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A Tutorial on Speckle Reduction in
Synthetic Aperture Radar Images

Fabrizio Argenti, Senior Member, IEEE, Alessandro Lapini, Student Member, IEEE,
Tiziano Bianchi, Member, IEEE, and Luciano Alparone

Abstract—Speckle is a granular disturbance, usually modeled
as a multiplicative noise, that affects synthetic aperture radar
(SAR) images, as well as all coherent images. Over the last
three decades, several methods have been proposed for the
reduction of speckle, or despeckling, in SAR images. Goal of this
paper is making a comprehensive review of despeckling methods
since their birth, over thirty years ago, highlighting trends and
changing approaches over years. The concept of fully developed
speckle is explained. Drawbacks of homomorphic filtering are
pointed out. Assets of multiresolution despeckling, as opposite to
spatial-domain despeckling, are highlighted. Also advantages of
undecimated, or stationary, wavelet transforms over decimated
ones are discussed. Bayesian estimators and probability density
function (pdf) models in both spatial and multiresolution domains
are reviewed. Scale-space varying pdf models, as opposite to
scale varying models, are promoted. Promising methods following
non-Bayesian approaches, like nonlocal (NL) filtering and total
variation (TV) regularization, are reviewed and compared to
spatial- and wavelet-domain Bayesian filters. Both established
and new trends for assessment of despeckling are presented. A
few experiments on simulated data and real COSMO-SkyMed
SAR images highlight, on one side the cost-performance trade-
off of the different methods, on the other side the effectiveness
of solutions purposely designed for SAR heterogeneity and not
fully developed speckle. Eventually, upcoming methods based on
new concepts of signal processing, like compressive sensing, are
foreseen as a new generation of despeckling, after spatial-domain
and multiresolution-domain methods.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) remote sensing [1]
offers a number of advantages over optical remote sensing,

mainly the all-day, all-weather acquisition capability. However,
the main drawback of SAR images is the presence of speckle, a
signal dependent granular noise, inherent of all active coherent
imaging systems, that visually degrades the appearance of
images. Speckle may severely diminish the performances of
automated scene analysis and information extraction tech-
niques, as well as it may be harmful in applications requir-
ing multiple SAR observations, like automatic multitemporal
change detection. For these reasons, a preliminary processing
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of real-valued detected SAR images aimed at speckle reduc-
tion, or despeckling, is of crucial importance for a number
of applications. Such a preprocessing, however, should be
carefully designed to avoid spoiling useful information, such
as local mean of backscatter, point targets, linear features and
textures.

A steadily increasing number of papers specific on de-
speckling has appeared in the literature over the last ten
years, presumably because the new generation of satellite SAR
systems has dramatically raised the attention of researchers in
signal processing towards this problem. The COSMO-SkyMed
constellation - four satellites launched by the Italian Space
Agency (ASI) between 2007 and 2010 - features X-band
SAR with low revisit-time; as a second generation mission,
two additional satellites are foreseen in 2014 and 2015. The
twin-satellite constellation TerraSAR-X / TanDem-X (2007 /
2010) launched by the German Space Agency (DLR) and
the upcoming Sentinel-1a / -1b satellite constellation (2013
/ 2015) from the European Space Agency (ESA), which shall
extend the EnviSat mission, complete the European scenario
of satellite SAR. Also, the Canadian RADARSAT 3 mission
is expected in a near future, with 3 satellites operating at C-
band, to be launched in 2017. A thorough overview of past,
present and future missions can be found in [1].

The most recent advances in despeckling pursue the techno-
logical objective of giving an extra value to the huge amount
of data that are routinely collected by current and upcoming
SAR systems mounted on orbiting platforms. In fact, with
the exception of applications related to production of digital
elevation models (DEMs) or interferometric phase maps useful
for studies of terrain deformation (landslides, subsidence, etc.),
SAR data do not find the same full utilization, as optical
data do, by either users’ or scientists’ communities. As an
example, the functional development of efficient techniques
for fusion between optical and SAR data would constitute an
enabling technology that would allow a relevant number of
new applications to bring benefits both for data providers and
for producers of software applications. Unfortunately, speckle
is the main obstacle towards the development of an effective
optical-SAR fusion [2], together with the different acquisition
geometry of optical and SAR systems.

This article is intended as tutorial on despeckling, rather
than a simple review of despeckling methods. Therefore,
emphasis is given to speckle and reflectivity models that are
used for filtering. The review of methods that are not relying
on the multiplicative noise model is kept very concise, since
such methods have not encountered same progresses over time
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as model-based methods have. With only very few excep-
tion, despeckling methods specifically proposed for ultrasound
images are not reviewed here. In fact, notwithstanding the
similarity of the coherent imaging system, in the presence of
weak echoes from tissues the additive white Gaussian noise
(AWGN) introduced by the electronics cannot be neglected
and the noise model also includes an AWGN term [3]. In
SAR images, the AWGN term is always negligible, compared
to the signal-dependent term [4].

Despeckling methods specifically pertaining to polarimetric
SAR are not discussed in this tutorial. Readers interested
to this topic are addressed to the seminal papers by Novak
and Burl [5], Lee et al. [6] and Touzi and Lopès [7], as
well as to more recent and developed contributions [8], [9].
Also despeckling methods designed to take advantage of the
availability of a temporal sequence of SAR images, like [10],
[11], are not addressed here. By default, speckle reduction
is approached as mono-variate, even though a multivariate
speckle reduction [12], if applicable, may be preferred.

Only incoherent processing, that is, processing of SAR
images in either power, referred to as intensity, or amplitude
formats is dealt with. In fact, coherent processing of data
in complex format does not increase the signal-to-noise ratio
(SNR), but only the coherence [13] of the interferogram and
thus it is used in SAR interferometry [14]. The noisy phase
of the complex interferogram may be filtered before it is
unwrapped [15], [16], but in many cases the regularization is
directly performed by the unwrapping algorithm [17]. When-
ever two real valued detected SAR images of the same scene
are available, the temporal correlation of speckle conveys
information on the coherence of the interferogram that would
be calculated from complex data [18]. Thus, speckle is not
only noise but in some sense has an information content, even
if difficult to exploit.

Excellent reviews of despeckling methods with high tutorial
value have been written by Lee et al. [19] and Touzi [20].
Our goal is to update the presentation of methods to changing
times, especially towards recently established concepts of
multiresolution processing. A brief perspective on upcoming
promising approaches to despeckling in particular, and to
information extraction from SAR images in general, is also
included in this survey.

The organization of contents is the following. After a
leisurely paced section on fundamentals of reflectivity, speckle
and imaging system modeling, the problem is addressed and
developed under a statistical signal processing perspective, as
in [20]. Emphasis is given to Bayesian estimation in either
space or scale-space domains. The main features of the latter
are concisely surveyed. A comprehensive critical review of
the most relevant speckle filters, beginning with the pioneer-
ing Lee filter [21], spans over thirty years and highlights
trends and fashions that have been pursued and developed
over time or quickly abandoned. The renewed interest of
researchers towards despeckling occurred with the introduction
of multiresolution analysis, when spatial domain methods had
reached a degree of sophistication, together with a saturation of
performances, that demanded a cross-fertilization from other
fields of signal processing. A variety of wavelet-based, or

more generally scale-space, despeckling methods is contex-
tualized and discussed. Advantages of such methods over
spatial domain methods is pointed out. Promising approaches
like nonlocal filtering and total variation regularization are
described.

The second part of the article contains a more articulated
review of a few selected methods, some of them recently
proposed by the authors, that are presently indicated as highly
performing [22] in a comparative assessment carried out on
image specimens produced by a SAR simulator [23]. The most
established and widely used statistical indexes to assess the
quality of despeckling, both with a reference, like in the case of
the SAR simulator, or of synthetically speckled optical images,
and blind, i.e., without a reference, are surveyed. A brief
section compares quantitative results of the selected methods
and draws some considerations on the specific features of
the different methods, which exhibit different behaviors, and
on the suitability and limitations of the quality indexes. The
trade off between performances and computational cost is
analyzed. The influence of speckle correlation on the despeck-
ling accuracy of single-look images and a viable strategy for
its preliminary reduction, without affecting the subsequent
despeckling stages, is described. Eventually, a concluding
section remarks the key points of the analysis and gives hints
that may help researchers develop new and better despeckling
filters, or more simply may help users choose the most suitable
filter among those that are presently available, also as source
or executable codes to download.

II. SIGNAL AND NOISE MODELING

Under a statistical signal processing perspective, despeck-
ling filters aim at estimating the noise-free radar reflectivity
from the observed noisy SAR image [20]. In order to describe
the estimation methods that have been developed for the
despeckling problem, we need firstly to introduce models for
speckle, SAR system and reflectivity.

A. Speckle models

Fig. 1. Scattering model explaining fully developed speckle.

SAR is an active acquisition instrument that produces a
radiation and captures the signals backscattered from a small
area of the imaged scene (resolution cell). The received
signal, as output from the in-phase and quadrature channels,
is complex. If we assume that the resolution cell contains
several scatterers and that no one yields a reflected signal
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much stronger than the others (distributed target), then the
received signal can be viewed as the incoherent sum of several
backscattered waves, i.e., Aejφ =

∑
iAie

jφi , as shown in
Fig. 1. The amplitudes Ai and phases φi are the results of
several factors, including propagation attenuation, scattering
of the illuminated targets, antenna directivity. Each individual
component, however, can not be resolved within a resolution
cell. A first approach to modeling the received signal is
solving the Maxwell’s equations according to the propagation
geometry and scattering medium [24], [25]. By using this
approach, the way each propagation path interferes gives us
basic information about the observed scene. On the other hand,
if we consider that the phases of each path are highly different
and that they may sum in a constructive or destructive way,
then the amplitude of the received signal varies randomly.
So, even if the underlying reflectivity field is uniform, it
appears as affected by a “granular” noise after the imaging
system. For visual inspection and for specific applications
that involve visual information retrieval, such as mapping and
segmentation, the highly varying nature of the signal may
be considered as a disturbance and is commonly denoted as
“speckle”.

The phases φi are highly varying (since the wavelength
is much shorter than the resolution cell size and scatterers
distances) and may be considered as uniformly distributed
in (−π, π) as well as independent of Ai. If the number of
scatterers is sufficiently high, the central limit theorem applies
[26] and the resulting signal Aejφ = z1 + jz2 can be seen as
a complex signal whose real and imaginary parts (in-phase
and quadrature components) are independent and identically
distributed zero-mean Gaussian variables with variance σ/2.
When this applies speckle is termed as fully developed [27].
The joint probability density function (pdf) is given by

pz1,z2(z1, z2) =
1

πσ
e−

z21+z22
σ (1)

whereas the amplitude A is distributed as a Rayleigh pdf, that
is

pA(A) =
2A

σ
e−

A2

σ (2)

and the power or intensity I = A2 is distributed according to
an exponential pdf, that is

pI(I) =
1

σ
e−

I
σ (3)

so that the mean of the intensity is equal to σ. It can be shown
[4], [28] that the intensity measurement carries information
about the average backscattering coefficient (for distributed
targets) related to the resolution cell. Hence, for specific
applications, the parameter σ is the actual information we
would like to extract from a single channel SAR system.
This can be considered as the radar cross section (RCS) of
the observed resolution cell. The received signal pdf can be
reformulated into

pI|σ(I|σ) =
1

σ
e−

I
σ (4)

or
I = σu (5)

where u is exponentially distributed, that is,

pu(u) = e−u (6)

Eq. (5) is termed the multiplicative model of speckle.
If only one image (realization of the stochastic process)

is available, the best estimate of the scene average reflectiv-
ity is just the pixel-by-pixel intensity. This will be a quite
noisy estimate because of the previously described construc-
tive/destructive combination effects. From (3), it follows that
the variance of the intensity in each pixel is σ2, so that
brighter pixel will be affected by stronger disturbances than
darker ones. A way to improve the estimation of σ is to
average L independent intensity values related to the same
position. This processing, named “multilooking”, maintains
the mean intensity σ but reduces the estimator variance to
σ2/L. Independent “looks” of a target resolution cell can
be obtained either by appropriate processing in the Doppler
domain (splitting the Doppler bandwidth within the imaging
system that compensates the quadratic phase variation created
by the platform movement) or by averaging L spatial observa-
tions. In both cases, the cost to be paid for estimation accuracy
improvement is spatial resolution loss by a factor L. If the
hypothesis of independent intensity measurements holds (in
the case of correlated data the assumption fails), the L-look
averaged intensity IL is Γ-distributed, that is

pIL|σ(IL|σ) =
1

Γ(L)

(
L

σ

)L
IL
L−1e−

LIL
σ (7)

whereas the relative amplitude image AL =
√
IL has a square-

root Γ distribution [4]. For visual inspection and for automatic
interpretation tasks, the use of amplitude images is preferable,
thanks to their reduced dynamic range with respect to intensity
images, which is accompanied by an increment in SNR.

