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Abstract— This paper formulates a bilinear observer for a
bilinear state-space model. Relationship between the bilinear
observer gains and the interaction matrices are established and
used in the design of such observer gains from input-output
data. In the absence of noise, the question of whether a deadbeat
bilinear observer exists that would cause the state estimation
error to converge to zero identically in a finite number of
time steps is addressed. In the presence of noise, an optimal
bilinear observer that minimizes the state estimation error in
the same manner that a Kalman filter does for a linear system
is presented. Numerical results illustrate both the theoretical
and computational aspects of the proposed algorithms.

I. INTRODUCTION

Bilinear models can be viewed as a bridge between linear
and nonlinear models, providing a promising approach to
handle various nonlinear identification and control problems.
Bilinear models of sufficiently high dimensions can be used
to approximate more general nonlinear systems, Ref. [1].
Regardless of the technique used to bilinearize a nonlinear
system (e.g. Carleman linearization, Ref. [2], or bilinear
system identification, Ref. [3]), the resulting bilinear models
have states whose direct measurements are not possible. A
state estimator or observer is a crucial element in the im-
plementation of state-feedback controllers designed for such
models. In this paper we derive an observer for a bilinear
system together with a design technique to optimize its gains
based on system identification. Although the general problem
of nonlinear state estimation has been previously studied,
the connection between the bilinear observer considered
here and the interaction matrices in the context of system
identification is a new development. The interaction matrices
were originally developed for state-space identification of
linear models by the Observer/Kalman filter identification
algorithm (OKID) Refs. [4], [5], [6]. OKID identifies a state-
space model and an associated optimal observer/Kalman
filter gain from input-output data without knowledge of the
process and measurement noise covariances. Recently, the
interaction matrices have been extended to the state-space
identification of discrete bilinear systems, Refs. [7], [8], by
proving their existence and exploiting them to develop Input-
Output-to-State Relationships (IOSRs). In the present work,
the connection between the problems of bilinear system
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identification and state estimation is established and explored
as an approach to design both deterministic and stochastic
bilinear observers. It is assumed in the current paper that the
bilinear state-space model and the process and measurement
noise covariances are known, and only the optimal bilinear
observer gains are to be designed. The presented results form
the first fundamental step of working out a bilinear version
of OKID where a bilinear system model and an associated
optimal bilinear observer are identified directly from input-
output measurements of a nonlinear dynamical system.

II. A BILINEAR OBSERVER

Consider the following n-state single-input single-output
discrete bilinear system (the extension to the multiple-input
multiple-output case can be made without fundamental dif-
ficulties),

x(k + 1) = Ax(k) +Nx(k)u(k) +Bu(k) + wp(k) (1a)
y(k) = Cx(k) +Du(k) + wm(k) (1b)

where wp(k) and wm(k) are zero-mean random white pro-
cess and measurement noises with covariances Q and R,
respectively. We introduce a bilinear observer of the form,

x̂(k + 1) = Ax̂(k) +Bu(k)−M1(y(k)− ŷ(k))

+Nx̂(k)u(k)−M2(y(k)− ŷ(k))u(k)

= Āx̂(k) + N̄ x̂(k)u(k) + B̄v(k) (2)

where ŷ(k) = Cx̂(k) +Du(k) is the estimated output based
on the estimated state x̂(k). Define

Ā = A+M1C N̄ = N +M2C (3a)

B̄ =
[
B +M1D −M1 M2D −M2

]
(3b)

v(k) =
[
u(k) y(k) u2(k) u(k)y(k)

]T
(3c)

It can be shown that the dynamics of the state estimation
error e(k) = x(k)− x̂(k) is governed by

e(k + 1) = Āe(k) + N̄e(k)u(k) + wp(k)

+M1wm(k) +M2wm(k)u(k) (4)

The presence of input-dependent terms in the state estimation
error equation makes the bilinear observer problem more
challenging than the well-known linear case.

