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Abstract. Thermal infrared (TIR) remote sensing of land-
surface temperature (LST) provides valuable information
about the sub-surface moisture status required for estimating
evapotranspiration (ET) and detecting the onset and sever-
ity of drought. While empirical indices measuring anoma-
lies in LST and vegetation amount (e.g., as quantified by
the Normalized Difference Vegetation Index; NDVI) have
demonstrated utility in monitoring ET and drought condi-
tions over large areas, they may provide ambiguous results
when other factors (e.g., air temperature, advection) are af-
fecting plant functioning. A more physically based inter-
pretation of LST and NDVI and their relationship to sub-
surface moisture conditions can be obtained with a sur-
face energy balance model driven by TIR remote sensing.
The Atmosphere-Land Exchange Inverse (ALEXI) model is
a multi-sensor TIR approach to ET mapping, coupling a
two-source (soil + canopy) land-surface model with an at-
mospheric boundary layer model in time-differencing mode
to routinely and robustly map daily fluxes at continental
scales and 5 to 10-km resolution using thermal band imagery
and insolation estimates from geostationary satellites. A re-
lated algorithm (DisALEXI) spatially disaggregates ALEXI
fluxes down to finer spatial scales using moderate resolution
TIR imagery from polar orbiting satellites. An overview of
this modeling approach is presented, along with strategies
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for fusing information from multiple satellite platforms and
wavebands to map daily ET down to resolutions on the or-
der of 10 m. The ALEXI/DisALEXI model has potential for
global applications by integrating data from multiple geo-
stationary meteorological satellite systems, such as the US
Geostationary Operational Environmental Satellites, the Eu-
ropean Meteosat satellites, the Chinese Fen-yung 2B series,
and the Japanese Geostationary Meteorological Satellites.
Work is underway to further evaluate multi-scale ALEXI im-
plementations over the US, Europe, Africa and other conti-
nents with geostationary satellite coverage.

1 Introduction

Water lost to the atmosphere through evapotranspiration (ET)
has the effect of cooling the Earth’s surface. Land-surface
temperature (LST), as mapped using thermal-infrared (TIR)
band data, is therefore a valuable remote indicator of both
ET and the surface moisture status (Moran, 2003). In par-
tially vegetated landscapes, depletion of water from the soil
surface layer (0–5 cm) causes the soil component of the scene
to heat rapidly. Moisture deficiencies in the root zone (down
to 1–2 m depth) lead to stomatal closure, reduced transpira-
tion, and elevated canopy temperatures, which can be effec-
tively detected from space in the thermal wavebands (Ander-
son et al., 2007b). Unlike standard water balance approaches
to modelling ET, TIR remote sensing provides diagnostic
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Table 1. Examples of current and future satellite-based TIR imag-
ing system, along with characteristic spatial and temporal reso-
lutions (table adapted from Hook,http://landportal.gsfc.nasa.gov/
Documents/ESDR/Temp-EmissivityHook whitepaper.pdf).

Pixel Spatial Temporal Current Future
scale resolution resolution sources* sources*

Coarse 5–20 km 15 min GOES GOES
MSG MSG
AIRS CrIS

Moderate 1 km Daily MODIS VIIRS
AVHRR AVHRR
ATSR

Fine 60–120 m Once every Landsat LDCM
5–16 days ASTER HyspIRI

* GOES (Geostationary Operational Environmental Satellite), MSG (Meteosat Sec-
ond Generation), AIRS (Atmospheric Infrared Sounder), MODIS (Moderate Resolu-
tion Imaging Spectroradiometer), AVHRR (Advanced Very High Resolution Radiome-
ter), ATSR (Along Track Scanning Radiometer), ASTER (Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer), CrIS (Cross-track Infrared Sounder), VIIRS
(Visible/Infrared Imager Radiometer Suite), LDCM (Landsat Data Continuity Mis-
sion), HyspIRI (Hyperspectral-Infrared Imager)

assessments of surface moisture conditions without the need
for ancillary information about precipitation or soil texture
and moisture holding capacity, making this methodology par-
ticularly useful for applications in data-poor regions of the
world. To exploit this potential, many TIR-based ET retrieval
algorithms have been developed over the past few decades to
facilitate routine monitoring of water usage/availability and
regional food security (see recent reviews by Courault et al.,
2005; Kalma et al., 2008).