The model described above is valid under the assumption
that the imaged scene is characterized by distributed scatterers.
In the presence of a scatterer much stronger than the others
(point target), the received signal pdf becomes a Rice distri-
bution and the model above described does not apply. In this
case, the received signal power is related to the single target
reflection coefficient and, for the purpose of speckle removal,
point targets are treated separately from distributed targets.

B. SAR system model

In the above analysis, the effect of the imaging system has
not been taken into consideration. Indeed, the SAR system can
achieve a spatial resolution of the order of the antenna size
only if proper processing, referred to as focusing, is applied.
The energy of the transmitted frequency modulated (FM) chirp
pulse is spread into the range-Doppler domain and such a
processing consists of matched filtering along the range and
along iso-Doppler curves and is needed to compact energy
back in the spatial domain [28]. From this point of view, a SAR
system can be seen as an encoding transfer function he(r)
followed by a compression transfer function hc(r) [4], [29].
If S(r) denotes the complex reflectivity, the observed single
look complex (SLC) signal after the imaging processor is

gc(r) = [C · S(r) ∗ he(r) + n(r)] ∗ hc(r) (8)
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where the constant C absorbs propagation information (e.g.,
loss and antenna gains) and the term n(r) accounts for
thermal noise at the receiver. For sufficiently high signal-to-
noise ratios, the noise term can be neglected and the received
complex signal becomes

gc(r) = C · S(r) ∗ he(r) ∗ hc(r) = C · S(r) ∗ h(r) (9)

For well-designed SAR, the impulse response h(r) is pulse-
like and represents the point spread function (PSF) of the
system that, in a first approximation, can be assumed as
independent of the position. Again, the intensity |gc(r)|2 is
proportional to the average backscattering coefficient of the
cell and is the information we would like to achieve from the
observation. An accurate description of the model in (9) and
of the statistical properties of the acquired SAR image is given
in [29].

C. Reflectivity models

The speckle formation model yields a pixelwise description
of the observed signal. For many applications, including
despeckling, more refined models are needed. Such models
describe the observed received signal at a coarser scale than
the single pixel one and try to intercept information about the
underlying texture of the imaged scene and its correlation. It
is then crucial to consider also the average intensity, i.e., RCS
σ, which is considered the information to be retrieved, as a
random process. Unfortunately, the RCS is not directly ob-
servable and its properties must be inferred from the intensity
values over an area in which the texture is homogeneous. In
this sense, RCS modeling can be seen as an inverse problem
whose solution is made difficult by the fact that homogeneity
can be stated only if a ground truth is available, but often
this is not the case. Furthermore, since the problem can be
formulated only in a statistical sense, the dimension of the
homogeneous area becomes crucial: it should be as large as
possible in order to reliably apply statistical hypothesis testing
methods, but this contrasts with the natural scenes structure
that is often characterized by the presence of limited size
homogeneous areas (such as fields, woods, orchards, forests,
trees, man-made areas) and mixing the information of different
textures makes the hypothesis tests to fail.

The starting point for solving this inverse problem is the
statistics of the observed intensity over a homogeneous area.
The pdf of the intensity signal can be written as

p(I) =

∫
p(I|σ)p(σ)dσ (10)

where p(I|σ) is the single pixel speckle model, given by (4)
and (7) for the 1-look and L-look cases, respectively. Eq. (10)
is referred to as the product model of the observed intensity
[20]. One of the assumptions that must be made to state the
validity of the model (10) is that the RCS fluctuation scale is
larger than that of speckle.

Even though several pdfs have been proposed for the
intensity I (e.g., Weibull, log–normal), one of the most used
pdf is the K distribution. The K distribution is a parametric
pdf that, with a suitable choice of its parameters, well fits

observed intensity histograms. It has also the advantage that
a closed form of the RCS pdf, i.e., p(σ), exists such that the
product model in (10) yields a K distribution. In fact, if the
RCS pdf is a Γ distribution, that is

p(σ) =
(ν
σ̄

)ν σν−1
Γ(ν)

e−
νσ
σ̄ (11)

where ν is an order parameter and σ̄ is the mean, then the
pdf of the observed intensity signal is given by

p(I) =
2

Γ(L)Γ(ν)

(
Lν

Ī

)L+ν
2

I
L+ν−2

2 Kν−L

(
2

√
νLI

Ī

)
(12)

where Kn(·) is the modified Bessel function of order n and
Ī is the mean of intensity. Fitting the parameters of the pdf
to the observed signal allows information on the RCS to be
retrieved.

The model in (12) yields a pixelwise statistical description
of the observed intensity values. A complete description of
the scene, however, needs the inclusion of the autocorrelation
function into the model. If such a function is estimated from
the observed data, then the exact autocorrelation function of
the RCS is quite difficult to achieve and usually it does not
exist in a closed form [4].

III. SPACE AND SCALE-SPACE DOMAIN ESTIMATION

From the previous discussion, it emerges that modeling the
received SAR signal should take into account several physi-
cal, statistical and engineering aspects of the overall system.
Such a complexity makes the process of extracting average
backscatter information from the observed signal a nontrivial
task. From a signal processing perspective, a first step towards
finding efficient solutions is stating the acquisition model in
the simplest form as possible. In [20], several multiplicative
models of speckle are described and classified according to the
autocorrelations of the imaged scene and of the noise term.

In the following of this section, models of the noisy signal in
both spatial and transformed domains are reviewed, Bayesian
estimation principles are briefly recalled and the wavelet
transform, in both decimated and undecimated versions, is
introduced as a transformation suitable for despeckling. Even-
tually, the modeling of pdfs for Bayesian estimation in the
wavelet domain is discussed and shown to be crucial for
performances.

A. Models of noisy signal

Perhaps, the most used model in the literature on despeck-
ling is the following:

g = fu (13)

where f is a possibly autocorrelated random process and repre-
sents the noise–free reflectivity; u is a possibly autocorrelated
stationary random process, independent of f , and represents
the speckle fading term; g is the observed noisy image. All the
quantities in (13) may refer to either intensity or amplitude as
well as to single-look or multilook images, whose pdfs have
been described previously.
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g = f + v Estimator f̂

(a)

g = f u Estimator f̂log exp

(b)

g = f + v Estimator f̂W W-1

(c)

g = f u Estimator f̂log expW W-1

(d)
Fig. 2. Additive models commonly used in despeckling algorithms: (a) signal-dependent in spatial domain; (b) signal-independent in spatial domain; (c)
signal-dependent in transform domain; (d) signal-independent in transform domain.

The variable u may be assumed as spatially correlated
[30]. Recently, it has been shown [31] that a preprocessing
step that makes speckle uncorrelated, that is “whitens” the
complex signal, allows despeckling algorithms designed for
uncorrelated speckle to be successfully applied also when
speckle is (auto)correlated. Therefore, in the following we
shall analyze only algorithms working under the hypothesis
of uncorrelated speckle.

The nonlinear nature of the relationship between observed
and noise-free signals makes the filtering procedure a non-
trivial task. For this reason, some manipulations have been
introduced to make the observation model simpler. Several
authors adopt the following model, derived from (13):

g = f + (u− 1)f = f + v, (14)

where v = (u − 1)f accounts for speckle disturbance in an
equivalent additive model, in which v, depending on f , is a
signal-dependent noise process.

A second way that allows the multiplicative noise to be
transformed into an additive one is using a homomorphic
transformation [32]. It consists of taking the logarithm of the
observed data, so that we have

log g = log f + log u

g′ = f ′ + u′
(15)

where g′, f ′ and u′ denote the logarithm of the quantities in
(13). Unlike the case in (14), here the noise component u′ is
a signal-independent additive noise. However, this operation
may introduce a bias into the denoised image, since an unbi-
ased estimation in the log-domain is mapped onto a biased es-
timation in the spatial domain [33]; in math form, if u exhibits
E[u] = 1, E[u′] = E[log(u)] 6= log(E[u]) = log(1) = 0.

Over the last two decades, approaches to image denois-
ing that perform estimation in a transformed domain have
been proposed. Transforms derived from multiresolution signal
analysis [34], [35], such as the discrete wavelet transform
(DWT), are the most popular in this context. Despeckling in a
transform domain is carried out by taking the direct transform

of the observed signal, by estimating the speckle-free coef-
ficients and by reconstructing the filtered image through the
inverse transform applied to the despeckled coefficients.

B. Bayesian estimation concepts

From the previous discussion about the most widely used
signal models for despeckling, it can be seen that the mul-
tiplicative model is often manipulated in order to obtain an
additive one. Fig. 2 summarizes the various versions of the
additive models.

The block “Estimator” attempts to achieve a speckle-free
representation of the signal in a specific domain; for ex-
ample, in the transform domain, as in Fig. 2-(c), or in the
homomorphic-transform domain, as in Fig. 2-(d), in which
the noise-free informative signal is contaminated with additive
signal-dependent or signal-independent noise, respectively.

The basics of Bayesian estimation are now reviewed for
the simplest case, shown in Fig. 2-(a), even though analogous
derivations hold for all the other cases in Fig. 2.

A Bayesian estimator [36] tries to achieve an estimate f̂ of
f - which is assumed to be a random process - by having some
prior information about the signal to be estimated, summarized
in pF (f), the a-priori pdf of f . Different Bayesian estimators
can be defined according to the choice of the Bayesian “risk”,
i.e., the function of the estimation error ε = f − f̂ we would
like to minimize.

The minimum mean square error (MMSE) estimator mini-
mizes the quantity E[ε2] = E[(f− f̂)2]. It is well-known [36]
that the solution is given by

f̂MMSE = EF |G[f |g] (16)

which is the expectation of the noise-free signal conditional
to the noisy observation. By exploiting the Bayes rule and the
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additive signal-dependent model g = f + v, we obtain

f̂MMSE =

∫
fpF |G(f |g)df

=

∫
f
pG|F (g|f)pF (f)

pG(g)
df

=

∫
fpV (g − f)pF (f)df∫
pV (g − f)pF (f)df

(17)

The estimate in (17) would require the knowledge of the
nonstationary joint pdfs of any orders.

A simpler solution requiring only second order moments is
the linear MMSE (LMMSE) estimator, in which the MMSE
solution is sought by constraining the estimator to be a linear
combination of the observed variables. The LMMSE estimator
is given by

f̂LMMSE = E[f ] + CfgC
−1
gg (g − E[g]), (18)

in which Cfg is the covariance matrix between f and g and
Cgg is the autocovariance matrix of g. Prior knowledge is now
embedded in the second order statistics of the noise-free and
noisy signals, which can be derived by exploiting the additive
model.

The maximum a-posteriori probability (MAP) estimator
minimizes the quantity E[C(ε)], where C(ε) = 1 for |ε| > δ
and C(ε) = 0 elsewhere. The solution, when δ is small, is
given by

f̂MAP = arg max
f

pF |G[f |g] (19)

Again, by exploiting the Bayes rule and the additive model,
we have

f̂MAP = arg max
f

pG|F (g|f)pF (f)

= arg max
f

pV (g − f)pF (f)
(20)

or, equivalently,

f̂MAP = arg max
f

[log pV (g − f) + log pF (f)] (21)

Eqs. (17), (18) and (20) reveal that all solutions, besides to
the a-priori information on f , require also knowledge of the
pdf of the noise component v.

C. Wavelet Transforms

A Bayesian estimation carried out in the spatial domain
leads to a solution that adaptively depends on local statistics,
i.e., is a space-adaptive estimator. A Bayesian estimation
carried out in the multiresolution, or scale-space, domain may
have the extra value of leading to a scale-space adaptive
estimator, that is, an estimator adaptive not only in space but
also in scale. Such an extra value is not automatic and requires
careful pdf modeling in the transformed domain, otherwise the
spatial adaptivity may get lost in favor of the scale adaptivity.

