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Abstract. In the paper, we revisit the “Lazy Doubling” (LD) method
for multi-precision squaring, which reduces the number of addition op-
erations by deferring the doubling process so that it can be performed
on accumulated results. The original LD method has to employ carry-
catcher registers to store carry values, which reduces the number of gen-
eral purpose registers available for optimization of the implementation.
Furthermore, the LD method adopts the idea of hybrid multiplication to
separate the partial products into several product blocks, which prevents
the doubling process to be conducted on fully accumulated intermediate
results. To overcome these deficiencies of the LD method and improve
the performance of multi-precision squaring, we propose a novel and flex-
ible method named “Sliding Block Doubling” (SBD). The SBD method
delays the doubling process till the very end of the partial-product com-
putation and then doubles the result by simply shifting it one bit to
the left. In order to further reduce the overhead of doubling, we also
optimize the execution process for updating carry values and adopt the
product-scanning method for efficient computation of the partial prod-
ucts. Our experimental results on an AVR ATmega128 processor show
that the SBD method outperforms state-of-the-art implementations by
a factor of between 3.5% and 4.4% for operands ranging from 128 bits
to 192 bits.

1 Introduction

Multiple-precision arithmetic is a performance-critical component of public-key
cryptographic algorithms such as RSA [12], elliptic curve cryptosystems [7, 11]
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and pairing-based schemes [15]. This is in particular the case for multiplication
and squaring due to the high computational cost of these operations. When
implementing multi-precision integer arithmetic in software, the operands are
usually represented by arrays of single-precision words, i.e. w-bit digits such
that w matches the word-size of the target processor. Given two m-bit integers
A and B, the computation of the product A ·B requires to execute n2 word-level
(i.e. w × w-bit) multiply instructions on the underlying processor, whereby n
denotes the number of single-precision words, i.e. n = dm/we. Consequently,
multi-precision multiplication has a complexity of O(n2) when implemented in
software. The square A2 of an n-word integer A can be computed much faster (up
to almost 50%) than the product of two distinct integers. More precisely, when
A = B, a large number of w×w-bit partial products of the form A[i]·B[j] appear
twice during the execution of a multi-precision multiplication since A[i] ·B[j] =
A[j] · B[i]. In particular, when squaring a large integer A, all partial products
of the form A[i] · A[j] appear once for i = j and twice for i 6= j [3]. Optimized
squaring algorithms compute all these “duplicates” only once and then shift them
left by 1 bit to double them. In this way, the computational cost for squaring an
n-word integer amounts to (n2 + n)/2 single-precision multiplications, which is
just slightly more than half of that needed to compute A ·B.

1.1 Previous Work

There exist a large number of multiplication and squaring methods that aim
to improve the execution time by reducing the number of memory accesses
and/or word-level arithmetic instructions. In the case of multi-precision multipli-
cation, one of the seminal techniques is the school-book method [10], also called
operand-scanning method. The school-book method can be easily implemented
on embedded microprocessors using a high-level language like C. It loads the
operands and generates the partial products in a row-wise fashion. An alterna-
tive way to implement multiplication is the so-called product-scanning method.
This method computes the partial products column by column and does not
need to reload intermediate results [2]. The hybrid method combines the advan-
tageous features of operand-scanning and product-scanning [4]. By adjusting the
row and column width, the number of operand accesses and result updates are
reduced. This method is particularly efficient on a microprocessor equipped with
a large number of general purpose registers. At CHES 2011, the operand-caching
method, which reduces the number of load operations by caching the operands,
was presented [6]. Later, based on the operand-caching method, Seo and Kim
[14] proposed the consecutive-operand-caching method, which is characterized
by a continuous operand caching process.

All these multiplication methods can be straightforwardly applied to squar-
ing. However, as mentioned before, it is not efficient to do so since computing
all partial products and loading the words of both operands is not necessary
for squaring. For this reason, specialized squaring methods have been studied in
the literature. One of the first squaring methods, based on the operand-scanning
technique, was developed for hardware implementation [5]. Unfortunately, the



squaring technique from [5] is not really suited for software implementation
on resource-constrained devices. In 2007, the so-called carry-catcher squaring
method was presented, which aims to reduce the propagation of generated carry
values up to the most significant word by introducing storage for saving carry
values [13]. In 2012, the Lazy Doubling (LD) method, the fastest squaring tech-
nique so far, was proposed in [8]. The basic idea is that the partial products
which need to be considered twice are doubled “in one pass” after they have
been collected to the accumulator registers at the end of each column computa-
tion.