Hydrologic applications in agriculture and water resource
management require ET/soil moisture information over a
range of temporal and spatial resolutions, from hourly to
monthly timesteps and at field to global scales. Unfortu-
nately, no single satellite system affords global coverage in
the thermal wavebands at both high spatial and high tempo-
ral resolution. Several current and future TIR imaging sys-
tems are summarized in Table 1, providing data at coarse
spatial and high temporal resolution from geostationary plat-
forms (sub-hourly imagery at 3–10-km resolution), mod-
erate resolution daily imaging from polar orbiting systems
such the Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Advanced Very High Resolution Radiome-
ter (AVHRR; both daily at 1 km), and relatively high spatial
resolution but infrequent temporal information from narrow-
swath polar systems like Landsat (16-day revisit at 60 to
120-m resolution).

In this paper we describe a technique for fusing ET infor-
mation derived from multiple wavebands and satellites with
different revisit cycles and pixel sizes to map hourly/daily
ET at spatial resolutions of 10 km using geostationary data
over continents down to 10–30 m over localized regions, cor-

responding to the shortwave multi-band imaging resolutions
achievable with the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) and Landsat. Multi-
scale ET products are generated with a physically based in-
verse model of Atmosphere-Land Exchange (ALEXI) and
an associated flux disaggregation technique (DisALEXI), a
modelling framework for synthesizing multi-scale, multi-
platform TIR imagery into useful end-products for opera-
tional monitoring of drought and evaporative water loss over
a range in spatiotemporal scales.

Here we present an overview of the modelling algorithm,
and describe several current international projects involving
drought monitoring, irrigation management and hydrologic
decision support in Europe, Africa and the United States.
Plans to apply ALEXI globally, and to integrate microwave
soil moisture information to improve temporal sampling, are
described under future work.

2 Methodology

The ALEXI/DisALEXI modelling system can be applied to
any of the satellite-based TIR data streams listed in Table 1,
depending on the resolution required by a given application.
Here we provide brief overview of this modelling framework,
and introduce image sharpening and fusion techniques that
have been developed to improve spatiotemporal resolution in
ET products by combining information from multiple satel-
lites and wavebands.

2.1 Mapping evapotranspiration

2.1.1 ALEXI

The ALEXI surface energy balance model (Anderson et al.,
1997, 2007b, c; Mecikalski et al., 1999) was specifically
designed to minimize the need for ancillary meteorological
data while maintaining a physically realistic representation
of land-atmosphere exchange over a wide range in vegeta-
tion cover conditions. It is one of few diagnostic land-surface
models designed explicitly to exploit the high temporal reso-
lution afforded by geostationary satellites.

Surface energy balance models estimate ET by partition-
ing the energy available at the land surface (RN−G, where
RN is net radiation andG is the soil heat conduction flux, in
W m−2) into turbulent fluxes of sensible and latent heating
(H andλE, respectively, W m−2):

RN−G = H +λE. (1)

whereλ is the latent heat of vaporization (J kg−1) andE is
ET (kg s−1 m−2 or mm s−1). Surface temperature is a valu-
able metric for constrainingλE because varying soil mois-
ture conditions yield a distinctive thermal signature associ-
ated with the soil and canopy components of the imaging
scene.
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Fig. 1. Schematic diagram representing the ALEXI(a) and DisALEXI (b) modeling schemes, highlighting fluxes of sensible heat (H) from
the soil and canopy (subscripts “s” and “c”) along gradients in temperature (T ), and regulated by transport resistancesRA (aerodynamic),RX

(bulk leaf boundary layer) andRS (soil surface boundary layer). DisALEXI uses the air temperature predicted by ALEXI near the blending
height (TA) to disaggregate 10-km ALEXI fluxes, given vegetation cover (f (θ)) and directional surface radiometric temperature (TRAD(θ))
information derived from high-resolution remote-sensing imagery at look angleθ .

