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ABSTRACT

Remote sensing observations often have correlated errors, but the correlations are typically ignored in data

assimilation for numerical weather prediction. The assumption of zero correlations is often used with data

thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution

forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative

approach to dealing with observation error correlations is needed. In this article, we consider several

approaches to approximating observation error correlation matrices: diagonal approximations, eigendecom-

position approximations and Markov matrices. These approximations are applied in incremental variational

assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments

quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using

the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate

correlation structure in the observation error covariance matrix than to incorrectly assume error independence.

Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include

error correlation structure in a variational data assimilation algorithm.

Keywords: variational data assimilation, correlated observation errors, approximate covariance matrices,

Markov correlation structures, eigendecompositions, shallow water equations

1. Introduction

Data assimilation provides techniques for combining ob-

servations of atmospheric variables with a priori knowledge

of the atmosphere to obtain a consistent representation

known as the analysis. The weighted importance of each

contribution is determined by the size of its associated

errors; hence it is crucial to the accuracy of the analysis that

these errors be correctly specified.

Theoretical presentations of data assimilation are usually

restricted to cases where observation errors are taken to be

random and unbiased. In practice, systematic observation

errors are often estimated and removed from observations

either in a pre-processing step or using an online bias

correction system (e.g. Dee, 2005). In this article, we are

concerned chiefly with the random component of observa-

tion error, and we will assume that these random errors are

unbiased (have a zero mean), but may be correlated.

Observation errors can generally be attributed to four

main sources:

(1) Instrument noise.

(2) Observation operator, or forward model error � For

satellite observations, this includes errors associated

with the discretisation of the radiative transfer

equation and errors in the mis-representation of

gaseous contributors.

(3) Representativity error � This is present when the

observations can resolve spatial scales or features in

the horizontal or vertical that the model cannot. For

example, a sharp temperature inversion can be well-

observed using radiosondes but cannot be repre-

sented precisely with the current vertical resolution

of atmospheric models.

(4) Pre-processing � For example, if we eliminate all

satellite observations affected by clouds and some

cloud-affected observations pass through the quality

control, then one of the assimilation assumptions is

violated and the cloudy observations will contam-

inate all satellite channels that are influenced by the

cloud. It is reasonable to assume that instrument
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errors are independent and uncorrelated. However,

the other three sources of error result in observation

error correlations.

Observation error correlations may be inter-channel

error correlations (for satellite observations) or spatial

correlations associated with an observation footprint (the

region of atmosphere observed) e.g. horizontal, vertical,

along a weather radar ray path etc. Temporal correlations

are excluded from this work, although in principle tempo-

ral correlations (e.g. between successive observations using

the same instrument) could be treated using an enlarged

version of the observation error covariance matrix where

the time dimension was also modelled. Here we also

exclude correlations between observation errors for differ-

ent instrument types, so the observation error covariance

matrix can be considered block diagonal, with each block

corresponding to a different instrument type.

Quantifying observation error correlations is not a

straightforward problem because they can only be esti-

mated in a statistical sense, not observed directly. A

particular issue is that the distinction between biased and

correlated errors can be blurred in practical contexts. For

example, if we take a series of correlated samples, the series

will tend to be smoother than a series of independent

samples, with adjacent and nearby values more likely to be

similar than a series of independent samples. Hence, in

practical situations it would be easy for a sample from a

correlated distribution with a zero mean to be interpreted

as a biased independent sample (Wilks, 1995, section 5.2.3).

Nevertheless, attempts have been made to quantify error

correlation structure for a few different observation types

such as Atmospheric Motion Vectors (Bormann et al.,

2003) and satellite radiances (Sherlock et al., 2003; Stewart

et al., 2009; Bormann and Bauer, 2010; Bormann et al.,

2010; Stewart, 2010; Stewart et al., 2012). Using diagnosed

correlations such as these in an operational assimilation

system is far from straightforward: early attempts by the

UK Met Office using IASI and AIRS data have resulted

in conditioning problems with the 4D-Var minimisation

(Weston, 2011).

Due to the large number of observations, the computa-

tional demands of using observation error correlations

appear to be significant. However, the size of the matrices

to be stored may be reduced if the observation error

covariance matrix has a block-diagonal structure, with

(uncorrelated) blocks corresponding to different instru-

ments or channels. For each block, if the observation sub-

vector is of size p then the observation error covariance

sub-matrix contains (p2�p)/2 independent elements. When

observations have independent errors, i.e. the errors are

uncorrelated, (p2�p)/2 of these elements are zero, and we

only need represent p elements. For relatively small p,

using full observation covariance sub-matrices appears

feasible, although a form of regularisation may be required

to overcome ill-conditioning (e.g. the recent work ofWeston

(2011)). However, for large p, for example when dealing with

spatial correlations, another approach is required.

In current operations, observation errors are usually

assumed uncorrelated. In most cases, to compensate for the

omission of error correlation, the observation error var-

iances are inflated so that the observations have a more

appropriate lower weighting in the analysis (e.g. Collard,

2004). The assumptions of zero correlations and variance

inflation are often used in conjunction with data thinning

methods such as superobbing (Berger and Forsythe, 2004).

Superobbing reduces the density of the data by averaging

the properties of observations in a region and assigning

this average as a single observation value. Under these

assumptions, increasing the observation density beyond

some threshold value has been shown to yield little or no

improvement in analysis accuracy (Liu and Rabier, 2003;

Berger and Forsythe, 2004; Dando et al., 2007). Stewart

et al. (2008) and Stewart (2010) showed that the observa-

tion information content in the analysis is severely de-

graded under the incorrect assumption of independent

observation errors. Such studies, combined with examples

demonstrating that ignoring correlation structure hinders

the use of satellite data [e.g. constraining channel selection

algorithms (Collard, 2007)], suggest that error correlations

for certain observation types have an important role to play

in improving numerical weather forecasting. Indeed, the

inclusion of observation error correlations has been shown

to increase the accuracy of gradients of observed fields

represented in the analysis (Seaman, 1977). Furthermore,

retaining even an approximate error correlation structure

shows clear benefits in terms of analysis information

content (Stewart et al., 2008; Stewart, 2010).