This paper concerns with the bilinear observer design
problem. In the deterministic case where Q = 0, R = 0,
given A, N , B, C, D, the objective of the problem is to
design observer gains M1 and M2 so that in the limit as
k tends to infinity, the state estimation error e(k) converges
to zero. In addition, we also seek to answer the question
if a deadbeat bilinear observer exists that causes the state
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estimation error to converge to zero identically in a minimum
number of time steps. In the stochastic case, we assume
further that the process and measurement noise covariances
Q and R are known, and the design problem is to find
the appropriate bilinear observer gains M1 and M2 so that
the expected value of the squared norm of the steady-state
state estimation error, E

[
eT (k)e(k)

]
, is minimized. This

requirement is consistent with that of the Kalman filter.
Indeed, when the problem is linear, N = 0, the solution
presented in this paper produces the well-known steady-state
Kalman filter gain K (M1 = K, M2 = 0).

III. A DETERMINISTIC BILINEAR OBSERVER

In the absence of noise, the dynamics of the state estima-
tion error is described by

e(k + 1) = Āe(k) + N̄e(k)u(k) (5)

From Eq. (5) e(k) can be interpreted as being governed by a
linear-time-varying difference equation with a time-varying
dynamic matrix Ā + N̄u(k). Convergence of e(k) to zero
is in general dependent on u(k), which is exogenous to the
observer. Propagating Eq. (5) forward in time produces

e(1) = Āe(0) + N̄e(0)u(0)

e(2) = Ā2e(0) + ĀN̄e(0)u(0)

+ N̄Āe(0)u(1) + N̄2e(0)u(0)u(1)

e(3) = Ā3e(0) + Ā2N̄e(0)u(0)

+ ĀN̄Āe(0)u(1) + ĀN̄2e(0)u(0)u(1)

+ N̄Ā2e(0)u(2) + N̄ĀN̄e(0)u(0)u(2)

+ N̄2Āe(0)u(1)u(2) + N̄3e(0)u(0)u(1)u(2)

...

e(k) = Sk(k)e(0) (6)

Observe that the relationship that expresses e(k) in terms of
the previous input values u(k − 1), ..., u(0) and the initial
error e(0) contain Āk, N̄k, and all possible products of Ā
and N̄ whose combined powers add up to k. The sum of such
terms (multiplied by appropriate input values) is compactly
denoted by Sk(k) in Eq. (6). The two observer gains M1 and
M2 can be seen to provide the design freedom for Sk(k) to
converge to zero. In mathematics literature the topic is well-
known under the name of Infinite Product of Matrices. To
our knowledge, no general result is available that guarantees
the convergence to zero of the above mentioned products
as k tends to infinity regardless of the magnitude of u(k).
However, when the magnitude of u(k) is bounded, it is
possible to guarantee the existence of the observer gains
M1 and M2 to ensure that the state estimation error e(k)
converges to zero as k tends to infinity. This result can be
explained in the context of state-space bilinear identification
problem using interaction matrices.

A. Interaction Matrices

The interaction matrices are originally motivated by the
problem of system identification of large flexible structures,
Refs. [4], [6]. They are later found to be useful in a wide

range of applications, due to their ability to provide a
unifying framework that connects the state-space model to
various input-output representations, Ref. [5].

The interaction matrices are recently extended to the
discrete-time bilinear state-space identification problem in
Refs. [7], [8]. There they are used to derive Input-Output-
to-State Relationships (IOSRs). These IOSRs allow one to
express the current state, x(k), in terms of a fixed number
of past input and output values, u(k−1), ..., u(k−p), y(k−
1), ..., y(k − p). Such relationships are proven to be asymp-
totically exact for a general bilinear system as p increases.
It turns out that the approximation error of the IOSRs in the
system identification problem, Ref. [8], has exactly the same
structure as the state estimation error of Eq. (6). Therefore,
the same theorem in Ref. [8], motivated by Ref. [9], that
ensures the validity of the IOSRs in the system identification
problem, also guarantees the existence of the observer gains
M1 and M2 to cause the state estimation error e(k) to
converge to 0 as k tends to infinity, provided that (A,C)
is a detectable pair, and the magnitude of the input u(k) is
bounded below a certain threshold. This result is summarized
in the following theorem.