The land-surface representation in ALEXI model is based
on the series version of the two-source energy balance
(TSEB) model of Norman et al. (1995; see also Kustas and
Norman, 1999, 2000), which partitions the composite sur-
face radiometric temperature,TRAD, into characteristic soil
and canopy temperatures,TS andTC, given the local vegeta-
tion cover fraction apparent at the thermal sensor view angle,
f (θ):

TRAD(θ) = [f (θ)T c4
+[1−f (θ)]T s4

]
1/4 (2)

(Fig. 1). For a homogeneous canopy with spherical leaf an-
gle distribution and leaf area index LAI,f (θ) can be approx-
imated as

f (θ) = 1−exp

(
−0.5�(θ)LAI

cosθ

)
(3)

where�(θ) is a view angle dependent clumping factor, cur-
rently assigned by vegetation class (Anderson et al., 2005).
With information aboutTRAD, LAI, and radiative forcing, the
TSEB evaluates the soil (subscript “s”) and the canopy (“c”)
energy budgets separately, computing system and component
fluxes of net radiation (RN = RNC + RNS), sensible and la-
tent heat (H = HC+HS andλE = λEC+λES), and soil heat
conduction (G). Importantly, because angular effects are in-
corporated into the decomposition ofTRAD, the TSEB can
accommodate thermal data acquired at off-nadir viewing an-
gles and can therefore be applied to geostationary satellite
images.

The TSEB has a built-in mechanism for detecting thermal
signatures of vegetation stress. A modified Priestley-Taylor

relationship (PT; Priestley and Taylor, 1972) applied to the
divergence of net radiation within the canopy (RNC), pro-
vides an initial estimate of canopy transpiration (λEC), while
the soil evaporation rate (λES) is computed as a residual to
the system energy budget. If the vegetation is stressed and
transpiring at significantly less than the potential rate, the PT
equation will overestimateλEC and the residualλES will
become negative. Condensation onto the soil is unlikely to
occur midday on clear days, and thereforeλES< 0 is consid-
ered a signature of system stress. Under such circumstances,
the PT coefficient is throttled back untilλES ∼ 0 (expected
under dry conditions). BothλEC andλES will then be some
fraction of the potential ET rates associated with the canopy
and soil. This approach therefore opens the potential for sur-
face (related toλES) and root zone (related toλEC) moisture
pool assessment, and thus concomitant tracking of both me-
teorological and agricultural drought (Kustas and Anderson,
2009). Alternatively, a light-use efficiency based version of
the TSEB estimates coupled transpiration and carbon assim-
ilation fluxes using an analytical expression for canopy con-
ductance (Anderson et al., 2008).

Regional-scale applications of the TSEB require speci-
fication of the near-surface air-temperature boundary con-
dition across the domain (TA in Fig. 1), which is diffi-
cult to accomplish with adequate accuracy over large ar-
eas. Because near-surface atmospheric properties can be
strongly coupled to local surface conditions, interpolation
between synoptic weather network observations ofTA can re-
sult in large errors in the assumed surface-to-air temperature
gradient (TRAD −TA) driving the modeled sensible heat flux.
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Therefore, for regional applications the TSEB has been cou-
pled with an atmospheric boundary layer (ABL) model to
internally simulate land-atmosphere feedback onTA . In the
ALEXI model, the TSEB is applied at two times during the
morning ABL growth phase (1 to 1.5 h after sunrise and be-
fore local noon), using radiometric temperature data obtained
from a geostationary platform like GOES at spatial reso-
lutions of ∼5–10 km. Energy closure over this interval is
provided by a simple slab model of ABL development (Mc-
Naughton and Spriggs, 1986), which relates the rise in air
temperature in the mixed layer to the time-integrated influx
of sensible heat from the land surface. As a result of this con-
figuration, ALEXI uses only time-differential temperature
signals, thereby minimizing flux errors due to absolute sen-
sor calibration and atmospheric and spatial effects (Kustas
et al., 2001). The primary radiometric signal is the morning
surface temperature rise, while the ABL model component
uses only the general slope (lapse rate) of the atmospheric
temperature profile (Anderson et al., 1997), which is more
reliably analyzed from synoptic radiosonde data than is the
absolute temperature reference.