Approximating observation error correlations in numer-

ical weather prediction (NWP) is a relatively new direction

of research but progress has been made. Healy and White

(2005) used circulant matrices to approximate symmetric

Toeplitz observation error covariance matrices. Results

showed that assuming uncorrelated observation errors

gave misleading estimates of information content, but using

an approximate circulant correlation structure was prefer-

able to using no correlations. Fisher (2005) proposed giving

the observation error covariance matrix a block-diagonal

structure, with (uncorrelated) blocks corresponding to

different instruments or channels. Individual block matrices

were approximated by a truncated eigendecomposition. The

method was shown to be successful in representing the true

error correlation structure using a subset of the available

eigenpairs. However, spurious long-range correlations were

observed when too few eigenpairs were used.
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In this article, we carry out numerical experiments using

incremental variational assimilation (Section 2) to address

the following questions: Is it better to model observation

error correlation structure approximately than not at all?

and Is it computationally feasible to model observation error

correlations? We use identical twin experiments so that a

‘truth’ trajectory is available and we are able to consider

analysis errors explicitly. We specify two ‘true’ correlated

observation error covariance matrices that we use to

simulate synthetic observation errors, described in Section

3. However, in the variational minimisation, we use

approximate observation error correlation structures to

compute the cost function, with the aim that these

approximations will provide more accurate analyses than

incorrectly assuming uncorrelated errors, without a large

increase in computational cost. The approximations chosen

include diagonal matrices with inflated variances (Collard,

2004), a truncated eigendecomposition (Fisher, 2005), and

a Markov matrix (Sections 3.2�3.4). The Markov matrix

has not been applied in this context before and has the

advantage of a tri-diagonal inverse.

The experiments are carried out using a 1-D, irrota-

tional, non-linear shallow water model (SWM) described in

Section 4. The experimental design is given in Section 5,

and analysis error measures are discussed in Section 6. The

results (Sections 7, 8 and 9) show that including some

correlation structure, even a basic approximation, often

produces a smaller analysis error than using a diagonal

approximation. We conclude (Section 10) that it is compu-

tationally feasible and advantageous for analysis accuracy

to include approximate observation error correlations in

data assimilation. These encouraging results in a simple

model should be investigated further for the potential

improvement of operational assimilation systems.

2. Variational assimilation

Consider a discretised representation of the true state of the

atmosphere xt
i 2 R

n, at time ti, where n is the total number

of state variables. The analysis used in NWP will consist of

the same model variables as this discretisation and must be

consistent with the first guess or background field and the

actual observations. The background field, xb 2 R
n, is valid

at initial time t0 and is usually given by a previous forecast.

Observations are available at a sequence of times ti and are

denoted yi 2 R
pi , where pi is the total number of measure-

ments available at time ti. The background state and

observations will be approximations to the true state of

the atmosphere,

xb ¼ xt
0 þ Eb; (1)

yi ¼ hiðxt
iÞ þ Eo

i ; (2)

where Eb 2 R
n are the background errors valid at initial

time, Eo
i 2 R

pi are the observation errors at time ti, and hi is

the, possibly non-linear, observation operator mapping

from state space to measurement space at time ti; for

example, a radiative transfer model which simulates

radiances from an input atmospheric profile. The errors

are assumed unbiased and mutually independent, and also

to have covariances B ¼ E½EbðEbÞT � and Ri ¼ E½Eo
i ðEo

i Þ
T �.

The objective of variational assimilation is to minimise

the cost function,

Jðx0Þ ¼
1

2
ðx0 � xbÞT B�1ðx0 � xbÞ

þ 1

2

Xn

i¼0

ðhiðxiÞ � yiÞ
T

R�1
i ðhiðxiÞ � yiÞ;

(3)

subject to the strong constraint that the sequence of model

states must also be a solution to the model equations,

xi ¼ mðt0; ti; x0Þ; (4)

where xi is the model state at time ti and mðt0; ti; x0Þ is the
non-linear model evolving x0 from time t0 to time ti. The

strong constraint given by eq. (4) implies the model is

assumed to be perfect.

The cost function [eq. (3)] measures the weighted sum of

the distances between the model state x0 and the back-

ground at the start of the time interval t0 and the sum of the

observation innovations ðhiðxiÞ � yiÞ computed with re-

spect to the time of the observation. Variational assimila-

tion therefore provides an initial condition such that

the forecast best fits the observations within the whole

assimilation interval.

Incremental assimilation (Courtier et al., 1994), reduces

the cost of the algorithm by approximating the full non-

linear cost function [eq. (3)] by a series of convex quadratic

cost functions. The minimisation of these cost functions

is constrained by a linear approximation M to the non-

linear model m [eq. (4)]. Each cost function minimisation is

performed iteratively and the resultant solution is used to

update the non-linear model trajectory. Full details of

the procedure are described by Lawless et al. (2005) and

Stewart (2010). We summarise the algorithm here, denoting

k as iteration number and as the full non-linear solution

valid at time ti and the k-th iteration.

At the first time step (k�0) define the current guess

x
ð0Þ
0 ¼ xb.

Loop over k:

(1) Run the non-linear model [eq. (4)] to calculate x
ðkÞ
i at

each time step i.