1.2 Our Contributions

This paper presents an efficient implementation of multi-precision squaring that
achieves record-setting execution times on 8-bit AVR-based processors. Our opti-
mized squaring technique can be used to accelerate the multi-precision arithmetic
of public-key schemes, e.g. the modular squaring operation of RSA, squaring in
prime fields operation for ECC. The research contribution of this paper is two-
fold:

– Novel sliding block doubling method for efficient implementation of multi-
precision squaring on embedded processors. We present a novel and flexi-
ble implementation methodology for multi-precision squaring named Sliding
Block Doubling (SDB), which yields high performance on a range of embed-
ded platforms (e.g. 8-bit, 16-bit, 32-bit processors). The proposed method is
inspired by the well-known LD method of Lee et al. [8] and also influenced
by the state-of-art techniques for implementing multi-precision multiplica-
tion on micro-controllers, i.e. the operand-caching method [6] and consecu-
tive operand-caching method [14]. Specifically, we make full use of the lazy
doubling feature and delay the doubling process until the very end of the
product computation and then conduct it by a simple 1-bit left shift. We
also aim to reduce the overhead that may be introduced when using tra-
ditional squaring or the LD method. A third optimization is to calculate
the partial products of each block by using the efficient product-scanning
method. We also provide a simple formula to estimate the computational
cost of our proposed SBD method depending on the operand-length.

– New Speed record results achieved on 8-bit AVR embedded platforms. In order
to confirm the theoretical performance gain, we realized our squaring method
on an 8-bit AVR embedded platform. We took the squaring of a 160-bit
operand on an 8-bit ATmega128 as concrete examples for our experiments.
Our results show that the SBD method takes only 1,456 clock cycles to
square a 160-bit operand. This result represents the current speed record for
multi-precision squaring on 8-bit platforms. When compared with the best
previous results, our implementation achieves a performance enhancement
by a factor of 3.5% to 4.4% for operands ranging from 128 to 192 bits.

The remainder of this paper is organized as follows. In Section 2, we recap the
different approaches for implementing multi-precision multiplication and squar-



ing. In Section 3, we present the new sliding block doubling method and analyse
its computational complexity. In Section 4, we evaluate the performance of the
proposed method in terms of clock cycles and compare with related work. Finally,
Section 5 concludes the paper.

2 Multi-Precision Multiplication and Squaring

In this section, we explore multiplication and squaring methods from the ba-
sic method (e.g. school-book method) to sophisticated method (e.g. operand
caching multiplication and lazy doubling method). Then, we discuss the main
differences of concrete implementation between multiplication and squaring to
project considerations for efficient implementation on embedded processors.

2.1 Multi-precision Multiplication Techniques

In this section, we introduce various multi-precision multiplication techniques,
including operand scanning method, product scanning method, hybrid scanning
method, operand caching method as well as consecutive operand caching method.
Each method has unique feature for reducing the number of load and store

instructions and arithmetic operations.
Before describing the multi-precision multiplication method into details, we

first define the following notations. Let A and B be two operands with a length
of m-bit that are represented by multiple-word arrays. Each operand is written
as follows: A = (A[n − 1], A[n − 2], . . . , A[1], A[0]) and B = (B[n − 1], B[n −
2], . . . , B[1], B[0]), whereby n = dm/we, and w is the word size. The product
of multiplication A · B is twice the length of A and can be represented by C =
(C[2n− 1], C[2n− 2], . . . , C[1], C[0]).

For clarity, we describe the method using a multiplication structure and
rhombus form. As shown in Figure 1, each point represents a word-level multi-
plication, i.e. A[i] × B[j]. The rightmost corner of the rhombus represents the
lowest index (i, j = 0), meanwhile the leftmost represents corner with highest
index (i, j = n − 1). The lowermost side represents result index C[k], which
ranges from the rightmost corner (k = 0) to the leftmost corner (k = 2n− 1).