A complete ALEXI processing infrastructure has been de-
veloped to automatically ingest and pre-process all required
input data, to execute the model, and to post-process model
output for visual display and use in other applications. Be-
cause TIR retrievals of LST are possible only under clear-sky
conditions, a gap-filling algorithm has been implemented to
estimate ET during cloudy intervals (Anderson et al., 2007c).
Running moisture pools are maintained across the model grid
for the surface and root-zone soil layers, and are updated
each clear day assuming a functional relationship between
available water fraction and the actual-to-potential ET ratio
computed by ALEXI for the soil and canopy components, re-
spectively. On cloudy days, these relationships are inverted
to predictλES andλEC based on the current day’s modelled
soil moisture status.

The gap-filled model currently runs daily on a 10-km reso-
lution grid covering the continental US (CONUS) using data
from the Geostationary Operational Environmental Satellites
(GOES). Primary ALEXI model inputs are summarized in
Table 2, along with data sources used for CONUS imple-
mentation. To date model input/output from this framework
have been archived for the period 2000–present, limited cur-
rently by the extent of the MODIS dataset used to supply
LAI model inputs. In the future, the CONUS archive can
be extended back to 1979 using GOES imagery archive at
National Climatic Data Center (NCDC) through the Inter-
national Satellite Cloud Climatology Project (ISCCP) B1
Data Rescue project (Knapp, 2008) and long-term multi-
sensor LAI data records (e.g., Ganguly et al., 2008). In ad-
dition, new domains have recently been initiated over Eu-
rope and Africa using Meteosat Second Generation (MSG)
land-surface products generated and distributed by the Land
Surface Analysis Satellite Applications Facility (LSA SAF;
Trigo et al., 2010), with other data sources listed in Table 2.

2.1.2 DisALEXI

ALEXI is constrained to operate on spatial scales of 5–
10 km, where atmospheric forcing by uniform land-surface
behavior becomes effective. Anderson et al. (2007a) sum-
marize ALEXI validation experiments employing a spa-
tial flux disaggregation technique (DisALEXI; Norman et
al., 2003), which uses uses air temperature diagnoses from
ALEXI along with higher resolution TIR imagery presently
only available from aircraft or polar orbiting systems such as
Landsat, ASTER, or MODIS to downscale the GOES-based
flux estimates (10 km resolution) to the flux measurement
footprint scale (on the order of 100–1000 m; see Fig. 1). Typ-
ical root-mean-square-deviations in comparison with tower
flux measurements (30-min averages) ofH andλE are 35–
40 W m−2 (15% of the mean observed flux) over a range in
vegetation cover types and climatic conditions. Disaggre-
gation also facilitates high spatial resolution assessment of
moisture flux and stress conditions, but is constrained in tem-
poral resolution by the overpass frequency of the polar orbit-
ing satellite. Together, ALEXI/DisALEXI facilitate scalable
flux and moisture stress mapping using thermal imagery from
a combination of geostationary and polar orbiting satellites,
zooming in from the national scale to sites of specific interest
(Fig. 2).

2.2 Thermal sharpening

For instrumental reasons, TIR imagers typically operate at
coarser spatial resolution than do visible (vis) and near-
infrared (NIR) band sensors on the same satellite platform.
For example, to complement the thermal imaging described
in Table 1, MODIS collects vis/NIR data at 250 m, while
Landsat and ASTER have shortwave band instruments at 30-
m and 10-m resolution, respectively. These higher resolu-
tions are more beneficial for many types of hydrologic ap-
plications, particularly over highly fragmented agricultural
landscapes. Fortunately, a strong inverse relationship typ-
ically exists between land-surface temperature and vegeta-
tion indices (VIs) derived from vis/NIR data (e.g., Goward et
al., 1985; Hope and McDowell, 1992; Smith and Choudhury,
1991), which can be exploited to improve the spatial resolu-
tion of TIR band imagery over many scenes to that of associ-
ated vis/NIR band instruments. This relationship reflects the
fact that denser vegetation cover tends to be correlated with
lower surface temperatures, due to cooling by transpiration.