(2) Calculate the innovation vector for each observation

d
ðkÞ
i ¼ yi � hðxðkÞi Þ:

DATA ASSIMILATION WITH CORRELATED OBSERVATION ERRORS 3



(3) Start the inner loop minimisation. Find the value of

dx
ðkÞ
0 that minimises the incremental cost function

JðkÞðdx
ðkÞ
0 Þ ¼

1

2
ðdx

ðkÞ
0 � ðxb � x

ðkÞ
0 ÞÞ

T
B�1ðdx

ðkÞ
0 � ðxb � x

ðkÞ
0 ÞÞ

þ 1

2

Xn

i¼0

ðHidx
ðkÞ
i � d

ðkÞ
i Þ

T
R�1

i ðHidx
ðkÞ
i � d

ðkÞ
i Þ

(5)

subject to

dx
ðkÞ
i ¼Mðt0; ti; x

ðkÞ
0 Þdx

ðkÞ
0 ;

where Hi is the linearisation of the observation operator

hi and Mðt0; ti; x
ðkÞ
0 Þ is the linearisation of the model

mðt0; ti; x
ðkÞ
0 Þ. Both of these linearisations are around the

current state estimate (the non-linear model trajectory

satisfying x ¼ x
ðkÞ
0 when t ¼ t0).

(4) Update the guess field using

x
ðkþ1Þ
0 ¼ x

ðkÞ
0 þ dx

ðkÞ
0 :

(5) Repeat outer loop (Steps 2�5) until the desired

convergence is reached.

In our implementation, the conjugate gradient method

(Golub and van Loan, 1996, section 10.2) is used to carry

out the inner loop minimisation to solve eq. (5). The

maximum number of outer and inner loops performed is 20

and 200, respectively. The outer and inner loops are

terminated once the following criteria are satisfied. For

the outer loop, we require that (Lawless and Nichols, 2006)

jJðkþ1Þ � JðkÞj
1þ jJðkÞj

B0:01; (6)

where the superscripts indicate the outer loop iteration

index. For the inner loop, we require that

r JðkÞq

��� ���
2

rJ
ðkÞ
0

��� ���
2

B0:1; (7)

where the subscripts 0, q indicate the inner loop iteration

index and k indicates the outer loop iteration index. With

these stopping criteria and tolerance values, we expect the

converged solution of the minimisation to be accurate to

approximately two decimal places (Gill et al., 1981, section

8.2; Stewart, 2010).

3. Observation error covariance matrices

This article describes incremental variational assimilation

experiments using approximate forms of observation error

covariance matrices to take account of correlated observa-

tion errors in the minimisation. In Section 3.1, we describe

the ‘true’ error covariance structures we use to simulate

synthetic observation errors. In Sections 3.2�3.4, we

explain the choice of the various approximate forms of

observation error covariance matrix we employ in the cost

function. The goal is that these choices will improve the

accuracy of the analysis and have only a modest computa-

tional burden.

3.1. True error covariance structures

For our experiments, we use a 1-D spatial distribution of

observations, with a regular spacing between the observa-

tions. Observation errors are assumed correlated in space

only (no temporal correlations). We use two different forms

of true observation error covariance structure, Rt. We

make use of the general decomposition of an observation

error covariance matrix R into a diagonal variance matrix

D 2 R
p�p and a correlation matrix C 2 R

p�p such that

R ¼ D1=2CD1=2; (8)

so that we may vary the observation error variance and

correlation structure separately. Note that if C�I then R is

diagonal and D is the diagonal matrix of error variances.

In Experiments 1 and 3 we use a true error correlation

matrix with a Markov distribution, CM, given by

CMði; jÞ ¼ exp
�ji � jjDxD

LR

( )
(9)

whereDxD ¼ 0:01m is the spatial separation andLR ¼ 0:1m

is the length scale. The Markov matrix is the resultant

covariance matrix from a first-order autoregression pro-

cess, (Wilks, 1995) and is discussed in more detail in Section

3.3.

In the second experiment the true error correlation

structure follows a SOAR (second-order autoregressive)

distribution. The SOAR error covariance matrix is given by

CSði; jÞ ¼ 1þ ji � jjDxD

LR

 !
exp

�ji � jjDxD

LR

( )
: (10)

The SOAR matrix is an idealised correlation structure

that is often used to model background error correlation

structures in the horizontal (e.g. Ingleby, 2001). It is

commonly employed in preference to a Gaussian structure

because its distribution has longer tails, better at matching

empirical estimates and is better conditioned for inversion

(Haben, 2011; Haben et al., 2011).
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3.2. Diagonal approximation

The diagonal approximation that we use in our experiments

is commonly employed operationally. Diagonal matrices are

simple and numerical efficient: In incremental variational

assimilation, inverse observation error covariance matrices

are required for matrix-vector products in evaluating the

cost function and gradient, where N is the number of

assimilation time steps. When an observation error covar-

iance matrix is diagonal, its inverse will also be diagonal,

resulting in very inexpensive matrix-vector products.

The simplest diagonal approximation of an error covar-

iance matrix is taking the diagonal equal to the true

variances. However, by ignoring entirely the correlated

component of the observation error, the observations will

be overweighted in the analysis because they will appear

more informative than they truly are. Therefore, in order to

compensate for the lack of correlation, a diagonal approx-

imation given by the diagonal of the true matrix scaled by

an inflation factor is used (Hilton et al., 2009). This reduces

the weighting of the observations in the analysis. The

diagonal approximation is now in the form

D̂ ¼

d1r
2
1 0 . . . 0

0 d2r
2
2 . . . 0

0 0 . .
.

0

0 . . . 0 dpr
2
p

0
BBB@

1
CCCA; (11)

where di is the real, positive inflation factor for variance r2
i .

In our experiments, the diagonal matrix representations

are a diagonal matrix of the true error variances [r2
i for

i ¼ 1; 2; . . . p in eq. (11)], and scalar multiples of this matrix

[di ¼ l for some scalar l � 1, i ¼ 1; 2; . . . ; p in eq. (11)].

The scalar multiples are chosen to be between two and

four, in line with our earlier 3D-Var information content

results (Stewart et al., 2008; Stewart, 2010) and results

given in Collard (2004). These showed that a two�four
times variance inflation was preferable to a simple diagonal

approximation when observation and background error

correlations were both present; but when there were

correlated observation errors and uncorrelated background

errors, a simple diagonal approximation performed better

than variance inflation.