The wavelet analysis provides a multiresolution representa-
tion of continuous and discrete-time signals and images [35].
For discrete-time signals, the classical maximally decimated
wavelet decomposition is implemented by filtering the input
signal with a lowpass filter H0(z) and a highpass filter H1(z)
and downsampling each output by a factor two. The synthesis

of the signal is obtained with a scheme symmetrical to that
of the analysis stage, i.e., by upsampling the coefficients of
the decomposition and by lowpass and highpass filtering.
Analysis and synthesis filters are designed in order to obtain
the perfect reconstruction of the signal and by using different
constraints (e.g., orthogonal or biorthogonal decomposition,
linear phase filters). Applying the same decomposition to the
lowpass channel output yields a two-level wavelet transform:
such a scheme can be iterated in a dyadic fashion to generate
a multilevel decomposition. The analysis and synthesis stages
of a two-level decomposition are depicted in Fig. 3-(a).

In several image processing applications, e.g., compression,
the DWT is particularly appealing since it compacts energy in
few coefficients. However, for most of the tasks concerning
images, the use of an undecimated discrete wavelet transform
(UDWT) is more appropriate thanks to the shift-invariance
property. UDWT is also referred to as stationary WT (SWT)
[37], [38], as opposite to Mallat’s octave (dyadic) wavelet
decomposition DWT [35], which is maximally, or critically,
decimated. The rationale for working in the UDWT domain
is that in DWT, when coefficients are changed, e.g., thresh-
olded or shrunk, the constructive aliasing terms between two
adjacent subbands are no longer canceled during the synthesis
stage, thereby resulting in the onset of structured artifacts [39].

As to the construction of the UDWT, it can be shown
that if we omit the downsamplers from the analysis stage
and the upsamplers from the synthesis stage, then the perfect
reconstruction property can still be achieved. The relative
scheme for a two-level decomposition is depicted in Fig. 3-
(b). In the block diagram, by applying the noble identities [40],
the downsamplers (upsamplers) have been shifted towards the
output (input) of the analysis (synthesis) stage. Eliminating
these elements yields the UDWT. As a consequence, the coeffi-
cients in the transform domain can be obtained by filtering the
original signal by means of the following equivalent transfer
functions:

Hj
eq,l(z) =

j−1∏
m=0

H0(z2
m

),

Hj
eq,h(z) =

[
j−2∏
m=0

H0(z2
m

)

]
·H1(z2

j−1

)

(22)

where the subscripts l and h refer to the approximation (low-
pass) and detail or wavelet (bandpass and highpass) signals,
whereas j denotes the level of the decomposition. An example
of the equivalent filters frequency responses, relative to a four-
level decomposition, is shown in Fig. 4.

Let Ajx(n) and W j
x(n) denote the approximation and

wavelet coefficients, respectively, of the signal x at the jth
level of the decomposition, whereas n is the spatial index.
Since the wavelet transform is linear, from equation (14) we
have

Ajg(n) = Ajf (n) +Ajv(n) (23)

W j
g (n) = W j

f (n) +W j
v (n) (24)

Usually, only the wavelet coefficients (24) are processed for
despeckling; the baseband approximation is left unchanged.



7

2

2 2

2

2

2

+

2

2

+

Analysis stage Synthesis stage

(a)

2

4

4

4

4

+

2 +

Analysis stage Synthesis stage

(b)
Fig. 3. Two-level nonredundant wavelet decomposition / reconstruction (a) and the equivalent scheme obtained applying the noble identities (b). The
undecimated wavelet transform is obtained by eliminating the downsamplers and upsamplers contained in the shaded box.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NORMALIZED FREQUENCY

M
A

G
N

IT
U

D
E

Fig. 4. Equivalent filters frequency responses obtained from 8-tap Daubechies
orthogonal wavelets [34].

The wavelet transform is usually implemented for images
by using separable filtering along the columns and the rows
of the image. The effect of this processing is the extraction, in
each subband, of a rectangular region of the frequency plane
which corresponds, in the spatial domain, to the extraction
of horizontal and vertical details with different degrees of
resolution. The frequency plane splitting relative to a single
level decomposition is given in Fig. 5-(a). However, extracting
directional information has been demonstrated to be useful in
several image processing tasks.

Recently, multiresolution transforms embedding directional
information, such as contourlets [41], curvelets [42], [43],
and many others, have been successfully applied to denoising
in general and despeckling in particular. The nonsubsampled
contourlet transform is a combination of a nonsubsampled
Laplacian pyramid (NLP) decomposition and of nonsubsam-

pled directional filter banks (NDFB). The relative frequency
splitting is depicted in Fig. 5-(b). As in the case of the
UDWT, also the coefficients of the nonsubsampled contourlet
transform can be achieved by means of linear time-invariant
(LTI) systems directly applied to the input, which allows
statistical parameters to be easily computed. Using directional
information is effective in terms of despeckling performance
[44], even though a higher computational cost must be paid
due to the need of a nonseparable implementation.

By assuming that the transform is linear, the additive models
in (14) and (15) can be easily generalized to the transformed
domain. Specifically, for the formulation given in (14), if Wx

denotes the transform operator applied to the signal x, we have

Wg = Wf +Wv, (25)

In an analogous way, by applying both the homomorphic
filtering concept and the linear transform, the observation
model in (15) becomes

Wg′ = Wf ′ +Wu′ . (26)

The Bayesian estimator explicitly derived for the additive
model in (14), can also be applied to the additive models
defined in (15), (25), and (26) by simply changing the type of
variables and prior knowledge, that is: 1) the prior pdf of the
signal of interest (related to the reflectivity) and represented
by f , f ′, Wf and Wf ′ in equations (14), (15), (25), and (26),
in that order; 2) the pdf of the additive noise component,
represented by v, u′, Wv and Wu′ , in the same equations.

D. PDF modeling
Bayesian estimation relies on an accurate probabilistic mod-

eling of the signals under concern. However, the choice of pdfs
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Fig. 5. Frequency splitting from a single-level separable DWT (a), obtained
by lowpass (L) and highpass (H) filtering along the rows and the columns
(LL, HL, LH, and HH denote all possible combination); in (b), the splitting
obtained from the nonsubsampled Laplacian pyramid decomposition (on the
left) and the nonsubsampled directional filter banks (on the right) composing
the contourlet transform.

suitable for modeling the data of interest is not a simple task.
In Section II, we have described some of the most used pdfs for
the speckle and reflectivity processes. While the former derive
from the image formation mechanism and may be considered
as valid in most of the images where the fully developed
speckle model holds, the latter highly depend on the imaged
scene. We highlight again that different types of landscapes
and land covers induce different distributions on the reflectivity
signal. Models of the underlying land cover may help to derive
a pdf of the imaged signal, but this knowledge may not be
available for despeckling or may be insufficient. As to the
modeling of signals in the homomorphic domain, an exact
derivation of the log-intensity and of the log-amplitude of the
fading variable is available [33], whereas the characterization
of the backscattering coefficient still remains crucial.

The modeling of the involved variables may be simpler and
more robust if one works in a multiresolution, or scale-space,
domain, instead than in the spatial domain. In fact, it is well-
known that the pdf of wavelet coefficients can be approximated
by several unimodal distributions - as noticed by Mallat in his
seminal paper [35], where a generalized Gaussian was used

- that can be described by a small number of parameters.
They can be adaptively estimated from the coefficients of the
observed image, independently of the distribution of the image
that is transformed.

Validating a hypothetical pdf model is, in general, quite
hard. In some works, wavelet coefficients pdfs are validated
“globally” from the observation of the histogram of the
amplitude of the coefficients in a whole subband. However,
since the signal is nonstationary, spatially adaptive methods
should be used instead. A single observation, or realization,
of the scene is usually available; thus, one may only conjecture
that wavelet coefficients “locally” follow a given distribution
(only few samples are available to perform the validation of
the local model) whose parameters locally vary. A way to
check the validity of the pdf model is experimentally observing
the performances of despeckling filters on either true SAR or
synthetically speckled images. As a general rule of thumb,
the higher the number of parameters, or degrees of freedom,
of the pdf, the better its ability to model the true wavelet
coefficients pdf within a whole subband, but the lower their
estimation accuracy from the few samples available in a local
window within a subband and the higher the complexity of
the resulting estimator. Therefore, the use of reasonably simple
distributions may be expected to yield better results than more
complex ones, that is, overfitting is not rewarding.

Another fact that should be considered when a pdf model
is chosen is the computational cost. Some combinations of
estimation criterion and pdf model yield a Bayesian estimator
that can be achieved only numerically [45]. This fact may
prevent from using the filter when huge amounts of data need
to be processed. In this case, a closed form solution may be
preferred, even though a possible loss of performances may
be experienced.

IV. A REVIEW OF DESPECKLING METHODS

A multitude of despeckling filters can be obtained by
combining the different domains of estimation (spatial, ho-
momorphic, wavelet, homomorphic-wavelet), the estimation
criteria, e.g., MMSE, LMMSE, minimum mean absolute error
(MMAE), MAP or non-Bayesian, and the pdf models. A non-
exhaustive review and classification of methods is attempted
in the following of this section.

A. Bayesian methods in spatial domain

Early works on despeckling were deployed in the spatial
domain and were obtained by making assumptions on the
statistical properties of reflectivity and speckle, e.g., pdf and
autocorrelation function.

Lee Filter– The local-statistics filter, introduced by Jong-Sen
Lee in 1980, is reportedly the first model-based despeckling
filter. The original paper [21] contained solutions for both
additive signal-independent noise and speckle noise. The latter
solution was thoroughly developed in [46] and reviewed in
[47] together with the sigma filter. An LMMSE solution was
derived by linearizing the multiplicative noise model around
the mean of the noisy signal. In this way, the author devised
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an approximate but effective solution which is identical to the
exact solution, apart from the term (1+σ2

u)−1, in which σ2
u is

the variance of the multiplicative noise u. The contribution of
this term can be practically neglected for multi-look images,
in which σ2

u � 1 [19], [48].

Lee Refined Filter– This filter [49] was designed to overcome
the drawback of edge boundaries that are left noisy by Lee
filter. To improve filtering, once an edge is detected in a 7×7
sliding window, the algorithm uses the local gradient to esti-
mate its orientation. Eight edge-directed non-square windows
are allowed. The estimation of the local mean and of the local
variance are performed within the local window that better
fits the edge orientation. If no edge is detected, the estimates
are computed on the whole 7×7 window. Filtering results are
quite impressive, particularly on edges and high contrast areas.
Some artifacts may occur when the filter processes textured
areas that result to be overly segmented. Another limitation
is that the filter works with a window of fixed size 7×7:
textures characterized by a high spatial variation and thin linear
features may be altered. An ERS-2 image of Florence is shown
in Fig. 6-(a); processing of refined Lee filtering in Fig. 6-(b).

Frost Filter– In Frost filter [50], starting from a model of
the coherent imaging system, a parametric approximation of
the autocorrelation function of reflectivity is derived from
local statistics. Such a function is used to devise an LMMSE
solution for the noise-free reflectivity itself. The filtered value
is a linear combination of pixel values within the local window
with a Gaussian weighting function that depends on the
local coefficient of variation of the noisy image g, namely
Cg , defined as the ratio of local standard deviation to local
mean. Despite its large popularity in the image processing
community, Frost filter had no developments over time, either
by the authors or by others, apart from the heterogeneity
adjustment common to all spatial Bayesian filters [51], which
will be reviewed at the end of this subsection.

Kuan Filters– Kuan’s filter [52] exactly implements the
LMMSE solution (18) starting from a signal model that
features nonstationary mean, nonstationary variance and thus
a diagonal covariance matrix in (18). The resulting LMMSE
solution is referred to as local LMMSE (LLMMSE) to in-
dicate that it contains only local first order statistics, mean
and variance, that are easily calculated in a sliding window.
Accordingly, the optimum estimate of reflectivity, f̂ , is given
as a combination of the unfiltered noisy pixel value g and of its
local average ḡ, approximating the local mean, with weights
nonnegative and summing to one. The center pixel is more
or less weighted depending on its local signal to noise ratio
(SNR). Besides despeckling, also restoration for the effects
of the imaging system can be carried out [53]. The price is
a considerable increment in the computational complexity of
the procedure.

MAP Filters– The prototype of MAP filters in spatial domain
is the Γ-MAP filter, introduced in [54] and thoroughly ana-
lyzed in [55]. It assumes that both the radar reflectivity and
the speckle noise follow a Gamma distribution and solves the

MAP equation (21) accordingly. It is designed to smooth out
noise while retaining edges or shape features in the image.
Different filter sizes greatly affect the quality of processed
images. If the filter is too small, the noise filtering algorithm
is not effective. If the filter is too large, subtle details of the
image will be lost in the filtering process. A 7×7 filter usually
gives the best tradeoff.