Kustas et al. (2003) presented a simple generalized TIR
image sharpening algorithm based on this concept. First the
VI image is spatially aggregated to the TIR resolution, then
a subset of relatively homogeneous coarse-scale pixels are
selected and a functional fit is developed between TIR and
VI at this coarser resolution. This function is then applied
to the VI data at their higher native resolution to determine
a first guess at the high-resolution LST map. The final step
applies a bias correction, so that the original TIR image is
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Table 2. Primary inputs required by ALEXI, data sources used over the CONUS, Europe/Africa domains, and proposed sources for a global
application.

Data Purpose CONUS Europe Global Temporal
Africa resolution

LST 1TRAD, RN GOES (GSIP)a MSG Geoland2e hourly
Insolation RN GOES (GSIP) MSG Geoland2 hourly
Longwave rad RN GOES (GSIP) MSG Geoland2 hourly
Wind speed Aerodynamic resistances NARRb WRFd MERRAf 3 h
Lapse rate profile ABL growth model NARR WRF MERRA 3 h
LAI TRAD partitioning MODIS MODIS MODIS 8-day
Landcover type Surface characteristics UMD globalc UMD global UMD global fixed

a GOES Surface and Insolation Product (www.star.nesdis.noaa.gov/smcd/opdb/goes/gcip/html/gsiphome.html); b North American Regional Reanalysis (Mesinger et al., 2006);
c University of Maryland global landcover classification (Hansen et al., 2000);d Weather Research and Forecasting model (Skamarock et al., 2005);e GMES global land monitoring
database (Lacaze et al., 2010);f GMAO Modern Era Retrospective Analysis for Research and Applications (Bosilovich et al., 2008)

recovered when aggregated to the TIR resolution. The bias
is defined as a residual field computed by aggregating the
predicted TIR image, then subtracting from the original TIR
image.

Anderson et al. (2004) investigated the impact of ther-
mal sharpening on DisALEXI flux maps over agricultural
landscapes in Oklahoma, derived from Landsat TIR im-
agery sharpened to 30-m resolution. The sharpening pro-
cedure successfully enhanced fine spatial details such as
field borders, residential streets, and golf-course fairways.
It was determined that better results were obtained if resid-
ual fields are smoothed via convolution before reintroduc-
tion into the predicted temperature maps. The residual maps
themselves were found to contain interesting information
about soil moisture variability, a second principle driver of
surface temperature variations along with vegetation amount.
The NDVI-based sharpening methods described by Kustas et
al. (2003) have been further improved by Merlin et al. (2010)
to account for impacts of non-green vegetation (e.g., stubble
or residue) on surface temperature variations.

Agam et al. (2007a, b, 2008) further tested the sharpening
procedure over a rainfed agricultural landscape in Iowa and
an irrigated region in Texas, and discovered limitations to
the resolution range over which sharpening can be success-
fully applied. In short, temperature variations due to sub-
pixel moisture variability cannot be recovered unless they
are well-correlated with vegetation features. Therefore dom-
inant moisture variations must be well-resolved at the native
TIR resolution. This is further demonstrated in Fig. 3, show-
ing a simulated sharpening exercise over an irrigated area in
Texas. A half-pivot region in the northeast quadrant has been
given a shot of irrigation pre-emergence to stimulate seedling
growth. Because this moisture signal has no detectable VI
counterpart (the plants have not yet emerged), it disappears
in sharpening from the MODIS 1-km scale to 30 m because it
was not well-resolved by the MODIS TIR imagery. Indeed,
the fundamental TIR-VI relationship derived in this exam-

ple appears to be faulty, resulting in an over-enhancement in
temperature contrast across the sharpened image.

These results suggest that while thermal sharpening is a
valuable tool for enhancing spatial information content in
TIR imagery, it does not replace the need for TIR data collec-
tion at the sub-field scale as currently provided by Landsat.
However, Landsat and ASTER TIR imagery can be effec-
tively improved through sharpening even over irrigated land-
scapes because the moisture variability is largely resolved at
the native Landsat resolution.