Operand Scanning Method Figure 1. (a) shows the operand scanning which
consists of two parts, i.e., inner and outer loops. In the inner loop, operand A[i]
holds a value and computes the partial product by multipling all the multipli-
cands B[j] (j = 0...n − 1). While in the outer loop, the index of operand A[i]
increases by a word-size and then the inner loop is executed.

Product Scanning Method Figure 1. (b) shows the product scanning method
which computes all partial products in the same column by multiplication and
addition [2]. Since each partial product in the column is computed and then
accumulated, registers are not needed for intermediate results. The results are
stored once, and the stored results are not reloaded since all computations have
already been completed.
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Fig. 1. Multi-precision multiplication techniques. (a) Operand scanning method [10].
(b) Product scanning method [2]. (c) Hybrid scanning method [4]. (d) Operand caching
method [6]. (e) Consecutive operand caching method [14].

Hybrid Scanning Method Figure 1. (c) shows the hybrid scanning method
which combines both of the advantages of operand scanning and product scan-
ning. Multiplication is performed on a block scale using product scanning. The
number of rows within the block is defined as d, and inner block partial products
follow the operand scanning rule. Therefore, this method reduces the number of
load instructions by sharing the operands within the block [4].

Operand Caching Method Figure 1. (d) shows the operand caching method
which follows the product scanning method, but it divides the calculation into
several row sections [6]. By reordering the sequence of inner and outer row sec-
tions, previously loaded operands in working registers are reused for the next
partial products. A few store instructions are added, but the number of required
load instructions is reduced. The number of row section is given by r = bn/ec,
and e denotes the number of words used to cache digit in the operand.

Consecutive Operand Caching Method Figure 1. (e) shows the consecu-
tive operand caching which is based on characteristic of operand-caching method.



Previous method has to reload operands whenever a row is changed which gener-
ates unnecessary overheads. To avoid these shortcomings, this method provides a
contact point among rows that share the common operands for partial products.
As a result of this, one side of operands is continuously maintained in registers
and used [14].
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Fig. 2. Multi-precision squaring structure. (a) Before removing duplicated partial prod-
uct results. (b) After removing duplicated partial product results

2.2 Multi-precision Squaring Techniques

A typical software implementation of squaring method can be realized either
using one of the above mentioned multiplication techniques or the specialized
squaring method. Implementation using a specialized squaring method may have
two advantages than simply using multiplication method for squaring as shown
in described in Figure 2. Firstly, only one operand (A) is used for squaring
computation, thus, the number of operand load is reduced to half times of
multiplication, and many registers used for operand holding previously become
idle status and can be used for caching intermediate results or other values.
Second, there are duplicated partial products exist. In Figure 2. (a), the squaring
structure consists of three parts including red dotted middle part, light and
dark gray triangle parts. The red part is multiplying a same operand, which
is computed once. The other parts including light and dark gray parts generate
same partial product results. For this reason, these parts are multiplied once and
added twice to intermediate results. This computation generates same results,
we expected. After removing duplicated partial product results, we can describe
the squaring structure as a triangular form in Figure 2. (b).

Yang-Hseih-Lair Method Figure 4. case (a) describes Yang et al’s method
[5]. This squaring method is intended for hardware machine not for software im-
plementation. The following is computation process in detail. First, duplicated
partial products are computed using operand scanning. And then the intermedi-
ate results are doubled. Lastly, remaining partial products are computed. This



method is not favorable for software implementation because the number of gen-
eral purpose register is not enough to store all operands, carry catcher value3 and
intermediate result during partial product computations using operand scanning.
Furthermore, re-loading and re-storing the intermediate results for doubling con-
duct many memory accesses. Thus, straight-forward implementation of squaring
method for hardware is not recommended for software implementation.

a[0]b[0]

a[1]b[0]

a[2]b[0]

r0r1r2r3r4r5r6

a[0]b[0]

a[1]b[0]

a[2]b[0]

r0r1r2r3r4r5r6

c0c1c2c3c4c5c6

(a) (b)

