix Hrg in Eq. (5.9) with
the matrix Hr used in Eq. (5.3) for the first algorithm, they correspond to different matrices
(idem for Hpyp).
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Step 2 : Removing of columns of zeros

The last % columns of Hry and the first % columns of Hr; contain only zeros. Thus, we can
remove these columns to obtain

yro =Hzr Xo
X0
X1
Yo ho I h%—l h%—l
N 0 hO h%—Z h%—Z 0 x%—l (511)
YN 0 0 hy hy hy_, XN_g
1 2 2
x%_z
and
yri=Hppxg
XN
4
. XN 4
YN hy h hy_, hy_, :
y%+l _ 0 hO h%_z h%_z 0 x%—l (5.12)
y%—l 0 0 ho h% h%—l x;iv_l
.xN_za

At this stage, Hrr is a matrix of % x % —1, and x( and x; are vectors of %V — 1 points. Note
that the vectors xy and x; are the same as for the first algorithm (see Eq. (5.4)).
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Step 3 : Making the matrix circulant

The matrix Hrr has a circular pattern. It is thus possible to include it into a circulant matrix

by adding % — 1 rows, as shown in Eq. (5.13).

(hg hy - h%—l hg-1
0 hy - h%—Z h%—z
Hrr s :
He =
“7|Hp 0 0 ho hy
th hy - h% 0

Egs. (5.11) and (5.12) can then be modified to obtain

70 H
Yo HD
ymo =H¢ Xo
0 hy hy --- h%_l h%l
¥1 0 hy -- h%—z hz;z?_
y%—l = 0 0 coe hO e h%
YDo,0 o o0 - 0 o hy_
4
_J/DO,%—Z_ >h1 hy --- h¥ 0
and
H*
Yy _ Y;T X
YD1 HD
ymi =Hgxg
y¥ hy h%_l h%—l
V¥ 0 hy - h§_z hg—z
yyg | =0 0 ho - hu
yDl,O 0 0 . 0 h%—l
| Yp1,5 2| | ohy - h% e 0

(5.13)

(5.14)

(5.15)
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Figure 5.5: Implementation of the second proposed algorithm using FFTs. The last third of
hc,n contains only zeros, and the last two thirds of ya,, and yan,, are not used.

At this stage, ya0 and y, are vectors of % —1 points, H¢ is a circulant matrix of % —-1x %V -1,

and x¢ and x; are vectors of %V — 1 points. The vectors yyz and yas; are composed of one half
the initial vector y7, and of the vectors ypo and yp; of % — 1 points, respectively. Therefore,
the first g points of the result are identical to those of the initial correlation, while the other
points are different, which is not important since they are discarded. This means that this
algorithm discards about two thirds of the points calculated, instead of discarding about half.
However, the matrices now contains only about one third of zeros, compared to about half.

The corresponding implementation using FFTs is given in Fig. 5.5, with

N/4-1
—N—
he=[ hy h - hg_l 0 ...0]
xo= [ X% x1 x%—z] (5.16)
x1= | Xy Xy XN-2 |.

As for the first algorithm, if needed, the sequences can be zero-padded to reach a specific
length, without impacting the desired samples.

5.2.3 Algorithms complexity

The proposed algorithms perform five FFTs or IFFTs of % — 1 points, whereas the straightfor-
ward algorithm performs three FFTs or IFFT of N points (or N —1).

Considering that an FFT of N points requires about Nlog(N) multiplications, the straightfor-
ward algorithm requires approximately 3Nlog(N) + N multiplications, while the proposed
algorithms require 5%\’ log(%) + 2% multiplications. The number of operations is thus
greater for the proposed algorithms, by about 21 to 23 %.

This means that while the initial aim of finding a new algorithm was to decrease the complexity
of the straightforward algorithm, the proposed algorithms in fact require more operations.
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l 5 7 9 11 13 15 17 19

L=2' 32 128 512 2048 8192 32768 131072 524288

N 44 172 684 2732 10924 43692 174764 699052

Table 5.1: Correlation length (N) and radix-2 FFT length (L) of the proposed algorithms for /
odd.

l 6 8 10 12 14 16 18 20

L=2'" 64 256 1024 4096 16384 65536 262144 1048576
N 84 340 1364 5460 21844 87380 349524 1398100

Table 5.2: Correlation length (N) and radix-2 FFT length (L) of the proposed algorithms for [
even.

However, when there are some constraints on the FFT length (e.g. to be a power of two), the
sequences are zero-padded to meet the requirements, and the proposed algorithms can be
advantageous, as shown in the next sections.

5.2.4 Use with the radix-2 FFT

The proposed algorithms performs FFTs on %V — 1 points. If the use of radix-2 FFTs is desired
(by radix-2 FFT we mean that the FFT length must be a power of two), there is the following
constraint,

3N l 4
T—l:Z ©N=§(2 +1), (5.17)

where [ is a positive integer. This equation has integer solutions only if / is odd, and the result
for a range of suitable values is provided in Table 5.1. We can use zero-padding to obtain
sequences of length % + 1, which gives the following constraint,

3N ; 4
- t1=2eN=c@'-D, (5.18)

where [ is a positive integer. This equation has integer solutions only if / is even, and the result
for a range of suitable values is provided in Table 5.2.

To make the link with the GNSS signals, the FFT length for the straightforward and the pro-
posed algorithms in function of the sampling frequency is provided in Table 5.3, considering
a code of 1 ms. It can be seen that there are two possibilities. Either the FFT lengths of the
algorithms are identical, or the FFT length of the proposed algorithms is half the FFT length of
the straightforward algorithm. For a code of 4 ms, the length of the sequence would be four
times longer, therefore Table 5.3 can be read by multiplying the sampling frequency by four.
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Sampling frequency FFT length with the FFT length with the
range (MHz) span (MHz) straightforward algorithm proposed algorithms
1.023 — 1.024 0.001 2048 2048
1.025 - 1.366 0.341 4096 2048
1.367 — 2.048 0.681 4096 4096
2.049 - 2.730 0.681 8192 4096
2.731 — 4.096 1.365 8192 8192
4.097 — 5.462 1.365 16 384 8192
5.463 — 8.192 2.729 16 384 16 384
8.193 — 10.922 2.729 32768 16 384

10.923 - 16.384 5.461 32768 32768
16.385 — 21.846 5.461 65 536 32768
21.847 — 32.768 10.921 65 536 65 536
32.769 — 43.690 10.921 131 072 65 536

Table 5.3: Radix-2 FFT length for the straightforward and the proposed algorithms in function
of the sampling frequency considering a code of 1 ms (for a code of 4 ms, multiply the actual
sampling frequency by 4 to find the corresponding FFT length).

When the FFT lengths are identical, it is clear that the proposed algorithms are less efficient,
since they compute more FFTs than the straightforward algorithm. For example, if we use a
sampling frequency of 24 MHz, we have N = 48000, and % —1=35999. Therefore, both the
straightforward and the proposed algorithms will use FFTs of 65 536 points.

When the FFT length of the proposed algorithms is half the FFT length of the straightforward
algorithm, the proposed algorithms seem more efficient. Indeed, the theoretical number of
multiplications is 5% log(%) + 2% for the proposed algorithms, against 3% log(N) + N for the
straightforward algorithm, which means a reduction of about 20 %. For example, if we use
a sampling frequency of 21 MHz, we have N = 42000, and %V —1=31499. Therefore, the
traditional algorithm still uses FFTs of 65 536 points, while the proposed algorithms now use
FFTs of 32 768 points.

It can be also noted that the sampling frequency span is the same when the FFT lengths of
the algorithms are equal and when the FFT length of the proposed algorithms is half the FFT
length of the straightforward algorithm. Therefore, there is a 50 % chance that the proposed
algorithms are efficient.
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5.2.5 Algorithm to obtain P sub-correlations

The proposed algorithms can be generalized to more than two sub-correlations. For example,

to obtain P sub-correlations with the algorithm 1, %, and x, must be decomposed into P

components, respectively h; , and x; , with i ={0,1,...,,P -1}, of % % points, where

* h; , contains %g points of h, and % points of zeros,

* X;p contains %% points of x;,

* h;,and x; , start at the samples %g of h,, and x,, respectively.

The output is then computed as

P-1
ymn =IEFT Y (FET* (h; ) FFT(x;,0) |, (5.19)
i=0
with
N/2
hi= [ hin hi hi 0 ...0
i=[hyg higy o Bogy 0 ... 0] (5.20)
= Loy xppa o wmep |

There are thus 2P FFTs and one IFFT of % % — 1 points. Note that as P increases, the number
of output samples get closer to N/2, which is the number of samples of interest. However,

the efficiency of the algorithm decreases because the number of FFTs increases linearly with

P+1

P while the FFT length reduces only as ~—5~, consequently the number of sub-correlations

should be as low as possible, i.e. 2.

5.3 Application for the acquisition of the L5, E5a and E5b signals

In this section, the straightforward and the proposed algorithms are compared for the acquisi-
tion of the GPS L5, Galileo E5a and E5b signals.

5.3.1 FFT lengths

The L5, E5a and E5b signals are BPSK signals and have a code chipping rate of 10.23 MHz.
The minimum sampling frequency to get the main lobe (which contains 90 % of the signal
power) is twice the chipping rate, i.e. 20.46 MHz. To have the usual code step of % chip (see
Section 2.1.3), the sampling frequency must also be twice the chipping rate. Therefore, we
will consider a minimum sampling frequency of 20.46 MHz for these signals. This means that
N =2 x 20460 = 40920, since the primary code length of these three signals is 1 ms.
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Minimum Minimum FFT length ~ Minimum power of two

Algorithm FFT length with small prime factors FFT length
Straichtforward L=40920 L=41472 L =65536
g fs=20.46 fs €120.46 —20.736] fs€120.46 —32.768]
Pronosed L=30690 L=31104 L=32768
P fs=20.46 fs €[20.46 —20.736] fs€[20.46 —21.846]

Table 5.4: FFT length (L) and sampling frequency range (fs, in MHz) for the acquisition of the
GPS L5, Galileo E5a and E5b signals.

Since the minimum length requires already relatively large FFTs, we will concentrate on values
close to this minimum. Three cases are considered for the comparison : 1) The use of the
smallest FFT length; 2) The use of the smallest FFT length that has 2 and 3 as prime factor only,
which should provide better performance than the first case (see p. 46 the discussion about
FFTs and the length of sequences); and 3) The use of the smallest FFT length that is a power of
two, to check the conclusion obtained in Section 5.2.4.

For the first case, the FFT length is 40920 for the straightforward algorithm, and 30690
(f‘—l x40920) for the proposed algorithms. Note that using an FFT length of N—1 = 40919 for the
straightforward algorithm is not interesting since it has higher prime factors than 40 920, and
using %V —1=30689 for the proposed algorithms is also not interesting because this is a prime
number. Since the FFT lengths have relatively high prime factors (40920 =23 x 3 x 5 x 11 x 31),
the performance should be lower than for the other cases.

For the second case, the smallest number higher than 40920 that has 2 and 3 as prime factors
onlyis 41472 (= 29 x 34). Thus, the FFT length is 41 472 for the straightforward algorithm, and
31104 (=27 x 3°) for the proposed algorithms.

For the third case, the smallest power of two higher than 40920 is 65536 (= 216) ‘and the
smallest power of two higher than 30690 is 32 768 (= 215). Thus, the FFT length is 65536 for
the straightforward algorithm, and 32 768 for the proposed algorithms.

The FFT lengths and the corresponding range for the sampling frequency are summarized
in Table 5.4. For example, an FFT length of 41 472 for the straightforward algorithm can be
obtained using a sampling frequency of 20.46 MHz and padding the sequence with 552 zeros,
or using a sampling frequency of 20.736 MHz, or with any sampling frequency between these
two values.

5.3.2 Software implementation

In this section, the straightforward algorithm and the proposed algorithm 1 are compared
on five different personal computers using Matlab. The FFT function of Matlab is based on
the FFTW library, which has no restriction on the FFT length (Frigo and Johnson [2005]). The
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169- —@— Traditional, L = 40 920
—— Proposed, L = 30 690

Traditional, L = 65 536
14 Proposed, L = 32 768
Traditional, L = 41 472
Proposed, L = 31 104

12

10

Average Processing Time (ms)

4 r r r
1 2 3 4 5

Computer

Figure 5.6: Average processing time of the algorithms on different computers for the GPS L5,
Galileo E5a and E5b signals (L is the FFT length). The CPU of the computers are respectively :
Core 2 Duo E4600 @ 2.40 GHz, QuadCore Xeon E5430 @ 2.66 GHz, Core 2 Duo E6700 @ 2.66
GHz, QuadCore Xeon E5430 2.66 GHz, Mobile Dual Core i7-2620M @ 3.2 GHz.

average processing time over 1000 runs is shown in Fig. 5.6.

Focusing on the ranking of the algorithms, it can be seen that there are mainly two groups.
The first, with the longest processing time, includes the traditional algorithm for a power
of two length, and both algorithms for the minimum length case. This is coherent with the
expectations. Indeed, for L = 65536, the FFT length is far higher than for the other cases,
which explains a longer processing time; and for the minimum FFT length case, since the
length contains high prime factors, the FFT algorithm is less efficient than for the other cases.
It can be noted that the straightforward algorithm is better than the proposed one for this case,
as expected (see Section 5.2.3). The other group includes first the proposed algorithm for a
power of two length, and then both algorithms for length that have small prime factors. The
last two have equivalent performance, the proposed algorithm being slightly better on most of
the computers, although not directly expected according to Section 5.2.3.

Regarding the case where the length is a power of two, the processing time is reduced by about
39 % in average using the proposed algorithm. This result is thus better than foreseen by the
theoretical complexity (reduction of about 20 %). This is probably due to the fact that the
performance of the FFTW algorithm in terms of FLOPS is slightly higher for a 32 768-point
FFT than for a 65536-point FFT (Frigo and Johnson [2005]), and due to to some internal
specificities of the implemented FFT algorithm.
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Logicusage Memoryusage Multipliers usage

I 1 tati F ti
mplementation unction (ALUT) (M9K) (DSP element)
532768-point FFTs 5 x 7194 5 x 608 5% 24
Proposed
algorithm 2 2 Multipliers 0 0 2 x4
(Fig. 5.5) Total 35970 3040 128
365536-point FFTs 3 x 7627 3 x 1216 3x24
Straightforward pom > ) ) *
algorithm 1 Multiplier 0 0 4
(Fig. 5.3) Total 22881 3648 76
Ratio 1.57 0.83 1.68

Table 5.5: Comparison of the resources for the proposed and straightforward algorithms using
the Altera FFT for the L5, E5a and E5b signals.

5.3.3 Hardware implementation

In this section, the straightforward and the proposed algorithms are compared for an imple-
mentation on an Altera FPGA. As in Chapter 4, the FFT used is the one provided by Altera
(Altera [2013]), which requires a number of points that is a power of two. Thus, only the third
case is considered for the hardware implementation.

Due to the large number of possibilities for the FFT implementation, for the evaluation of
the resources, we consider a Stratix III FPGA, the streaming I/O data flow, a data and twiddle
precision of 18 bits, complex multipliers implemented in DSP blocks using four real multipliers,
and no logic function implemented in memory. As for Chapter 4, the resources for the FFT is
estimated with the Altera MegaWizard Plug-In Manager, and the models defined in Appendix
C are used for the other elements (multiplier and adder).

Application to reduce the processing time

The summary of the resources is given Table 5.5, considering the proposed algorithm 2 (which
has an adder less than algorithm 1, but this is a negligible difference). It can be seen that
the resources are higher for the proposed algorithm than for the straightforward algorithm.
However, as discussed in Chapter 4, the processing time with the proposed algorithm is
divided by a factor of two since the FFT length is divided by a factor two. Since the resources
are increased by a factor less than two (the memory is even reduced), the proposed algorithm
is thus more efficient than the straightforward algorithm.

Application to reduce the resources

If an increase of the resources is not wanted, the proposed algorithm can be adapted to use
only three FFTs instead of five. In this case, the two proposed algorithms are not equivalent.
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Figure 5.7: Implementation of the proposed algorithm 2 using three FFTs.
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Figure 5.8: Timing diagram corresponding to Fig. 5.7. The colors inside the boxes identify the
sequences.

Indeed, for algorithm 1, the output is the sum of two results. Consequently, a memory is
needed to store an intermediate result. Whereas for algorithm 2, there are two outputs that
can be computed one after the other, which does not require a memory for any intermediate
result. However, this requires to generate twice the local code, but this is simple and do not
require an additional memory.

The corresponding implementation of algorithm 2 is given Fig. 5.7, and the corresponding
timing diagram using the Altera FFT is depicted Fig. 5.8. It can be seen that the Pth correlation
result is fully available after (P +1)65536 + 2L3» 768 clock cycles, which is about 65 536 cycles
less than for the straightforward implementation.

The corresponding resources are given in Table 5.6. It can be seen that the logic resources are
slightly reduced, the DSP resources are identical, and that the memory is reduced by 50 %,
which is a significant reduction.
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Logicusage Memoryusage Multipliers usage

I I tati F ti
mplementation unction (ALUT) (M9K) (DSP element)
3 32 768-point FFTs 3 x 7194 3 x 608 3 x24
Proposed
algorithm 2 1 Multiplier 0 0 1x4
(Fig. 5.7) Total 21582 1824 76
3 65 536-point FFT: 3 x 7627 3 x 1216 3 x24
Straightforward pomn > ) ) -
algorithm 1 Multiplier 0 0 4
(Fig. 5.3) Total 22 881 3648 76
Ratio 0.94 0.5 1

Table 5.6: Comparison of the resources for the proposed and straightforward algorithms using
the Altera FFT for the L5, E5a and E5b signals, when the proposed algorithm uses less FFTs.