3.3. Markov matrix

The second approximate form of matrix that we employ is

a Markov matrix. This is a novel choice that has not

previously been reported in the literature for observation

error covariance approximation. The (i, j)th element of a

general Markov matrix, R, is given by

Rði; jÞ ¼ r2qji�jj; (12)

where s2 is the observation error variance, and 05r51 is

a parameter describing the strength of the correlations.

This matrix has a tri-diagonal inverse (Rodgers, 2000),

R�1 ¼ 1

r2 1� q2ð Þ

1 �q 0 . . . 0

�q 1þ q2 �q . . . 0

..

. . .
. . .

. . .
. ..

.

0 . . . �q 1þ q2 �q
0 . . . 0 �q 1

0
BBBBB@

1
CCCCCA:

(13)

The storage needed for reconstructing matrix [eq. (13)] is

limited to the value of r, and the number of operations

involved in a matrix-vector product using a tri-diagonal

matrix is the same order as that using a diagonal matrix.

Therefore, calculating the cost function using the Markov

matrix approximation is a possibility for operational

assimilation.

In our experiments, we let q ¼ expð�DxD=LRÞ, as in

eq. (9). The Markov matrix representations are Markov

structured matrices with length scales LR¼0:2 m, LR¼0:1m;

LR ¼ 0:05 m and LR ¼ 0:01 m, i.e. double, the same as,

half, and a tenth of the true length scale. These values are

chosen to represent different levels of error dependence. In

Fig. 1, the central row of each Markov matrix is plotted.

Note that as the length scale decreases, the thickness of

the central correlation band decreases. We also test the

Markov matrix representation for the case where LR is

small enough that CMði; jÞ ¼ 0 for i 6¼ j; this should

produce the same result as using the diagonal approxima-

tion with the true error variances, and is a continuity test

on our system.
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Fig. 1. Middle row of a 1001�1001 Markov matrix, (9). Dash�
dot line LR�0.01m, full line LR�0.05m, dashed line LR�0.1m

and dotted line LR�0.2 m.
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3.4. Eigendecomposition matrix

Starting from the general covariance decomposition [eq.

(8)], Fisher (2005) proposed that the observation error

covariance matrix be approximated using a truncated

eigendecomposition Ĉ of the error correlation matrix C,

R ¼ D1=2ðaI þ
XK

k¼1

kk � aÞvkvT
k

� �
D1=2 � D1=2ĈD1=2; (14)

where ðkk; vkÞ is an (eigenvalue, eigenvector) pair of C, K is

the number of leading eigenpairs used in the approxima-

tion, and is chosen such that trace (R)�trace (D). This

ensures that there is no mis-approximation of the total

error variance, since trace (D1=2CD1=2)�trace (D). A

formula for may be computed as

a ¼
traceðDÞ � trace D1=2

PK
k¼1

kkvkvT
k

� �
D1=2

� �

traceðDÞ � trace D1=2
PK
k¼1

vkvT
k

� �
D1=2

� � ; (15)

using the additive property of the trace function. The

inverse of eq. (14) is easily obtainable and is given by

R�1 ¼ D�1=2ða�1I þ
XK

k¼1

k�1
k � a�1ÞvkvT

k

� �
D�1=2

¼ D�1=2Ĉ�1D�1=2: (16)

The representation [eq. (14)] allows the retention of some of

the true correlation structure, with the user choosing how

accurately to represent the inverse error covariance matrix

[eq. (16)] through the choice of K. Care must be taken to

ensure numerical stability (for example choosing K such

that k�1
k � a�1 is never too small).

In Fisher (2005) the leading eigenpairs of C are found

using the Lanczos algorithm. In our experiments, the leading

eigenpairs needed for the representation are pre-computed

using the MATLAB function eigs() (MathWorks,

2009) which uses an implicitly restarted Arnoldi method

(Sorensen, 1992; Lehoucq and Sorensen, 1996).

By studying the eigenspectra of the true error correlation

matrices we can estimate how many eigenpairs are needed

for a good representation. The eigenspectra of a Markov

matrix and a SOAR matrix, both of size 1001�1001,

with length scale LR ¼ 0:1 m and spatial separation DxD ¼
0:01 m, are plotted in Fig. 2. The plots show that the

eigenvalue size declines sharply as the eigenvalue number

increases. The condition number (ratio of largest to

smallest eigenvalue) for the Markov matrix is 400 and for

the SOAR matrix is 4.8�105. After 100 eigenvalues, 80

and 99% of the overall uncertainty is represented for

the Markov and SOAR matrix respectively � uncertainty

percentages are calculated using (sum of eigenvalues used)/

(sum of all eigenvalues or trace of matrix)�100%. There-

fore, we use 100 eigenpairs as an empirical upper limit to

the number of eigenpairs used in the assimilation.

The number of eigenpairs we use in our approximations

are K�10, K�20, K�50 and K�100. This represents

1, 2, 5 and 10% of the total number of eigenpairs. An

eigendecomposition (ED) approximation using the full

number of eigenpairs K�1001 is equivalent to using the

true error correlation matrix in the system. Obviously using

all the eigenpairs is an expensive procedure and would not

be attempted operationally. However, in these smaller

dimensioned experiments, knowing the performance of

the assimilation under the true error correlation matrix

allows us to quantify the success of an assimilation using

an approximated correlation matrix relative to the truth.
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Fig. 2. (a) Eigenspectrum of a 1001�1001 Markov error correlation matrix; (b) Eigenspectrum of a 1001�1001 SOAR error correlation

matrix.
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We therefore also run the assimilation using the ED

approximation with the full number of eigenpairs.

4. Shallow water model

In this section we describe the forecast model used in

our experiments. This is a 1-D, non-linear, SWM system

describing the irrotational flow of a single-layer, inviscid

fluid over an object. The SWM has been used for a variety

of assimilation experiments e.g. Lawless et al. (2005, 2008);

Katz et al. (2011); Steward et al. (2012). As an idealised

system, it allows clearer understanding of the results

without the obfuscating complexity of a more realistic

system.