Fig. 3. Carry computation techniques. (a) Carry-propagation. (b) Carry-catcher

Carry Catcher Method Prime field multiplication or squaring consists of
a number of partial products. When we compute partial products in ascend-
ing order, intermediate results generate carry values, accumulating the partial
product results. Traditionally, carry values spread to end of intermediate re-
sults, which is described in Figure 3. (a). This case continuously updates re-
sult registers(r6 ∼ r0) so addition arithmetic is used in many times. To re-
duce the overheads, carry-catcher method, storing carry values to additional
registers(c6 ∼ c0), was presented in [13] and is described in Figure 3. (b). The
carry catching registers are updated at the end of computation at once. In Figure
4. (b), carry catcher based squaring was introduced by [13]. This method follows
hybrid-scanning and doubles partial product results before they are added to
results. This method is inefficient because all products should be doubled.

Lazy Doubling Method In Figure 4. (d), efficient doubling method named
lazy-doubling is described [8]. This method also follows hybrid scanning struc-
ture. The inner loop is computed in a operand scanning way, and then carry
catcher method is used for removing consecutive carry updates. The strong fea-
ture of this method is doubling process which is delayed to end of inner structure
and then computed. This method reduces number of arithmetic operations by

3 This method is not introduced when this paper is published. To implement operand
scanning method in software form, carry catcher method should be considered.



conducting doubling computations on accumulated intermediate results. This
technique significantly reduces a number of doubling process to one doubling
process.
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Fig. 4. Multi-precision squaring techniques. (a) Yang et al.’s method [5]. (b) Scott et
al.’s method [13]. (c) Lee et al.’s method [8].

3 Sliding Block Doubling Method

Most of the previous squaring methods either employ the normally used operand-
scanning method or directly follow the idea of hybrid-scanning when imple-
menting the multi-precision squaring on resource constraint processors. How-
ever, these implementations may have two disadvantages, namely (1) lacking
of optimal usage of working registers, and (2) inefficiently dealing with the
carry bit produced when adding two partial products. In order to overcome
the above shortcomings, we proposed a novel technique for efficient implemen-
tation of multi-precision squaring on embedded platforms, named “sliding block
doubling” (SBD). On one hand, SBD method computes doubling using “1-bit
left shifting” operation at the end of duplicated partial product computation,
which accumulates all partial product results with only consuming few arith-
metic operations. On the other hand, contrary to previously known solutions,
SBD method adopts product-scanning method to compute duplicated product
parts (see the black dots in Figure 5). After then the intermediate results are
doubled, and added into the final results. The detailed process of proposed SBD
method is described as follows.

Product-Scanning for Upper Part of Triangular Form We adopt product-
scanning method to execute partial products from the least significant part up
to most significant part. As shown in Figure 5, the first black dot represents an
execution of operation A[2] × A[1], after then the remaining black dots in the



Figure 5 are computed. As mentioned before, we stored the intermediate results
into memory rather than working registers similar as the works did in [6, 14] for
multiplication.

Sliding Block Doubling of Duplicated Products After finishing the first
step, we can then double the intermediate results accumulated from previous
process by simply left-shifting 1-bit. This efficient operation is also the main
difference between our SBD method and previous works in [13, 8], namely, com-
paring to their works, we significantly saved the cost of doubling computation.
Specially, both of Scott et al.’s [13] and Lee et al.’s [8] methods compute the dou-
bling process in the middle of squaring process, while proposed SBD cunningly
delayed this operation to the very end of duplicated partial products, in this
way, we can double the accumulated intermediate results altogether. Compared
to [5], our method separates the whole doubling process into several sub-doubling
blocks due to limited number of working registers.

Remaining Partial Products for Middle Line of Triangular Form The
first two steps are used to calculate the blocks for the case of Ai × Aj where
i 6= j, in which case each block is required to be computed twice. For the case
of i = j, represented by the read dots in Figure 5, the multiplication is only
computed once. And then the computed intermediate results are added to final
results.
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C[0]C[7]C[14]

Fig. 5. Sliding-block-doubling squaring method

3.1 Computation Complexity

This section mainly discusses the computation complexity of SBD method, we
took 8-bit AVR platform as an example to show the total number of operations.
However, it is worth to note that similar works can also be extended to 16-bit
MSP, 32-bit ARM platforms. On an AVR platform, each mul, load and store

instruction consumes 2 clock cycles, while add and shift only needs 1 clock
cycle.