5.3.4 Case with pre-averaging

To use smaller FFTs, it is possible to perform a sum before the FFT in order to have one sample
per chip (Starzyk and Zhu [2001], Hegarty et al. [2003]). Applying this technique to the L5, E5a
and E5b signals results in 10 230 points per code period, i.e. the equivalent sampling frequency
is 10.23 MHz. Therefore the results will be similar to those obtained previously. Indeed, the
prime factors of the length are similar, and for the radix-2 FFT case, according to Table 5.3,
the FFT length for the proposed algorithms would be half the one for the straightforward
algorithm.

5.4 Application to the acquisition of the E1 OS signal processed as
BOC(1,1)

In this section, a similar application study as in Section 5.3 is done, but applied to the E1 OS
signal processed as BOC(1,1). We do not consider that CBOC modulation, because it would
require a higher sampling frequency and higher complexity, however the interested reader
can easily verified if the proposed algorithms are interesting or not in this case.

5.4.1 FFT lengths

The E1 OS BOC(1,1) signal has a code chipping rate of 1.023 MHz. The minimum sampling
frequency to get the two main lobes is four times the chipping rate, i.e. 4.092 MHz. To have
the usual code step of % chip (see Section 2.1.3), the sampling frequency must be six times
the chipping rate, i.e. 6.138 MHz. Therefore, we will consider a minimum sampling frequency
of 6.138 MHz for this signal. This means that N =2 x 24552 = 49104, since the primary code
length of this signal is 4 ms.
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5.4. Application to the acquisition of the E1 OS signal processed as BOC(1,1)

Minimum Minimum FFT length ~ Minimum power of two

Algorithm FFT length with small prime factors FFT length
Straichtforward L=49104 L=49152 L =65536
& fs=6.138 fs€16.138—6.144] fs€16.138—-8.192]
Proposed L=36828 L =36864 L=32768*
p fs=6.138 fs€[6.138—-6.144] fs€1[6.138—6.144]

Table 5.7: FFT length (L) and sampling frequency range (fs, in MHz) for the acquisition of the
E1 OS BOC(1,1) signal. *use of three sub-correlations.

For the first case (minimum FFT length), the FFT length is 49104 for the straightforward
algorithm, and 36 828 (f’; x 49104) for the proposed algorithms. Note that using an FFT length
of N -1 =49103 for the straightforward algorithm is not interesting since this is a prime
number, and using % —1=36827 for the proposed algorithms is also not interesting since its
has higher prime factors than 36 828. Since the FFT lengths have relatively high prime factors
(49104 = 24 x 32 x 11 x 31), the performance should be lower than for the other cases.

For the second case (minimum FFT length with small prime factors), the smallest number
higher than 49 104 that has 2 and 3 as prime factors only is 49 152 (= 2!* x 3). Thus, the FFT
length is 49 152 for the straightforward algorithm, and 36 864 (= 2!? x 32) for the proposed
algorithms.

For the third case (minimum power of two FFT length), the smallest power of two higher than
49104 is 65536, and the smallest power of two higher than 36 828 is also 65536. Thus, the
FFT length for the straightforward and the proposed algorithms is 65 536. We know that in
this case the proposed algorithms are less efficient, so we will consider three sub-correlations,
which gives FFT length of 32 768 points. Since here we have three sub-correlations, it is sure
that the proposed algorithms are less efficient for E1 OS than for L5, E5a and E5b.

The FFT lengths and the corresponding range for the sampling frequency are summarized in
Table 5.7.

5.4.2 Software implementation

The proposed and traditional algorithms are compared on five different personal computers
using Matlab as in Section 5.3.2. The average processing time over 1000 runs is shown in Fig.
5.9.

The results are more heterogeneous than in Fig. 5.6. It can be seen that however, the least
three performing algorithms are the same as previously. The proposed algorithm for a power
of two length is less efficient than previously, which is expected since there are more FFTs
performed. Finally, the best two options are for an FFT length that has small prime factors,
with an advantage for the straightforward algorithm this time (as was expected according to
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Figure 5.9: Average processing time of the algorithms on different computers for the Galileo
E1 OS BOC(1,1) signal. *use of three sub-correlations.

Section 5.2.3).

In summary, it can be seen that the most efficient way to perform the correlation is to use
lengths with small prime factors and limited zero-padding. Here, the small prime factors are
2 and 3, but 5 and 7 can also be considered. With this wide variety of lengths available, it is
rarely possible to reduce significantly the zero-padding with the proposed algorithms, and
even in the best cases the gain in performance would be marginal.

Regarding the case where the length is a power of two, the processing time is reduced by about
15 % in average using the proposed algorithm. Thus, as in Section 5.3.2, this result is better
than foreseen by the theoretical complexity (increase of about 11 %).

5.4.3 Hardware implementation

The implementation of the straightforward algorithm is identical to the one for the L5, E5a and
E5b signals, and the implementation of the proposed algorithm 2 with three sub-correlations
is provided in Fig. 5.10. The corresponding resources are provided in Table 5.8, where it can
be seen that the proposed algorithm requires far more resources than the straightforward
one, more than a factor 2 (except for the memory). Implementing only three FFTs as done in
Section 5.3.3 would reduce the resources, but the processing time would be increased by a
factor 1.5. Consequently, the proposed algorithm is not more efficient than the traditional
algorithm in this case.
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Figure 5.10: Implementation of the proposed algorithm for the E1 OS BOC(1,1) signal.

Logicusage Memory usage Multipliers usage

Impl i F i
mplementation unction (ALUT) (M9K) (DSP element)
7 32 768-point FFTs 7 x 7194 7 x 608 7 x 24
Proposed
algorithm 2 3 Multipliers 0 0 3x4
(Fig. 5.10) Total 50 358 4256 180
3 65 536-point FFT: 3 x 7627 3 x 1216 3 x24
Straightforward pomn S ) . )
algorithm 1 Multiplier 0 0 4
(Fig. 5.3) Total 22 881 3648 76
Ratio 2.20 1.17 2.37

Table 5.8: Comparison of the resources for the proposed and straightforward algorithm using
the Altera FFT for the E1 OS BOC(1,1) signal, when the proposed algorithm uses three sub-
correlations.

5.4.4 Modifying the correlation length to improve the performance

The minimum correlation length was fixed according to the code length and the code step.
While the code length is kept fixed, however, the code step can be modified using a different
sampling frequency (which will impact the code alignment loss).

Previously, the maximum code step considered was % since the minimum sampling frequency
was 6.138 MHz, which gave a minimum correlation length of N = 49104. By increasing the
code step in order to obtain a correlation length of 43 692 instead of 49 104, the proposed
algorithms could use FFTs of 32 768 points with two sub-correlations. In this case, the results
would be the same as for the L5, E5a and E5b signals. Such length is reached for a maximum
sampling frequency of 5.4615 MHz, which means a code step of about ﬁ
in a maximum and average loss of 2.87 dB and 1.31 dB (van Diggelen [2009] pp. 155-158),

respectively. This is very close to the loss using a code step of % chip, namely 2.50 dB at

chip, resulting
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maximum and 1.16 dB in average.

Therefore, it is possible to use a slightly larger code step for the Galileo E1 OS signal processed
as BOC(1,1), in order to be able to use the proposed algorithms with two sub-correlations and
smaller FFTs, as for the L5, E5a and E5b signals, at the expense of a very small loss in terms of
SNR.

5.5 Application to the acquisition of the E1 OS signal processed as
BPSK

If the E1 OS signal is processed as a BPSK signal, the minimum sampling frequency to get a
main lobe is twice the chipping rate, i.e. 2.046 MHz. To have the usual code step of % chip,
the sampling frequency must also be twice the chipping rate. Therefore, we will consider a
minimum sampling frequency of 2.046 MHz for this signal. This means that N =2 x 8184 =
16368, since the primary code length of this signal is 4 ms.

Considering the same three cases as before, for the first case, the FFT length is 16 368 for the
straightforward algorithm, and 12276 (?—1 x 16368) for the proposed algorithms.

For the second case, the smallest number higher than 16 368 that has 2 and 3 as prime factors
only is 16384 (= 214y which in fact has just 2 as prime factor. Thus, the FFT length is thus
16 384 for the straightforward algorithm, and 12 288 (= 2! x 3) for the proposed algorithm:s.
Since the FFT length for the straightforward algorithm is a power of two, it is expected that the
proposed algorithms will be less efficient for this case.

For the third case, the smallest power of two higher than 16368 is 16 384, and the smallest
power of two higher than 12288 is also 16 384. Thus, the FFT length for the straightforward
and the proposed algorithms is 16 384. We know that in this case the proposed algorithms are
less efficient. Even considering three sub-correlations, the FFT length would still be 16 384 for
the proposed algorithms. In fact, to halve the FFT length, we should use 1023 sub-correlations,
which is clearly not efficient. The proposed algorithm is thus less efficient for this case also.

Consequently, the proposed algorithm is not efficient for the acquisition of the E1 OS signal
processed as BPSK considering the minimum sampling frequency, 2.046 MHz. However, such
a low sampling frequency has an impact on the positioning accuracy, it is thus common to use
a higher frequency. In this case, the choice for the best algorithm with the radix-2 FFT can be
found using Table 5.3.

5.6 Summary

In this chapter, we discussed the problem of decreasing the complexity of the acquisition of
the modernized GPS and Galileo signals that have a secondary code that is not exploited. The
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straightforward solution of doubling the size of the correlation and discarding half of the points
calculated is not satisfying, which led us to look for a more efficient algorithm. We then pro-
posed two algorithms that transform the initial correlation into two smaller sub-correlations,
without loss of sensitivity since the samples of interest are computed exactly. From these two
algorithms, it was shown that one is preferable when the local code is computed offline, and
that the other is preferable for hardware implementations.

The proposed algorithms are more efficient than the straightforward algorithm when the latter
requires significant zero-padding. The zero-padding size depends on the sampling frequency
and the type of FFT used, and it can be significant only when the radix-2 FFT is used. Therefore
the proposed algorithms are interesting for hardware and DSP-based receivers, but not for a
computer-based receivers (which can efficiently implement FFT of any lengths). Considering
the radix-2 FFT, the proposed algorithms are more efficient for half of the possible sampling
frequencies. To rapidly know if the proposed algorithms are more efficient for a specific case,
itis enough to look at Fig. 5.11, which is a graphical version of Table 5.3.

If the sampling frequency is in a range where the proposed algorithms are more efficient, it
has been shown that the theoretical number of operations is reduced by about 20 %, and that
the memory required for an FPGA implementation is divided by two.

For the GPS L5, Galileo E5a and E5b signals, if the sampling frequency is between 20.46 MHz
and 21.846 MHz, the proposed algorithms are more efficient.

For the Galileo E1 OS signal processed as BOC(1,1), the minimum sampling frequency consid-
ered, 6.138 MHz, is in a range where the proposed algorithms are not more efficient. However,
if the sampling frequency is decreased to 5.4615 MHz at the expense of an average loss 0.15 dB
(due to a larger code step in the acquisition), this sampling frequency is in a range where the
proposed algorithms are more efficient.

For the Galileo E1 OS signal processed as BPSK, and the GPS L1 C/A signal (where transition
can be due to the data), the minimum sampling frequency considered, 2.046 MHz, is in a
range where the proposed algorithms are not more efficient. But from 2.049 MHz to 2.730
MHz, the proposed algorithms are more efficient. Thus, the conclusion really depends on the
context.

Using similar analysis as done in this chapter, it is easy to determine if the proposed algorithms
are suitable for other and/or future GNSS signals. For example, the E6 CS signal is a good
candidate since the minimum correlation length is half the one for the L5, E5a and E5B signals.
The proposed algorithm may be also interesting for the E6 PRS signal, the GPS M signal or the
future GLONASS CDMA and BeiDou signals.

The problem discussed in this chapter does not necessarily restrict to GNSS and to the parallel
code search. Any system that performs a circular correlation (or a convolution) between two
signals where one of them has half of zeros and where half of the output is discarded can
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Figure 5.11: Radix-2 FFT length for the proposed and the straightforward algorithms in func-
tion of the sampling frequency considering a code of 1 ms (for a code of 4 ms, multiply the
actual sampling frequency by 4). Note that the axis is logarithmic.

use the proposed algorithm. In GNSS, this problem is also present in the DBZP acquisition
method (Foucras et al. [2012]), as well as for the acquisition of signals using the secondary
code, as will shown be in Chapter 6.
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for high sensitivity

In this chapter, we discuss the problem of the parallel code search acquisition when the
complete tiered code is used, i.e. the code used to compute the correlation using FFTs contains
a primary and a secondary code. This case is typically for high sensitivity receivers, since in
this case there is no limit for the coherent integration time due to transitions (but there is
still the limits due to the oscillator or the receiver dynamics (van Diggelen [2014])). However,
a direct implementation requires a significant amount of resources, because large FFTs are
involved. For example, the L5 signal has a primary code of 10 230 chips and a secondary code
of 20 chips, therefore considering two samples per chip, the tiered code is composed of 409 200
samples. In this chapter, we discuss two directions to answer this problem.

First, we look for implementations that use smaller FFTs (same order of magnitude as the
length of the primary code), in order to be able to implement the parallel code search in FPGAs
since the direct implementation is not possible. The aim is not to reduce the complexity
(i.e. the number of operations), but we compute the complexity to compare the different
implementations. We also show the relation with the problem of Chapter 5. Since the matrix
notation is used, to show more easily the results, we consider very small sequences for the
demonstration (4 samples for the primary code and 3 chips for the secondary code), but we
provide the complexity for the general case, and we consider 20 460 samples and 20 chips (as
for the GPS L5 signal) for the numerical application. For the evaluation of the complexity, we
consider that an FFT of N points requires % log, (V) multiplications and Nlog, (NN) additions.
Of course, this is true only for the radix-2 FFT, however this approximation will allow us to
have an idea of the complexity.

Second, we look for implementations that reduce the complexity. The idea we exploit is that
performing some combinations of the tiered code may lead to some sub-sequences that will
contain only zeros. For this, we use the Chinese remainder theorem already seen in Chapter 4.
We apply this to the GPS L5 signal, and in addition to the L5 secondary code, we also study the
other binary codes of 20 bits length to verify the potential of the proposed method for other
codes, and finally we briefly discuss the application to other GNSS signals.
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6.1 Expression of the tiered code

As indicated in Chapter 1, a tiered code is composed of a primary code repeated several
times where each primary code period is multiplied by a chip of the secondary code. In the
following, we will denote h,, the tiered code, p,, the primary code and s,, the secondary code
(the corresponding notations in Chapter 1 for the pilot channel were ¢, (nTy), ¢y, 4(nT;) and
cs,q(nTy), respectively).

Considering that the primary code p, contains Np samples, and that the secondary code s,
contains Ng chips, we can write

p= [Po p1 ... pr—l]’ (6.1)
and
s= [so s1 ... sNS_l]. (6.2)

Then, the tiered can be defined as

h=s®p
:[sop sip ... st_lp]
(6.3)
=[Sol90 Sop1 -+ SOPN,-1 S1Po S1P1 ... SIPN,-1 .-+ SN,—1PN,-1
=lho m .. B,

where ® denotes the Kronecker product, and N = Np Ng.

6.2 Directimplementation of the circular correlation

The implementation of the circular correlation of the incoming signal x,, and the local tiered
code h; can be performed as usual using 3 FFTs, as shown in Fig. 6.1.

N

2 FFT s> [FFT 2>

Figure 6.1: Computation of a circular correlation of N points using FFTs.

Considering for example a number of samples in one primary code period of Np =4, and a
number of chips in the secondary codes of Ng = 3, the tiered code is composed of N = Np Ng =
12 samples, and the circular correlation between the incoming signal x, and the local tiered
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code can be expressed as

yo| [soro sopr sop2 sops sipo sip1 sip2 sips sapo s2py s2p2 s2p3) [ X0
N $2p3  Sopo  SopP1  Sop2 SopP3  Sipo  S1P1 Sip2  S1P3 2P0 S2p1 S2p2| | X1
Y2 S2p2  $2p3 SopPo  Sop1  Sop2 Sop3  S1Po  Sip1 S1P2 S1p3 S2po S2p1| | X2
¥3 S2p1 S2p2  $2p3 Sopo  Sop1  Sop2  Sop3  Sipo  S1p1 Sip2 S1p3 S2pof | X3
Ja S2po  S2p1 S2p2  S2p3 Sopo  Sop1 Sop2 Sop3  Sipo  Sip1 Sip2  S1p3 X4
Y5 | _[S1P3 S2po  S2p1 S2p2 S2p3 Sopo SoP1 SoP2 Sop3 S1po S1P1 S1P2| | X5
Y6 S1p2  S1p3 S2Po S2p1 S2P2 s2p3 SoPo  SoP1  SoP2  SoP3  S1po  SiP1| | X6 | (6.4)
y7 Stp1 S1p2  S1p3 S2po  S2p1 S2p2  S2p3 SopPo  SopP1 Sop2  Sop3  Sipo| | X7
V8 Stpo  S1p1 S1p2 S1p3 2P0 S2p1 S2p2 S2pP3 Sopo SoP1 Sop2  Sop3| | X8
Y9 Sop3  S1po S1p1 Sip2  S1p3 S2po S2p1 S2p2 S2p3 SopPo Sop1 Sop2| | X9
Y10 Sop2  Sop3  Sitpo  S1p1 S1p2 S1p3 2P0 S2p1 S2p2 S2p3 SopPo SoP1| |X10
Y11 Sop1  Sop2  Sop3  S1po  Sip1 Sip2  S1p3 S2po S2p1 S2p2 S2pP3 SoPo] | X11]
y=Hx,
or as

| [x x x x xx x5 x x xg x9 xo x| [sopo

N X1 X2 X3 X4 X5 X X7 X Xg X0 X11 X0 | |Sop1

y2 X2 X3 X4 X5 Xg X7 Xg X9 X10 X11 Xo X1 | |Sop2

¥3 X3 X4 X5 X X7 Xg X9 X0 X11 Xo X1 X2 | |Sops3

V4 X4 X5 X¢ X7 Xg X9 X100 X11  Xo X1 X2 X3 | [S1P0

) _ X5 X6 X7 X8 X9 X10 X11 X0 X1 X2 X3 X4 S1pP1

Y6 - X6 X7 X8 X9 X100 X11 X0 X1 X2 X3 X4 X5 S1p2 (6.5)

y7 X7 Xg X9 X0 X111 Xo X1 X2 X3 X4 X5 Xg | |S1p3

V8 Xg X9 X0 X111 X X1 X2 X3 X4 X5 X X7 | |S2P0

Y9 X9 X10 X121 Xo X1 X2 X3 X4 X5 Xe X7  Xg | [S2p1

Y10 X10  X11 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 S$2p2

Yy X111 X X1 X2 X3 X4 X5 X X7 Xg X9 Xi0] [S2P3

y=Xh,

where H is a right circulant matrix, and X is a left circulant matrix. Implementing this operation
with FFTs requires 3 FFTs of N points and 1 product of N points, as shown in Fig. 6.1. Therefore
the number of multiplications is

N
Nonut =3 1ogy(N) + N

NpN,
_3¥PAVs

logz(NpNs) + NPNS (6.6)
3 3
ZNPNS EIOgZ(Np)+§10g2(N5)+1 ,

and the number of additions is

Nggad = 3N10g2 (N)
= 3NpNslog, (NpNs) 6.7)
= NpNS (3 10g2 (Np) + 310g2 (Ns))
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Considering Np = 20460 and Ng = 20, this gives

Nypur = 409200 (28.96) ~ 11851934
Naaa =~ 409200 (55.93) ~ 22 885467.