The continuous equations describing 1-D shallow water

flow are given by

Du

Dt
þ @/

@xD

¼ �g
@ho

@xD

; (17)

Dðln/Þ
Dt

þ @u

@xD

¼ 0; (18)

on the domain xD 2 ½0;L�, t 2 ½0;T �, where

D

Dt
¼ @

@t
þ u

@

@xD

; (19)

and ho ¼ hoðxDÞ is the height of the bottom orography, u is

the fluid velocity, f�ghf is the geopotential where g is the

gravitational acceleration and hf�0 is the depth of fluid

above the orography. The spatial boundary conditions are

taken to be periodic, so that at any time t 2 ½0;T �,

uð0; tÞ ¼ uðL; tÞ;/ð0; tÞ ¼ /ðL; tÞ; hoð0Þ ¼ hoðLÞ:

The non-linear shallow water equations are discretised

using a two-time-level semi-implicit, semi-Lagrangian

scheme, described by (Lawless, 2001; Lawless et al., 2003).

The experiments in this article model a flow field

described in Houghton and Kasahara (1968) in which

shallow water motion is forced by some orography. Using

the shallow water eqs. (17) and (18), we consider a fluid at

rest when tB0, with the geopotential equal to /0 � hoðxDÞ,
where f0 is a constant. At t�0 the fluid is set in motion

with a constant velocity u0 at all grid points, causing a wave

motion to develop outwards from the obstacle in the fluid.

The solution close to the object becomes a steady state

solution (Lawless et al., 2003). We restrict the fluid motions

to be not too highly non-linear so as to keep our

assumptions of linearity as valid as possible. We use a

periodic domain where the boundaries are at a sufficient

distance from the obstacle to ensure any propagating wave

motions in the vicinity of the obstacle respect the asymp-

totic conditions.

The data used in the experiment is based on Case A in

Houghton and Kasahara (1968). We consider a 1-D spatial

domain between [0,10m] equally divided into 1001 grid

points with spatial step DxD ¼ 0:01 m. The height of the

obstacle in the fluid is given by

hoðxDÞ ¼
hC 1� x2

D

a2

	 

0 � jxDj � a

0 jxDjB0 or jxDj > a

(

where hC is the maximum height of the obstacle and a is

half the length over which the base of the obstacle extends.

The values of a and hC are set as: a ¼ 40DxD ¼ 0:4 m,

hC ¼ 0:05 m. The temporal domain is 100 time steps

with step size t ¼ 9:2� 10�3 s. At t�0 the initial velocity

is u0�0.1 ms�1, and the geopotential is /ðxDÞ ¼ gð0:2�
hoðxDÞÞwhere g�10 ms�2.

5. Twin experiments

Our numerical experiments are performed using an assim-

ilation-forecast system based on an incremental variational

assimilation system implemented for the SWM of Section

4. In order to assess the impact of modelling correlated

observation error structure, we use different approxima-

tions to the observation error covariance matrix in the cost

function, as discussed in Section 3: diagonal approxima-

tions, Markov approximations and ED approximations.

By keeping all other variables the same, any changes in the

analysis trajectory can be attributed to the specification of

the observation errors. In practice, such an approach is not

always possible since the true error covariance matrix is

rarely known explicitly. The 1-D construction of the SWM

means we are considering error correlations between

observations in the horizontal. However, the techniques

we are using could easily be translated to a 1-D vertical

profile, such as the radiance profiles used in 1D-Var.

Therefore our assimilation tests will remain independent

of any discussion on issues of spatial resolution or

horizontal thinning.

An identical twin experiment is performed by running

the non-linear SWM forward in time from the initial

conditions described in Section 4, to generate a true model

solution at each assimilation time step, t0; . . . t100. This

is known as the truth trajectory. Observations of fluid

velocity u and geopotential f are sampled from the truth

trajectory. It is assumed that there is an observation at each

grid point, and after every 10 time steps, i.e. 10 sets of 1001

observations in total; this density was chosen to represent a

very well-observed system. Random noise with multivariate

normal distribution Nð0;RtÞ is added as observation error.

The errors in the u and f observations are assumed

mutually uncorrelated so that the observation error vectors

for the u and f fields may be generated independently.
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The correlation structures for the errors are given in

Section 3.1. For most of the experiments, the observation

error variances are set at 0.0004 m2s�2 for u observations

and 0.04 m4s�4 for f observations. Thus the standard

deviation of the noise corresponds to 20% of the mean field

value.

The initial background is taken as the initial truth

trajectory plus random noise from a normal distribution

with mean zero and covariance matrix Bt. Experiments 1

and 2 are run with uncorrelated background errors where

the background error variances are set at 0.0002 m2s�2 for

u observations and 0.02 m4s�4 for f observations. In

Experiment 3, we choose the background error variances to

be the same as in the other experiments. However, for this

experiment, the errors are spatially correlated, with a

Markov correlation structure, specified as in eq. (9) with

DxD ¼ 0:01 m and LR�0.1m.

An incremental data assimilation algorithm is then run

using these observation and background data, with the

covariances used in the calculation of the cost function

taken to be Bt for the background error covariance and Rf

(an approximate covariance structure) for the observation

error covariance. The time window for the assimilation is

100 model time steps. The assimilation finds an analysis

valid at initial time t�0, for each model grid point. We then

integrate the analysis forward in time to give an updated

forecast. The accuracy of the resulting analysis and forecast

can be evaluated using the error measures described in the

next section. Note that we perform only one analysis and

forecast � we perform no cycling in these experiments.