In upper part of triangular form, n times load instructions are required
for loading operands to registers as we load the operand byte by byte. After
all operands are loaded to registers, each computation of partial product using
product-scanning method to execute an operation of (t, u, v) = (t, u, v)+Ai ·Aj ,
whereby (t, u, v) represents three accumulator registers and Ai, Aj are the two
registers allocated for operands. This operation requires one mul and three add

(or adc) instructions, consuming five clock cycles altogether. An upper part of

squaring operation needs to execute n2−2n
2 iterations, therefore, the whole clock

cycles are 5(n2−2n)
2 . The results are needed to first store the intermediate result

into memory. This process consumes 2n times of store and 4n clock cycles.

In sliding block doubling part, intermediate results are reloaded to registers
which consumes 2n times of load, and thus costs 4n clock cycles. Then the full
intermediate results are left-shifted by 1-bit. This shift operation is conducted
by size of intermediate results, and roughly needs 2n clock cycles for shift

operation.

In remaining partial products for middle line. Each block executes an opera-
tion of Ai ·Ai, costing 5 clock cycles and the operations are iterated by n times,
therefore, 5n clock cycles are needed. During middle line computations, we catch
carry values into registers and compute products using product-scanning. The
values are updated after all computations and this is conducted by size of inter-
mediate results, this process needs 2n clock cycles. After all computations, final
results are stored to memory by 2n and it needs 4n clock cycles.

Table 1. Comparison of computation complexity with previous works

Algorithms mul load store add shift total

Scott et al. [13] (CC) n2

2
5n 2n 6n2

2
- 9

2
n2 + 6n+ 5

Lee et al. [8] (LD) n2

2
15
4
n− 26 2n 3n2

2
- 3n2 + 54

4
n+ 55

Our method (SBD) n2

2
3n 4n 3n2+4n

2
2n

(
5n2+36n

2

)
× α

Table 1 shows the number of main instructions required, including of mul,
load, store, add and shift, for carry catcher and lazy doubling methods as well

as the proposed SBD method. Total number of mul instructions are n2

2 includ-
ing upper and middle part of triangular form. The memory-access operations are
categorized into load and store. For load instruction, loading operands and in-
termediate results are iterated by 3n times. For store instruction, intermediate
and final results are stored by 4n times. The addition instructions are used for ac-

cumulation and carry catcher update by 3n2+4n
2 times. Finally shift operations

are executed by size of intermediate results to double duplicated results.

Besides of the above analyzed cost, proposed SBD method also have to pay
additional overheads, e.g. integration of the blocks, setting or resetting working
registers. For the sake of simplicity, we called the additional overheads “self-
adjusting factor”, represented by the symbol α . The concrete value of α depends



on the block sizes adopted for implementation. To order to give an accurate
estimation of the value α, we compared the real implementation cost CI with
the estimated results CE obtained from Table 1, and then, computed the ratio
as α = CI/CE , we lists the value in Table 2.

Table 2. The value of self-adjusting factor α

Operand length CI CE CI − CE α

128-bit 1, 003 928 75 1.08

160-bit 1, 456 1, 360 96 1.07

192-bit 2, 014 1, 872 142 1.07

Practical Implementation We separate the whole process into three parts
but for practical implementation we should combine the second and third part.
When we double the intermediate results, all results should be loaded into regis-
ters. After computation, results are stored into memory. To compute middle line
of triangular form, intermediate results should be re-loaded. This costs lots of
load and store operations. To overcome this drawback, we combine both pro-
cesses and then compute part of combined process. The whole combined process
is not computed at once due to limited number of registers so we separate com-
bined process depending on available registers. Separated parts are computed in
this order. First, intermediate results are loaded into registers. Second, the re-
sults are 1-bit left shifted. Third, middle line of triangular form is computed and
then updated to intermediate results. This process is continued to the last sepa-
rated block which is most significant byte. The detailed block structure example
on 128-, 160-, 192-bit is available in Appendix. B. Furthermore during middle
line computations, we can re-use operand registers for carry-catcher registers.
For example, A[0]× A[0] product result is accumulated to intermediate results.
During the process carry bit is generated. To catch the carry bit, we re-used a
register storing operand A[0].