(6.8)

6.3 Implementations to use smaller FFTs

In this section, we present different implementations to compute the circular correlation
defined by Eqgs. (6.4) and (6.5) using smaller FFTs. This is done by separating the sequences
either by downsampling or by segmentation, and either by a factor Np or Ng.

6.3.1 Separation by downsampling

In this section, we look at the results when we separate the input and output samples by
performing a downsampling. First, we perform a downsampling by a factor Ng, and then by a
factor Np.

Downsampling by a factor Ng using the equation with the matrix H

By separating the samples by performing a downsampling by a factor Ng, each sequence is
separated into Ng sub-sequences of Np samples, and Eq. (6.4) can be expressed as

Yo SoPo  SoP3  S1p2 S2P1] [*O SoP1 S1Po S1P3 S2P2) [ X1 Sop2  S1P1 2P0 S2p3) [ X2
y3| _|$2P1  SoPo  SoP3  S1P2| |X3 S2p2  SoP1 S1PO S1P3| | Xa s2P3 SopP2 S1P1 2P0 | X5
Y6 S1p2 S2P1 SoPo  SoP3| X6 sip3 S2p2 SoP1 S1Po| | X7 S2P0  S2P3 Sop2  S1P1| | X8
y9 sop3  s1p2 s2p1 Sopol Lxg stpo - s1p3 s2p2 sop1d Lxio sipr 2P0 s2p3 sop2d Lxn

n $2P3  sopP2  Ss1P1 S2po] [*o sopo  SoP3  s1p2 s2p1] [ X1 soP1 S1Po S1P3 S2p2] [ X2
Y4 | _|S2P0  S2P3  Sop2  S1P1| [*3 $2P1 SoP0  SoP3 S1P2| | X4 | [S2P2  SoP1  S1P0 S1P3| | %5 (6.9)
y7 S1P1 2P0 S2P3 Sop2| | %6 Sip2 $2P1 SoPo  SoP3| | X7 s1p3 S2P2 SoP1 S1Po| | X8
Y10 Sop2  s1P1 2P0 s2p3d lxg sop3  s1p2 s2P1 SopPol LX10 sipo s1P3 s2p2 sop1l Lxnn

Y2 $2P2 SoP1 S1Po S1P3] [*o $2P3 SoP2 s1P1 2P0 X1 SoPo SoP3 S1p2 2pP1 x2
5 S1P3 2pP2 SoP1 S1Po| (X3 2P0 $2P3 SopP2 s1P1 X4 2pP1 SoPo SoP3 S1P2 x5
8 $1P0 $1pP3 s2p2 SoP1| |*6 s1P1 $2P0 s2P3 sop2| | X7 s1pP2 s2P1 S0Po sops| | %8 |’
i SoP1 $1P0 $1pP3 s2p2d Lxg Sop2 $1pP1 s2Po s2p3d Lx10 SoP3 s1p2 s2pP1 Sopod Lx11

or in a more concise way

Yo Hy H; Hy| |xo
yi|=|PH: Hy H| [x1], (6.10)
Yo PHl PH2 Ho X0

where P is a permutation matrix, and the matrices H; are circulant. Implementing these
operations using FFTs requires

* Ns FFTs of Np points, for the sequences h; ,,
* Ns FFTs of Np points, for the sequences x; ,,

* N;sIFFTs of Np points, for the sequences y; 5,
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6.3. Implementations to use smaller FFTs

e Ns—1 products of Np points, for the permutation performed by a multiplication with a
complex exponential,

. N§ products of Np points, for the matrix-vector products,

* Ns(Ns—1) additions of Np points, for the additions of the results of the matrix-vector
products.

Therefore, the number of multiplications is

— Np 2
Ninut = 3Ns | —=10g, (Np) +(N§+ Ns—1) Np

3 1 (6.11)
= NpNg (Elogz(Np) +Ng+1-— ﬁs),
and the number of additions is
Nada =3Ns (Nplog, (Np)) + Ns(Ns — 1) Np 6.12)
= NpNs (3log,(Np) + Ns—1).
Considering Np = 20460 and Ng = 20, this gives
N1 =409200(42.48) — 20460 = 17362674 (6.13)

Ngga =409200(61.96) = 25354669,

which means an increase of 46.5 % for the multiplications and 10.8 % for the additions,
compared to the direct implementation. The large increase for the multiplications is due to
the N2 matrix-vector products.

Here, each matrix H; contains all the secondary code chips, thus we cannot exploit the
repetitions in the tiered code. This means that the same result would be obtained with any
signal.

Downsampling by a factor Ng using the equation with the matrix X

Doing the same separation as previously using Eq. (6.5) leads to a similar implementation
with the same complexity, therefore we do not give the details.
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Downsampling by a factor Np using the equation with the matrix H

By separating the samples by performing a downsampling by a factor Np, each sequence is
separated into Np sub-sequences of Ng samples, and Eq. (6.4) can be expressed as

Y4 =|[s2P0  SoPo  S1PO| [X4|*|[S2P1  SoP1  S1P1| |X5|*|S2P2  SoP2  S1P2| |¥e|t|S2P3  SoP3  S1P3| | X7

[J’O SoPo S1Po 2P0 | [*o SoP1 s 2P| X1 SopP2 S1pP2 2p2| (X2 SoP3 s1P3 $2P3 *3
8 S1Po 2P0 Sopol Lxg s1P1 2P sop1l Lxg S1p2 2pP2 sop21 Lxg S1P3 2pP3 sop3l Lx11

1 s2P3 SoP3 S1P3] [*0 SoPo $1P0 2P0 |*1 SoP1 111 2P | X2 Sop2 s1pP2 $2pP2| [ X3
Y5 = |51P3 s2pP3 SopP3 | | X4 |+ |S2P0 S0P0 S1Po| | X5 |+ |S2P1 SoP1 SIP1| | %6 | * |S2P2 Sop2 s1p2| | X7
y9 SoP3 $1P3 s2p3l Lxg $1P0 S2P0 Sopol Lxg S1P1 s2P1 Sop1l Lxg s1pP2 s2pP2 Sop2l Lx11

y2 s2p2 sop2 s1p2] [Xo s2p3 - sor3 s1p3| [x1 sopo - s1Po S2po) [*2 o1 s1ipr Ss2p1) [ X3 )
Y6 | =|S1P2  S2P2  SoP2| |X4|*+|S1P3 S2P3 SoP3| [X5|+[s2P0  SoPo0  S1Po| [¥e |t |S2P1  SoP1  S1P1| | X7
y1o sop2 s1p2 s2p2l Lxg o3 s1p3 s2p3l lxg stpo - s2p0 - Sopol Lxg sipr s2p1 sop1l L
y3 2P soP1 - s1P1 [Xo s2p2 sop2 s1p2| [x1 s2p3 soP3 s1p3| [*2 sopo  S1Po 2P0 [ X3
Yz | =|s1P1 21 SoP1| |Xa|t|Ss1P2 s2P2 Sop2| |Xs |+ |S1P3 S2P3 SoP3| |¥6 |t [S2P0  SoPo  S1PO| | X7
ym sort - sipr s2p1l lxg sop2 s1p2 s2p2l Lxg sop3 s1p3 s2p3l lxg stpo - 2P0 Sopol Lx1y
Or 111 a more concise way
Y1 ng S poS pIS pgS X1
= , (6.15)

Y2 szS ngS poS pls

Yo poS ;1S p2S  p3S| [%o
Y3 p1PS pp_PS ngS pOS

where P is a permutation matrix, and S a circulant matrix. Implementing these operations
using FFTs requires

1 FFT of N points, for the sequence sy,

Np FFTs of N points, for the sequences x; ,,

Np IFFTs of N points, for the sequences y; j,

1 product of Ns points, for the permutation performed by a multiplication with a
complex exponential,

2Np — 1 products of Ng points, for the matrix-vector products,

Np(Np — 1) additions of N points, for the combinations of the results of the matrix-
vector products.

Note that here we do not consider the multiplication by the samples p;, as it can be seen as an
addition or a subtraction. Therefore, the number of multiplications is

N,
Npur = 2Np+1) (TSIOgZ(Ns)) +(2Np—1+1)Ng

log, (Ns) )
P )

(6.16)
= NpNg (1og2 (Ng) +2 +
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and the number of additions is

Ngaga = (2Np +1) (Nslog, (Ns)) + Np(Np — 1) N5
log, (Ns) (6.17)

= NpNs [2log, (Ns) + Np -1+
Np

Considering Np = 20460 and Ng = 20, this gives

Ny = 409200 (6.32) +43.22 ~ 2586976
Naga ~ 409200 (20467.64) + 86.44 ~ 8375359952,

(6.18)

which means an reduction of 78.2 % for the multiplications but an increase of 36 496.8 % for
the additions, compared to the direct implementation. The large increase for the additions is
due to the Np(Np — 1) additions between the matrix-vector products, since Np is a high value.

Here, we are able to exploit the repetitions in the tiered code since we have only one matrix,
which means that the number of FFTs is reduced by about one third. However, there is a huge
increase of the number additions, due to the additions between intermediate results, which
make this implementation inefficient.

Downsampling by a factor Np using the equation with the matrix X

Doing the same separation as previously using Eq. (6.5) leads a similar implementation with
the same complexity, therefore we do not give the details.

6.3.2 Separation by segmentation

In this section, we look at the results when we separate the input and output samples by
sections. First, we perform a segmentation by a factor Ng, and then by a factor Np.

Segmentation by a factor Ng using the equation with the matrix H

By segmenting the sequences by a factor Ng, each sequence is separated into N sub-sequences
of Np samples, and Eq. (6.4) can be expressed as

n $2P3  SoPo  SoP1 SoP2| |*1 SoP3  S1Po0 S1P1 s1p2] |*5 $s1P3 S2P0 S2P1 S2P2)| | X9
y2 s2p2  S2P3 SoPo S0Pl | X2 Sop2  SoP3  S1P0  S1P1| |¥6 s1p2 Ss1P3 2P0 S2P1| |X10

ro SoPo  SoP1 Sop2  SoP3] [*o S1po S1P1 s1p2 Ss1pP3] [*4 2P0 2P S2p2  S2p3] [ *8
y3 S2p1 S2p2 S2p3 Sopol Lxg soP1 Sop2  Sop3  S1pol Lx7 sipr s1tp2 s1p3 S2pol Lxnn

¥5|_[s1p3 s2po s2p1 s2p2||X1| . |$2P3 SoPo  SoP1  SoP2| [¥s|, [oP3  s1Po s1P1 sip2| | X9 (6.19)
¥6| |s1p2 s1p3 s2po s2pi| |X2|  |s2P2 s2P3 sopo SoPL||*6| [SoP2  soP3  s1Po  S1P1||X10 :

[M 2P0 2P1 2P2 2P3][X0] [SoP0  SoP1  Sop2  SoP3] [X4] [S1Po s1P1 o s1ip2 s1p3] [ %8
yoo Lsipr o sip2 sips sepol L3l Lsapr s2p2 s2p3 sopol Lxzl Llsopyr  sop2 sop3 sipol Leny

v8 S1po Ss1pr s1p2 s1P3) [Xo 2P0 S2p1 S2pP2 S2P3] [*4 SoPo  SoP1  SopP2  SoP3] [ X8
i}@ —[oP3 S1P0 S1P1 SIP2| |M1| L (S1P3 S2P0 S2P1 S2P2| (5| S2P3 SoPo  SOP1 SoP2| | Y9 |
Y10 sop2  SoP3  S1Po0 S1P1| X2 s1p2 s1P3 2P0 S2P1| | %6 S2p2  $2P3 SoPO  SoP1| [*10
i soP1 sop2 Sop3  S1pot Lxg sipr s1p2 s1p3 s2pol Ly S2p1 S22 S2P3 Sopol Lx1n
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or in a more concise way

Yo Hy H; Hy| [xo
Yi| = Hz H() H1 X1 |- (6.20)
y2 H; H; Hpf [x

Each matrix H; contains only two secondary code chips, one is present on and above the
diagonal while the other is present below the diagonal. This means that a matrix H; is either
circulant or skew-circulant (see Appendix A.2). There are thus only two possible matrices. For
example, if we consider that sp =1, s; =1, and s, = -1, Eq. (6.20) becomes

Yo [ Ps  Pc —Ps| [x0
vi|=|-Ps Ps Pc|[x
Y2 | Pc -Ps Pg | |x
_ (6.21)
Pc Pg| [x1 xp—X%2
=|Pc Pg X2 X]—Xgol,
|Pc Psf [x0 x-—Xx;
with
Po p1 P2 P3 Po pP1 p2  p3
pe= |P3 PO PL P2l g pgo|TPs P P12 6.22)
p2 p3 Po P1 —p2 —p3 Po P1
P1 p2 P3 Ppo —pP1 —P2 —P3 Po

Implementing these operations using FFTs requires

2 FFTs of Np points, for the sequence p;,

2Ng FFTs of Np points, for the combinations of the sequences x; j,

2Ng IFFTs of Np points, for the sequences y; ,,

2Ns products of Np points, for the matrix-vector products,

2Ns + 1 products of Np points, for the skew-circular correlations,

Ns(Ns - 2) additions of Np points, for the combinations of the sequences x; ;,

Ns additions of Np points, for the additions to obtain the sequences y; ,,

136



6.3. Implementations to use smaller FFTs

Therefore, the number of multiplications is

N,
Nymur = (4Ng +2) (TP log, (Np) | + (4Ns +1) Np
log, (Np) +1 (6.23)
= NpNg 210g2(Np) +44+ ——F],
Ns
and the number of additions is
Ngada = 4Ns+2) (Nplog,(Np)) + Ns(Ns — 1) Np
2log, (N, (6.24)
= NpNs (4log2(Np) +Ng—1+ M).
S
Considering Np = 20460 and Ng = 20, this gives
N1 =409200(32.64) +313457.81 = 13670170 (6.25)

Ngaa =409200(76.28) +585995.62 =~ 31800620,

which means an increase of 15.3 % for the multiplications and 39.0 % for the additions,
compared to the direct implementation. Compared to the downsampling by a factor Ng, the
number of FFTs is higher (2 + 4N instead of 3Ns), but the number of multiplications for the
matrix-vector products is reduced a lot (2 Ny instead of Ng). This explains a lower increase for
the multiplications, and a higher increase for the additions.

Here, it is possible to exploit the repetitions, but the fact to have at the same time circulant
and skew-circulant matrices implies to double the number of FFTs.

Segmentation by a factor Ng using the equation with the matrix X

By segmenting the sequences by a factor N, each sequence is separated into Ng sub-sequences
of Np samples, and Eq. (6.5) can be expressed as

Yo Xo x1 X2 X3| [Sopo X4 X5 Xg X7 | [|S1P0 Xg X9 X100 X11| [S2P0
n X1 X2 X3 Xa| [Sop1 X5 X X7 Xg | |S1p1 " X9 X100 X11 X0 $2p1
y2 X2 X3 Xg4 X5| [Sop2 X X7 Xg X9 | |S1p2 X10 X11 Xo X1 S2p2
¥3 X3 X4 X5 Xg| [Sop3 X7 Xg X9 X10] [S1p3 X111 Xo X1 X2 | |s2p3
Ya X4 X5 X X7 | |SopPo Xg X9 X100 X11| [S1po X1 X2 X3| |S2pPo
V5 X5 X X7 X8 Sop1 X9 X110 X11 X0 S1p1 i X2 X3 Xa| |S2p1 (6.26)
Y6 X6 X7 Xg X9 | |Sop2 X10  X11 Xo X1 | |S1p2 X3 X4 X5| |S2p2
y7 X7 Xg X9 X10] |Sop3 X111 Xo X1 X2 | 1s1p3 X4 X5 Xe| |S2p3
V8 Xg X9 X100 X11| [SoPo Xo X1 X2 X3| [S1po X4 X5 Xg X7 | [S2P0
Y9 X9 X100 X1l X0 Sop1 i X1 X2 X3 Xg| |S1p1 i X5 X X7 X8 $2p1 i
Y10 X10 X11 Xo X1 | | Sop2 X2 X3 X4 X5 [S1p2 X6 X7 Xg X9 | [S2p2
yi1 X111 Xo X1 X2 Sop3 X3 X4 X5 Xe] [S1p3 X7 Xg X9 X10] [S2p3
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or in a more concise way

Yo soXo $1X1 £2Xo| |p
yi| = 1%X1 $s1Xo 2Xof [P,
y2 soXo s51X9 X1 |pP

(6.27)

where the matrices X; are Hankel (see Appendix A.2.4). Hankel matrices can be embedded

into circulant matrices of double size.