6. Analysis error measures

We now describe the diagnostics used to evaluate the

success of each approximation. The assimilation is run

using different approximations Rf to the true error

covariance matrix Rt. We illustrate the comparative

behaviour of the assimilation under different approxima-

tions by comparing:

� Error 1 (E1): The norm of the analysis error with

respect to the true solution

�xRf
� xt

��� ���
2

(20)

where xt is the true solution of the original model run from

which the observations are sampled, and �xRf
is the

converged solution to the assimilation problem when the

approximation Rf is used in calculating the cost function,

but the observation errors themselves are sampled using the

true error covariance Rt;

� Error 2 (E2): The percentage norm of the analysis

error in the converged solution relative to the norm

of the true converged solution

�xRf
� �xRt

��� ���
2

�xRt

��� ���
2

� 100 (21)

where �xRt
is the true converged solution to the assimilation

problem when the true error covariance matrix Rt is used

both in calculating the cost function and in sampling the

observation errors.

Errors E1 and E2 provide us with information on the

closeness of different analyses. Since the magnitude of the

f field is an order larger than that of the u field, we produce

separate error norms [eqs. (20) and (21)] for u and f to

avoid changes in the u field being overshadowed by changes

in the f field.

7. Experiment 1: Markov error correlation

structure

In our first experiment we investigate the impact on

analysis accuracy of using a diagonal matrix, a Markov

matrix and an ED matrix to represent a Markov error

correlation structure. The analysis errors E1 and E2 at

the start of the assimilation window (t�0) for different

approximations to a Markov error correlation structure are

given in Tables 1 and 2 for u and f, respectively.

The error in the background field is xb � xtk k2¼ 0:32 for

the u field and xb � xtk k2¼ 6:32 for the f field. We can see

in Tables 1 and 2 that in all cases the approximation results

in an improvement to the background field. Using the true

error covariance matrix, i.e. a Markov matrix with length

scale LR�0.1m, produces the smallest analysis errors;

Table 1. Analysis errors in u field at t�0 for different approx-

imations to a Markov error covariance matrix ( �xRk k2¼ 3:20)

Approximation E1: �xRf
� xt

��� ���
2

�xRf
� �xRt

��� ���
2

E2 (%)

Truth 0.20 0 0

Diagonal 0.30 0.23 7.2

2�diagonal 0.31 0.23 7.2

4�diagonal 0.31 0.24 7.5

Markov (LR�0.2) 0.21 0.06 1.9

Markov (LR�0.1) 0.20 0 0

Markov (LR�0.05) 0.21 0.05 1.6

Markov (LR�0.01) 0.27 0.18 5.6

ED (K�10) 0.28 0.19 5.9

ED (K�20) 0.28 0.19 5.9

ED (K�50) 0.25 0.15 4.7

ED (K�100) 0.23 0.10 3.1

8 L. M. STEWART ET AL.



the percentage error E2 is zero for this matrix because

Rt�Rf Using a diagonal matrix approximation results in

the largest analysis errors.

Using a Markov approximation with double (LR�
0.2 m) or half (LR�0.05 m), the true length scale results

in a small E2 error of less than 2% for the u and f fields.

This implies that choosing the exact length scale is not

essential to producing accurate results. Also, using a

Markov matrix approximation with length scale between

LR�0.2 m and LR�0.05 m results in a smaller E2 error

than that of an ED approximation using 100 eigenpairs.

Using more eigenpairs in the ED approximation produces a

more accurate analysis, but at greater computational

expense because additional eigenpairs must be stored and

used in cost function computations. We can therefore

infer that although using more eigenpairs is beneficial, a

Markov approximation using an approximate length scale

is cheaper and more effective. In the next section, we will

see if the same conclusions are drawn when the true error

covariance matrix follows a non-Markov distribution.

It is worth noting that using an ED approximation with

a small number of eigenpairs can generate a smaller

analysis error than when a diagonal approximation is

used and is comparable with a weakly correlated Markov

approximation. For example, a diagonal matrix approx-

imation results in an E2 error of 7.2% in the u field

compared to a 5.9% error under an ED matrix with 10

eigenpairs and a 5.6% error under a Markov matrix with

length scale LR�0.01m. Combined with the results for a

Markov matrix approximation, this implies that it is often

better to include some correlation structure, even if it is a

weak approximation, than none at all.

Similar tests were performed for different observation

frequencies. We found that using more frequent observa-

tions resulted in a small improvement in E2 for the three

matrix approximations tested: a diagonal matrix, a Markov

matrix with LR�0.05 m and an ED matrix with K�50.

Increasing the frequency of observations had the biggest

impact on the diagonal approximation. Nevertheless, even

when there were observations at every time step (100

observation sets) the error E2 under a diagonal approx-

imation was still significantly larger (5.7%than when a

Markov (1.3%) and an ED approximation (3.4%) were

used.

In the next section we will extend the experiments

performed here to a different choice of true error correla-

tion structure.

8. Experiment 2: SOAR error correlation

structure

In this section we consider the effect of our choice of the

true observation error correlation structure. In Experiment

1, the true error correlation matrix was generated from a

Markov distribution [eqs. (8) and (9)]. We now change the

true correlation matrix to represent a SOAR distribution

with length scale LR�0.1m [eqs. (8) and (10)]. The matrix

representations used to approximate this correlation struc-

ture are the same as those used in Experiment 1. Using

a SOAR matrix will allow us to determine whether the

Markov approximation also minimises analysis error when

the true correlation structure is not in Markov form, and

how well the ED and diagonal approximations perform in

comparison.

The analysis errors E1 and E2 at t�0 for the different

approximations to the SOAR error covariance matrix

are given in Tables 3 and 4, for u and f respectively.