A refined version of the Γ-MAP filter that features an
improved geometrical adaptivity, analogously to Lee refined
filter, was proposed in [56]. The visual result appears in Fig.
6-(c). This achievement marks the beginning of a certain per-
formance saturation in spatial despeckling methods, although
highly sophisticated Bayesian methods in space domain, fea-
turing MAP estimation associated to, e.g., Gauss-Markov and
Gibbs random fields for prior modeling have been introduced
later [57] and are still used [58].

Despeckling Filters and SAR Heterogeneity– The filters de-
scribed in this subsection can be adjusted to the heterogeneity
of SAR images, as suggested in [51]. The rationale is that
in true SAR images at least three statistical classes can be
recognized: homogeneous, textured, and strong, or persistent,
scatterer. The first class is characterized by a spatially constant
reflectivity and in this case the best estimator is a plain average
of intensity pixel values in a neighborhood. Pixel belonging
to the third class should be detected and left unprocessed, as
they are intrinsically noise-free and are used for calibration,
registration, etc. The intermediate class may be processed
through the desired filter, e.g., Lee, Frost and Kuan filters. The
resulting filters are known in the literature as enhanced Lee,
Frost and Kuan filters [51]. The Γ-MAP filters was originally
defined in enhanced version [54]. The three classes are found
by thresholding Cg . The two thresholds, namely Cmin and
Cmax are empirically set equal to σu, the standard deviation
of speckle, and

√
3σu [51].

B. Bayesian methods in transform domain
Apart from a few methods that employ multiresolution

concepts without a formal multiresolution analysis, like Meer’s
filter and especially the filter based on the Laplacian pyramid,
all filters reviewed in this subsection exploit the discrete
wavelet transform, either decimated or not.

Meer’s Filter– Meer’s filter [60] considers a local neighbor-
hood constituted by a set of three concentric sliding windows,
7×7, 5×5 and 3×3. A homogeneity index is given by Cg ,
computed over each of the windows. The spatial average on the
largest window satisfying a homogeneity criterion, defined by
thresholding its Cg , is given as output. If such a window does
not exist, Kuan’s LLMMSE estimate on the innermost 3×3
window is assigned to the center pixel. This filter is effective
in preserving point targets, linear features and edges, thanks
to its capability to shrink its window size. Performances on
point targets and linear features are slightly better than those
of Lee’s refined filter which, however, is superior on linear
edges.

RLP Filter– The rational Laplacian pyramid (RLP) filter [59]
is an evolution for speckle filtering of the denoising method
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(a) (b)

(c) (d)
Fig. 6. Examples of the application of Bayesian estimators in the UDWT domain: (a) original 5-look ERS-2 image and filtered versions obtained with (b)
Lee refined filter [49]; (c) refined Γ-MAP filter [56]; (d) Rational Laplacian Pyramid filter [59].

based on the enhanced Laplacian pyramid [61]. The latter is
commonly used for spatially scalable layered video coding
as well as for lossless and near lossless compression of still
images by exploiting quantization noise feedback [62], [63].

RLP differs from LP because its passband layers are ob-
tained by taking the ratio pixel by pixel between one level of
the Gaussian pyramid and the interpolated version of the lower
resolution upper level. While the baseband icon, corresponding
to the top of the Gaussian pyramid, may be left unprocessed
because of its high SNR obtained through cascaded lowpass
filtering and decimation stages, analogously to multi-looking,
the bandpass levels of RLP are processed by means of Kuan’s
filter [52]. The despeckled image is synthesized from the

denoised RLP. This multiscale LMMSE filter outperforms its
spatial counterpart thanks to multiresolution processing. The
result of RLP filtering can be watched in Fig. 6-(d).

Homomorphic Filtering in Wavelet Domain– Filtering in
the wavelet-homomorphic domain (see Fig. 2-(d)) has been
extensively used during the last twenty years and potentially
superior performances over conventional spatial filters have
been recognized [64], [65]. In fact, each wavelet subband is
associated to a speckle contribution that may be exactly mea-
sured [66] and filtered out. Thus, spatially adaptive filtering
become also scale-adaptive.

Classical hard- and soft-thresholding methods [67] were
applied in [68]. Thresholding based on nonlinear functions
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(sigmoid functions), adapted for each subband, has been used
in [69]. In [70], MMSE estimation has been used associated to
a combination of generalized Gaussian (GG) / Gaussian pdfs
for the reflectivity and for the noise components, respectively.
In [71], MMSE estimation have been used after modeling
wavelet coefficients by means of Gaussian mixtures and
Markov random fields to characterize their spatial and inter-
scale dependency. In [72], the MAP criterion has been used
associated to α-stable distributions for the prior of the signal
and to a log-normal pdf for the noise. In [73], MAP estimation
is applied based on normal inverse Gaussian distributions. In
[74], MMAE estimation has been used associated to a Cauchy
prior for the reflectivity signal and to a Gaussian pdf for the
noise; the previous method has been extended to the MAP
criterion in [75]. In [76], MAP estimation is used associated
to a heavy-tailed Rayleigh prior for the signal and to Gamma
or Nagakami models (for images in intensity or amplitude
format, respectively) for the noise.

Non-Homomorphic Filtering in Wavelet Domain– Non-
homomorphic wavelet-domain despeckling (see Fig. 2-(c)) has
been considered less frequently in the literature. Even though
the absence of the bias due to the nonlinear mapping of the
logarithm is an advantage, the estimation of the parameters of
the signal and noise pdfs becomes more complex. In fact, in
the equivalent additive-noise model for the non-homomorphic
case, the noise term is signal-dependent and, therefore, its
parameters are much more difficult to be estimated.

In the seminal paper by Foucher et al. [77], undecimated
wavelet was firstly used for despeckling. Estimation is based
on the MAP criterion and the Pearson system of distributions.
In [78], the LMMSE estimator, optimal under the Gaussianity
assumption, has been presented. In [79], the LMMSE estima-
tor with mixtures of Gaussian pdfs is enforced by the use
of the ratio edge detector [80] to improve despeckling of
contours. In [81], MAP estimation is used along with the
assumption of normal inverse Gaussian distributions for the
wavelet coefficients. MAP estimation associated to locally-
varying generalized Gaussian (GG) distributions has been used
in [82]. In [83] a segmentation-based MAP despeckling with
GG priors is achieved. The method in [82] has been extended
to the domain of the nonsubsampled contourlet transform
(NSCT) in [44]. Another method in the contourlet domain has
been proposed in [84]. MAP and MMSE estimators associated
to Laplacian and Gaussian PDFs for the signal and noise
components have been proposed in [85]. Generalized Γ and
Gaussian distributions have been used for MAP despeckling
in [86], [87]. An interesting example of despeckling not
pertaining SAR but ultrasound images and based on statistical
classification of signal/noise wavelet coefficients is presented
in [88]. Also non-Bayesian methods based on the classification
of signal and noise wavelet coefficients have been proposed
in [89], [90].

C. Non-Bayesian approaches

A number of despeckling filters published over the last thirty
years do not follow a Bayesian approach. In the following, the
most popular approaches and related methods are summarized.

Order Statistics and Morphological Filters– Starting with
median filter, order-statistics filters encountered a certain pop-
ularity for despeckling, thanks to their peculiar features of
edge preservation. A conditional version of median filter [91],
replaces the central pixel value of the local sliding window
with the sample median if and only if the former is recognized
as an outlier, i.e., an extremal value within the window. An
adaptive version of the weighted median filter was specifically
proposed for despeckling [92]. It is substantially a center-
weighted median filter, in which the weight is adaptively
calculated from local statistics, in order to preserve edges,
retain textures and smooth the noisy background.

Geometric filter (GF) [93] is a powerful tool for edge-
preserving smoothing of noise and especially of speckle,
the purpose it was designed for. GF iteratively erases noise
samples regarded as geometric artifacts of the 3-D shape
defined by the 2-D gray-level function. GF is a nonlinear local
operator that exploits a morphologic approach to smooth noise
one image line at a time using a complementary hull algorithm,
whose iterations converge towards roots, i.e., steady patterns
invariant to further iterations, in which spatial details thinner
than a critical size are completely suppressed. Thicker objects
are just slightly smoothed and therefore fairly preserved as
filtering is iterated. A decimated version of GF [94], suitable
for spatially correlated noise, including speckle, consists of
applying GF to fhe four polyphase components, in which
the original image is preliminarily decomposed, and of re-
interleaving the filtered components to yield the denoised
image.

None of the methods reported above explicitly accounts for
the speckle noise model. However, their computational speed
together with the capability of preserving abrupt discontinu-
ities of level was found to be of interest in computer vision and
object recognition applications. Nowadays these methods are
less and less frequently used, though they might be valuable
for high-resolution images of man-made environments, in
which persistent scatterers and not fully developed speckle
are frequently encountered.

Anisotropic Diffusion– Anisotropic diffusion [95] is a tech-
nique, extremely popular in the image processing community,
that aims at reducing image noise without removing signif-
icant parts of the image content, typically edges, lines or
other details that are important for the interpretation of the
image. The derivation speckle reducing anisotropic diffusion
(SRAD) is tailored to coherent images [96]. SRAD is the
edge-sensitive diffusion for speckled images, in the same way
that conventional anisotropic diffusion is the edge-sensitive
diffusion for images corrupted with additive noise. Just as
the Lee and Frost filters utilize the coefficient of variation in
adaptive filtering, SRAD exploits the instantaneous coefficient
of variation, which is shown to be a function of the local gra-
dient magnitude, and Laplacian operators. SRAD overcomes
traditional speckle removal filters in terms of mean preser-
vation, variance reduction, and edge localization. However,
the unrealistic smoothness introduced after iterated processing
makes SRAD unsurpassed for cartoon-like images, i.e., made
up by textureless geometric patches, but may be unsuitable for
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real SAR images, because fine details and textures that may
be useful for analysis are destroyed. A notable application of
SRAD is for coastline detection in SAR images [97].

Simulated Annealing Despeckling– Simulated Annealing
(SA) was originally used for SAR image despeckling and
segmentation by White [98]. SA is a stochastic optimization
method used for finding the global maximum of an a-posteriori
multivariate distribution, or equivalently the global minimum
of a multidimensional energy function, which is often made
difficult by local maxima (minima), which can easily trap the
optimization algorithm. SA is iterative by nature, where a new
configuration for iteration is found from the previous config-
uration by applying a generation mechanism and accepting
the new configuration using an acceptance criterion based on
the energy divergence. The temperature variable controls the
optimization, and it is decreased throughout the optimization
process. For the first iterations, when it is high, there is a high
probability of accepting configurations resulting in an increase
in the energy, thus making SA able to get out of local minima.
As the temperature is gradually decreased, the probability of
accepting configurations resulting in increasing energies is
reduced, so that at the end of the minimization no increases
are accepted, and the global minimum configuration is ideally
reached. Despite its potentiality, the unlikely cartoon-like
smoothness produced by SA was noticed in [99]. After that,
SA was used only in conjunction with complex multivariate
pdf models, like in polarimetric SAR [100].

Sigma Filter– A conceptually simple noise smoothing al-
gorithm is the sigma filter originally developed for addi-
tive signal-independent noise [101] and promptly extended
to speckle removal [102] also in a comparison with local-
statistics filtering [47]. This filter is motivated by the sigma
probability of the Gaussian distribution, and it smooths the
image noise by averaging only those neighborhood pixels
which have the intensities within a fixed sigma range of the
center pixel. Consequently, image edges are preserved, and
subtle details and thin lines, such as roads, are retained.

An enhanced version of Lee’s sigma filter [103] is derived
and proposed for unbiased filtering of images affected by
multiplicative noise with speckle statistics. Instead of the plain
point value, a more accurate start value is first produced, and
then fed to the procedure of conditional average. A robust
estimate of the nonstationary mean is defined according to
a decision rule. The start value is provided by a nonlinear
decision rule, aimed at rejecting noisy samples, that is per-
formed on the averages computed within four isotropically
balanced pixel sets able to capture step edges and thin lines.
The level range of pixels to be averaged, adaptively defined as
the product of the space-variant mean estimate by the constant
noise variance, is also forced to account for the imbalance of
the noise distribution, for unbiased processing.

Eventually, in [104] the bias problem is solved by redefining
the sigma range based on the speckle pdf. To mitigate the
problems of blurring and depressing strong reflective scatter-
ers, a target signature preservation technique is developed.
In addition, the LLMMSE estimator for adaptive speckle

reduction [21], [52] is incorporated.