Thus, implementing these operations using FFTs requires

1 FFT of 2Np points, for the sequence p,,,

Ns FFTs of 2Np points, for the sequences x; ,,

Ns IFFTs of 2 Np points, for the sequences y; .,

vector products.

Therefore, the number of multiplications is

2Np
Nyur=(2Ns+1) (TIOgZ(ZNp)) + NsNp

log, (2Np) )

= NpNS (ZIOgZ(Np) +3+
Ng

and the number of additions is

Nadd = (ZNS +1) (2Np 10g2 (ZNp)) + NS(NS —-1)Np

21og, (2Np) )

= NpNg (4log2(Np) + Ng+3+
Ns

Considering Np = 20460 and Ng = 20, this gives

Ny = 409200(31.64) +313457.81 = 13260970
Ngaaq =409200 (80.28) +626915.62 =~ 33478340,

Ns products of 2Np points, for the matrix-vector products,

Ns(Ns — 1) additions of Np points, for the combinations of the results of the matrix-

(6.28)

(6.29)

(6.30)

which means an increase of 11.9 % for the multiplications and 46.3 % for the additions,

compared to the traditional implementation.

Compared to the segmentation by a factor Ng using the matrix H, the number of FFTs is
divided by two but the FFT length is doubled (which requires slightly more operations), but
there is not the additional product required by the skew-circular correlations. This explains

the lower increase for the multiplications, and the higher increase for the additions.
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Here, it is possible to exploit the repetitions, but the fact to have Hankel matrices implies to
double the length of the FFTs.

Segmentation by a factor Np using the equation with the matrix H

By segmenting the sequences by a factor Np, each sequence is separated into Np sub-sequences
of N samples, and Eq. (6.4) can be expressed as

Yo Sopo  soP1  SopP2]| [*o soP3  s1tpo s1p1] X3 sip2 s1p3 S2po] [Xe s2P1 S2p2 S2p3] [ X9
Yi|=|[%2P3 SoPo  SoP1| [X1|*|SoP2  SoP3  S1Po| |¥4|*|S1P1  S1P2  S1P3| |¥7|*+|S2P0  S2P1 S2P2| |X10
y2 s2p2 s2p3 Sopol Lxp sop1 - sop2 sop3l lxs stpo sipe sip2l Lxg sipg s2p0 s2p1l L
y3 s2p1 S2p2 s2pP3 [Xo soPo  soP1 Sop2] [x3 sors s1po s1P1] [Xe stp2 s1p3 s2po] [ X9
ya|=|82P0  S2P1  Sep2| |X1|+|[S2P3  SoP0  SOP1| |X4|* [Sop2  SoP3  S1PO| |X7|*|S1P1 S1P2 S1P3| [X10
¥5 sips s2p0 s2p1l Lxe s2p2  s2p3 Sopol Lxs sop1 sop2  sop3l lxg stpo sipr sip2l b

Y6 s1p2 s1p3 2P0 [*o s2p1 S2p2 S2p3] [X3 soPo  SoP1  Sop2] [Xe soP3  S1tPo s1p1] [ X9 ’
yr|=[s1p1 Ss1P2 Ss1p3| [X1|*|S2P0  S2P1 S2P2| |X4|*+|S2P3 SoPo  SoP1| |*7|*|SoP2  SoP3  S1Po| |X10
8 stpo s sip2l L sip3 s2p0 s2p1l Lxs s2p2 s2p3 Sopol Lxg sort - sop2  sop3l Lxin
y9 sop3 s1tpo s1P1| [*o stz s1p3 s2po] [x3 s2p1 s2p2 s2p3] [Xe soPo  soP1 sop2] [ X9
yio| =|soP2  Sop3  S1Po| |X1|+|S1P1 S1P2 S1P3| |¥a|*([s2P0  S2P1 S2p2| |X7|*([s2P3 SoPo  SoP1| [X10]-
yu soP1 sop2  sop3l lxz stpo sipr s1p2l Lxs sips s2p0 s2p1l Lxg s2p2 s2p3 sopol Lx1n
Or 1n a more concise way
Yo Hy H; H; Hs| |xo
Y1 H; Hy H; H:| |xg
= , (6.32)

y2 H, H; Hy H;| |x»
V3 H; H, Hz Hp| [x3

where the matrices H; are Toeplitz (see Appendix A.2.3). Toeplitz matrices can be changed to
circulant matrices by doubling their size. Thus, implementing these operations using FFTs
requires

Np FFTs of 2N points, for the sequence Fh; ,,

Np FFTs of 2Ng points, for the sequences x; ;,

Np IFFTs of 2N points, for the sequences y; ,,
e Np products of 2Ns points, for the matrix-vector products,

e Np(Np — 1) additions of Ng points, for the combinations of the results of the matrix-
vector products.

Therefore, the number of multiplications is

Nymur =3Np (NS Ing (ZNs)) + NpNg

(6.33)
= NpNs (3log,(2Ng) +1),
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and the number of additions is

Ngi4=3Np (ZNS 10g2(2N3)) + Np(Np —1)Ng

(6.34)
= NpNs (6log,(2Ng) + Np—1).
Considering Np = 20460 and Ng = 20, this gives
Ny = 409200 (16.97) = 6942399
(6.35)

Ngaaq =409200(20490.93) ~ 8384889198,

which means a reduction of 41.4 % for the multiplications but an increase of 36 538.5 % for the
additions, compared to the direct implementation.

Compared to the downsampling by a factor Np, the number of FFTs is higher and the FFT
length is doubled, which explains a higher number of the multiplications. The large increase
for the additions is still due to the Np(Np — 1) additions of the matrix-vector products to
compute.

Here, each matrix H; contains all the secondary code chips, thus we cannot exploit the
repetitions in the tiered code. This means that the same result would be obtained with any
signal.

Segmentation by a factor Np using the equation with the matrix X

Doing the same separation as previously using Eq. (6.5) leads a similar implementation with
the same complexity, therefore we do not give the details.

6.3.3 Summary

Table 6.1 provides a summary of the different implementations according to the separation
(downsampling or segmentation), the factor (Ns or Np) and the equation used (Eq. 6.4 with
H as matrix or Eq. 6.5 with X as matrix). It can be seen that using a factor Np is not efficient
because of the prohibitive number of additions, even if we can exploit the repetition of the
primary code.

The most efficient implementations (downsampling and segmentation by a factor Ng) have
similar performance. However, for a hardware implementation the implementation obtained
by segmentation is more interesting. Indeed, for each section of the output, there is only Ng
products to perform between the FFTs and the storage of intermediate value is relatively small
(the result of one product), while with the implementation obtain by downsampling, there are
Ng product and the storage is much higher, as already shown for the case Ns =2 in Section
4.3.6.
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Factor Ns Np
Matrix used H X H X
Matri
a I'.ICE!S Circulant Circulant  Circulant Circulant
obtained

Separation by  Exploitation of

.. No No Yes Yes
downsampling  the repetition
Complexi +46.5 % +46.5 % —-78.2% —-78.2%
p ty +10.8 % +10.8 % +36496.8% +36496.8 %
Matrices Circulant and
H | Toepli Toepli
obtained skew-circulant anke oeplitz oeplitz
Exploitation of
Separation by thp . Yes Yes No No
) e repetition
segmentation
Complexi +15.3% +11.9 % -41.4 % —-41.4 %
plexity +39.0 % +46.3 % 36538.5% 36538.5%

Table 6.1: Summary of the implementations according to the separation and separation factor.
The complexity is given in comparison to the direct implementation (Fig. 6.1), for the number
of multiplications and additions.

6.3.4 Relation to Chapter 5

In the separation by segmentation with a factor Ng and the matrix X, the small matrices
obtained were Hankel. As indicated, such matrices can be embedded into circulant matrices.
Below, we detail this operation. In Eq. (6.27), we have

Xo X1 X2 X3
X X X X,
Xo = 1 2 3 4 , (6.36)

X2 X3 X4 Xj
X3 X4 X5 Xg

an Np x Np matrix. This Hankel matrix can be embedded into the 2Np — 1 x 2Np — 1 circulant
matrix

'X() X1 X2 X3 X4 X5 x6~
X1 X2 X3 X4 X5 Xg Xo
X2 X3 X4 X5 Xg Xo X1
XC(): X3 X4 X5 Xe Xo X1 X2. (6.37)
X4 X5 Xg Xo X1 X2 X3
X5 Xe Xo X1 X2 X3 Xy

| X6 Xo X1 X2 X3 X4 X5]
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Thus, the product between the matrix Xy and the vector p can be obtained as

[ Xo X1 X2 X3 Xg X5 Xg 1] Po ‘ 'xo X1 X2 X3 ‘

X1 X2 X3 X4 X5 X Xo| |P1 X1 X2 X3 Xg

X2 X3 X4 X5 Xg Xo X1| |P2 X2 X3 X4 X5 Po

X3 X4 X5 Xg Xo X1 X2| |P3| = [X3 Xa X5 Xg Pl

Xy X5 Xe¢ Xo X1 X2 Xx3| [0 X4 X5 Xe Xo P2 (6.38)
X5 Xg X0 X1 X2 X3 X4 0 X5 Xg Xo X1 ps

[ X6 Xo X1 X2 X3 X4 Xs5] [ O] | X6 Xo X1 X2

Xo
Xcopz = Xp p,

where pz is p padded with Np — 1 zeros, by keeping only the first Np samples of the product.
This matrix-vector product can be reformulated to have the samples of x, in the vector, i.e.

'.XZ() X1 X2 X3 X4 Xs x6‘ Pp()‘ 'p() P11 P2 PpP3 0 0 0 ] 'JC()-
X] X2 X3 X4 X5 X Xo| [P1 0 po ;1 P2 p3 0 O] |x
X2 X3 X4 X5 Xg Xo X1||p2 0 0 po pr p2 p3 0] |x
X3 X4 X5 X6 Xo X1 Xo| [p3|=[0 O O po p1 p2 p3||x3]. (6.39)
X4g X5 Xg Xo X1 X2 X3 0 ps 0 0 0 po p1 p2| |xa
Xs X Xo X1 X2 X3 Xa| | O p2 p3 0 0 0 po pi1||xs
[ X6 Xo X1 X2 X3 X4 x5 | 0] |[pr p2 ps 0O 0O O pof |xs]

Such a matrix-vector product has already been encountered in Chapter 5 (see Eq. (5.2)), where
the aim was to perform a circular correlation over one primary code avoiding any loss due to a
transition caused by the secondary code. Therefore, the algorithms proposed in Chapter 5
to reduce the complexity can be applied for the circular correlation over a full period of the
tiered code, using a segmentation by a factor Ns when X is the matrix.

6.4 Implementations to reduce the complexity

In this section, we present alternative implementations of the correlation where the aim is to
use the specificities of the secondary code to reduce the complexity. The idea is that since the
secondary code is binary, adding or subtracting chips will lead to 0, +2 or —2. And maybe it is
possible to obtain some sub-sequences with only zeros, which could reduce the complexity.

6.4.1 Computation of the correlation using the Chinese remainder theorem
Computation using two sub-correlations

As already presented in Section 4.3.3, the circular correlation can be computed as depicted in
Fig. 6.2 using the CRT. In this case, the inputs of the circular and skew-circular correlations
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Figure 6.2: Computation of a circular correlation of N points using N/2-point FFTs (algorithm
based on the Chinese remainder theorem).

are the sum and the difference of the first and second half of the input sequences, i.e. hy ,, =
hp+ hpyenye and by, = by, — By N2 If By, is a tiered code, from Eq. (6.3) we have

ho = [(So +Sng/2)P  (S1+Sng/2+1)P ... (SNg/2—1 + SNg-1)P
= [So,op S0P ... So,Ng/2-1P (6.40)
=$0®p,
and
h, = [(So—st/z)P (51— SNg/241)P  ---  (SNg/2-1— SNg—1)P
= [Sl,op S1,1p ... S1,Ng/2-1P (6.41)
=s1®p.

Since the chips of the secondary code s, can take as value +1 or —1, the chips of the sub-
sequences Sy , and s; , can take as value +2, 0 or —2. Therefore, about half of the samples of
ho,n, and h; , may be zeros (since there are two possibilities to obtain 0, but only one to obtain
+2or-2).

Computation using one sub-correlation and two sub-sub-correlations

Since the top part in Fig. 6.2 with the 3 FFTs corresponds also to a circular correlation, we
can apply the CRT once again to obtain Fig. 6.3, where hoo,, = ho,n + ho,n+n/4 and hoy,, =
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Figure 6.3: Computation of a circular correlation of N points using N/2-point and N/4-point
FFTs.

ho,n — ho,n+nya- If By, is a tiered code, Eq. (6.40) we have

hgo = [(So,o + So,Ng/4)P  (So,1+ So,Ns/a+1)P ... (So,Ng/4—1+ So,Ns/2-1)P
= [Soo,op S00,1P .- S00,Ng/4-1P (6.42)
=S ®Pp,
and
hg; = [(So,o —S0,Ns/4)P (80,1 — So,Ns/a+1)P .- (So,Ng/a-1— So,Ng/2-1)P
= [801,01) So1,1P .- S01,Ng/4-1P (6.43)
=801 ®P.

Since the chips of the sub-sequences sj , and s;,, can take as value +2, 0 or —2, the chips of
the sub-sequences sy, and sp1,, can take as value +4, +2, 0, -2 or —4.
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Figure 6.4: Implementation of Fig. 6.2, (a) when hy , is null, (b) when A, ; is null.

Application to reduce the complexity of the correlation with tiered codes

If we can find a sub-code sy , that contains only zeros (as shown later in Section 6.4.2), the
corresponding tiered code hy , would also contain only zeros according to Eq. 6.3. Therefore,
in this case it would not be necessary to compute the FFTs of the circular correlation in Fig.
6.2, and the implementation would reduce to Fig. 6.4a. In the same way, if the sub-code sy,
contains only zeros, h; , will also contain only zeros, and Fig. 6.2 becomes 6.4b. In both cases,
the number of operations is approximately reduced by 50 %. It can be seen that in this case the
two halves of the output y,, are either identical or opposite, which is normal because having
So,n OT $1,, null means that the two halves of s, are opposite or identical, respectively.

In the same way, if the sub-codes sy, or sp1,, contains only zeros, kg, or hp1,, will also
contain only zeros, and Fig. 6.3 becomes 6.5a or 6.5b. In both cases, the number of operations
is approximately divided by 25 %.

If the sub-codes s, or Spo,,, are constant, hg , or hgp, , will contain the primary code repeated
several times. The FFT of a sequence repeated P — 1 times is the same as the FFT of this
sequence with P —1 zeros added between two samples. Therefore, it is possible to compute an
Np-point FFT instead of an FFT of N/2 = NpNg/2 points if sy , is constant, or instead of an
FFT of N/4 = NpNg/4 points if sog ,, is constant. In this case, the reduction of the complexity
is respectively of about 14 % and 5 %, with Ng = 20.
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Figure 6.5: Implementation of Fig. 6.3, (a) when hq, ,, is null, (b) when Ay, is null.

6.4.2 Results with the GPS L5 signal
Sub-codes

For the GPS L5 pilot signal, we have Ng = 20, and Np depends on the sampling frequency. The
L5 secondary code s; and its sub-codes are given Table 6.2. It can be seen that none of these
sequences is null or constant. The sequences sy ,;, S1,, and Soo,, are invariant by translation of
sp, but not sq1,,. However, even for the other delays of s, so1,, is not null or constant.

The idea is then to use a different code for the local secondary code, in order to get null
sub-codes. Of course, this will have an impact on the SNR and on the protection against

146



6.4. Implementations to reduce the complexity

n 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s, 111 1 1 -1 11 -1 -1 1 -1 1 -1 1 1 -1 -1 -1 1
Son 2 0 2 0 2 0 00 -2 0

Sy, 0 2 0 2 0 -2 2 2 0 -2

Soon 2 0 2 -2 2

Son 2 0 2 2 2

Table 6.2: Secondary code of the GPS L5 pilot signal, and its sub-codes.

noise and cross-interference with other GNSS signals. In order to find a code having a sub-
code null and the smallest impact on the SNR, we performed an exhaustive search. For this,
we have generated all the possible secondary codes s;, where each chip can take a value
among {-2,-1.5,-1,-0.5,0,+0.5,+1,+1.5,+2}, and for each of them we have computed the
protection and the loss of SNR. The protection is determined easily since it is the ratio between
the first maximum and the second maximum of the correlation. For the SNR loss, it is slightly
more complicated and we detail below its computation.