4 Experimental Results

In this section, we evaluate the performance of proposed SBD method in term of
execution time on 8-bit embedded platforms and then compare our results with
related works.

4.1 Evaluation on 8-bit Platform ATmega128

We implemented the method on 8-bit AVR processor ATmega128 which is widely
used in MICAz mote, and then simulated our implementation over AVR Studio
6.0. Normally, an ATmega128 processor runs at a frequency of 7.3728 MHz. It



has a 128 KB EEPROM chip and 4 KB RAM chip [1]. The ATmega128 proces-
sor also supports a RISC architecture with 32 registers, among which 6 registers
(R26 - R31) serve as the special pointers for indirect addressing. The remaining
26 registers are available for arithmetic operations. One arithmetic instruction
incurs one clock cycle, and memory addressing (e.g. load, store) or 8-bit mul-
tiplication (e.g. mul) incurs two processing cycles [1]. We used four registers for
the operand and result pointers, two registers for storing the result of multipli-
cation, three registers for accumulating the intermediate result, one register for
holding the zero value and the remaining registers for caching operands.

Table 3. Instruction counts for a 160-bit multiplication and squaring on the AT-
mega128 (excluding PUSH/POP), Unrolled the Loop (U-L).

Method load store mul add shift others total

Multiplication
Operand Scanning 820 440 400 1,600 - 466 5,427
Product Scanning [2] 800 40 400 1,200 - 161 3,957
Gura et al. [4] 200 40 400 1,250 - 311 2,904
Uhsadel et al. [16] 238 40 400 986 - 539 2,881
Liu et al. [9] 200 40 400 1194 - 391 2,865
Zhang et al. [17] 200 40 400 1092 - 473 2,845
Scott et al. [13] (U-L) 200 40 400 1263 - 108 2,651
Hutter et al. [6] (U-L) 80 60 400 1,240 - 70 2,395
Seo et al. [14] (U-L) 70 60 400 1,240 - 56 2,356

Squaring
Yang et al. [5] 468 280 210 909 40 244 3,009
Scott et al. [13] (CC) 100 40 210 1,265 - 100 2,065
Lee et al. [8](LD) 51 40 210 804 - 103 1,509
Our method (SBD) 58 81 210 671 42 45 1,456

Table 3 lists the performance comparison of the total clock cycles in case of
160-bit squaring. There are two main categories of methods, namely, the multi-
precision multiplication and squaring methods. The multiplication methods are
inefficient for squaring, since it does not take the advantage of main feature
of squaring which can avoid duplicated partial products, exploiting doubling
operation. For this reason, when using the multiplication methods to conduct
partial products, the efficiency is quite low.

In case of squaring, we compared with the three widely used methods. First,
we compared with Yang et al.’s method. As mentioned before, this method is
not suitable for software implementation. It conducts the multiplication with
operand scanning method which requires lots of registers for maintaining inter-
mediate results and carry catcher values. The registers in need are about 3n.
If number of register is lower than 3n, performance is sharply plunged due to



frequent memory access to restore the values.4 Second, we compared with the
carry catcher method. It enhances performance by computing partial products
within specific inner multiplication blocks. Carry propagation is effectively re-
duced but doubling method is conducted to all duplicated partial products which
computes lots of addition operations. Third, we compared with the best known
previous result, namely LD method. LD method eliminates many number of
doubling process by accumulating the intermediate results and then computing
doubling at the end of inner multiplication blocks. However, this method does not
fully accumulate intermediate results before doubling process. Compared to the
three methods, SBD method is fully computing partial products using product-
scanning and then shifting the intermediate results, which compute doubling
with single 1-bit left shift operation, adding remaining partial products to in-
termediate results. Even though we conduct more number of memory accesses
for load and store intermediate results, we efficiently compute doubling process
and partial products, which draw higher performance enhancement by reducing
arithmetic operations.