Comparing the results to Tables 1 and 2, we observe that

the qualitative nature of the errors is very similar. For

example, using the true error covariance matrix structure

results in the smallest errors and diagonal approximations

result in the largest errors. The approximations resulting in

Table 2. Analysis errors in f field at t�0 for different approxi-

mations to a Markov error covariance matrix ( �xRk k2¼ 62:64)

Approximation E1: �xRf
� xt

��� ���
2

�xRf
� �xRt

��� ���
2

E2 (%)

Truth 2.35 0 0

Diagonal 3.61 3.04 4.9

2�diagonal 3.85 3.32 5.3

4�diagonal 4.11 3.61 5.8

Markov (LR�0.2) 2.41 0.54 0.9

Markov (LR�0.1) 2.35 0 0

Markov (LR�0.05) 2.42 0.67 1.1

Markov (LR�0.01) 3.06 2.27 3.6

ED (K�10) 3.97 3.25 5.2

ED (K�20) 3.80 3.03 4.8

ED (K�50) 3.33 2.39 3.8

ED (K�100) 2.77 1.56 2.5

Table 3. Analysis errors in u field at t�0 for different approx-

imations to a SOAR error covariance matrix ( �xRk k2¼ 3:19)

Approximation E1: �xRf
� xt

��� ���
2

�xRf
� �xRt

��� ���
2

E2 (%)

Truth 0.11 0 0

Diagonal 0.31 0.28 8.8

2�diagonal 0.32 0.29 9.1

4�diagonal 0.32 0.30 9.4

Markov (LR�0.2) 0.13 0.07 2.2

Markov (LR�0.1) 0.15 0.11 3.4

Markov (LR�0.05) 0.18 0.15 4.7

Markov (LR�0.01) 0.27 0.25 7.8

ED (K�10) 0.26 0.24 7.5

ED (K�20) 0.23 0.20 6.3

ED (K�50) 0.15 0.11 3.4

ED (K�100) 0.13 0.07 2.2
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the smallest analysis errors are a Markov matrix with

length scale LR�0.2 m and an ED matrix using 100

eigenpairs. It is intuitive that a Markov matrix with a

longer length scale is preferable, because of the longer tails

in a SOAR function. The E2 error in the u field is also

small for Markov approximations with length scale be-

tween LR�0.2 m and LR�0.05 m, compared to a 9.4%

error when a 4�diagonal approximation is used. Inflated

diagonal approximations perform slightly worse than a

simple diagonal approximation; this is in line with the

information content results in Stewart (2010), when the

background errors were uncorrelated.

It is also expected that an ED matrix using 100

eigenpairs results in a very small analysis error relative to

the converged solution, because as we observed in Section

3.4, 100 eigenpairs represent 99% of the overall uncertainty

in the matrix. It is encouraging that an ED approximation

using even fewer eigenpairs also results in an improved E2

error relative to a diagonal approximation; using 5% of the

available eigenpairs results in an E2 error in the f field of

2.3% compared to 5.3% when a diagonal approximation is

used. The E1 errors in using an ED approximation to

model a SOAR error covariance structure are smaller than

those generated when an ED approximation was used to

model a Markov error covariance structure in Experiment

1. This is because, for a SOAR error covariance matrix,

more uncertainty is represented using the same number

of eigenpairs; as demonstrated in the steeper gradient in

Fig. 2.

It is also interesting to look at individual analysis errors

over the domain. At each grid point the analysis error is

given by the difference between the true analysis and the

analysis resulting from the assimilation. Figures 3 and 4

show the analysis errors in the u and f fields at t�0 and

t�50, respectively. By looking at the spread of analysis

errors for the diagonal and Markov approximations, we see

that the difference between the two is not uniform over the

domain, i.e. in some regions, a diagonal approximation is

much worse than a Markov approximation compared to

the average. In real atmospheric systems, such locally larger

errors may lead to severe errors in subsequent forecasts.

Comparing Fig. 3 to Fig. 4, we observe that as the

forecast evolves the analysis errors become smoother. For

the u field, the overall magnitude of the errors remains the

same, but there is a reduction in error for the f field. At the

start of the time window, the diagonal approximation

performs worse than the Markov approximation for both u

and f fields. At the centre of the time window, the errors in

the u field for a Markov and a diagonal approximation are

very similar, but for the f field, the Markov approximation

is still noticeably better. We can explain this by considering

the assumptions on the SWM. The model in this assimila-

tion is assumed perfect, and by construction is well-

behaved, meaning that small errors in the analysis at t�0
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Fig. 3. Analysis errors in (a) u field and (b) f field at the start of the time window. The grey line is for a diagonal approximation and the

black line is for a Markov approximation with LR�0.2m.

Table 4. Analysis errors in f field at t�0 for different approxi-

mations to a SOAR error covariance matrix ( �xRk k2¼ 62:54)

Approximation E1: �xRf
� xt

��� ���
2

�xRf
� �xRt

��� ���
2

E2 (%)

Truth 0.57 0 0

Diagonal 3.36 3.32 5.3

2�diagonal 3.59 3.55 5.7

4�diagonal 3.99 3.95 6.3

Markov (LR�0.2) 0.81 0.63 1.0

Markov (LR�0.1) 1.18 1.06 1.7

Markov (LR�0.05) 1.69 1.60 2.6

Markov (LR�0.01) 2.89 2.84 4.5

ED (K�10) 3.90 3.87 6.2

ED (K�20) 3.71 3.67 5.9

ED (K�50) 1.56 1.45 2.3

ED (K�100) 1.06 0.85 1.4
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will be smoothed out over time. However, for a more

complex operational system, a slight error in the true

analysis field at t�0 may propagate and grow with time,

resulting in a modified forecast. It would therefore be

interesting to extend these results to an imperfect and more

poorly behaved model system.

Finally in this section we study how the error in the

assimilation depends on the level of noise on the observa-

tions. Previous experiments were run with the standard

deviation of the noise at 20% of the mean field value; here

we vary this value between 1 and 30% . The error in the

assimilation is described by E2, as defined in Section 6

[eq. (21)]. A plot of this error measure vs. the percentage

observation error in the u and f field is shown in Fig. 5. We

see that for all three approximations studied, the E2 error

increases with the percentage observation error. In the u

field, E2 increases close to linearly with noise level for the

Markov and ED approximation; similarly for the f field

below 20% noise level. However, the diagonal approxima-

tion increases more rapidly with noise level in both fields,

although the gradient becomes more linear as the observa-

tion errors increase. We can conclude that using a

correlated matrix approximation is preferable to a diagonal

one regardless of the level of observation error noise.