Determination of the loss

Let’s consider that after the accumulation over one primary code period, the amplitude of the
signal is a, and the noise has a variance 02. Thus, the SNR is

2
SNRp =10logy, (“—2) (6.44)
o

Then, during the correlation with the secondary code, we compute Ng products and we
accumulate the results. The variance of the noise after the correlation with the secondary code

is then
Ns—1
Var(nr)=0® Y 4, withs,€{-2,-1.5-1,-0.5,0,+0.5,+1,+1.5,+2}. (6.45)
n=0

The SNR after the correlation with the secondary code is then

2 2
a-corr
SNRT = 1010g10 (O-ZZN—S_,‘;IZ;)
n=0 °n

6.46

corr?,,, (646
=SNRp+ 1010g10 NG—_IZ ,
n;() n

where cor 1,4y is the maximum of the correlation of the received and local secondary code. If
the local code is identical to the received code, corry,4x = Ns. For the L5 signal, the secondary

code is binary, thus s? = 1 and Zgigl s2 = Ns. Therefore, if the local code is the L5 secondary
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code, the SNR after the correlation with the secondary code is maximum and is equal to

N
SNRT,max = SNRp +10log,, N
S

(6.47)
=SNRp + IOIOgIO(Ns).
Consequently, using a modified code implies a loss defined as
loss=SNRT max—SNRrT
corr? (6.48)
=10log,,(Ns) — 10log;, (Ns—_"f“; .
n=0 °n

Reduction of the complexity by 1/2

As indicated previously, if sp , or s1,, is null, the complexity is reduced by about 50 %. We
performed an exhaustive search considering all the codes giving so,, =0 or s1,, =0, i.e. codes
where s;;, = 5,4 Ng/2 O S = —Sp+Ng/2. Therefore, the number of possible codes for each case is
910 =3486784401.

Table 6.3 shows the minimum loss that we can obtain to have sy , null when receiving the L5
secondary code, according to the first and the second maximum of the correlation. The best
case that we can obtain is a loss of about 2.22 dB. This can be obtained with several codes,
one of them is given Table 6.4. It can be noticed that such code uses only three levels (+1,
0, and —1). The auto and cross-correlation of the L5 secondary code with this local code is
illustrated Fig. 6.6. It can be seen that the maximum of the cross-correlation is 12 instead of
20 for the auto-correlation of the L5 code, which is expected since the local code contains 8
zeros. Therefore this is equivalent to have an integration time of 12 ms instead of 20 ms (hence
aloss of 10log,, (%) =~ 2.22 dB). However, it can be noticed that the protection is increased
to 201og, () ~ 15.56 dB, instead of 2010g,, (%) ~ 13.98 dB for the autocorrelation of the L5
secondary code.

The same search has been performed to have s; ,, null, but the results are less good (in the best
case the minimum loss we can obtain is about 3.98 dB).

Reduction of the complexity by 1/4

In this case, we performed an exhaustive search considering all the codes giving sqg , = 0 or
so1,n = 0. Since the constraints are less strong than before, we could have expected better
results. However, the minimum loss that we can obtain is still about 2.22 dB.
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2nd max 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1st max

1 1000 699 523 3.98 301 222 264 273 268 2.79 235 239 261 255

2 699 523 398 301 289 264 273 268 255 239 222 235 239 239 255 247 238 228 230

3 523 398 3.80 347 310 273 268 255 239 240 235 239 239 235 229 222 228 230 231 239 245

4 495 447 398 351 308 268 255 260 257 249 239 239 235 229 230 228 230 231 229 226 222
5 505 444 3.89 3.40 296 279 279 273 263 252 239 235 238 238 235 230 231 229 226 226
6 485 424 370 347 322 297 289 277 264 250 245 247 245 242 237 231 229 231 240
7 456 424 393 362 332 304 291 276 271 264 255 253 249 243 236 234 245 261
8 473 434 398 364 333 304 299 291 282 271 260 255 249 248 250 268 2.89
9 472 431 394 360 340 321 3.1 299 287 275 262 261 264 274 298 3.08
10 462 422 398 374 351 329 316 3.03 289 281 279 290 3.06 3.8 3.26
1 461 433 406 3.80 355 332 317 3.09 3.06 306 324 336 337 343
12 465 435 407 380 355 338 335 335 342 364 357 356 3.60
13 462 432 404 384 372 365 372 398 385 376 373 3.83
14 456 433 418 408 403 434 419 405 394 397 404
15 467 455 448 472 455 439 424 419 420 424
16 495 517 498 480 462 449 442 441 444
17 548 527 507 488 473 464 461

18 554 532 512 495 485

19 556 535 5.17

20 5.56

Table 6.3: Minimum loss in dB when receiving the L5 secondary code and using a local code
sp having its sub-sequence s , null.

n 012 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
s, 110 -1 0 -1 0 -1 01 -1 -1 0 1 0 1 0 1 0 -1
son 00 0 0 0 0 0 0 00
Sip 2 2 0 -2 0 -2 0 -2 0 2

Table 6.4: Example of code where the sub-code sy , is null, and giving a loss of 2.22 dB.

Reduction of the complexity by 1/3

As indicated previously, having sp , or s;,, equal to zeros means that the first half and the
second half of s, are identical or opposite. In order to allow new possibilities, we now consider
alocal code that is the sum of two codes. One code that gives sy , or s1,, null as before, and
another code where its half are not identical or opposite, but whose the correlation with can
be computed in a efficient way. This code and its sub-codes are given Table 6.5. It can be seen
the values of sy , alternate between 0 and 1, and the values of s; , also alternate between 0
and 1 or —1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
s, 0 0 01 0 0 010 0 O 1 0 0 O 1 0 0 0 1
son 0 1 0 1 0 1 0 1 0 1
St 0 -1 0 1 0 -1 0 1 0 -1

Table 6.5: Special code.
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Figure 6.6: Auto and cross-correlation of the L5 secondary code with the local secondary code
of Table 6.4.

If we write the circular correlation with the special sub-code sy , in matrix form, and taking for
example Np =3 and sp,, = [01 010 1] (this is simply to be able to display the matrix), we have

Y0,0 0 0 0 p P p2 O 0 0 p P p2 O 0 0 po pP1 p2|[*0
Yo,1 p2 0 0 0 p P p2 O 0 0 po P p2 O 0 0 po pP1|]|%01
Y0,2 P P2 0 0 0 p P p2 O 0 0 po P p2 O 0 0 po|| %02
10,3 po P P2 O 0 0 po P P2 O 0 0 po P P2 O 0 0 1%3
Y0,4 0 po P P2 O 0 0 po P P2 O 0 0 po P P2 O 0 *04
Y05 0 0 po P P2 O 0 0 po P P2 O 0 0 po P P2 Of|x05
0,6 0 0 0 po P P2 O 0 0 po p1 P2 O 0 0 po pr1 P2||%06

Y0,7 P2 0 0 0 po P P2 0 0 0 po P P2 0 0 0 po p1|| %07
o8 |_fp1 P2 O 0 0 po P P2 O 0 0 po P P2 O 0 0 pof| =08
0,9 po P P2 O 0 0 po P P2 O 0 0 po P P2 O 0 0] x0,9

¥0,10 0 po p1 P2 O 0 0 po p1 P2 O 0 0 po p1 P2 O 0 | [xo0,10
Y0,11 0 0 po p1 P2 O 0 0 po p1 P2 O 0 0 po p1 P2 O0|x11
yoiz| [0 0o 0o pg p1 pp 0O O 0O pg pr pz O 0O 0 pg p1 p2||x12| (6.49)

Y0,13 p2 0 0 0 po P, P2 0 0 0 po P11 P2 0 0 0 po P |x0,13
Yo0,14 m p2 0 0 0 p p1 p2 O 0 0 p p1 p2 O 0 0 po||x0,14
Y0,15 po P11 P2 0 0 0 po P P2 0 0 0 po P11 P2 0 0 01 |x0,15
0,16 0 pp pm p2 O 0 0 pp pm p2 O 0 0 pp pm p2 O 01 |x0,16

¥0,17 0 0 p p1 P2 O 0 0 p p1 P2 O 0 0 po P p2 0llxgy7
¥0,0 Pc  Pc  Pc] %00
vo1|=|(Pc Pc Pc| %01
¥0,2 Pc  Pc  Pcllixpp2

= |Pc| [¥0,0 +X0,1 +X0,2
Pcl Ixg,0 +x0,1 +X0,2

Pcl lxo,o +X0,1 +%0,2

where P¢ is a 6 x 6 circulant matrix. It can be seen that each section of the output is the same,
and that only one matrix-vector product is needed. Therefore, instead of performing a circular
correlation of N = Np Ng points, we can sum sections of the incoming signal and compute a
circular correlation of 2 Np points.

If we write the skew-circular correlation with the special sub-code s, in matrix form, and
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
s 15 05 15 -05 15 05 -15 1 15 05 -15 -05 -15 05 -15 -05 15 -1 -15 -05
son 0 O O 0O 0 0O 0 0 0 ©
ssu 3 1 3 -1 3 1 -3 2 3 1

Table 6.6: Example of code where the sub-code s, is null, and giving a loss of 1.69 dB using

the special code.

taking as example Np =3 and s7,, =[0 —1010 —1], we have

Y1,0 [Ps  —Ps  Ps | [xi0
yia|=|-Ps Ps —Pg| |x11
V1,2 | Ps  —-Ps Pg | |x12
(6.50)
Pg| [x1,0—X1,1+X1,2
=|[-Ps| [x,0—X11+X12],
Pg| [x1,0—X1,1+X1,2
where Pg is the following 6 x 6 skew-circulant matrix,
0 0 0 -po —-p1 —-p2
p2 0 0 0 —-po —-p1
P, = pir p2 0 O 0 —po 6.51)
po p1 p2 O 0 0
0 po pp p2 O 0
[0 0 po pr p2 O |

It can be seen that each section of the output is the same (or the sign is changed), and that
only one matrix-vector product is needed. Therefore, instead of performing a skew-circular
correlation of N = NpNg points, we can sum and subtract sections of the incoming signal and
compute a skew-circular correlation of 2Np points.

Therefore, the circular correlation using this code can be computed as in Fig. 6.2 except that
the FFT length is 2Np instead of N/2, and the input for the incoming signal requires additional
additions and subtractions. With this additional computations, the complexity is reduced by
about 33 %.

Then, in the same way as before, we performed an exhaustive search considering all the codes
giving Spo,, = 0 or Sp1,, = 0. Now the minimum loss that can be obtained is about 1.69 dB, with
a protection of 12.88 dB. This can be obtained with several codes, one of them is given Table
6.6. If we want no decrease of the protection, it is also possible to get a loss of 1.75 dB for a
protection of 14.40 dB.
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2nd max 4 8 12 16 20

Number of codes 4565 16042 4924 632 109

Table 6.7: Magnitude of the second maximum of the autocorrelation of unique codes of 20
bits and repartition (the first maximum being 20 when the code is aligned with itself).

Numberofpeaks 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Numberofcodes 45 82 0 184 768 648 0 648 852 752 0 314 176 96

Table 6.8: Number of peaks at +4 in the autocorrelation of the 4564 codes whose the magnitude
of the second maximum is 4, and repartition.

6.4.3 Applicability to other binary codes of 20 bits

In this section, we perform the same study as before for the other binary codes of 20 bits, in
order to evaluate the potential of the proposed method for other codes.

Binary codes of 20 bits

There are 22° = 1048576 binary codes of 20 bits. Among these codes, some are equivalent
from the correlation point of view, like a code where each bit is the opposite of each bit of
another code, or like two codes where one is a shifted version of the other one. Once these
redundant codes have been removed, there are 26 272 binary codes that are unique for our
discussion. These 26 272 codes have different autocorrelation properties. Table 6.7 gives the
number of codes according to the value of the second maximum in the autocorrelation (the
first maximum being 20 when the code is aligned with itself).

For the 4565 codes where the magnitude of the second maximum is 4, the autocorrelation can
have as value only 20, 4, 0 and —4. For these 4565 codes, the repartition of the codes according
to the number of peaks of +4 in their auto-correlation is given in Table 6.8. Interestingly, the
GPS L5 secondary code is one of the 82 codes having 5 peaks of magnitude 4.

Among these 4565 codes, none of them gives a sub-code sg,, null or constant. Consequently,
as before, we need to modify the local secondary code to reduce the complexity. For the
following we concentrate on the 45 codes having 4 peaks and the 82 codes having 5 peaks.

Reduction of the complexity

As before, we performed an exhaustive search considering all the codes giving s, = 0 or
s1,n = 0, to have a reduction of the complexity of 50 %. The minimum loss that can be obtained
depends on the code. For the 82 codes having 5 peaks, the minimum loss can be 1.69 dB, 1.87
dB, 2.33 dB, or 3.01 dB. Therefore, the L5 secondary code is among the best codes for this
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application. For the other reductions of complexity (25 % and 33 %), the L5 secondary code is
also among the best codes.

6.4.4 Applicability to the Galileo E5 and E1 signals

The secondary code of the Galileo E1 signal has an odd number of chips, which prevents the
use of the proposed algorithms. The secondary codes for the Galileo E5a and E5b are 100-ms
long, therefore the Doppler effect prevent to use the proposed algorithms, since Eq. (6.3)
assume that the samples for each primary code period are identical.

6.5 Summary

In this chapter, we have discussed the problem of the parallel code search acquisition consid-
ering the secondary code, and we have explored two directions to solve it.

First, we have presented different ways to use smaller FFTs, by either downsampling or seg-
menting the sequences. In some cases, it is possible to use the repetition of the primary
code, in some cases not. But it is not because we can use the repetition that the complexity is
reduced (as shown with a downsampling by a factor Np). The less complex implementation
requires about 11 to 15 % more multiplications and 39 to 45 % more additions compared to
the direct implementation of the circular correlation. However, it has been shown that the
elementary operation obtained is the same as the one in Chapter 5, therefore the algorithms
proposed in Chapter 5 can be applied here as well. Note that it was not possible to make a more
accurate comparison for an FPGA implementation of the proposed methods as compared
to the direct correlation since it is currently not possible to implement the direct correlation
because of the large FFTs required.

Second, we have proposed to change the initial circular correlation into smaller circular and
skew-circular correlations by combining some sections of the secondary code in order to be
able to reduce the complexity. Unfortunately, it was not possible to reduce the complexity for
the L5 secondary code and for any binary code of 20 bits without making an approximation
(namely a modification of the local secondary code). To find the best approximation, i.e. the
one leading to the lowest SNR loss, we performed an exhaustive search, which was possible
thanks to the small size of the problem. The main results for the L5 signal is that it is possible
to reduce the complexity by about 50 % in exchange of a SNR loss of 2.2 dB with a protection
(ratio between the first and second maximum of the cross-correlation between the received
and local secondary code) of 15.56 dB (compared to the 13.98 dB of the L5 secondary code
autocorrelation), or it is possible to reduce the complexity by about 33 % in exchange of a SNR
loss of 1.69 dB with a protection of 12.04 dB, or of a SNR loss of 1.75 dB with a protection of
14.40 dB.

To have a more accurate evaluation of the performances of the proposed algorithms, the
acquisition time should be evaluated. However, as indicated in Section 2.3, this depends on
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many parameters, and thus was not undertaken here to concentrate on the computational
aspect.
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7d Conclusions

7.1 Thesis achievements

In this thesis, we have addressed the problem of the acquisition of GNSS signals using FFT-
based parallel architectures, and more specifically the complexity of the acquisition and the
ways to reduce it.

In Chapter 3, with the comparison of the implementation on a FPGA of different acquisition
methods, we were able to point out the advantages and drawbacks of each implementation.
Although the parallel frequency search and the parallel code search may provide similar
performance, the parallel code search appeared to be more suitable to process the future GNSS
signals and for the future GNSS applications. Indeed, due to its inability to compensate the
code Doppler, the parallel frequency search becomes less efficient if we want high sensitivity
that requires long integration times, or if we use codes with high chipping rate, or if the
frequency search space is very large (which is a bit bothersome for a method whose aim is
to search all the frequencies in parallel). Moreover, in case of assistance (self-assistance or
external assistance), it is much easier to obtain a rough estimate of the carrier Doppler than
an estimate of the code delay, whether we are on Earth, in the air or in space.

In Chapter 4, we have shown different ways to compute an FFT and an FFT-based circular
correlation in Altera FPGAs using the Altera FFT, where the resource usage may be reduced,
especially for the memory (up to 45 % of reduction), for the same processing time. Although
one may think that the FFT proposed by Altera should be optimized for its devices, this work
has shown that there is still room for improvement. The algorithms presented are not only
useful for a GNSS receiver that needs to perform FFTs or correlations, such as in the parallel
code search, but can also be applied to any system that performs a correlation or convolution,
since we do not make any assumptions about the input or output signals. Therefore, we hope
that this will help either to improve the Altera FFT itself, or the other users of the Altera FFT by
reducing the resource usage of their systems.

In Chapter 5, we have proposed two algorithms to reduce the complexity of the parallel code
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search acquisition in presence of sign transitions, that may remind the overlap-and-add
method usually used for the linear convolution. It has been shown that for an implementation
on a FPGA, the algorithms may reduce the resource usage, especially the memory (typically
50 %), for the same processing time. The advantage of these algorithms compared to the
other solutions proposed in the literature is that the correlation is computed exactly, i.e.
no approximation is done and thus the SNR is not affected. The drawback is that these
algorithms do not reduce the complexity all the time, but only under certain conditions. The
first condition is to have an FFT that requires a length that is a power of two (which is the
case of the FFT provided by FPGA and DSP companies, but not the case on computers where
softwares can compute FFT of any lengths). The second condition is linked to the length of the
sequences, i.e. to the sampling frequency. However, it is easy to determine if the algorithms
are efficient or not with a simple look on a table or on a figure (Table 5.3 p. 116, Fig. 5.11 p.
128). It has been shown that the usual sampling frequencies used for the GPS L5 and Galileo
E5a and E5b signals (between 20 to 21 MHz) are in a range where the proposed algorithms
reduce the complexity. The algorithms are thus well suited for these signals.