Table 4 and Figure 6 give the comparison details of these methods. The
proposed SBD method only requires 1,456 clock cycles to accomplish an squaring
operation of 160-bit, which is setting a new speed record for multi-precision
squaring operation on 8-bit AVR micro-controllers. As a result of this, compared
to previous best known result, lazy doubling, SBD method shows performance
improvement by about 3.5 ∼ 4.4%. It is also worth to notice that the performance
enhancement of SBD appears in each operand length (128-bit to 192-bit), and the
enhancement ratio shows an increased tendency with the increasing of operand
length.

Table 4. Performance enhancement of ATmega128 for squaring operation, our: pro-
posed, LD: lazy-doubling, CC: carry-catcher.

Bit Clock Cycle Performance Enhancement(%)
Our LD CC (1 − Our

LD
) × 100 (1 − Our

CC
) × 100

128 1,003 1,039 1,365 3.465 26.520
160 1,456 1,509 2,065 3.512 29.492
192 2,014 2,107 2,909 4.414 30.767

5 Conclusion

This paper presented a new technique to implement multi-precision squaring
on resource-constrained embedded processors, named “sliding block method”

4 Software implementation of Yang et al. is not reported in [5]. For pair comparison,
we implemented this method following the their main idea and using carry-catcher
method as well.
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(SBD). As the name suggests, the SBD method delays the doubling process to
the very end of the partial-product computations so that it can be performed
“in one pass” by a 1-bit left shift. In order to achieve high performance, we also
optimized the usage of general purpose registers and reduced the overhead dur-
ing the computation of each block by combining the advantages of the operand
caching technique and lazy doubling method. We then theoretically analyzed
the computational complexity of the proposed SBD method and provided a
method to estimate the performance for arbitrary-length operands. To validate
the theoretical results, we implemented the SBD method on an 8-bit AVR mi-
crocontroller for operands of different length. Our results show that the SBD
method requires only 1456 clock cycles to perform a 160-bit squaring, which sets
a new speed record for multi-precision squaring on an 8-bit platform. The pro-
posed method outperforms the best previous results in the literature by a factor
of between 3.5% and 4.4%, depending on the concrete bit-length. Moreover, the
SBD method can be easily adapted to other embedded platforms with minor
modifications, e.g. 16-bit MSP and 32-bit ARM processors. As a future work,
we will port our method to various other platforms and show the impact of SBD
squaring in real public-key algorithms, including RSA, ECC and pairing-based
schemes.
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Appendix A. Algorithm for Sliding-Block-Doubling
Squaring Method

Input: word size n, parameter e, where n ≥ e, Integers a ∈ [0, n), c ∈ [0, 2n).
Output: c = a2.
RA[n− 1, ..., 0]←MA[n− 1, ..., 0].
ACC ← 0.
for i = 1 to n− 1

for j = 1 to d i2e
ACC ← ACC +RA[i]×RA[j].

end for
MC [i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for
for i = n to 2n− 1

for j = 2n− 1 to d i2e
ACC ← ACC +RA[i]×RA[j].

end for
MC [i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for
ACC ← 0.
for i = 0 to n− 1

if i%d == 0
RC [i+ d, ..., i]←MC [i+ d, ..., i].
RC [i+ d, ..., i]← RC [i+ d, ..., i]� 1.

end if
ACC ← ACC +RA[i]×RA[i].
MC [i]← ACC0.
MC [i+ 1]← ACC1.

end for



Appendix B. Example: Sliding-Block-Doubling Structure
for 128-, 160-, 192-bit Case

A[23]A[0]

A[0]A[0]A[23]A[23]

C[0]C[23]C[47]

A[19]A[0]

A[0]A[0]A[19]A[19]

C[0]C[19]C[39]

A[0]A[0]

C[0]

A[15]A[0]

A[15]A[15]

C[15]C[31]

(a) (b)

(c)

Fig. 7. Practical implementation of proposed method in case of, (a) 128-bit, (b) 160-bit,
(c) 192-bit.