2.3 Data fusion

While MODIS data cannot supplant the need for Landsat-
scale TIR imagery, they can be effectively used to inform
temporal interpolation of high resolution ET fields. The stan-
dard technique currently used to generate daily, monthly and
seasonal ET estimates at the 30-m scale, as needed for many
agriculture water management applications, is to directly
interpolate between infrequent Landsat-derived ET images,
perhaps conserving some quantity such as the ratio of actual-
to-reference ET during the intervening gap to capture evap-
orative response to temporal variability in radiation load and
atmospheric demand (e.g., Allen et al., 2007). In perpetually
cloudy regions, however, we may obtain only two or three
clear Landsat TIR images per growing season, providing in-
sufficient temporal sampling to reliably assess daily and cu-
mulative water consumption.

Using new data fusion techniques, such as the Spatial
Temporal Adaptive Reflectance Fusion Model (STARFM)
developed by Gao et al. (2006), we can improve seasonal
high-resolution ET estimates by integrating daily informa-
tion at moderate resolution from wide-swath sensors like
MODIS with periodic high-resolution maps from Landsat.
The STARFM approach was first developed to blend sur-
face reflectance between high spatial resolution Landsat and
high temporal resolution MODIS data. The approach uses

www.hydrol-earth-syst-sci.net/15/223/2011/ Hydrol. Earth Syst. Sci., 15, 223–239, 2011
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Fig. 2. Multi-scale ET maps for 1 July 2002 produced with ALEXI/DisALEXI using surface temperature data from aircraft (30-m resolution),
Landsat (60-m), MODIS (1-km), GOES Imager (5-km) and GOES Sounder (10-km), zooming into the Walnut Creek Watershed near Ames,
Iowa, site of the SMEX02 Soil Moisture Experiment. The continental-scale ET map is a 14-day composite of clear-sky model estimates
(figure from Anderson and Kustas, 2008).

spectrally similar pixels in Landsat images and temporal
changes determined from MODIS. STARFM predicts Land-
sat resolution reflectance at the MODIS acquisition date
based on the temporal change from MODIS and a determin-
istic weighting function determined by spectral similarity,
temporal difference, and spatial distance.

Figure 4 shows an example of ET data fusion over the Or-
lando region of southern Florida, an area where water-use
monitoring is critical due to a convergence of high popu-
lation density and agricultural development adjacent to the
sensitive wetland areas of the Florida Everglades. In this ex-

ample, ALEXI is used to map daily ET at 10-km resolution
over CONUS, gap-filling cloudy pixels using the algorithm
described by Anderson et al. (2007c). Gap-filled maps at
1-km resolution over the state of Florida were generated us-
ing DisALEXI applied to the daily MODIS swath LST prod-
uct (MOD11-L2). Disaggregation was also applied to clear
Landsat TIR scenes acquired during this period, in this case
available 8 days apart from the Landsat 5 and 7 satellites on
day of year (DOY) 328 and 336. Both Landsat TIR scenes
were sharpened to 30-m resolution using the techniques de-
scribed in Sect. 2.2.
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Fig. 4. Example of Landsat/MODIS/GOES ET data fusion, showing maps of daily ET from ALEXI at 10-km resolution (top row), at from
DisALEXI using MODIS TIR at 1-km resolution (middle rows), and from the STARFM data fusion algorithm, fusing information from
DisALEXI using Landsat TIR sharpened to 30-m resolution (bottom row).
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Fig. 5. Seasonal (26-week) anomalies in the USDM, ESI, Z, SPI-6, and PDSI for 2000–2009.

Finally, information from the MODIS-Landsat ET image
pairs on DOY 328 and 336 are fused using STARFM, gen-
erating disaggregation statistic maps that are applied to daily
MODIS fields for DOY 329–335, thus forming a continu-
ous time series at 30-m resolution. Comparisons between
predicted (STARFM) and observed (DisALEXI) Landsat-
scale ET fields yield errors on the order of 10%. Al-
though STARFM was originally designed to fuse shortwave
reflectance fields, it appears to hold great utility for high-
resolution ET mapping as well. Further studies are underway
to quantify prediction accuracy over seasonal timescales.