In Chapter 6, we have discussed the problem of the parallel code search acquisition using the
secondary code. First we have discussed different implementations that use small FFTs (same
order of magnitude as the length of the primary code), because the use of very large FFTs
(> 2!8 points) may be not possible. Such implementations require slightly more operations
than the direct implementation of the correlation, even if they are able to exploit the repetition
of the primary code. However, it has been shown that one of the implementation was related
to the problem discussed in Chapter 5. Therefore, the algorithms proposed in Chapter 5 can
be applied here as well, to potentially reduce the complexity. Second, we have discussed
implementations to specifically reduce the complexity. For this, we have proposed to build
some sub-codes from the secondary code in the hope to obtain some sub-codes that contain
only zeros, which would allow us to remove some FFTs. Unfortunately, it was not possible to
obtain such sub-codes for the L5 secondary code, or for any binary codes of 20 bits. Therefore,
we looked for an approximation, where the local secondary code is different than the received
secondary code, for which we have evaluated the impact on the SNR. It has been shown
amongst other results that it is possible to reduce the complexity by about 50 % in exchange of
aloss of 2.22 dB in the SNR, or to reduce the complexity by about 33 % in exchange of a loss of
1.69 dB.

In Appendix A, we have summarized a lot of definitions and relations, about the DFT, the
convolution and the correlation. We have detailed the computation of special matrix-vector
products with FFTs (circulant, skew-circulant, Toeplitz, and Hankel matrices), and expressed
the convolution and the correlation in different ways (in time domain, using matrix, and poly-
nomial (z transform)). To the best knowledge of the author, such a summary cannot be found
in one publication, but the information are spread over the literature. Therefore, we hope to
have filled this small gap. Appendix B gives some useful tips regarding the implementation of
the FFT and of the correlation applicable in GNSS. Finally, Appendix C provides models for
the FPGA implementation of the acquisition architectures, which can help other designers.
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7.2. Recommendations for future research

In this thesis, we have tried to show the problems and operations in different ways, including
the time domain, using matrices and using polynomials (with the z transform). First, because
viewing a problem from different points of view helps to better understand the problem.
Second, because the different domains provide different mathematical tools and insights.

7.2 Recommendations for future research

The research performed and presented in this thesis is of course not exhaustive, and future
improvements are possible.

Use of a prioriinformation

Regarding the problem of the acquisition in presence of sign transitions (Chapter 5), the
proposed algorithms used two facts, half of the local code values are zeros (due to zero-
padding), and half of the output is not needed. However, we know that the input signal
contains two code periods with two possible transitions. This third a priori information could
be used to obtain a better algorithm. This, however, would lead to an approximation algorithm,
since the input signal actually also includes a residual carrier and a noise, but the impact on
the SNR should not be significant.

Regarding the problem of the acquisition over a secondary code period (Chapter 6), we were
not able to find a more efficient algorithm that is not an approximation. However, we deeply
think that it may be possible to find one, because in this problem we know a lot of a priori
information. For the local code, first we know that the primary code is repeated several times;
second the secondary code is short, which may allow the use of its specificity; third the codes
are binary. With all these information, we really believe that it should be possible to find an
algorithm less complex than the classic circular correlation by FFTs that does not use any
information about the signals.

Number theory

The fast algorithms developed to compute the DFT or the convolution of sequences are often
related to the number theory. Moreover, having a sequence with a length that is a power of
two, or a length that is a prime number, or a length that can be expressed as the product of
two coprime numbers leads to different properties and algorithms. Therefore it could be
interesting to have a deeper look on number theory, for the selection of future secondary
codes that would allow efficient computation of the tiered code correlation.
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.\ Transforms, special matrix-vector

products, convolutions and correla-
tions

The goal of this appendix is to provide a summary of some definitions, expressions and
relations that have been used during this Ph.D thesis. These information can be found in
many books, however, usually a book uses one representation whereas the operations can
be represented in several ways. Also, some definitions are not unique (like the definition of a
circulant matrix based on a vector), therefore, we clarify the operations corresponding to the
different definitions.

A.1 Transforms

A.1.1 ztransform

The z transform of a sequence x, of N points is defined as

N-1
X(z) = xpz "
nZ:"O (A.1)

3 -(N-1)

= .)C()+.)61Z_1 +X2Z_2 +Xx32 "+ +XN-12

with z € C*. X(z) is thus a polynomial of degree N — 1. See (Proakis and Manolakis [2007],
Chapter 3) or (Oppenheim and Schafer [2009], Chapter 3) for more details about the z trans-
form.

The z transform is mainly used for digital filters design, but it is also used to express the
convolution of two sequences in a simple way (see next sections). In this last case, the idea is
simply to represent a sequence with a polynomial. To do so, it is then also possible to consider
the following expression,

N-1
X(2) = X, 2"
n;o (A.2)

= x()+xlz+xzz2 +x323 +-~+xN_1zN_1.
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Appendix A. Transforms, special matrix-vector products, convolutions and correlations

Both expressions can be used with convolutions, but the second one is usually preferred
because of its simplicity of writing (no minus sign). However, in this thesis, the z transform is
used.

A.1.2 Discrete Fourier transform
Time domain view

The discrete Fourier transform (DFT) of a sequence x, of N points is defined as

_ j2mkn

N-1
Xe= ) xpe” v, (A.3)
n=0

with £k =0,1,..., N —1. Note that the DFT of a sequence is periodic, i.e. Xiimny = Xi with
m € Z. The DFT can be computed efficiently using fast Fourier transform (FFT) algorithms,
which have a complexity in O(Nlog N) instead of O (N?). See (Brigham [1988], Smith [2007],
Chu [2008], Burrus [2012]) for more details about the DFT and the FFT algorithms.

Matrix view

Using matrix notation, the DFT can be expressed as

_ j2m00 _ jem01 _ j2m0-(N-1
XO e N e N oo e N X0
_ jem10 _jemi1d _jem1(N-1)
X1 e N e N oo e N X1
: : . : (A.4)
j2m-(N-1)-0 j2m(N-1)-1 j2m-(N=1)-(N-1)
XN-1 e N e N e o N XN-1

X:Fx

where F is called the DFT matrix (sometimes there is a factor \/LN included for normalization
purpose). The bar over X in Eq. (A.4) is simply to differentiate it from a matrix. It can be noted

that the DFT matrix is symmetric, i.e. F' = F.

z transform view

The DFT can also be obtained from the z transform. Indeed, if we evaluate the z transform for
2k
z= e]T with k=0,1,..., N—1, we obtain

=
L

Jjenk )_n

x(z=e)=Y (o5

e (A.5)
- n
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A.1.3 Inverse discrete Fourier transform
Time domain view
The inverse discrete Fourier transform (IDFT) of a sequence Xj of N points is defined as

1 N-1 j2nnk
Xn=— Y Xee' ¥, (A.6)
N %o

with n =0,1,..., N — 1. Note that the IDFT of a sequence is periodic, i.e. x;+mn = X, with
meZ.

Matrix view

Using matrix notation, the IDFT can be expressed as

j2m-0-0 j2m-0-1 j2m-0-(N-1)
X0 ew e N . e v Xo
j2m-1-0 j2m-1-1 j2m-1-(N-1)
X1 1| e n~ e N e e N Xq
N| T : : (A7)
j2m-(N-1)-0 j2m-(N-1)1 j2m-(N-1)-(N-1)
XN-1 e N e N e N XN-1

It can be noted that F~! = %F*, therefore the IDFT (IFFT) can be computed using the DFT
(FFT).

z transform view

In the same way as the DFT, the IDFT can be obtained from the z transform by evaluating it
j2mk
forz= e‘jT with k=0,1,..., N -1, not taking into account the factor %

A.2 Special matrices

A.2.1 Circulant matrix

A circulant matrix is a matrix where each row is obtained by shifting the previous row by
one element (or by shifting the previous column by one element). Considering a vector
h=[hg h --- hny-1], there are three main ways to define a circulant matrix. First, the vector
h can correspond to the first column or to the first row. Second, the shift between two
consecutive rows can be on the right or on the left direction. Therefore, we differentiate these
cases, and indicate the result of the diagonalization for each one. See (Davis [1979]) for more
details about the circulant matrices.
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In the following, the matrices are denoted with a subscript that contains up to three elements
between curly brackets. The first element indicates the type of matrix (C for circulant, S for
skew-circulant, etc.); the second element indicates if the vector used to "generate" the matrix
corresponds to its first column (symbol |) or its first row (symbol —); and the third element
indicates the direction of the shift, \ is used for a right shift between consecutive rows (or
equivalently a down shift between consecutive columns), and ,/ is used for a left shift between
consecutive rows (or equivalently a up shift between consecutive columns).

Right circulant matrix defined by its first column

Considering that the vector h corresponds to the first column, and that the shift is on the right
direction, we obtain the following matrix,

[ ho  hn-1 - R ]
n ho -+ hs hy
Hiepg=| oo . (A.8)
hn-2 hn-3 -+ ho hn-
| An-1 hn-2 - 1 ho |

Such a matrix is used in the circular convolution of two sequences (see Section A.3.2). It can
be diagonalized by the DFT matrix (see Eq. (A.4)), i.e. we can write

Hc, =F 'diag(Fh) F, (A.9)
or

Hic; = N F diag(F 'h) F. (A.10)

Right circulant matrix defined by its first row

Considering that the vector h corresponds to the first row, and that the shift is on the right
direction, we obtain the following matrix,

[ ho i -+ hn—2 hno
hny-1 ho -+ hn-3 hy-
Hc=1 : oo C (A.11)
hy hy --- hg h
| o hy -+ Ay ho |

Such a matrix is used in the circular correlation of two sequences (see Section A.3.3). It can be
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diagonalized by the DFT matrix, i.e. we can write

Hic\,=NF 'diag(F 'h)F, (A.12)
or

Hic_, =F diag(Fh) F . (A.13)
Left circulant matrix

Considering that the vector h corresponds to the first column or to the first row, and that the
shift is on the left direction, we obtain the following matrix,

[ ho hi - hy-p hy]
hy hy - hy-1  hg
Hic =] oo S (A.14)
hn-2 hn-1 -+ hn-a hn-3
| hn-1 ho -+ hn-3 hyn-2]

Such a matrix is used in the circular correlation of two sequences (see Section A.3.3). It can be
diagonalized by the DFT matrix, i.e. we can write

Hc = NF !'diag(Fh) F !, (A.15)
or

H/c, =F diag(F 'h) F. (A.16)
A.2.2 Skew-circulant matrix

A skew-circulant matrix is a matrix where each row is obtained by shifting the previous row by
one element and the sign of the elements above the diagonal is changed.
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Right circulant matrix defined by its first column

Considering that the vector h corresponds to the first column, and that the shift is on the right
direction, we obtain the following matrix,

[ hoy  —hno1 o —ha Iy |
h ho <+ —hg —h
Hgo = : P : (A.17)
hny—> hn-z -+ hy —hn-
| Ain-1 hn—2 0 I ho

Such a matrix is used in the skew-circular convolution of two sequences (see Section A.3.4). It
can be expressed using a diagonal matrix and a circulant matrix as

Hisn = Q7' Hoopng @ (A.18)
. —in0 jml —jmN-1 . )
where Q) =diag(e™~ ,e"~ ,---, 7 ~ |, and the first column of Hgc|\ ; is Q h (Vaidyanathan

etal. [2010] pp. 771-775). Therefore, a skew-circulant matrix can be diagonalized by the DFT
matrix. Using Eq. (A.9), we can write

Hign =Q ' F'diag(FQh) FQ, (A.19)
and using Eq. (A.10), we can write

H;sn, = N Q7! Fdiag(F'Qh) F Q. (A.20)

A.2.3 Toeplitz matrix

A Toeplitz matrix is a matrix where each descending diagonal is constant, it is then defined by
2N —1 elements.

[ ho  hoy - By o]
hi  ho - hov-3 h-v-2
Hr=| : : (A.21)
hn-2 hy-3 - ho h-y
| An-1 hn-2 - hy ho

Therefore, a right circulant matrix is a special case of Toeplitz matrix.

Change to a circular matrix

A Toeplitz matrix can be embedded in a circulant matrix by approximately doubling its size.
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Here is an example with N = 3. The following N x N Toeplitz matrix,

I’lo I’l_1 h_g
HT: hl h() h_l y (A.22)
hy hy  hy

can be embedded into the following 2N —1 x 2N — 1 right circulant matrix,

[ hg h_y h_o hy hy]
hi hy hoi ho h
h, hi hy hoi h_sf, (A.23)
hoo hy W hy h_
_I’l_l I’l_z hz hl ho‘

or into the following 2N x 2N right circulant matrix,

(hg hoy ho, - hy Ry ]

h1 h() ]’l_l h_g . hz

hg h1 ho h_l h_g _ Hr B ’ (A.24)
. hg h1 h() I’l_l h_g B Hr

ho, - hy h  hy h.

hoy hey - hy h hg

where the - can be replaced by any values.

Expression with a circulant and skew-circulant matrix

A Toeplitz matrix can be expressed as the sum of a circulant matrix and a skew-circulant matrix
of same size, i.e. Hr = H¢ + Hg (Ng [2003]).

Here is an example with N =3,

hy hy h_ 1 hy ho+h_y hi+h_,
Hr=|h hy h|l==|h+h_ ho ho+h_y
h, ho ho+h_y hi+h_ ho
(A.25)
] ho —(ha—h-1) —(h1—h-3)
+5 hi—h_y h() —(hy—h_7)|.
hy —h_; hy—h_p ho
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A.2.4 Hankel matrix

A Hankel matrix is a matrix where each ascending diagonal is constant, it is then defined by
2N -1 elements.

[ 1o hy - hy-o hn-1 |
h hy - hn- h_y
Hy = : : : : (A.26)
hn-2 hn-1 -+ hon-3 h--2)
| A1 hr o+ hev-2) h-v-1)]

Therefore, a left circulant matrix is a special case of Hankel matrix. In the same way as a
Toeplitz matrix, a Hankel matrix can be embedded into a circulant matrix, or can be expressed
as the sum of a circulant and skew-circulant matrix.

A.3 Convolutions and correlations

A.3.1 Linear convolution
Time domain view

The linear convolution y, of two sequences h, and x, of N points is defined as

N-1
Yn= Z hiXn—k
k=0
N-1
= Z xkhn—k;
k=0

(A.27)

with n =0,1,...,2N — 2. Note that the linear convolution is a commutative operation. See
(Winograd [1980], Nussbaumer [1982], Garg [1998], Blahut [2010]) for more details about the
convolution.
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Matrix view

Using matrix notation, the linear convolution can be expressed as

Yo
N

YN-2
YN-1
YN

Y2N-3

| V2N-2 |

z transform view

' X0 0
X1 X0
XN-2 XN-3
XN-1 XN-2
0  xn-1
0 0
0 0
ho 0
h ho
hn-2 hn-3
hn-1 hn-2
0 hna
0 0
0 0
= HT X.

0 0
0 0
X0 0
X1 X0
X2 X1
XN-1 XN-2
0  xXn-1
0 0
0 0
ho 0
h hg
hz I’ll
hn-1 hn-2
0 hya

o |

.hN_l 4

h

hn-2

X0
X1

XN-2

LXN71 4

Using the z transform, the linear convolution is defined as

Y (2) = H(2)X(2),

(A.28)

(A.29)

where Y (z), H(z) and X(z) are the z transforms of y,, h,, and x,, respectively, i.e. polynomials
of degree 2N -2, N—-1 and N — 1 respectively. This means that the linear convolution of two

sequences can be treated as the product of two polynomials.

169



Appendix A. Transforms, special matrix-vector products, convolutions and correlations

A.3.2 Circular convolution
Time domain view

The circular convolution y, of two sequences h, and x, of N points is defined as

N-1
Yn= Z hkx(n—k) mod N
k=0
N1 (A.30)
=Y Xkhm—k) mod N»
k=0
with n=0,1,..., N -1, and mod denotes the modulo operation, i.e. (n+ mN) mod N = n with
m € Z. Note that the circular convolution is a commutative operation.

Matrix view

Using matrix notation, the circular convolution can be expressed as

o | [ 2% xv1 - x x |[ ho |
n X1 Xo v X3 X2 hy
YN-2 XN-2 XN-3 -+ Xo Xn-1]| |hANn-2
[ yN-1] [xv-1 xn—2 0 x1 xo | [hn-a
[ e hno1 - he h | x| A31)
hl ]’lo ]’lg hz X1 )
hny—2 hn-3 <+ ho hy-1]| [Xn-2
| Ain-1 hn-2 - b1 ho | [xN-1]
y=Xicrno h
=Hgpy x

The matrices X;cp; and Hyc\; are right circulant matrices with x and h as first column,
respectively. Therefore, using the diagonalization given by Eq. (A.9), the circular convolution
can be computed as

y=Hicpox
=F !diag(Fh) Fx (A.32)
=F ' ((Fh)o (Fx)),
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—s FFTNj
Xn Xk ch Yn

—> FFT —<—> IFFl;V—>

hn

—>IFFT| —J,
Xn v - Yn

—>IFF’1;V—>§Q—> FFT —»@f@—»
N

(b)

Figure A.1: Computation of the circular convolution of two sequences of N points with FFTs,
(a) using Eq. (A.32), (b) using Eq. (A.33).

or using the diagonalization given by Eq. (A.10), as

y=Hicx
= NF diag(F 'h) F!x (A.33)
=NF(F'hoF 'x),

where o denotes the Hadamard product (element by element product). Therefore, the circular
convolution can be computed efficiently using FFTs, as shown in Fig. A.1.

z transform view
Using the z transform, the circular convolution is defined as
Y(2)= H(z)X(z) mod(z N-1), (A.34)

where Y (z), H(z) and X (z) are the z transforms of y,,, h, and x,, respectively, i.e. polynomials
of degree N —1 (Nussbaumer [1982], pp. 22-23). Eq. (A.34) can also be written as

Y(2) = H@)X(2) - Q2)(z V- 1), (A.35)

j2mk
where Q(z) is a polynomial of degree N —2. If we evaluate this equation for z = e'% with

k=0,1,..., N—1,we have zV —1 =0 and thus
Y, = H. Xy, (A.36)
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where Y, Hy and X are the DFTs of y,, h;, and x,,, respectively. So, by computing the IDFT
of Hi X} we obtain y,, as already shown in Fig. A.1.