Theorem. If (A,C) of a bilinear system is a detectable pair
then there exists a value γ such that, for |u(k)| < γ, the
state estimation error e(k) of the bilinear observer given in
Eq. (2) converges to zero as k tends to infinity.

The interaction matrix formulation offers a fundamental
connection between the system identification problem and
the state estimation problem. One can indeed use system
identification as a technique to find the desired observer
gains. This approach could be more appropriately named
observer identification. In the bilinear system identification
methods of Refs. [7], [8] the interaction matrices are used
to derive the desired IOSRs, but they don’t need be found
explicitly for the identification of the discrete-time bilinear
state-space model matrices A, N , B, C, D. This same
formulation can now be exploited in reverse order to identify
the observer gains M1 and M2 given the bilinear state-space
model A, N , B, C, D. Here one has the additional advantage
of knowing the system state because the model is given.
State information is not available in the system identification
problem where only input-output data is known.

B. Observer Gain Identification
A special consideration in the deterministic case is to

determine if suitable observer gains exist that would cause
the state estimation error e(k) to become identically zero
after a finite number of time steps. This is analogous to the
case of a deadbeat observer for a linear system. The theorem
does not imply that all the possible products of Ā and N̄
whose powers add up to a certain value vanish identically.
In other words, unlike the linear case, no deadbeat observer
is guaranteed to exist for a general bilinear system. Deadbeat
observers only exist for a very limited class of bilinear
systems where A and N satisfy certain restrictive conditions



as illustrated in Ref. [7]. These systems are referred to as
ideal in this work. For non-ideal systems, although deadbeat
observers do not exist to cause the state estimation error to
converge to zero identically in a finite number of time steps,
observer gains can still be found to cause the state estimation
error to converge to zero asymptotically. The design of these
observer gains is described below.

Propagating Eq. (1) forward in time by p time steps,

x̂(k) = Tpzp(k) + Sp(k)x̂(k − p) (7)

See Refs. [7], [8] for the general structure of Tp and zp(k).
For example, for p = 2, we have

T2 =
[
ĀB̄ N̄B̄ B̄

]
(8)

z2(k) =
[
v(k − 2) v(k − 2)u(k − 1) v(k − 1)

]T
(9)

S2(k) = Ā2 + ĀN̄u(k − 2) + N̄Āu(k − 1)
+N̄2u(k − 2)u(k − 1)

(10)

By the previous theorem, if p is chosen to be sufficiently
large then Sp(k)→ 0. For k ≥ p, Eq. (7) becomes,

x̂(k) = Tpzp(k) (11)

Equation (11) expresses the estimated state x̂(k) in terms of p
past input and p past output measurements, u(k−1), ..., u(k−
p), y(k − 1), ..., y(k − p). Following the same terminology
used in Ref. [8], Eq. (11) is an observer IOSR. Since e(k) =
x(k)− x̂(k), Eq. (11) can be rewritten as

x(k) = Tpzp(k) + e(k) (12)

leading to the following matrix relationship

X = TpZp + E (13)

where

X =
[
x(p) x(p+ 1) x(p+ 2) ... x(l)

]
(14)

Zp =
[
zp(p) zp(p+ 1) zp(p+ 2) ... zp(l)

]
(15)

E =
[
e(p) e(p+ 1) e(p+ 2) ... e(l)

]
(16)

where l is the final time step in a data record. This relation-
ship is used to develop a data-based approach to design the
bilinear observer gains from a given model of the system as
described below.