Bilateral Filtering– The bilateral filter (BF), originally in-
troduced in [105] for gray scale images, has been recently
extended to despeckling in [106]. The rationale of BF is
that each pixel value within a sliding window is weighted
both for the distance to the center, as in Frost filter, and
for the difference to the value of the center, as in sigma
filter. In an adaptive version of BF suitable for despeckling
[107], the spatial weighting is a Gaussian function, whose span
depends on the local coefficient of variation, analogously to
the enhanced Frost filter. A rule borrowed from [108] defines
the weights as the gray level difference between the central
pixel and each neighboring pixel, as the probability of two
values in a speckled image that exhibit the same reflectivity
value. The adaptive method in [107] exploits an order statistic
filter, like [91], to reject outliers that often occur. Despite its
elegance and relatively low computational cost, in the presence
of strong noise, like for single-look images, speckle-oriented
BF suffers from limitations given by the finite size spatial
function, same as all local spatial filters. A way to overcome
such a drawback is adopting a nonlocal filtering approach.

Nonlocal Filtering– Among the despeckling methods that
cannot be included in the classical Bayesian framework,
nonlocal (NL) filtering is surely one of the most interesting and
promising solutions [108], [109]. NL filtering is a generaliza-
tion of the concept of data-driven weighted averaging, in which
each pixel is weighted according to its similarity with the
reference pixel, as in the pioneering sigma filter. The NL mean
filter [110] extends the above method, by defining the weights
as a function of the Euclidean distance between a local patch
centered at the reference pixel and a similar patch centered
at a given neighboring pixel. The block-matching 3-D filter
(BM3D) [111] combines the advantages of the NL principle
and of the wavelet representation: 3-D groups of pixels are
formed by collecting blocks of pixels drawn from different
image locations and chosen according to their similarity with
a reference block, and Wiener filtering is applied to the wavelet
coefficients of such 3-D groups.

In [108], NL filtering has been applied to despeckling by
substituting the Euclidean distance used in the NL mean
filter with a probabilistic measure that takes into account the
pdf of SAR data, and by proposing an iterative procedure
for refining the weights. Following a similar approach, an
improved similarity measure has been recently proposed in
[112]. Other approaches consider a Bayesian NL framework
[113], which has been applied to the despeckling of both
ultrasound images [114] and SAR images [115]. The NL
principle has been successfully applied also to despeckling in
the wavelet domain [109], [116]. Namely, in [109] the authors
extend the BM3D filter by redefining the similarity measure
among block of pixels according to [108], and employing the
LLMMSE principle [78] in the estimation step.

Total Variation Regularization– Another popular denois-
ing approach is based on total variation (TV) regularization
[117]. In such a method, denoising is achieved through the
minimization of a suitable cost function, combining a data
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Fig. 7. Flowchart of Bayesian filtering in the undecimated wavelet domain.

fidelity term with a prior that enforces smoothness while
preserving edges. Several solutions exist to apply TV methods
in the case of multiplicative noise [118]–[124]. These solutions
differ according to the domain in which the optimization is
performed, which can be either the intensity or the logarithm
of the intensity, and the definition of the data fidelity term.
In [119], the authors define the optimization problem in the
original intensity domain and apply a data fidelity term based
on a maximum a posteriori approach, assuming a Gamma
distributed speckle and a Gibbs prior. Due to the difficulty
of defining strictly convex TV problems in the original inten-
sity domain, several authors have considered the logarithmic
domain instead. When applying TV regularization in the
logarithmic domain, convex TV problems can be obtained by
applying different data fidelity terms, including the L2 norm
[120], MAP based on Gamma distributed speckle [120], [124],
a combination of the previous terms [121], the generalized
Kullback-Leibler divergence [123], the L1 norm on curvelet
coefficients [122]. It is worth noting that all the above methods
have been mainly validated on simulated data. The literature
regarding the application of such methods to actual SAR
images is quite scarce [125]–[127], and there is a general lack
of comparisons with Bayesian and NL despeckling methods.

Despeckling based on Compressed Sensing– A new signal
representation model has recently become very popular and
has attracted the attention of researchers working in the field
of restoration of images affected by additive noise as well as
in several other areas. In fact, natural images satisfy a sparse
model, that is, they can be seen as the linear combination of
few elements of a dictionary or atoms. Sparse models are at the
basis of compressed sensing [128], which is the representation
of signals with a number of samples at a sub-Nyquist rate. In
mathematical terms, the observed image is modeled as y =
Ax+w, where A is the dictionary, x is a sparse vector, such

that ‖x‖0 ≤ K, with K � M , with M the dimension of x,
and w is a noise term that does not satisfy a sparse model.
In this context, denoising translates into finding the sparsest
vectors with the constraint ‖y − Ax‖22 < ε, where ε accounts
for the noise variance. The problem is NP-hard, but it can
be relaxed into a convex optimization one by substituting the
pseudo-norm ‖ · ‖0 with ‖ · ‖1. Recently, some despeckling
methods based on the compressed sensing paradigm and sparse
representations have appeared [129]–[131].

V. MULTIRESOLUTION BAYESIAN FILTERING

In this section, we review some methods recently proposed
for despeckling in the undecimated wavelet domain that use
a multiresolution analysis. The methods refer to the additive
model in (26), that is, they do not exploit the homomorphic
transform, which may introduce bias in the estimation of the
despeckled image.

Fig. 7 outlines the flowchart of Bayesian despeckling in
UDWT domain. As it appears, the majority of processing is
carried out in the transform domain. Statistics in the transform
domain are directly calculated from the spatial statistics of
the image by exploiting the equivalent filters (4), as firstly
proposed by Foucher et al. [77].

A. LMMSE filter

In the case of zero-mean Gaussian pdf modeling for the
quantities Wf and Wv , the MMSE and MAP Bayesian esti-
mators are identical. The expression of the filter has a simple
and closed analytical form that depends only on the space-
varying variance of the wavelet coefficients [78], that is

ŴLMMSE
f = Wg ·

σ2
Wf

σ2
Wf

+ σ2
Wv

= Wg ·(1+SNR−1)−1. (27)
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Thus, LMMSE estimation corresponds to a shrinkage of the
noisy coefficient by a factor inversely related to its SNR.
Unfortunately, the wavelet coefficients of noise–free reflec-
tivity do not respect the Gaussian assumption, especially in
the lowest levels of the wavelet decomposition, so that its
performance are inferior to more complex Bayesian estimators.
In Fig. 10-(a) a single-look COSMO-SkyMed image is shown.
In Fig. 10-(b) the despeckled image obtained by applying the
LMMSE estimator is presented.

B. MAP filters

In this section, we present two different filters that use the
MAP estimation criterion but different models for the pdfs of
the wavelet coefficients relative to the original reflectivity and
to the additive signal–dependent noise.

Equation (21) can be rewritten as

ŴMAP
f =

arg maxWf
[ln pWV |WF

(Wg −Wf |Wf ) + ln pWF
(Wf )] (28)

Since the signal and noise processes are nonstationary, space-
varying pdfs must be considered. The pdfs that are considered
here can be seen as a trade-off between simplicity (few param-
eters to be estimated from the observed data) and modeling
capability.

MAP–GG filter– In [82], the MAP criterion is combined
with a generalized Gaussian (GG) distribution for the wavelet
coefficients. Since the birth of the wavelet recursive algorithm
by Mallat [35], a GG pdf has been used to model image
wavelet coefficients and several other authors use the GG dis-
tribution for many image processing tasks involving wavelets.
A zero-mean GG pdf depends only on two parameters and
is characterized by being symmetric around the mean. Its
expression is given by

pX(x) =

[
ν · η(ν, σ)

2 · Γ(1/ν)

]
e−[η(ν,σ)·|x|]

ν

, (29)

where Γ is the Gamma function, σ is the standard deviation
of the distribution, ν is a shape factor, and η(ν, σ) is given
by

η(ν, σ) =
1

σ

[
Γ(3/ν)

Γ(1/ν)

]1/2
. (30)

The GG distribution is reasonably simple, since the use of
only two parameters allows different levels of “peakedness”
to be achieved. As particular cases, the GG pdf includes both
the Laplacian and the Gaussian pdfs, for ν = 1 and ν = 2,
respectively. A plot of GG pdf curves for different values of
ν is shown in Fig. 8

Substituting (29) into (28) yields

ŴMAP
f = arg max

Wf

[
ln

ηWf
νWf

2Γ(1/νWf
)
−
(
ηWf
|Wf |

)νWf
ln

ηWv
νWv

2Γ(1/νWv )
− (ηWv

|Wg −Wf |)νWv
]

(31)

In [82], a method for the estimation of the parameters relative
to the GG model, i.e., the standard deviation σ and the shape
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Fig. 8. Zero-mean GG pdfs obtained with unity variance and different νs.

factor ν of the distributions relative to Wf Wv , is given. The
estimation of the parameters is based on the computation of
some moments of the observable variables g and Wg . In the
implementation of the filters, these moments are substituted by
spatial averages. The solution of equation (31) is not known
in a closed analytical form and a numerical optimized solution
has been proposed in [82].

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

W
g

W
fM

A
P

(a)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

W
g

W
fM

A
P

(b)

Fig. 9. Mapping of the ŴMAP
f estimates vs the observed Wg : in (a) σWf =

2, σWv = 1, νWv = 2 and νWf varies from 0.4 to 2 with step 0.2; in (b)
νWv = 1.2 (the other parameters are unchanged).

In Fig. 9, a set of curves plotting ŴMAP
f vs Wg is given for

particular values of the parameters of the GG model: in Fig.
9-(a), the curves refer to σWf

= 2, σWv
= 1, νWv

= 2 and
to νWf

varying from 0.4 to 2 with step 0.2; in Fig. 9-(b), the
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parameter νWv
has been changed to 1.2 (the other parameters

were not modified). Such curves define a remapping of the ob-
served coefficients onto noise-free ones in a similar as done by
hard and soft-thresholding schemes proposed commonly used
for denoising signals affected by additive signal-independent
noise [67], [132]. It is important, however, to point out that for
despeckling the wavelet coefficients are modified according to
the multiplicative model of speckle and thus adaptively vary
according to the locally estimated parameters.

MAP–LG filter– In [85], the empirical distribution of the
shape factor of noise–free reflectivity coefficients has been
investigated and an interesting behavior was noticed. For the
lowest levels of decomposition, the shape factor is usually very
close to one, whereas it tends to shift towards two in highest
ones. The shape factor of signal–dependent noise coefficients,
instead, are mostly concentrated around the value two. These
facts suggest directly introducing a combination of Laplacian
and Gaussian pdfs into the modeling: this yields some com-
putational advantages with respect to using the more general
GG pdf. In fact, by assuming that the wavelet coefficients
Wv and Wf follow a zero-mean Gaussian and zero–mean
Laplacian distribution, respectively, yields the following closed
form estimator [133]:

ŴMAP
f = arg max

Wf

pWf |Wg
(Wf |Wg)

=


Wg − ρ, if Wg > ρ

Wg + ρ, if Wg < −ρ
0 otherwise

(32)

where ρ =
√

2σ2
Wv
/σWf

. Thus, the estimator is equivalent to a
soft-thresholding algorithm with a locally adaptive threshold.
Eq. (32) has been originally devised in [134] and used for
processing ultrasound images with decimated wavelets.

C. Adjustments for SAR image heterogeneity

In several despeckling methods, different filtering strategies
are used according to the texture content of the scene. In
[51], [54], the coefficient of variation is used to discriminate
among homogeneous, textured and highly heterogeneous (or
point target) areas. Pixel belonging to the first two classes
are filtered by using simple averaging and Γ-MAP, or another
local-statistics filter, whereas no filtering is attempted on point
targets. A strongly scattering target, however, is concentrated
in space, but after wavelet analysis its response will be
somewhat spread because of the finite support of the wavelet
function. Thus, also UDWT coefficients around a point target
one pixel wide will depend on the target response, unlike
what happens in space. In the past, this was perhaps the main
objection towards a systematic use of the wavelet transform to
analyze SAR images. Starting from [83] a preprocessing step
of point targets, and thicker strong scatterers in general, was
devised. Targets are detected as upper percentiles of the image
histogram, removed from the image and stored. Void pixels are
smoothly filled by interpolating their neighbors. Then, wavelet
analysis is performed. After synthesis of the despeckled image,
point targets are reinserted in their original places.