9. Experiment 3: correlated background errors

The previous two experiments used uncorrelated back-

ground errors and a diagonal covariance matrix Bt. We

now consider the effect of correlated background errors.

The true observation error structure is chosen to be the

same as in Experiment 1, i.e. a Markov structure, [eq. (9)

with LR�0.1]. The background error covariance is taken

to be Bt ¼ 1
2
Rt. The background errors are modelled
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Fig. 4. Analysis errors in (a) u field and (b) f field at the centre of the time window, t�50. The grey line is for a diagonal approximation

and the black line is for a Markov approximation with LR�0.2m. Note that the scale in panel (b) is different from Fig. 3b.
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Fig. 5. Plot of E2 against level of observation noise for (a) u field, (b) f field. The solid line is for the diagonal approximation, the dashed

line for the ED approximation with K�50 and the dotted line for the Markov approximation with LR�0.05m.
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correctly in the experiment, i.e. the random background

errors are sampled from the same distribution as is

modelled in the cost function.

The analysis errors E1 and E2 at t�0 are given in Tables

5 and 6, for u and f respectively. The tables show that the

different approximations to R still have an impact on the

analysis accuracy when the background errors are corre-

lated, and the impact is a similar order of magnitude to

that seen in Experiment 1 (with uncorrelated background

errors). As before, the diagonal approximations give some

of the worst performances. However, unlike Experiment 1,

variance inflation improves the results slightly. This change

in behaviour with correlated vs. uncorrelated background

errors is consistent with our earlier 3D-Var information

content results (Stewart et al., 2008) as discussed in Section

3.2. The results using an ED approximation are mixed: for

the u field the performance is only comparable to the

diagonal approximations, although for the f field the ED

approximation yields better results. Fisher (2005) notes a

potential problem with the eigendecomposition approach

in that the approximate R matrices contain spurious

correlations, although it is hoped that contributions from

these spurious correlations may cancel out in the analysis.

We hypothesise that the particular realisation of the

observation and background noise used in this experiment

has amplified this problem, although more detailed experi-

ments beyond the scope of this article would be needed to

verify this hypothesis definitively. Overall the Markov

approximations provide the best results in terms of analysis

accuracy (also seen in Experiment 1 and 2). Finally, we

note that the detailed results seen in Experiments 1 and 2

change when background errors are correlated, but that the

general conclusion that it is better to include some level of

correlation structure in the observation error covariance

matrix approximation than to incorrectly assume error

independence still holds.

10. Summary and discussion

The correct treatment of observation errors is a double

problem for operational weather centres. Firstly the

statistical properties of the errors are relatively unknown.

Observations taken by different instruments are likely to

have independent errors, but pre-processing techniques,

mis-representation in the forward model, and contrasting

observation and model resolutions can create error correla-

tions. Secondly, even when good estimates of the errors can

be made, it is unclear what effect their inclusion in the

assimilation may have. Although the feasibility of including

cross-channel correlations for satellite infra-red sounders

has already been shown and seen to improve forecast skill,

there were conditioning problems with the minimisation

that had to be overcome (Weston, 2011). This was

accomplished using matrix approximations of a similar

type to those used in this article.

In this article, we developed an incremental variational

data assimilation algorithm that used correlated approx-

imations to model a simulated error correlation structure.

This was applied to a 1-D SWM, and the impact of each

approximation on analysis accuracy was determined. These

results were encouraging but of course suffer from some

limitations. The idealised perfect model system in the

experiments does not have the same characteristics as an

imperfect, complex NWP system. The assumption that

every model variable is observed directly prohibits a direct

comparison with satellite data assimilation, in which the

desired atmospheric fields are non-linear combinations of

the observed quantities, and observations are only avail-

able over limited regions at a given time. The choice of

background error covariance matrix, B, has been specified

using a functional form that is easy to calculate, rather than

by collating statistics from forecast differences or an

ensemble, as is more typical in operational forecasting

(Bannister, 2008).

Table 5. Analysis errors in u field at t�0 for different approx-

imations to a Markov observation error covariance matrix, with

correlated background errors

Approximation E1: �xRf
� xt

��� ���
2

�xRf
� �xRt

��� ���
2

E2 (%)

Truth 0.23 0 0

Diagonal 0.30 0.19 5.7

2�diagonal 0.28 0.16 5.0

4�diagonal 0.26 0.14 4.4

Markov (LR�0.2) 0.26 0.11 3.4

Markov (LR�0.1) 0.23 0 0

Markov (LR�0.05) 0.23 0.07 2.3

ED (K�50) 0.34 0.21 6.4

ED (K�100) 0.30 0.16 5.0

Table 6. Analysis errors in f field at t�0 for different approxi-

mations to a Markov observation error covariance matrix, with

correlated background errors

Approximation E1: �xRf
� xt

��� ���
2

�xRf
� �xRt

��� ���
2

E2 (%)

Truth 1.59 0 0

Diagonal 2.07 1.37 2.2

2�diagonal 2.06 1.37 2.2

4�diagonal 2.06 1.35 2.2

Markov (LR�0.2) 1.74 0.72 1.1

Markov (LR�0.1) 1.59 0 0

Markov (LR�0.05) 1.65 0.45 0.7

ED (K�50) 1.85 0.91 1.4

ED (K�100) 1.77 0.78 1.3
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We concluded from the experiments that by choosing a

suitable matrix approximation it is feasible to cheaply

include some level of error correlation structure in a

variational data assimilation algorithm. For different

simulated observation error distributions and levels of

error noise, we showed it is better to include some level

of correlation structure in the observation error covariance

matrix approximation than to assume incorrectly error

independence. The best results were achieved using a

Markov matrix approximation, and this was found to be

robust to changes in true correlation form and lengthscale.

While these results show promise and provide useful

guidance, further development is needed to apply these

ideas with real observations in operational systems. This

work is already underway (Weston, 2011; Pocock et al.,

2012; Stewart et al., 2012).
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