Using the system state-space model, A, N , B, C, D,
state and output data, denoted by {x(k)} and {y(k)}, can be
generated from one or more sufficiently long and rich input
data records {u(k)}. The matrices X and Zp can be formed
and the matrix Tp solved for,

T̃p = X(Zp)+ (17)

where the superscript + denotes the pseudo-inverse opera-
tion. The observer gains M1 and M2 are extracted directly
from T̃p because they appear explicitly in B̄ which is
in T̃p. For an ideal bilinear system, Tp can be found to
satisfy Eq. (12) exactly with e(k) = 0 using Eq. (17). The
observer gains extracted from Tp when p is minimum are the
deadbeat observer gains that would cause the state estimation
error to converge to zero identically in p time steps. For

the more general case of a non-ideal system, the pseudo-
inverse solution corresponds to an observer that minimizes
the Frobenius norm of the state estimation error matrix E. A
major drawback of the solution given in Eq. (17) is that the
dimension of Zp grows exponentially with p. This motivates
the need for another approach, which is described in the
following section for the stochastic case.

IV. A STOCHASTIC BILINEAR OBSERVER

For a linear system, the optimal observer in the presence of
noise is the Kalman filter. In this work we are concerned with
the steady-state Kalman filter. In the following development,
we work out a solution for the linear case, and then extend
the result to the bilinear case. As mentioned, the main goal
of this solution for the bilinear case is to overcome the high
dimensionality associated with Eq. (17). In the linear case,
the solution produces the steady-state Kalman filter gain.

A. The Linear Case

In the linear case, N = 0, M2 = 0, and the matrices Tp,
zp(k), Sp become

Tp =
[
Āp−1B̄ ... ĀB̄ B̄

]
(18)

zp(k) =
[
v(k − p) ... v(k − 2) v(k − 1)

]T
(19)

Sp = Āp (20)

In the linear case, v(k) =
[
u(k), y(k)

]T
. If p is chosen to

be sufficiently large such that Āp can be neglected, the least-
squares solution T̃p = X(Zp)+ minimizes the Frobenius
norm of E which is

γ =

√√√√ l∑
k=p

n∑
i=1

ei(k)2 i = 1, 2, ..., n (21)

We now argue that T̃p contains the steady-state Kalman filter
gain. Many approaches exist in literature to derive the steady-
state Kalman filter. For example, Ref. [6] finds it as the
unique linear filter minimizing the expected value of the
squared norm of the state estimation error at any time step
of a stationary process of the form given by Eq. (1) with
N = 0. In other words, the unique observer of the form
given by Eq. (2) where M2 = 0, with M1 as the observer
gain, minimizes E

[
eT (k)e(k)

]
. Such an observer gain can

be computed by solving an algebraic Riccati equation and
will be denoted by K. Assuming the input-state-output data,
denoted by {u(k)}, {x(k)}, {y(k)}, come from the system
in question in stationary conditions, the expected value of
the squared norm of the state error can be evaluated as

E[eT (k)e(k)] = lim
l→∞

1

l − p+ 1

l∑
k=p

eT (k)e(k) (22)

= lim
l→∞

1

l − p+ 1

l∑
k=p

n∑
i=1

e2i (k) (23)

= lim
l→∞

γ2

l − p+ 1
(24)



where the last expression is proportional to the Frobenius
norm, minimized by T̃p = X(Zp)+. Therefore, the solution
T̃p = X(Zp)+, in the limit as the data record length tends
to infinity, minimizes the same objective function minimized
by K. Since the Kalman filter is the unique linear filter
minimizing E

[
eT (k)e(k)

]
, it follows that T̃p = X(Zp)+

must contain the state Markov parameters of the Kalman
filter, i.e., the products ĀjB̄, j = 0, 1, ..., p − 1, where Ā
and B̄ are defined by Eq. (3) with M1 = K and M2 = 0.
Hence, M1 extracted from T̃p converges to K, completing
the argument.