The leftover two classes, namely homogeneous and tex-
tured, can be handled also by multiresolution methods to
improve their performance. In [83], UDWT subbands are
segmented into texture classes according to an energy index
computed in the UDWT domain. Several classes of texture,
from textureless onward, can be recognized. The wavelet coef-
ficient of each segment on each subband are supposed to have
a unique shape factor of the GG function, while the variance
is calculated for each coefficient. Thus, the calculation of the
ν is more accurate than in [82], thanks to the more consistent
sample size. In [85], the segmentation has been extended to the
MAP-LG filter. This time there are no parameters to estimate
on segments, as for GG. Thus, a classified approach consists
of switching among different estimators, e.g., MAP-LG and
LMMSE, depending on the degree of texture of each segment.
In Fig. 10-(c) and 10-(d), the results of MAP-GG and MAP-
LG estimators, the former with segmentation (GG–MAP–S),
the latter with classification (LG–MAP–C), on the image in
Fig. 10-(a) are shown.

A segmentation based approach seems also a natural solu-
tion to changes in the speckle model occurring as the spatial
resolution of single-look products increases. This happens for
very high resolution (VHR) new generation SAR systems,
especially with Spotlight products. As the size of the elemen-
tary resolution cell decreases, the assumption of distributed
scatterers is less and less verified. In substance, what is
homogeneous at 10 m scale may no longer be so at 1 m. So, we
expect that VHR SAR images are more textured and contain
more persistent scatterers, and less homogeneous regions, than
earlier products. A viable solution with segmented processing
in UDWT domain is introducing corrective factors for under-
smoothing in textured segments, depending on the class of
texture energy measured in the UDWT domain, analogously
to what proposed in [78].

VI. NON-LOCAL MEAN FILTERING

The NL mean (NLM) filter proposed by Buades et al. in
[110] is based on the simple idea of estimating the noise free
image as a weighted average of noisy pixels

f̂(n) =

∑
m w(n,m)g(m)∑

m w(n,m)
(33)

where the weights w(n,m) take into account the “similarity”
between pixels g(n) and g(m). The key idea of the NLM
filter is that the weights w(n,m) are based on the Euclidean
distance between local patches centered at g(n) and g(m),
according to

w(n,m) = exp

(
− 1

h

∑
k

αk|g(n+ k)− g(m+ k)|2
)

(34)

where αk’s define a Gaussian window and h controls the decay
of the exponential function.

The NLM filter obtains a very good performance in the
presence of additive white Gaussian noise, since the Euclidean
distance is a natural similarity measure for this kind of model.
However, in the case of SAR images, the weights have to
be generalized to the case of multiplicative and non-Gaussian
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(a) (b)

(c) (d)
Fig. 10. Examples of the application of Bayesian estimators in the UDWT domain: (a) original COSMO-SkyMed 4-look StripMap image; filtered versions
obtained with (b) LMMSE; (c) MAP-GG with segmentation (GG–MAP–S) (d) MAP-LG with classification (LG–MAP–C).

speckle. It is also interesting to combine the effectiveness of
the NL principle with the benefits of the sparse representation
offered by the wavelet transform. In the following, we will
review two SAR despeckling filters based on the NL principle
in the spatial [108] and in the wavelet domain [109].

A. Probabilistic Patch-Based Filter

The probabilistic patch-based (PPB) filter, proposed by
Deledalle et al. in [108], extends the NLM filter to the domain
of SAR images by exploiting its connections to the weighted
maximum likelihood extimator (WMLE). Namely, under the
WMLE principle the noise-free image can be estimated as
the value maximizing a weighted likelihood function of the

observed data

f̂(n) = arg max
f

∑
m

w(n,m) log p(g(m)|f). (35)

In the above equation, the weights w(n,m) can be thought of
as a measure indicating to what extent a pixel at position m
has the same distribution as the reference pixel at position n.

The definition of the weigths w(n,m) is the key problem
of the WMLE approach. In the PPB filter, this problem is
solved by expressing the weights as the probability, given the
observed image g, that two patches centered at positions n and
m can be modeled by the same distribution. By assuming the
independence of the pixels of the patches, the weights can be
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(a) (b)
Fig. 11. Examples of the application of (a) PPB filter and (b) SAR–BM3D filter to the 4-look COSMO-SkyMed image in Fig. 10-(a).

formally expressed as

w(n,m) =
∏
k

p(f(n+k) = f(m+k)|g(n+k), g(m+k))1/h

(36)
where k varies over the image patch and h is a decay param-
eter. According to a Bayesian framework, without knowledge
of the prior probabilities p(f(n+k) = f(m+k)), the posterior
probabilities in equation (36) can be assumed proportional to
the likelihood p(g(n + k), g(m + k)|f(n + k) = f(m + k)).
This permits to adapt the weights of the PPB filter to several
image distributions. For the case of SAR images, by assuming
that pixel amplitudes a =

√
g are modeled as independent

and identically distributed according to a Nakagami-Rayleigh
distribution, the PPB weights can be derived as [108]

w(n,m) = exp

[
− 1

h

∑
k

log

(
a(n+ k)

a(m+ k)
+
a(m+ k)

a(n+ k)

)]
(37)

and the despeckled image can be obtained according to the
WMLE as

f̂(n) =

∑
m w(n,m)a2(m)∑

m w(n,m)
. (38)

In [108], the model is further improved by letting the
probabilities in (36) depend also on a previous estimate of the
noise-free image. This leads to an iterative filtering approach,
in which the weights are updated at each iteration according
to the previous result of the filter. For the detailed derivation
of the iterative PPB filter, the interested reader is referred to
[108].

An example of the application of the PPB filter to the
COSMO-SkyMed image in Fig. 10-(a) is given in 11-(a). As
it appears, PPB filtering overly smooths textures, if any, and
tries to achieve a hard segmentation of the scene also in the
presence of softly switching classes.

B. SAR Block Matching 3-D Filter

The SAR block matching 3-D (SAR-BM3D) filter, proposed
by Parrilli et al. in [109], is a SAR-oriented version of
the block matching 3-D filter [111], which applies the NL
principle in combination with a wavelet representation. The
key idea of the BM3D filter is to apply the NL principle for
collecting groups of similar image patches, and to compute
a wavelet decomposition of the resulting 3-D blocks. The
NL grouping of similar patches is expected to form a highly
correlated 3-D signal, which will likely have a very sparse
representation in the wavelet domain, leading to an effective
separation of noise–free and noisy coefficients.

The processing flow of the BM3D filter can be summarized
by the following steps: 1) for each reference patch in the
observed image, collect the most similar patches according to
a Euclidean distance criterion, and form a 3-D group; 2) apply
3-D wavelet transform, denoising of wavelet coefficients, and
inverse transform; 3) return all filtered patches to their original
positions, and combine them using suitable weights. It is worth
noting that the above approach can be seen as a collaborative
filtering: in general, the patches will be highly overlapped,
so that each filtered pixel will result from the combination
of several filtered patches. In [111], the final BM3D filter
is obtained by repeating the above processing flow in a two
iteration procedure. In the first step, wavelet domain denosing
is achieved by simple hard-thresholding, in order to yield a
coarsely denoised image. The second step uses the denoised
image obtained after the first step to improve the 3-D grouping
accuracy, and replaces hard-thresholding with Wiener filtering,
where the energy spectrum of the noise-free image is estimated
form the coarsely denoised image.

In order to adapt the BM3D filter to the case of SAR images,
the SAR-BM3D filter considers two main modifications: 1)
the similarity measure between patches is computed according
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to (37), following the same approach as in [108]; hard-
thresholding and Wiener filtering are replaced with a local
linear minimum mean square error (LLMMSE) estimator [78]
based on the additive signal-dependent noise model in (25).
According to the two step procedure of the original BM3D
filter, in the first step the LLMMSE estimator is based only
on the observed image g and the filtered wavelet coefficients
are obtained according to equation (27), whereas in the second
step it approximates the moments of the noise-free image
according to the output of the first step, and the filtered wavelet
coefficients are obtained according to

Ŵf (n) =
Ŵ 2
f,1(n)

Ŵ 2
f,1(n) + σ2

Wv

Wg(n) (39)

where Ŵf,1 are the noise-free wavelet coefficients estimated
at the first step and the variance of the wavelet coefficients of
the signal-dependent noise is obtained as

σ2
Wv

=
1

|G|
∑
k∈G

[
Wg(k)− Ŵf,1(k)

]2
(40)

with G denoting the set of wavelet coefficients belonging to
a 3-D group. The final despeckled image is obtained as a
weighted average of the overlapped denoised patches, where
the weights for each patch are inversely proportional to the
corresponding value of σ2

Wv
[109].

An example of the application of the SAR-BM3D filter to
the COSMO-SkyMed image in Fig. 10-(a) is given in 11-(b).

VII. TOTAL VARIATION REGULARIZATION

Image denoising through TV regularization can be defined
as the solution of a minimization problem

f̂ = arg min
f
J(f, g) (41)

where the cost function to be optimized can be expressed as

J(f, g) = Φ(f) + λΨ(f, g). (42)

In the above equation, Φ(f) denotes a regularization term
including prior information about the noise-free image f ,
whereas Ψ(f, g) denotes a data fidelity term.

The regularization term is usually defined as the TV norm
of the noise-free image, i.e.

Φ(f) =
∑
n

|∇f(n)| (43)

where |∇f(n)| denotes the magnitude of the gradient of f and
can be computed as

|∇f(n)| =
√
fx(n)2 + fx(n)2 (44)

where fx(n) and fy(n) denotes horizontal and vertical first
order differences evaluated at pixel n, respectively. The mini-
mization of the TV norm tends to promote a piecewise smooth
image, which is usually a good prior for natural images, since
it preserves important structures like edges.

The data fidelity term can be defined according to several
different approaches. A popular approach is to set the data

fidelity term equal to the negative of the log-likelihood of f
given the observed image g, that is

Ψ(f, g) = − log p(f |g). (45)

If the TV norm is interpreted as a negative log-prior term,
i.e., Φ(f) = − log p(f), it is evident that the solution of the
problem in (41) is equivalent to the MAP estimate of f .

Fig. 12. Example of the application of the TV filter in [122] to the 4-look
COSMO-SkyMed image in Fig. 10-(a).

A. Despeckling using TV Regularization
When it comes to despeckling, the main problem is adapting

the TV framework to the multiplicative noise model. In
[119], the above problem is tackled in the original intensity
domain by assuming a Gamma-distributed speckle, which in
turn implies a Gamma p(f |g). The resulting problem can be
expressed as

f̂ = arg min
f

∑
n

|∇f(n)|+λ
∑
n

(
log f(n) +

g(n)

f(n)

)
. (46)

Despite its elegance, the above approach suffers from the fact
that the functional is convex only for 0 < f < 2g. In order
to obtain a convex problem, several authors have considered
the logarithmic domain. A simple solution is to keep the same
data fidelity term as in (46), but to replace f by f ′ = log f in
the regularization term [120], which yields

f̂ ′ = arg min
f ′

∑
n

|∇f ′(n)|+ λ
∑
n

(
f ′(n) + g(n)e−f

′(n)
)
.

(47)
Another natural solution is to consider a quadratic data fidelity
term [117], [120], which yields

f̂ ′ = arg min
f ′

∑
n

|∇f ′(n)|+ λ
∑
n

(f ′(n)− g′(n))
2
. (48)

Interestingly, the above solution is still equivalent to a MAP
estimate when we can approximate the logarithmically trans-
formed speckle as Gaussian.
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All of the above approaches consider solutions in the spatial
domain. In [122], Durand et al. propose to combine the
advantages of the TV regularization framework with those
offered by a sparse representation. The proposed solution
consists in computing the data fidelity term in the domain
of a redundant multiscale representation. The rationale is
that relevant structures in the image are more effectively
preserved in a multiscale representation, while a TV prior
helps in removing characteristic artifacts caused by wavelet
thresholding. In order to limit the effects of noisy wavelet
coefficients, the authors of [122] propose to compute the data
fidelity term on a hard-thresholded version of the observed
coefficients, where the coefficients are obtained by applying a
curvelet transform to the log-transformed intensity image. The
authors also suggest using an underoptimal threshold, so as to
preserve as much as possible curvelet coefficients relevant to
edges and textures. In order to take into account the long tailed
distribution of curvelet coefficients, the data fidelity term is
defined as the mean absolute error between the despeckled
coefficients and the hard-thresholded coefficients. The final
optimization problem can be expressed as

f̂ ′ = arg min
f ′

∑
n

|∇f ′(n)|+ λ
∑
n

|Wf ′(n)−H[Wg′(n)]|

(49)
where H[·] denotes the hard-thresholding operator. Since the
above estimator is prone to bias, the authors of [122] propose
to compute the despeckled image as f̂ = exp(f̂ ′)(1 +
φ1(L)/2), where φ1(L) is the first-order polygamma function
and represents the variance of L-look log-transformed speckle
[33].