3 Applications

Section 2 described techniques for generating daily remote
sensing fields of ET at resolutions of 10 m to 10 km, cov-
ering areas from watershed to continental scales. Here we
describe examples of how diagnostic ET information at mul-
tiple scales are being applied for purposes of drought moni-
toring, agricultural water resource management, and hydro-
logic decision support in major river basins. These examples
demonstrate recent ALEXI applications using GOES geosta-
tionary data over CONUS, and MSG land-surface products
over Europe and Africa.
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3.1 United States: drought monitoring

Spatial and temporal variations in instantaneous ET at the
continental scale are primarily due to variability in mois-
ture availability (antecedent precipitation), radiative forcing
(cloud cover, sun angle), vegetation amount, and local atmo-
spheric conditions such as air temperature, wind speed and
vapor pressure deficit. Potential ET describes the evapora-
tion rate expected when soil moisture is non-limiting, ideally
capturing response to all other forcing variables. To isolate
effects due to spatially varying soil moisture availability, a
simple Evaporative Stress Index (ESI) can be developed from
the departure of model flux estimates of ET from the poten-
tial rate (PET) expected under non-moisture limiting condi-
tions. The ESI reflects temporal anomalies in the ET/PET
ratio, and shows good correspondence with standard drought
metrics and with patterns of antecedent precipitation, but at
significantly higher spatial resolution due to limited reliance
on ground observations (Anderson et al., 2007b). This ratio
has a value of 1 when there is ample moisture/no stress, and
a value of 0 when ET has been cut off due to stress-induced
stomatal closure and/or complete drying of the soil surface.
It therefore serves as a valuable proxy indicator for available
soil moisture (Hain, 2010; Hain et al., 2009). Where there is
vegetation, the proxy reflects information over the full root-
zone, while it reflects surface moisture conditions (top 5 cm
of soil profile) in areas of very sparse vegetation.

Annual standardized anomalies in several drought indica-
tors are compared in Fig. 5, computed from 26-week com-
posites (April–September) over the 2000–2009 growing sea-
sons for CONUS (Anderson et al., 2011). The metrics dis-
played include anomalies in US Drought Monitor (USDM)
drought classifications (Svoboda et al., 2002), the ESI, and
three precipitation-based drought indices (the Palmer Z In-
dex, Z; the 6-month Standardized Precipitation Index, SPI-6;
and the Palmer Drought Severity Index, PDSI), which were
selected to exemplify a range in timescales and modeling ap-
proaches. These figures demonstrate the responsiveness of
the various indices to changing moisture conditions, and the
degree to which salient moisture features are emphasized or
missed in each index.

Drought features recorded in the USDM are generally re-
flected in one or more of the other indices, but to varying de-
grees depending on drought type and timescale. The hydro-
logic drought in the western US in 2004 reflects a long-term
moisture deficit accumulated from 2002, for example, is not
delineated in the 26-week drought index composites shown
here. In other years, the ESI successfully reproduces pat-
terns evident in the precipitation indices, indicating the value
of the LST signal as a surface moisture proxy. For example,
the thermal band inputs to ALEXI capture the major drought
events occurring in 2002 and 2007, even in the eastern US
where there is dense vegetation cover mid-season, and little
exposure of the dry soil surface.

Figure 6 looks in greater detail at the drought of 2007 that
ravaged much of the southeastern US (particularly in Al-
abama, Georgia, and the Carolinas), leading to low stream
flows, depleted water supplies, and significant agricultural
losses. This is a part of CONUS where standard soil moisture
retrievals based on passive microwave remote sensing tend to
lose sensitivity due to strong attenuation of the soil signal by
water contained in the dense forest canopy, as demonstrated
in Fig. 6c. In the thermal band, however, the moisture deficit
signal is strong – vegetation stress and soil moisture deple-
tion in the surface skin contribute to elevated canopy and soil
components of the composite surface radiometric tempera-
ture. The ESI reproduces patterns in soil moisture predicted
by the Noah land-surface model (part of the Land Data As-
similation System (LDAS) modeling suite; Mitchell et al.,
2004), with the advantage of requiring no antecedent precip-
itation information.