B. The Bilinear Case

Although Eq. (17) can be immediately used in the stochas-
tic case for a bilinear model, the high dimensionality of
Zp can be impractical to implement. We now develop an
alternate solution. Starting with

x(k + 1) = x̂(k + 1) + e(k + 1) (25)

and substituting the expression for x̂(k + 1) produces

x(k+ 1) = Āx̂(k) + N̄ x̂(k)u(k) + B̄v(k) + e(k+ 1) (26)

Since x̂(k) = x(k)− e(k), Eq. (26) becomes

x(k + 1) = Ā [x(k)− e(k)] + B̄v(k)
+N̄ [x(k)− e(k)]u(k) + e(k + 1)

(27)

Because we are interested in the batch-form of the solution,
it is more convenient to rewrite Eq. (27) as

x(k + 1) = PV (k) + e(k + 1) (28)

where the bilinear observer gains M1 and M2 are explicitly
present in B̄ in P ,

P =
[
Ā N̄ B̄

]
(29)

V (k) =

 x(k)
x(k)u(k)
v(k)

−
 e(k)
e(k)u(k)

0

 (30)

Equation (28) can be written using all available data as

X = P (VX − VE) + E (31)

where
X =

[
x(p) x(p+ 1) · · · x(l)

]
(32)

VX =

 x(p− 1) · · · x(l − 1)
x(p− 1)u(p− 1) · · · x(l − 1)u(l − 1)
v(p− 1) · · · v(l − 1)

 (33)

VE =

 e(p− 1) · · · e(l − 1)
e(p− 1)u(p− 1) · · · e(l − 1)u(l − 1)
0 · · · 0

 (34)

E =
[
e(p) e(p+ 1) · · · e(l)

]
(35)

Equation (31) is now in a form that existing standard general-
ized (or extended) least-squares methods can be adapted to
in order to find the matrices Ā, N̄ , and B̄ that minimize
the Frobenius norm of the state estimation error E. A
generalized least-squares (GLS) algorithm based on Ref. [10]
is described in the next section.

C. Optimal Bilinear Observer Gains by GLS

Let the superscript j denote the iteration number, starting
from j = 1. Using {u(k)}, {x(k)}, {y(k)} data that are
generated from the given bilinear model and the specified
process and measurement noise covariances, we form X and
VX , then solve for P (1) and compute the corresponding error
matrix E(1) associated with this solution,

P (1) = X (VX)
+ (36)

E(1) = X − P (1)VX (37)

The entries in E(1) are denoted by the superscript (1),

E(1) =
[
e(1)(p) e(1)(p+ 1) · · · e(1)(l)

]
(38)

E(1) is now used to update the parameter estimate. Since VE
calls for e(p− 1), but e(p− 1) is not available in E which
starts with e(p), the first column of X must now start from
p+ 1 instead of p,

X(1) =
[
x(p+ 1) x(p+ 2) · · · x(l)

]
(39)

VX associated with X(1) is then adjusted accordingly so that
VE can start with e(1)(p) which is available in E(1),

V
(1)
X =

 x(p) · · · x(l − 1)
x(p)u(p) · · · x(l − 1)u(l − 1)
v(p) · · · v(l − 1)

 (40)

V
(1)
E =

 e(1)(p) · · · e(1)(l − 1)
e(1)(p)u(p) · · · e(1)(l − 1)u(l − 1)
0 · · · 0

 (41)

The next update P (2) and E(2) can be computed from

P (2) = X(1)
(
V

(1)
X − V (1)

E

)+
(42)

E(2) = X(1) − P (2)
(
V

(1)
X − V (1)

E

)
(43)

E(2) is then used to update the parameter estimate. The first
entry in E(2) is e(2)(p + 1) which is consistent with X(1).
For the next iteration, X(2) must start from x(p + 2), V (2)

X

from x(p+ 1), u(p+ 1), v(p+ 1) so that V (2)
E can start from

e(2)(p+1), etc. To avoid losing one data sample at each GLS
iteration, an alternate strategy is inserting e(1)(p− 1) = 0 to
Eq. (38), so that V (1)

X can remain the same as VX . The first
column of V (1)

E which now starts with e(1)(p− 1) = 0 will
be zero. Once P is identified, the bilinear observer gains M1

and M2 can be directly extracted from it.