A.3.3 Circular correlation
Time domain view

The circular correlation y;, of two sequences h; and x, of N points can be defined as

N-1
Yn= Z h]tx(n+k) mod N» (A.37)
k=0
withn=0,1,..., N -1, and mod denotes the modulo operation, i.e. (n+ mN) mod N = n with
meZ.

Note that the correlation is not commutative. Indeed, in the following equation,

N-1

Wn = Z xzh(mk) mod N» (A.38)
k=0

with n=0,1,...,N -1, wy is the conjugate of the sequence y, flipped, i.e. w, =y* _ ...

So, what follows applies also to if we commute h, and x,, but then y, will be flipped and
conjugated.

Matrix view

Using matrix notation, the circular correlation can be expressed as

K

[ | [ xo X1 o xn-2 xn-1| [ ko
n X1 Xy o+ XNa1 Xo hy
YN-2 XN-2 XN-1 “*+ XN-4 XN-3| |hn-2
| yv-1|  [xn-1 X0 0 xn-3 xn-2| [hn-1]

- 1% r .
h() h hN_z ]’lN_ X0
! ! (A.39)
hn-1 ho -+ hn-3 hy- X1
hz h3 hO hl XN-2
| i he - by ho | | XN-1)
y=Xich"*
:H{C_\} X.

The matrix Xc_ is a left circulant matrix with x as first row and first column, and the matrix
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hy, Hy I, ¥ H,

—PIFFTj —> FFT j
Xn X / Yi Xn X / Y Yn

—» FFT ——>(0—>IFFT —»%@ﬂ» —> FFT ———>IFFT—>
N

N

(a) (b)

—»IFFT"‘—l —> FFT —l
Xn Xn 4 Yn

= IFFT—>>)—> FET —»%Qﬂ» = 5 IFFT—>>)—> FFT —=»
N

(c) (d)

Figure A.2: Computation of the circular correlation of two sequences of N points with FFTs,
(a) and (b) using Eq. (A.40), (b) and (d) using Eq. (A.41).

H;c_\ is aright circulant matrix with h as first row.

Therefore, using the diagonalization given by Eq. (A.15), this circular correlation can be
computed as

y=Xich’
= NF ldiag(Fx) F 'h*

(A.40)
=NF '((F'h*)o(Fx)
=F'((Fh)*o (Fx),
or using the diagonalization given by Eq. (A.16), as
y=Xich’
=F diag(F 'x) Fh*
(A.41)

=F ((Fh*)o (F 'x)
=NF(F'h*o(F 'x).

Therefore, the circular correlation can be computed efficiently using FFTs, as shown in Fig.
A.2.

z transform view

Using the z transform, the circular correlation is defined as
Y(z)=H*(1/z*)X(z) mod (z7VN -1), (A.42)
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where Y (z), H(z) and X (z) are the z transforms of y,, h; and x;, respectively. Eq. (A.42) can
also be written as

Y(2) = H*(1/2%)X(2) - Q(a)(z N - 1), (A.43)

j2mk
where Q(z) is a polynomial of degree N —2. If we evaluate this equation for z = ¢’% with

k=0,1,...,N—1,wehave z7V —1 =0 and thus

Y = H} Xy, (A.44)
where Yy, Hy and X} are the DFTs of y,,, h, and x,, respectively. So, by computing the IDFT
of H; X; we obtain yj,, as already shown in Fig. A.2.
A.3.4 Skew-circular convolution

Time domain view

The skew-circular convolution y,, of two sequences h, and x, of N points is defined as

N-1
Yn=Y sgn(n—k)hkX(n—k)mod N
k=0
k= (A.45)
= )" sgn(n—k)xihp-k) mod N»
k=0
with n=0,1,...,N -1, and sgn the function defined as
1, form=0
sgn(m) = (A.46)

-1, form<0

Note that the skew-circular convolution is a commutative operation.
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Matrix view

Using matrix notation, the skew-circular convolution can be expressed as

3

(v ] [ % -—xva o —x —x ][ ho
n X1 Xo e —X3 —Xp h
YN-2 XN-2 XN-3 -+ Xo —XnN-1| [hAn-2
| YN-1] | XN-1 XN—2 0 X xo | |hn-1]
[ hy  ~hno1 o —he -l || x0 ]
(A47)
h ho - —hg —h X1
hn-2  hn-z -+ ho  —hn-1]| [xN—2
| A1 N2 - ho | |xn-1]
y=Xisny h
=Hgsp x

The matrices Xs)\; and Hyg)\; are right skew-circulant matrices with x and h as first column,
respectively. Therefore, using the diagonalization given by Eq. (A.19), the skew-circular
convolution can be computed as

y=Hispx
=Q ' Fldiag(FQh) FQx (A.48)
= 0" oF!((Fwoh)o (Fweox)),

or using the diagonalization given by Eq. (A.20), as

y=Hgx
=NQ 'Fdiag(F'Qh) FlQx (A.49)

= No*oF((F @oh) o (F! @ox))

. —jn-0 —jm-1 —jm(N-1) . .
withw = [e N e N .- e N ] Therefore, the skew-circular convolution can be computed

efficiently using an FFT, as shown in Fig. A.3.

z transform view

Using the z transform, the skew-circular convolution is defined as

Y(2)=H(2)X(z) mod (z7N+1), (A.50)
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—»@f—» FFTN
_>©$—> FFTN

e—jﬂn/N

Hj

IFFT

_ Wn

T

ejnn/N

Figure A.3: Computation of the skew-circular convolution of two sequences of N points using

FFTs.

where Y (z), H(z) and X (z) are the z transforms of y,, h, and x;, respectively, i.e. polynomials

of degree N —1.
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Useful tips for the use of FFTs in
GNSS

In this appendix, we have collected some useful tips when the FFT is used to compute the
correlation of sequences, which can therefore be applied to the parallel code search acquisition
of GNSS signals.

B.1 Data order with the radix-2 FFT

The radix-2 FFT algorithm naturally scrambles the order of the samples of the input sequence
or of the output sequence. More specifically, we talk about bit-reversed indexing (Lyons [2010],
pp. 135-159). This is illustrated in Table B.1 considering an 8-point FFT. This means that to
have the natural index order for both the input and the output, an additional stage is needed.
This stage of course implies a longer time for software FFTs, and more memory and latency
for hardware FFTs (Altera [2013]).

However, if we compute a circular convolution or correlation using FFTs, it is not needed to
reorder the sample for each FFT and IFFT. Indeed, for the product of the FFT results, there
is no need to have the samples in the natural order, thus it is sufficient to select cleverly the
index order for the input and output samples of the FFTs, as shown in Fig. B.1.

*

hy, * Hj
—> FFT l

Xn [ 1 Xk ) Yi Yn
— FFTN—>X—> IFFIV—>
Natural Bit-reversed Natural
order order order

Figure B.1: Circular correlation of two sequences computed by FFT using smart choice for the
index order of the FFT input and output samples.
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Natural order of index n  Bit-reversed order of index n

0 (000) 0 (000)
1(001) 4 (100)
2(010) 2(010)
3(011) 6 (110)
4 (100) 1 (001)
5(101) 5(101)
6(110) 3(011)
7(111) 7 (111)

Table B.1: Natural and bit-reversed index order for an 8-point FFT. Between parenthesis is the
value in binary.

For the Altera FFT, it is possible to select the order of the samples only with the variable
streaming I/0 data flow. Table B.2 gives the estimates of the resources of a 4096-point FFT for
the different index orders. Therefore, implementing a correlation using only the natural index
order requires 3 x 452904 = 1358712 bits, whereas using the order depicted in Fig. B.1 requires
2x182568+1x 271626 = 636762, i.e. a reduction of about 53 %. Therefore, if the variable
streaming I/0 data flow is used, it is definitely worthy to consider different index order for the
convolution or correlation of sequences implemented by FFTs.

B.2 FFT of real sequences

The FFT is an algorithm considering complex sequences as input. However, it may happen
that we have to compute the FFT of a real sequence, as in GNSS with the parallel code search
where we compute the FFT of the local code. Using directly the FFT with the imaginary part of
the input equal to zero is thus a waste. However, with some manipulations, it is possible to
use one FFT of N points to compute the FFT of two real sequences of N points, or to compute
the FFT of a real sequence of 2N points (Sorensen et al. [1987], Lyons [2010] pp. 687-699).

B.2.1 Computing the N-point FFT of two real sequences using one N-point FFT

Let’s consider two real sequences, hy , and hy, , of length N, and their corresponding FFT, Hy i
and H; ;. Now, let’s consider the complex sequence h, defined as h,, = ho , + jh1, ,, and its
FFT Hi. Then, Hy ;. and H) i can be obtained from Hy, as

H: .+ Hy
Ho = —~ I;
(B.1)
_ Re(Hy_y) +Re(Hy) +jIm(Hk) —Im(Hy_r)
2 2 '
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B.2. FFT of real sequences

Logic usage Memory usage Multipliers usage

Function (ALUT) (bits) (DSP element)

4096-point FFT with
input and outputin 8534 452904 40
natural order

4096-point FFT with
input in natural order and 8534 182568 40
output in bit-reversed order

4096-point IFFT with
input in bit-reversed order 8534 271626 40
and output in natural order

Table B.2: Resources estimated with the MegaWizard Plug-in Manager for an FFT of 4096
points implemented on a Stratix ITII FPGA, considering the variable streaming I/O data flow,
and 18 bits for the data and twiddle precision.

and
* . _ Hk
Hyp= ]%
(B.2)
_ Im(Hy-¢) +Im(Hy) +].Re(HN—k) —Re(Hy)

2 2

where Re and Im denotes the real and imaginary part, respectively. For the case k = 0, remem-
ber that Hy = Hy (see Section A.1.2).

For a hardware implementation, since we have to add and subtract the sequence Hj and its
reverse Hy_x, we need to store the samples at the output of the FFT. The implementation is
given Fig. B.2, and its corresponding timing diagram in Fig. B.3, where consecutive FFTs are
computed. It can be seen that the writing of the samples of the second period starts while the
reading of the reversed samples of the first period is not yet finished, which prevents to use
only one memory. This implies to use two memories of N complex words with a write access
and a double read access, and these memories will be written and read alternatively. The
combination block implements Egs. (B.1) and (B.2), it is then composed of four real adders.
Note that this implementation requires an extra latency of N cycles compared to the use of
two FFTs. Note also that if the FFTs are not performed directly one after the other, it is possible
to use only one memory.

Let’s see an example with the Altera FFT. Considering the case N = 4096 and the streaming I/0O
data flow, the Altera FFT uses 6906 ALUTs, 38 M9Ks, and 24 DSP elements (considering the
same parameters as in Chapter 4, see p. 79). Therefore implementing two FFTs would requires
13812 ALUTs, 76 M9Ks, and 48 DSP elements. Whereas using the implementation of Fig. B.2,
there would be one FFT and two memories. Each memory requires 2 x 18 x 4096 = 36 864 bits,
which can be stored with 4 M9Ks. Therefore, the implementation of Fig. B.2 requires 56 M9Ks,
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which means 29 % less than using two FFTs. But the number of DSP elements is divided by
two, and the logic usage is also almost divided by two, since the addressing of the memory
requires few logic but not that much.

Memory 1
rAddress1D |« rAddressD
hoptjhin | Hi —» wAddressl rAddresslR |« rAddressR
"—> FFT » wDatal rDatalD
rDatalR
Memory 2
—» wAddress2 rAddress2D '« > DataD Hox
» wData2 rAddress2R < > > T =
Combination
rData2D > Dat R; —>
rData2R > rata H i

Figure B.2: Hardware implementation to compute simultaneously the FFTs of two real se-
quences.

doc ULV LU UV UL UL
Hy
wAddress1

wAddress2 B
rAddressD [o]1]
rAddressR
rDatalD
rDatalR

rData2D
rData2R

=

N 1
DataD ] Tl bl 4[] -
DataR 2 R T 1 17 = R AV [ S B

H:
o i A - P -
H; k Hl,l

N-2 N-1
»

Figure B.3: Timing diagram of Fig. B.2.
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B.3. Conjugate of the FFT of a real sequence

B.2.2 Computing the 2N-point FFT of a real sequence using one N-point FFT

Let’s consider a real sequence, h, of length 2N, and its corresponding FFT, Hy. Now, let’s
consider the complex sequence k¢, defined as hy, = hyy, + jhopn+1, and its FFT He ..

Then, in a similar way as previous, Hj, can be obtained from H¢ ; using combinations of its real
and imaginary part. However, an additional step is needed, which involves the multiplication
by a cosine and a sine (see Lyons [2010]). Therefore, the complexity will be a little bit higher
than previously, because of the generation of the cosine and sine wave, but there will still be a
significant reduction in terms of logic and memaory.

B.3 Conjugate of the FFT of a real sequence

In Section A.1.3, it has been shown that F~! = %F*, with F the DFT matrix. Using this relation,

we can write

FFT*(h,) = N IFFT(h}). (B.3)

In GNSS, with the parallel code search, the circular correlation implies to compute the con-
jugate of the FFT of the local code. Since the local code is real, using (B.3), we can avoid to
perform the conjugate operation, as shown in Fig. B.4 (this was already shown in Fig. A.2d
without assuming h;, real). This is not a significant reduction of the complexity, but it’s still
better than nothing, and the additional multiplication by the factor N is not compulsory since
itis just a question of normalization (moreover, for Altera FPGAs, this factor is not considered
in the IFFT computation, so the multiplication by N is not required).

B H; hn

BN FFT*j —»IFFTj
Xn [ 1 Xk Yi Yn — Xn [ e | Xk Y

—» FFT ——>0—>IFFT—>  ~» FFT ——>x—>IFFT %Qi’

N| N|

N

Figure B.4: Circular correlation of two sequences computed by FFT when h,, is real.
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o Estimation of the resources for an
implementation on FPGAs

In this appendix, we provide the details of the resource usage estimates of different functions,
and then evaluate the resources for the acquisition implementation presented in Chapter
3. The estimates are based on FPGAs from Altera, and are given in terms of logic, memory
and DSP elements. Among the Altera FPGAs, we find two different basis blocks for the logic,
LEs (logical elements) used in the Cyclone and old Stratix series, and ALMs (adaptive look-up
tables) used in recent Cyclone, Arria, and Stratix series. An LE consists of one register and a
4-input LUT, whereas an ALM consists of two registers and two 4-input ALUTs (adaptive LUTs).
The conversion ratio stated by Altera is 1 ALM = 2.5 LEs, but it is not an exact formula that
works all the time. According to our experience the ratio tends to be rather 1 ALM = 2 LEs most
of the time, which is the ratio of the number of register. In order to obtain the most accurate
results possible, the estimate of the different functions is done for both basis blocks.

The formulas provided here are empirical and obtained by analysis and verifications of com-
pilation. Implementation inside a complete system would affect the real resources usage
as well as the different optimizations performed during compilation (e.g. maximizing the
clock frequency or minimizing the area). Note that the most important estimates are those of
duplicated functions (or those linked to duplication), namely the code mixer, the coherent
accumulator, the multiplexer, the FFT, and the coherent and noncoherent memory-based
accumulators, which are not the most difficult functions to estimate.

For the following, we use L. to denote the resources in terms of logical blocks, M. for the
resources in terms of memory blocks, D. for the resources in terms of DSP blocks, and R. for
the resolution of a signal in bit.
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C.1 Estimation of the resources

C.1.1 Resource estimates of blocks
Carrier Generator

The carrier generator is composed of an NCO and a mapping to generate sine and cosine
waveforms. Taking a 32-bit counter, the NCO thus needs 64 bits (32 bits for the counter
increment and 32 bits for the counter value). The mapping is a very simple combinatorial
function, requires nothing or just a few elements, and is neglected here. The resources can
thus be estimated as

Lcage =64 LEs
=32 ALMs.

(C.1)

Carrier mixer

The carrier mixer is composed of four mixers, one adder, and one subtractor (this is for a
complex input signal; if the input signal is real, only two mixers are required). The resolution
after the adder and the subtracter is denoted Ry, and the resolution at the output of the mixers
is then Ry — 1. This directly provides the number of LEs, but the number of ALMs is the same
as the number of LEs for the mixers. The resources can thus be estimated as

Lcami =2Ro+4(Ryp—1)=6Ry—4LEs
= Ro+4(Ry—1)=5Ry—4 ALMs.

(C.2)

Code generator

Like for the carrier generator, the code generator is composed of an NCO, plus a memory
where the code is stored. This requires more logic elements to access the memory. If several
shifted versions have to be generated (denoted as Np in the formula since it corresponds to
the number of branches in the implementations), this will require one register per delay. The
resources can thus be estimated as

Lcoge = Np+64 + 10g2 (Nchip) LEs

Ng (C.3)
=~ +32+10g, (Nepip) ALMs.

Regarding the memory we need as many bits as there are chips in the code (insofar as the code
has only two levels):

McoGe = Nchip bits. (C4)
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Code mixer and logic-based coherent accumulator

These blocks are used only in the SS and PES implementations. The code mixer consists in
inverting the I and Q signals according to the value of the code, and it is followed by a complex
accumulator. In order to optimize the implementation, both blocks can be combined to build
an accumulator that adds or subtracts the input value according to the value of the code. This
optimization works well with ALM-based FPGAs since it does not require more resources than
the accumulator alone. However, for LE-based FPGAs, it uses slightly more resources than
the two blocks apart, so in this case, it is better to keep them separate. The accumulators also
need a signal to start/restart the integration. The resources can thus be estimated as

LCoMi = ZRO LEs
Lcoace =2Rc+1LEs (C.5)
Lcomiace = Rc+0.5 ALMs.