In general, the solution of the aforementioned optimization
problems requires a suitable minimization scheme. According
to the properties of the functional to be minimized, several
schemes can be used, including gradient projection [118],
iterative splitting methods [122], [123], inverse scale space
flow [120]. The details of such minimization schemes are
beyond the scope of this tutorial and the related literature is
really vast. The interested reader is referred to the above cited
papers and the references therein.

An example of the application of the filter proposed in [122]
to the COSMO-SkyMed image in Fig. 10-(a) is given in Fig.
12.

VIII. ASSESSMENT OF DESPECKLING FILTERS

One of the most challenging tasks is the validation and
quality assessment of data processed for speckle reduction.
The most evident problem is that the noise-free reflectivity that
we wish to estimate is unknown, so that no comparison can
be carried out between the output of the despeckling process
and the actual ground truth. Another important issue is the
relationship between quality and fidelity of despeckled SAR
data. Like many other denoising frameworks, the quality of a
processed SAR image is usually evaluated in terms of blurring
of homogeneous areas, i.e., suppression of speckle noise, and
detail preservation in heterogeneous areas. Nonetheless, in in-
coherent SAR imagery, a fundamental part of the information
is represented by the relative values of the reflectivity of the

targets, which allow measurements and inferences on the target
scene. Consequently, the radiometric preservation of the signal
is an important requirement: a good despeckling filter should
not introduce bias on the reflectivity.

An immediate and subjective approach for quality assess-
ment is represented by visual inspection of filtered images.
Visual inspection permits detection of the main human–visible
features that characterize the behavior of a despeckling filter.
Such features include edge preservation capability, degree of
blur, point target preservation, as well as structural artifacts
which are hardly detected by objective and direct measure-
ments. On the other hand, visual assessment does not allow
either quantitative comparisons between the performances of
different despeckling filters to be made or the bias introduced
by the filter to be effectively estimated.

In order to overcome the limitations of visual comparison,
several objective performance indexes have been proposed in
the literature for the quality assessment of despeckling filters.
They can be mainly divided into two classes: with–reference
and without–reference indexes.

With–reference indexes are commonly used in the image
denoising field. Their use implies that the noise–free, or refer-
ence, image is known. A typical approach consists in choosing
a reference image, either optical or synthetic, representing the
actual reflectivity or ground–truth, and creating a synthetically
degraded version according to a given signal model. These in-
dexes permit a quantitative and objective comparison between
the performances of different filters, which are expected to
perform similarly on real SAR images. Moreover, insights
on filters behavior on specific image features, like edge
preservation and homogeneous areas smoothing, can be easily
highlighted by choosing appropriate reference images and
even synthetic–generated patterns. Unfortunately, experimental
results carried out on simulated SAR images often are not
sufficient to infer the performances of despeckling filters on
real SAR images, since the synthetically speckled image may
not be consistent with the actual SAR image formation and
acquisition processes. Furthermore, the statistical properties
of the chosen reference image and of a real ground–truth
reflectivity can substantially differ.

On the contrary, without–reference indexes do not trust
on the knowledge of the ground–truth. They are uniquely
based on specific statistical hypotheses on the signal model.
Since the signal model is strongly dependent on the degree
of scene heterogeneity, a supervised selection of the most
appropriate areas for the computation of a specific index, e.g.,
homogeneous areas, may be required.

In the following, the most used indexes belonging to both
the above mentioned classes are presented. Note that the
statistical operator of expectation E[·] and the moments of
the involved variables, such as the variance and covariance,
here denoted as Var[·] and Cov[·] for the sake of simplicity,
should be replaced by their empirical versions based on spatial
averages when evaluating the indexes.

A. With–reference indexes
The mean square error (MSE), or Euclidean distance, be-

tween the ground–truth f and the despeckled image f̂ , and
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TABLE I
LIST OF COMMONLY USED WITH-REFERENCE INDEXES FOR EVALUATING PERFORMANCES OF DESPECKLING ALGORITHMS.

Index Note
MSE = E[(f̂ − f)2] f , f̂ : speckle–free despeckled images
SNR = 10 · log10

[
Var[f ]
MSE

]
Var[f ]: speckle–free image variance

PSNR = 10 · log10

[
f2

PEAK
MSE

]
fPEAK: maximum value allowed by the samples dynamic range

SMSE = 10 · log10

[
E[f2]
MSE

]
E[f2]: speckle–free image power

MSSIM = 1
M

∑M−1
p=0

[
2·E[fp]·E[f̂p]+C1

E
[
f2
p

]
+E

[
f̂2
p

]
+C1

2·Cov[fp,f̂p]+C2

Var[fp]+Var[f̂p]+C2

]
fp, f̂p, p = 0, . . . ,M − 1: speckle–free and despeckled image
patches; C1, C2: suitable constants.

EC =
Cov[fH ,f̂H ]√

Var[fH ]·Var[f̂H ]
fH , f̂H : highpass–filtered speckle–free and despeckled images

FOM = 1
max(N̂,N)

∑N̂
n=1

1
1+d2

nα

N , N̂ : number of points belonging to an edge in speckle–free and
despeckled image patches; d2n: Euclidean distance between the edge
pixels in the despeckled image patch and the nearest ideal edge pixel
in the speckle–free one; α: suitable constant.

other measures derived from the MSE, like the signal–to–noise
ratio (SNR), the peak signal–to–noise ratio (PSNR) and the
signal–to–mean square error (SNRS), have been widely used
for the quality assessment of both denoising and despeckling
[33], [57], [76]. Unlike the case of additive signal–independent
noise, in the presence of signal–dependent noise the MSE is
strongly influenced by the average signal level of the ground
truth. Consequently, a quantitative evaluation of despeckling
filters using this kind of indexes is strongly dependent on the
content of the ground–truth image, even though performance
hierarchy is usually preserved across different images.

MSE–based measurements are useful to obtain a global
performance assessment on the whole image, but usually they
yields little information about the preservation of specific
features, for which other indexes can be used. The mean
structural similarity index measurement (MSSIM) [135], pro-
posed for the general denoising framework and adopted also in
the context of despeckling, underlines the perceived changes
in structural information after the filtering process. MSSIM
takes values over the interval [0, 1], where 0 and 1 indicate
no structural similarity and perfect similarity, respectively.
As demonstrated in [135], MSSIM can substantially differ
between images having very similar MSE values.

The edge correlation (EC) index has been proposed as a
measure of edge preservation for despeckling of echographic
images [136] and has been extended to the SAR field [72]; it
is defined as the correlation coefficient (0 ≤ EC ≤ 1) between
highpass versions of the original and despeckled images. This
index may be distorted by possible residual speckle noise that
is enhanced by the highpass filtering.

Another index of edge preservation is Pratt’s figure of
merit (FOM), which has been used in [96] for the quality
assessment of despeckled SAR and ultrasound images. FOM
is defined on a local patch of the image containing an edge.
The more similar the edge maps, the closer to zero the FOM
values. Consequently, this index is strictly related to the map
edge detector that is used, which is crucial especially for the
despeckled image when a residual noise component is present.

Table I summarizes the above mentioned indexes.
A synthetically speckled images has been produced starting

from a 512×512 digitized aerial photograph of San Francisco.

The original speckle-free image, regarded as an amplitude
format, has been squared and multiplied by an exponentially
distributed fading term, in order to simulate a single-look SAR
image in intensity format. The simulated speckle is spatially
uncorrelated and fully developed. The noisy intensity image,
together with all filtered intensity versions, has been square
rooted, for displaying convenience, and is shown together with
the 8-bit original, regarded as an amplitude image, in Fig. 13-
(b) and Fig. 13-(a), respectively.

The filters compared in this subsection are representative of
different approaches to despeckling described in this paper:
Kuan [52] and Γ–MAP [54] as classical spatial filters; GG–
MAP–S [83] and LG–MAP–C [85] as Bayesian filters in
the wavelet domain (input format is square root of intensity
[137]); Probability Patch–Based (PPB) [108] and SAR–BM3D
[109] as non–local mean filters in the spatial and wavelet
domain; L1 Fidelity on Frame Coefficients (L1–FFC) [122] as
a TV-based filter. Visual comparisons of the results obtained
with the same filters can be made observing Fig. 13. What
immediately stands out is that local spatial filter (Kuan and Γ–
MAP) are unable to clean the noisy background. A residual
inhomogeneity, like a coarse granular texture, is noticeable
especially on the sea. This effect is thoroughly missing in
wavelet-domain filters, as well as in nonlocal-mean and TV
filters. Preprocessing of point targets was disabled in wavelet
schemes, because the simulated speckle is fully developed.

Fig. 14 shows the performance indexes obtained by means
of the test despeckling filters.

B. Without–reference indexes

As previously stated, without–reference indexes do not rely
on the complete knowledge of the true reflectivity, but are
based on the statistical model of the SAR signal as well as
on some simple assumptions on the degree of heterogeneity
of the underlying scene.

The equivalent number of look (ENL) [46] is an index
suitable for evaluating the level of smoothing in homogeneous
areas, that is where the scene variation is supposed to be
negligible with respect to speckle noise fluctuations. The ENL
of the original SAR image corresponds to the nominal number
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. Results on a synthetically speckled image: (a) noise-free reference; (b) noisy (1-look); (c) Kuan; (d) Γ-MAP; (e) GG–MAP–S; (f) LG–MAP–C;
(g) PPB; (h) SAR–BM3D; (i) L1–FFC.

of looks, whereas it increases after the despeckling stage
according to the smoothing capability of the filter.

Other typical measures can be computed from the ratio
image r, defined as the point–by–point ratio between the noisy
and the filtered image [4]

r(n) =
g(n)

f̂(n)
. (50)

The ratio image is a useful information in both homoge-
neous and heterogeneous scenes, wherever the fully developed
speckle model holds. It represents the noise pattern removed
by the despeckling filter that, according to the model, should
be Γ-distributed. An ideal filter should result in a pure random
pattern, whereas poor speckle noise removal causes structural
information, such as borders and edges, to be clearly visible

in the ratio image. The mean and the variance of r, that is
µr = E[r] and σ2

r = Var[r], should be as close as possible
to the respective theoretical statistical moments of the speckle
noise process. For this reason, they are often used as indexes of
bias and speckle power suppression, respectively. A measure
of bias is also given by the B index [30], in which a value
close to zero indicates an unbiased estimation.

Under the hypothesis of multiplicative speckle noise, a
measure of texture preservation on heterogeneous areas is
given by the comparison between the coefficient of variation
calculated on the despeckled image, namely Cf̂ , and its the
expected theoretical value on the noise-free image, Cf [20].
Intuitively, a poor preservation of details yields Cf > Cf̂ ,
while the introduction of impairments leads to Cf < Cf̂ .

Since the speckle model does not hold in the presence
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Fig. 14. With-reference indexes computed for the image in Fig. 13-(b), with the image Fig. 13-(a) as speckle–free reflectivity.

TABLE II
LIST OF COMMONLY USED WITHOUT-REFERENCE INDEXES FOR EVALUATING PERFORMANCES OF DESPECKLING ALGORITHMS.

Index Note

ENL =
E[f̂]2

Var[f̂]
f , f̂ : speckle–free and despeckled images; ENL is evaluated in
homogeneous areas

µr = E[r], σ2
r = Var[r] r(n) =

g(n)

f̂(n)
: ratio image

B = E
[
(g−f̂)
g

]
Cf̂ =

√
Var[f̂]
E[f̂]

Cf =

√
C2
g−C2

u

1+C2
u

(expected value); Cg , Cu: coefficients of variation

of the observed noisy image g and of the speckle noise u

TCR = 20 log10
maxP [g]

EP [g]

P: patch containing a point target; maxP , EP computed over the
patch

of persistent scatterers or point targets, despeckling filters
should keep their values unchanged. A point target is usually
characterized by a cluster of pixels whose reflectivity values
are much higher, even some orders of magnitude, than the
mean reflectivity of the surrounding scene. The target–to–
clutter ratio (TCR) [138], [139] aims at measuring the relative
value of strong scatterers with respect to the values of the
surrounding pixels. TCR values computed before and after
despeckling are indicative about how much a filter preserves
the radiometric properties in the patch.

Table II summarizes the most commonly used without-
reference indexes for evaluating despeckling algorithms per-
formance. Fig. 15 shows the without–reference indexes ob-
tained on the image in Fig. 10-(a). The indexes have been com-
puted for the original 1024×1024 image and for a 512×512
4–look version, generated by means of spatial multilooking
(2×2 average).