V. EXAMPLES

Numerical examples are provided to support the theoret-
ical findings and to provide additional insights. State and
output data {x(k)}, {y(k)} are generated from random input
sequences {u(k)} that are uniformly distributed between
−0.5 and 0.5. For the stochastic case, zero-mean Gaussian
process and measurement noises are added with the follow-
ing covariances Q and R, respectively,

Q =

[
0.0025 0.005
0.005 0.01

]
R = 0.04



Three systems are used in the illustration. System I (ideal
bilinear) is defined by (D = 0)

A =

[
0 0.5
0.5 −0.5

]
N =

[
0 1
−1 1

]
B =

[
1
2

]
C = [0 1]

System II (non-ideal bilinear) is modified from System I
with the (1, 1) element of N set to 0.3, which is sufficient
to turn it into a non-ideal bilinear model. System III (linear)
is modified from System I by setting N = 0.

A. Deterministic Bilinear Observer

For System I, p = 2 is the smallest value for which Tp
can be found to satisfy Eq. (13) exactly (E = 0 when T2
is solved for). This is an indication that a deadbeat observer
exists for this system. The identified gains associated with
this minimum value of p = 2 are extracted from T2 as

M1 =
[
0.5 −0.5

]T
M2 =

[
−1 −1

]T
These bilinear observer gains can be verified to cause Ā2 =
ĀN̄ = N̄Ā = N̄2 = 0 identically. The state estimation error
converges to zero in 2 time steps for any input (Fig. 1).
For System II, the smaller singular values of Zp decrease
gradually as p increases, and a solution for Tp that satisfies
Eq. (13) exactly with E = 0 does not exist. This is a certain
indication that there is no deadbeat observer for this system.
Indeed, the identified gains by Eq. (17) do not make Āp,
N̄p, and all possible products of Ā and N̄ whose combined
powers add up to p, vanish identically. Instead, these gains
minimize the Frobenius norm of the state estimation error E
in Eq. (13). Although the identified observer is not deadbeat,
numerical results suggest that it is the fastest observer when
compared to observers whose gains are perturbed from the
identified values. The case for p = 6 is illustrated in Fig. 2.

B. Stochastic Bilinear Observer

In the stochastic case, we first confirm that the proposed
observer identification techniques indeed reproduce the well-
known steady-state Kalman filter gain for a linear system
(System III). Both the IOSR-based and the iterative GLS
techniques identify the Kalman filter gain correctly. The two
elements of M1 are shown in the table below (M2 = 0).
Since the design objective is to minimize the expected value
of the norm of the state estimation error, an appropriate
performance measure is the mean-squared state estimation
error eMS = 1

l+1

∑l
k=0 e

T (k)e(k), which in the limit as
l→∞ converges to the expected value of the squared norm
of the state estimation error. We use p = 40 for the IOSR-
based method.

Kalman IOSR GLS
M1(1) -0.11719372 -0.11715649 -0.11713571
M1(2) 0.08575711 0.08593812 0.08585536
||M1|| 0.14521931 0.14529623 0.14523056
eMS 0.017073555 0.017073561 0.017073558

To identify the Kalman filter gain exactly, an infinitely long
data set would be necessary. To avoid the obvious computa-
tional issues, the above gains (IOSR and GLS) are estimated
by averaging the identified gains from 1000 independent data

sets of 104 samples each. For evaluation, both in this case
and later in the bilinear case, another 1000 independent data
sets of 104 samples are used, and the averaged eMS values
are reported. Note that the relatively large value of p = 40
used in the IOSR approach guarantees that Sp is negligible.
With the identified observer gain, S40 = Ā40 has entries that
are of the order of 10−7 in magnitude.