Multiplexer

This block is used only in the SS and PFS implementations. The multiplexer is fully combina-
torial, consequently, its resources have been evaluated empirically. The resources with Np
inputs of R¢ bits can be estimated as

(C.6)

Magnitude computation

There are many possible algorithms for the computation of the magnitude. Here, we consider
the Robertson approximation (Robertson [1971], Lyons [2010]). The estimate is obtained
empirically, and it is a piecewise function that depends on the resolution of the input R.

Lnyrag =3R+ f1(R) LEs
=1.5R+ f>(R) ALMs.

(C.7)

with

33, forl0=<R<16
HR) =167, forl17<R=<32, (C.8)
99, for33<R=<49
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and
22, for12=R<20
fa(R) = . (C.9)
42, for21<=R<40
Complex multiplier

This function is used only in the PCS implementation. It consists of four multiplications and
addition/subtraction. This is done by a DSP block. If the resolution of the input is less than or
equal to the basis DSP elements (18 bits for Altera FPGAs), it requires four blocks, otherwise, it
requires sixteen blocks.

4, forR<18
Deyul = DSP elements. (C.10)

16, for1l8>R

Ping-pong buffer

This function is used only in the PFS implementation. It is composed of two memories. The
number of addresses of each buffer corresponds to the number of branches multiplied by the
number of signal points in the FFT, and four address buses are needed to write and read both
buffers.

Lppp =4log,(NgNFrFr,s) LEs
=2 10g2 (NBNFFT,S) ALMs.

(C.11D

The number of bits needed corresponds to the number of addresses multiplied by four times
the resolution of the input signal (I and Q path, in two memories to avoid the overwriting of
data not yet read).

Mppp =4NpNFrrT,sRc bits. (C.12)

Memory-based coherent accumulator

This function is used only in the PCS implementation. It consists, for each signal path (I and
Q), of amemory, an adder, and a 2-input multiplexer. We also count the read and write address
buses needed to access the memory.

Lcoace =4Rc +2log, (Nrrr) LEs
=2Rc+ 10g2 (NppT) ALMS.

(C.13)
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The number of bits corresponds to the number of points in the FFT multiplied by twice the
resolution of the input signal (I and Q path).

Mcoace = 2Nrpr R bits. (C.14)

Memory-based non-coherent accumulator

This is the same block as the coherent accumulator except that there is now only one input
signal instead of two.

LnocoAcc =2Rnc+ 21082 (Ne) LEs

(C.15)
= Rnyc+ 10g2 (N@) ALMs,
where Ng is the number of addresses and is defined as
Np, for the SS implementation
Ne =4 NgNgr, forthe PFSimplementation . (C.16)

NrerT, for the PCS implementation

The number of bits corresponds to the number of addresses multiplied by the resolution of
the input signal.

Mnocoace = NeRnc bits. (C.17)

FFT

The resource usage of the FFT depends on a lot of parameters, and it is estimated with the
Altera Mega Wizard Plug-In Manager.

C.1.2 Resource estimates of the implementations
Serial search

The functions in the SS implementation and their sizes in terms of logical blocks are summa-
rized in Table C.1 for N branches. The total number of logical blocks of the SS implementation
is obtained by summing all the elements of Table C.1 and is

10
Lss=Npg (ZRO + ?RC + 2)
+2log,(Np) +6Ro +3Rc + fi(Rc) + 2Rnc +108, (Nepip) +124 LEs 18
.18
5
=Np|=-Rc+1
n{3Rc+1]
+ 10g2 (Ng)+5Ry+1.5Rc + fz (Rc) + Rnc +log4(Nchip) + 60 ALMs.
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Function Number of LEs Number of ALMs
Carrier generator 64 32
Carrier mixer 6Ry—4 5Ry—4
Code generator Np +64 +10g, (Ncpip) % +32 +1og, (Nenip)
Cod i 2NBR
ode mixers B8Ry Ns(Re+0.5)
Coherent accumulators Ng(2Rc+1)
Multiplexer 1\(;{571?; Nfgc
Magnitude computation 3Rc + fi(Rc) 1.5Rc + f2(Rc)
Non-coherent accumulator 2Rnc +2log,(NB) Rnc +log, (Np)

Table C.1: Logical resource estimates of SS implementation.

The memory blocks are used only by the non-coherent accumulator, and the total number of
bits is

Mss = NgRyc bits. (C.19)

Parallel frequency search

The functions in the PFS implementation and their sizes in terms of logical blocks are summa-
rized in Table C.2 for Np branches. The total number of logical blocks of the PFS implementa-
tion is obtained by summing all the elements of Table C.2 and is

10
Lprs=Npg (ZR() + ?RC +2)

+ 610g2 (NB) + LFFT + 410g2 (NFFT,S) + 210g2 (NFT)

+6Ro +3Rprr + fi(RprT) + 2RNC +108, (Nepip) + 124 LEs c
(C.20)

5
= Np (gRC‘Fl

+ 310g2 (NB)+ LppT + 210g2 (NFFT,S) + logz (NET)
+5Ro + 1.5RprT + f2(Rpr7) + Rne +108, (Nepip) +60 ALMS.

The functions in the PFS implementation and their sizes in terms of memory blocks are
summarized in Table C.3 for Ng branches. The total number of bits of the PFS implementation
is obtained by summing all the elements of Table C.3 and is

Mprs = Ng(ANfpr1,sRe + NeTRne) + MppT + Nepip bits. (C.21
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Function Number of LEs Number of ALMs
Carrier generator 64 32
Carrier mixer 6Ry—4 5Ry—4

Code generator

Np +64+10g, (Nepip)

% +32 +1og, (Nenip)

Cod i 2NgBR
ode mixers BRy Ns(Re+0.5)
Coherent accumulators NgQ2Rc+1)
. NgR NgR¢
Multiplexer 0 T=C
Ping-pong buffer 4log, (NpNFFT,s) 2log,(NpNFFT,5)
FFT Lrrr Lrrr
Magnitude computation 3Rrrr + fi(RFFT) 1.5RprT + fo(REET)
Non-coherent accumulator 2Ryc +2log,(NgNrr)  Rnc +108, (N NET)

Table C.2: Logical resource estimates of PFS implementation.

Function Number of bits
Code generator Nehip
Ping-pong buffer 4NpNrrTsRc
FFT MFrrr
Non-coherent accumulator NgNrrRNB

Table C.3: Memory resource estimates of PFS implementation.

Parallel code search

The functions in the PCS implementation and their sizes in terms of logical blocks are summa-
rized in Table C.4 for Ny branches. The total number of logical blocks of the PCS implementa-
tion is obtained by summing all the elements of Table C.4 and is

Lpcs = Np (Lppr + Liprr + TRc +2Ryc + fi(Re) + 6Rg + 60)
+ Lrpr +410g, (NFFT) +108) (Nepip) +65 LEs
= Ng (Lprr + Liprr +3.5Rc + Ryc + f2(Rc) + 5Ro +28)
+ Lppr +210g, (Ngpr) +108, (Nopip) +32.5 ALMs.

(C.22)

The functions in the PCS implementation and their sizes in terms of memory blocks are
summarized in Table C.5 for Np branches. The total number of bits of the PCS implementation

is obtained by summing all the elements of Table C.5 and is
Mpcs = Np(Mgrr + Mirrr + Nerr(2Re + Rnc)) + MEpT + Nepip bits. (C.23)
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Function Number of LEs Number of ALMs
Carrier generator 64Np 32Np
Carrier mixer Ng(6Ry—4) Ng(BRy—4)
Code generator 65 +1og, (Nenip) 32.5+10g, (Nehip)
FFTs (Np+1)Lrrr (Np+1)Lprr
Complex multipliers 0 0
IFFTs NBLiFFT NBLiFFT
Coherent accumulators 4NpRc +2log,(Nprr)  2NpRc +log,(NrprT)
Magnitude computations Ng (3Rc + f1(R¢)) Ng (1.5Rc + f2(Re))

Non-coherent accumulator Np2Ryc +2log,(Nprr) NpRnc +10g, (NrrT)

Table C.4: Logical resource estimates of PCS implementation.

Function Number of bits
Code generator Nehip
FFTs (N +1)Mprpr
IFFTs NgMrpr
Coherent accumulator 2NgNrrTRC

Non-coherent accumulator ~ NgNpprRyC

Table C.5: Memory resource estimates of PCS implementation.

The functions in the PCS implementation and their sizes in terms of DSP blocks are summa-
rized in Table C.6 for N branches. The total number of DSP elements of the PCS implementa-
tion is obtained by summing all the elements of Table C.6 and is

Dpcs = N (Dprt + Dirrr + Deopul) + Drrpr DSP elements. (C.24)

C.2 Application example details

In this section, we provide the details of the application example used in Section 3.4. First, the
target FPGA is presented, then for each implementation, all the values (number of accumula-
tions, resolution of signals, and size of FFTs) are specified, and the formulas of the previous
section are used to determine the number of branches that can be implemented. The results
are given here and summarized in Table 3.4.
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Function Number of bits
FFTs (Ng + 1) Dgpr
Complex multipliers NgDcui
IFFTs NgDirrr

Table C.6: DSP resource estimates of PCS implementation.

C.2.1 Application with a low-cost FPGA series : Altera Cyclone III

The target device considered is the EP3C120 with the following resources,

e 119088 LEs,
* 432 blocks of 9216 bits (9216 bits = 1 M9K)),
* 288 18-bit multipliers.

Note that it is not possible to entirely fill an FPGA due to routing constraints. We then consider
the use of 85 % of the logical blocks inside the FPGAs (Altera [2007]).

Therefore, taking into account that only 85 % of the FPGA logical blocks can be used, and
considering the other functions in the FPGA such as the tracking channels, the management,
and the processor (evaluated to about 20 000 LEs according to our experience), this gives about
80 000 LEs available for the acquisition channel. Note that the assumptions made here impact
the absolute results (i.e. the performance), but not the comparison between the different
implementations (i.e. the ranking).

Serial search

The parameters of the SS implementation are summarized in Table C.7. Using Eq. (C.18) we
obtain

82Np +2log, (Np) + 348 < 80000, (C.25)

from which we deduce that the maximum number of branches implementable is Ng = 971.

Parallel frequency search

The parameters of the PFS implementation are summarized in Table C.8. For an FFT of this
size, the implementation that uses the natural and bit-reversed order requires fewer logic
and memory resources (but more DSP resources) than the implementation that uses only the
natural order. Consequently, the evaluation is made for the first implementation (since the
DSP resources are not critical with the PFS implementation).
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Appendix C. Estimation of the resources for an implementation on FPGAs

Parameter Value

Ry 5 bits

N¢ 40960

Rc 21 bits
Nnc 40

Rnc 27 bits

Table C.7: Parameters of the SS implementation.

Parameter Value
Ry 5 bits
Ny 2560

Ty= % 625 s
Rc 17 bits
Nrrt,s 16
NFFT 32
Rppr 18 bits
Nnc 40
Ryc 24 bits
Lrpr 4359 LEs

Mgpr 6 M9Ks = 55 296 bits

Table C.8: Parameters of the PFS implementation with a Cyclone III FPGA.

Using Eq. (C.20) we obtain
206
TNB +6log, (INg) +4716 < 80000, (C.26)

from which we deduce that the maximum number of branches implementable due to the
logic is Np = 1095. Using Eq. (C.21) we obtain

1352Np +7 x 9216 < 432 x 9216, (C.27)

from which we deduce that the maximum number of branches implementable due to the
memory resources is Np = 2897. Consequently, the limitation comes from the logical blocks,
and the maximum number of branches is Nz = 1095.
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C.2. Application example details

Parameter Value
Ry 5 bits
NFeT 4096
Rrpr 18 bits
Np 10
Rc 22 bits
Nnc 40
Ryc 28 bits
FFT with input Lerr, Lirer 7756 LEs
and output in Mgpr, Miprr 76 M9Ks = 700 416 bits
natural order Drpr,DiprT 24 DSP elements
FFT with input LrpT 9962 LEs
in natural order Mgpr 37 M9Ks = 340 992 bits
and output in
bit-reversed order Drrr 40 DSP elements
IFFT with input LireT 10149 LEs
in bit-reversed order Mppr 48 M9Ks = 442 368 bits
and output in
natural order Dirrr 40 DSP elements

Table C.9: Parameters of the PCS implementation with a Cyclone III FPGA.

Parallel code search

The parameters of the PCS implementation are summarized in Table C.9. We evaluate the
number of branches for both FFT index ordering. Let’s consider first the FFTs with only the
natural order. Using Eq. (C.22) we obtain

15879Np + 7879 < 80000, (C.28)

from which we deduce that the maximum number of branches implementable due to the
logic is Np = 4. Using Eq. (C.23) we obtain

1695744 Ng +77 x 9216 <432 x 9216, (C.29)

from which we deduce that the maximum number of branches implementable due to the
memory resources is Np = 1. Using Eq. (C.24) we obtain

52Np +24 < 288, (C.30)
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Appendix C. Estimation of the resources for an implementation on FPGAs

from which we deduce that the maximum number of branches implementable due to the DSP
resources is Np = 5. Consequently, the limitation comes from the memory resources.

Now, let us consider the FFTs with the natural and bit-reversed order. Using Eq. (C.22) we
obtain

20478Np + 10085 =< 80000, (C.31)

from which we deduce that the maximum number of branches implementable due to the
logic is Np = 3. Using Eq. (C.23) we obtain

1078272Np +38 x 9216 < 432 x 9216, (C.32)

from which we deduce that the maximum number of branches implementable due to the
memory resources is Np = 3. Using Eq. (C.24) we obtain

84Np +40 < 288, (C.33)

from which we deduce that the maximum number of branches implementable due to the DSP
resources is Np = 2. In this case, the limitation comes from the DSP resources. Thus, finally,
the FFT using different orders is preferable, and the maximum number of branches is Np = 2,
the limitation coming from the DSP blocks.

C.2.2 Application with a high-end FPGA series : Altera Stratix III

The target device considered is the EP3SE260 with the following resources,

135200 ALMs,

864 blocks 0f 9216 bits (9216 bits = 1 M9K),

48 blocks of 147 456 bits (= 1 M144K = 16 M9K)),

768 18-bit multipliers.

The remark made before regarding the space in the FPGA remains valid here, and we consider
that 105000 ALMs are available for the acquisition channel. The number of accumulations
and the resolution of signals are identical to those already indicated and are not repeated here.

Serial search

Using Eq. (C.18) we obtain
36Np +log, (Np) +191 < 105000, (C.34)
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C.2. Application example details

Parameter Value

LFFT 1790 ALMs

MpgppT 2 M9Ks = 18 432 bits

Table C.10: Parameters of the PFS implementation with a Stratix ITII FPGA.

L ,L ALM

FFT with input FFT) ZIFFT 3806 ALMs
and output in Mgpr, Mippr 76 M9Ks = 700 416 bits
natural order DFFT» DIFFT 24 DSP elements
FFT with input Lrrr 5083 ALMs

in natural order Mgy 31 M9Ks = 285 696 bits
and output in

bit-reversed order Drrr 40 DSP elements

IFFT with input LirrT 5146 ALMs

in bit-reversed order Mppr 42 M9Ks = 387072 bits
and output in

natural order Diprr

40 DSP elements

Table C.11: Parameters of the PCS implementation with a Stratix III FPGA.

from which we deduce that the maximum number of branches implementable is N =2911.

Parallel frequency search

The parameters of the FFT are summarized in Table C.10. Using Eq. (C.20) we obtain

88
?NB +3log, (INp) +1970 < 105000, (C.35)

from which we deduce that the maximum number of branches implementable due to the
logic is Np = 3511. Using Eq. (C.21) we obtain

1352Np +3 x 9216 < 1632 x 9216, (C.36)

from which we deduce that the maximum number of branches implementable due to the
memory resources is Ng = 11104. Consequently, the limitation comes from the logical blocks.
Due to the limitation in the multiplexing described in Section 3.3, it is necessary to use three
multiplexer chains. Taking this into account, the maximum number of branches is Ny = 3385.
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Appendix C. Estimation of the resources for an implementation on FPGAs

Parallel code search

The parameters of the FFT are summarized in Table C.11. Let’s consider first the FFTs with
only the natural order. Using Eq. (C.22) we obtain

7812Np + 3868 < 105000, (C.37)

from which we deduce that the maximum number of branches implementable due to the
logic is Np = 12. Using Eq. (C.23) we obtain

1695744 Np +77 x 9216 < 1632 x 9216, (C.38)

from which we deduce that the maximum number of branches implementable due to the
memory resources is Np = 8. Using Eq. (C.24) we obtain

52Np +24 <768, (C.39)

from which we deduce that the maximum number of branches implementable due to the DSP
resources is Np = 14. Consequently, the limitation comes from the memory resources.

Now, let us consider the FFTs with the natural and bit-reversed order. Using Eq. (C.22) we
obtain

10429Np + 5145 < 105000, (C.40)

from which we deduce that the maximum number of branches implementable due to the
logicis Np = 9. Using Eq. (C.23) we obtain

967680Np +32 x 9216 < 432 x 9216, (C.41)

from which we deduce that the maximum number of branches implementable due to the
memory resources is Np = 15. Using Eq. (C.24) we obtain

84Np +40 <768, (C.42)

from which we deduce that the maximum number of branches implementable due to the DSP
resources is Np = 8. In this case, the limitation comes from the DSP resources. Finally, both
FFT types gives the same maximum number of branches, Np = 8, in one case the limitation
comes from the memory and on the other case it comes from the DSP blocks.

The summary of the number of branches can be found in Table 3.4 on page 68.
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