C. Discussion

The computational complexities of the most relevant filters
among those reviewed raises an interesting concern. Early
spatial filters are nowadays real-time (less than 1 s to process
a 1024×1024 scene on a standard platform). Wavelet-based
methods are at least ten times longer to run, up to one
hundred times for GG–MAP–S, which requires numerical
calculation of the maximum of a function [83], unlike LMMSE
and LG–MAP–C, which admit closed form solutions. For all
multiresolution methods, biorthogonal 9/7 wavelet filters and
four levels of decomposition (corresponding to a baseband
approximation having 44=256 nominal looks) have been used.
Biorthogonal filters are preferred to orthogonal filters in image

processing applications because they allow filters of different
lengths, and hence of spectral selectivity, to be available for
the lowpass (9 coeffs.) and highpass (7 coeffs.) analyses.
Conversely, NL filtering approaches, in either space (PPB)
or wavelet (SAR–BM3D) domain, have a significantly higher
computational cost, mainly because of iterated processing,
with recalculation of statistics after each step. Eventually,
the TV-based filter examined (L1–FFC) is comparable with
NL filters. The numbers of iterations are those recommended
by the respective authors in their implementations. Table III
summarizes the complexity of despeckling algorithms.

A key point in the despeckling of SAR images is the extent
to which models assumed for the signal or the noise match the
actual statistics of the data. By observing the results on 1-look
data in Fig. 15, it is quite evident that all filters yield a biased
outcome (µr < 1, B > 1) and a limited speckle removal
capability (σ2

r < 1): Both these effects occur because all filters
do not take into account that speckle is spatially autocorre-
lated in real single–look SAR images [30], for the following
reasons: 1) oversampling of SAR raw data with respect to the
Nyquist rate given by twice the chirp bandwidth; 2) frequency
windowing applied when the raw data are focused and aimed
at improving the response of targets, avoiding Gibbs’ effects.
As reported in Fig. 15 for 4-looks data, multilooking allows
all filters to obtain values of µr and σ2

r closer to the ideal
ones. This mainly happens because the multilooking process
reduces the speckle correlation; unfortunately, it also halves
the image resolution in both range and azimuth directions.

Very few despeckling filters that specifically consider the
speckle correlation have been proposed in the literature (e.g.,
[30]). Recently, a blind speckle decorrelation method to be
applied to SLC images has been proposed [31], [140] to
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Fig. 15. Without-reference indexes computed for different despeckling algorithms for the image in Fig. 10-(a). (a) one-look image (theoretical value
Cf = 0.355); (b) 4-look version of the same image (theoretical value Cf = 0.544).

enhance the performances of existing despeckling filters. The
idea is estimating the SAR system frequency response on
the original SLC image in order to compensate its effect
by an inverse filtering (whitening stage), so that an SLC
image having uncorrelated speckle noise, but preserving the
radiometric features, is produced. In [141], it has been shown
that the introduction of the whitening stage allows noticeable
performance gains for filters based on the uncorrelated speckle
model. A visual and numerical example on a single–look
COSMO–SkyMed image is proposed in Fig. 16. The corre-
lation coefficient ρ dramatically decreases after the whitening
stage. MAP–GG–S outperforms its own results when it is
applied to the uncorrelated speckled image. The problem of
speckle correlation occurs only for one-look data, because the
process of multilooking, equivalent to lowpass filtering and
decimation, lowers the correlation coefficient (CC) of speckle
from about 35% to less than 10% [142].

A visual analysis of the image details in Fig. 16 high-
lights that wavelet despeckling suffers from the presence of
structured artifacts mainly located around edges, referred to
as glitches, that are due, in order of importance, to: 1) speckle
correlation, 2) input image format (amplitude, is preferable to
intensity, because yields a more accurate MAP estimation in
UDWT domain [143]), 3) type of wavelet filter (the shortest
filters of Haar transform [89] produce the least noticeable
artifacts). Also the type of decomposition (à trous wavelet
(ATWT) [37] rather than UDWT) is a topic worth being
investigated, also because ATWT accommodates all details of
one scale in a unique plane; thus the number of coefficients
to be despeckled, and hence computing times, would be three
times lower. However, the adaptivity with orientation featured

by UDWT would be lost with ATWT.

The assessment of the performances of despeckling filters
on real SAR data is often problematic due to the lack of
with–reference indexes. In order to overcome such problems, a
possible idea is to use electromagnetic SAR image generators
[23]. Such simulators are based on more physical–oriented
models, which consider the propagation of the electromagnetic
wave and its interaction with targets and surfaces, and usually
require a more detailed parametric description of the target
scene with respect to the models used in signal processing
applications. In [22], the authors use an electromagnetic SAR
image generator to simulate several independent acquisitions
of the same scene. If the number of acquisitions is sufficiently
high, their average can be considered as a good approximation
of the noise–free reflectivity and can be used to compute with–
reference indexes. The advantage of this technique is that the
simulated images do not necessarily obey the fully developed
speckle model and provide insights on the behavior of the
filter on point targets and highly heterogeneous areas. On the
other hand, the underlying reflectivity follows a synthetically
generated pattern, which may not be fully representative of the
reflectivity usually encountered in real SAR images, especially
in complex scenes, due to the ideal models of objects fed to
the simulator.

Another viable approach to devise a fully automatic method
for quality assessment of despeckled SAR images was recently
proposed by the authors [144]. The rationale of the new
approach is that any structural perturbation introduced by
despeckling, e.g., a local bias of mean or the blur of a sharp
edge or the suppression of a point target, may be regarded
either as the introduction of a new structure or as the suppres-
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TABLE III
COMPUTATIONAL COMPLEXITY OF DESPECKLING METHODS. BETWEEN TWO CONSECUTIVE GRADES THERE IS APPROXIMATELY ONE ORDER OF

MAGNITUDE. SO, PPB IS ABOUT 1000 TIMES SLOWER THAN KUAN’S FILTER, ON THE SAME COMPUTING PLATFORM.

FIlter Kuan (7×7) Γ–MAP (7×7) UDWT LMMSE LG–MAP–C GG–MAP–S PPB SAR–BM3D L1–FFC
Complexity Very low Very Low Low Low Medium High High High

(a) (b) (c) (d)

Fig. 16. (a) original one-look COSMO-SkyMed image (ρ ' 0.29); (b) MAP–GG–S [83] of original (ENL = 27.90, µr = 0.940, σ2
r = 0.702); (c) whitened

[141] (ρ ' 0.05); (d) MAP–GG–S of whitened (ENL = 142.29, µr = 0.997, σ2
r = 0.936). ρ is the CC of speckle measured on the complex image [29];

ENL, µr and σ2
r are calculated on a homogeneous patch after despeckling.

sion of an existing one. Conversely, plain removal of random
noise does not change structures in the image. Structures are
identified as clusters in the normalized scatterplot of original
to filtered image. Ideal filtering should produce clusters all
aligned along the main diagonal. In practice clusters are moved
far from the diagonal. Cluster centers are detected through the
mean shift algorithm. A structural change feature is defined
at each pixel from the position and population of off-diagonal
clusters [145]. Such a feature may be regarded as a spatial map
of filtering inaccuracies. A preliminary validation has been
carried out on simulated SAR images, with a good correlation
between feature and objective filtering error. In experiments
on COSMO-SkyMed images, the automatic ranking of filters
matches the subjective trials of experts. The proposed feature
detects filtering impairments but is unable to measure the
overall effectiveness of filtering. Therefore, its use must be
coupled with another index measuring the effectiveness of
cleaning, e.g., ENL, regardless of its accuracy.

IX. CONCLUSIONS AND PERSPECTIVES

This tutorial has demonstrated that despeckling of SAR
images takes into account several issues related to signal and
noise modeling, signal representation, estimation theory and
quality assessment. Concerning Bayesian estimation, starting
from Lee filter, local-window adaptive filtering has been
progressively enhanced, up to a saturation of performances,
due to the trade off of using windows small enough to retain
edges textures and fine details and large enough to allow a
consistent and confident statistical estimate to be achieved.

In the last two decades, the introduction of multiresolution
analysis has been found to boost despeckling algorithms
performances. Key points of wavelet-based despeckling is
the modeling of the reflectivity and of the signal-dependent
noise in the wavelet domain and the choice of the estimation
criterion to achieve the noise-free wavelet coefficients. While
several authors have chosen overfitting models sacrificing
space adaptivity, others have tried to keep the advantages

of an adaptivity in both scale and space by using pdf with
few parameters to be estimated locally on subbands/frames.
A preprocessing step of point targets that must retain their
radiometry after despeckling and a segmented approach, in
which sample statistics are calculated on homogeneous seg-
ments, complete Bayesian despeckling in wavelet domain.

As to non-Bayesian approaches, Lee’s sigma filter has
evolved into bilateral filtering, which has possibly inspired
nonlocal filtering, excellent examples of which are found both
in spatial and in wavelet domains. In parallel, total variation
has emerged as a powerful regularization technique that can
be specialized to the signal dependent noise model and allows
constraints to be set on several mathematical properties of the
output image. As an example, setting a constraint on L1 norm
definitely avoids glitches and other impairments. Presently,
computational issues are mainly responsible for the moderate,
yet increasing, popularity of such methods among users.

New horizons are undoubtedly in the direction of com-
pressed sensing, of which denoising seems to be one of the
most promising application, notwithstanding objective difficul-
ties come from the signal dependent, and hence nonstationary,
noise model. Given the huge effort of researchers in this area,
new developments and applications to despeckling are ex-
pected in a near future. Computational issues are also the main
drawback of algorithms based on compressed sensing, with
respect to spatial and wavelet domain Bayesian algorithms.
The ever increasing diffusion of multiprocessor systems will
be beneficial for methods that can be easily parallelized.
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“Analysis of speckle noise contribution on wavelet decomposition of
SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 6, pp.
1953–1962, Nov. 1998.

[67] D. L. Donoho, “Denoising by soft-thresholding,” IEEE Trans. Inf.
Theory, vol. 41, no. 3, pp. 613–627, Mar. 1995.

[68] H. Guo, J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Selesnick, and
C. S. Burrus, “Wavelet based speckle reduction with application to
SAR based ATD/R,” in Proc. IEEE Int. Conf. on Image Processing
(ICIP), 1994, vol. 1, pp. 75–79.

[69] J. R. Sveinsson and J. A. Benediktsson, “Almost translation invariant
wavelet transformations for speckle reduction of SAR images,” IEEE
Trans. Geosci. Remote Sens., vol. 41, no. 510, pp. 2404–2408, Oct.
2003.

[70] Z. Zeng and I. Cumming, “Bayesian speckle noise reduction using the
discrete wavelet transform,” in Proc. IEEE Int. Geoscience and Remote
Sensing Symp. (IGARSS), 1998, vol. 1, pp. 7–9.

[71] H. Xie, L. E. Pierce, and F. T. Ulaby, “SAR speckle reduction using
wavelet denoising and Markov random field modeling,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 10, pp. 2196–2212, Oct. 2002.

[72] A. Achim, P. Tsakalides, and A. Bezerianos, “SAR image denoising
via Bayesian wavelet shrinkage based on heavy-tailed modeling,” IEEE
Trans. Geosci. Remote Sens., vol. 41, no. 8, pp. 1773–1784, Aug. 2003.

[73] S. Solbø and T. Eltoft, “Homomorphic wavelet-based statistical
despeckling of SAR images,” IEEE Trans. Geosci. Remote Sens., vol.
42, no. 4, pp. 711–721, Apr. 2004.

[74] M. I. H. Bhuiyan, M. O. Ahmad, and M. N. S. Swamy, “A new
homomorphic Bayesian wavelet-based MMAE filter for despeckling
SAR images,” in Proc. IEEE Int. Symp. on Circuits And Systems
(ISCAS), May 2005, vol. 5, pp. 4935–4938.

[75] M. I. H. Bhuiyan, M. O. Ahmad, and M. N. S. Swamy, “Spatially
adaptive wavelet-based method using the Cauchy prior for denoising
the SAR images,” IEEE Trans. Circuits Syst. Video Technol., vol. 17,
no. 4, pp. 500–507, Apr. 2007.

[76] A. Achim, E. E. Kuruoglu, and J. Zerubia, “SAR image filtering based
on the heavy-tailed Rayleigh model,” IEEE Trans. Image Process., vol.
15, no. 9, pp. 2686–2693, Sep. 2006.
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