In the bilinear case, there is no known result of a bilinear
Kalman filter for direct comparison. It could be argued
that the identified bilinear observer for System II is in
fact that optimal bilinear Kalman filter. We evaluate the
effectiveness of the proposed design methods by analyzing
the actual performance of the identified bilinear observers.
The following table compares the eMS of the observers
designed by the IOSR-based technique (again from 1000 data
sets of 104 samples each) for different values of p.
p 2 3 4 5 6
# Zp rows 12 28 60 124 252
100× eMS 3.4761 2.5985 2.4594 2.4147 2.4062

As expected, increasing p leads to better identification, since
a larger p ensures better approximation of Eq. (13). For p =
7, the identified gains are

M1,IOSR =

[
−0.14499
0.10556

]
M2,IOSR =

[
−0.31271
−0.21050

]
In the linear case, the number of rows of Zp grows linearly
with p. In the bilinear case, the growth is exponential,
hence the iterative GLS technique is called for. The bilinear
observer gains based on the GLS technique are found to be

M1,GLS =

[
−0.14206
0.10054

]
M2,GLS =

[
−0.30874
−0.20073

]
The eMS of the observer with gains designed by the GLS
technique is 2.4035. For the IOSR design, it is 2.4039. The
slightly larger error can be explained by the fact that p = 7 is
not sufficiently large to make S7(k) negligible. For instance,
the entries of (A + M1C)7 and (N + M2C)7 are of the
order of 10−2. A larger p would improve the identification
accuracy, but computational and ill-conditioning issues might
in practice bound p. As a confirmation we compare the state
estimation error of the GLS-derived observer to the observers
whose gains are perturbed from the values given above.
The resulting eMS values, obtained by averaging 1000 tests
of 104 samples each, are shown in Fig. 3. The identified
observer by the GLS technique performs better than all
100 observers with randomly perturbed gains. In fact, this
identified bilinear observer for System II can legitimately
be considered as being optimal or very close to it. The
state estimation error is minimized, and the output residual,
y(k) − ŷ(k), is white (Fig. 4). The state estimation error is
not expected to be white. These results exactly parallel those
of the optimal Kalman filter in the linear case. Finally, fast
convergence is observed for the proposed GLS technique. In
the above examples, in fewer than 100 iterations, the gains
in successive iterations converge with a relative difference
of about 10−16 in order of magnitude, which is numerically
zero by Matlab c© double precision calculation.
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Fig. 1: State estimation error of deadbeat bilinear observer
for System I converges to numerically zero in 2 time steps.
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Fig. 2: Observer for System II (deterministic) has the fastest
convergence compared to those with perturbed gains.

VI. CONCLUSIONS

In this paper we have formulated a bilinear observer for a
bilinear state-space model. The key feature of the proposed
bilinear observer is its connection to the interaction matrices.
The interaction matrices are originally developed in the
context of the Observer/Kalman filter identification algorithm
(OKID) to identify a linear state-space model of the system
and an associated optimal observer/Kalman filter gain from
input-output data without requiring explicit knowledge of
the process and measurement noise covariances. The results
presented in this paper serve as a fundamental first step for a
bilinear version of OKID. The connection to the interaction
matrices is also important because of their linkage to system
identification. We take the approach of identifying these
observer gains with data generated from the known model
and noise covariances (an observer identification problem),
instead of finding their closed-form solution. In the absence
of noise, a deadbeat bilinear observer, where the estimated
state estimation error converges to zero identically in a finite
number of time steps, does not exist for a general bilinear
model, but it does exist for certain bilinear models. We take
the pragmatic approach of using the observer identification
algorithms to determine whether these deadbeat observer
gains exist, because if they do, the proposed algorithms will
find them. In the presence of noise, we formulate an optimal
bilinear observer that minimizes the state estimation error
in the same manner that the Kalman filter does to a linear
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Fig. 3: Observer for System II (stochastic) has minimum state
estimation error compared to those with perturbed gains.
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Fig. 4: Autocorrelation of state estimation error and output
residual for System II. The output residual is white.

system. Numerical examples successfully illustrate both the
theoretical and computational aspects of the new results.
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