Incorporating the thermal sharpening and data fusion tech-
niques described in Sect. 2, we can generate daily time series
required to compute ESI anomalies over targeted areas at up
to 10-m resolution. This will facilitate drought and crop con-
dition assessments at sub-county to field scales, which will
be valuable for yield forecasting and distribution of drought-
induced yield loss compensation. Reliable precipitation data
at these spatial scales are particularly difficult to obtain, un-
derscoring the value of this kind of diagnostic TIR-based
monitoring technique.

3.2 Europe: irrigation management

A variety of remote sensing techniques have been used to
study the surface energy balance and evapotranspiration over
the European continent, and in particular in the Mediter-
ranean regions where irrigation demands on water resources
are high (e.g., Rana and Katerji, 2000; Detto et al., 2006;
Sánchez et al., 2008; Sobrino et al., 2009; Minacapilli et al.,
2009; van der Kwast, 2009). Scalable, spatially distributed
estimates of water use derived from multiple satellite plat-
forms can help to link water distribution decision making at
the irrigation district scale to overall climatic moisture con-
ditions at the continental scale.

Using land-surface temperature, insolation, and leaf area
index products developed from MSG imagery by the LSA
SAF (Trigo et al., 2011), an ALEXI model domain has re-
cently been established over much of Europe. Figure 7 shows
monthly clear-sky composites of latent heat flux (near so-
lar noon) at 10-km resolution over the European domain for
2008. Cut-offs in the northern part of domain through June
reflect view angle limitations in the land-surface temperature
product through that date.

Validation experiments are underway in Spain and Italy,
using disaggregation to compare model fluxes to tower ob-
servations, and to study agricultural water use in varying cli-
matic regimes and cropping systems.
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Fig. 6. Anomalies for the 2007 growing season (April–September) in(a) the USDM drought classes,(b) soil moisture predicted by the LIS-
Noah land-surface model,(c) USDA AMSR-E (Advanced Microwave Scanning Radiometer – Earth Observing System) passive microwave
soil moisture retrieval and(d) ALEXI ESI.

3.2.1 Spain

Competition for scarce water resources in Southern Spain, as
well as the entire Mediterranean Sea Basin, is now in evi-
dence. Future water shortages are likely to be worsened by
the increasing demand produced by demographic growth, the
expanding tourist industry, and the decrease in fresh water
supply predicted under conditions of climate change, which
is expected to make this region both warmer and drier.

The Guadalquivir River Basin is the largest (57 527 km2)

in Southern Spain, and supports extensive agricultural pro-
duction (around 8000 km2 of irrigated land). Irrigated areas
in this basin are responsible for 60% of total agricultural pro-
duction in the basin, consuming around 86% of its total water
resources (CHG, 2008). Despite its large capacity, the basin
suffers systematic water deficits and new storage cannot be
developed. The only opportunity to reach a sustainable use
of water is the improvement of water management, which re-
quires timely and accurate information about the water use
by the different crops and irrigation districts. Accurate deter-
mination of water balance components, especially ET, is dif-
ficult given the complex landscape and typically small field
sizes.

To this end, an effort led by the River Basin Authority
is under way to estimate the use of water in irrigated ar-

eas, initially by using a water balance approach combined
with remotely sensed vegetation indices (Dı́az et al., 2009;
Gonźalez-Dugo and Mateos, 2008). More recently, the
ALEXI/DisALEXI system has been applied in this region,
introducing additional information about surface moisture
condition conveyed by remotely sensed land-surface tem-
perature. Figure 8 shows a time sequence of ALEXI and
DisALEXI maps of ET, zooming in from a domain covering
Spain to an irrigated agricultural area along the Guadalquivir
River in southern Spain. The DisALEXI maps were gen-
erated with Landsat 5 and 7 TIR imagery sharpened to 30 m
resolution, and show a steady decline in local moisture condi-
tions as the season progresses. The typical size of these fields
(200 m) motivates the need for high-resolution ET maps – the
1 to 3-km resolution of the MODIS/MSG TIR sensors can-
not resolve the irrigated fields and will underestimate evap-
orative losses along this patchy irrigated agricultural system.
An evaluation of daily 30-m ET estimates generated over
this two-month time span, generated through fusion of MSG,
MODIS and Landsat-derived ET as described in Sect. 2.3, is
underway in comparison with flux measurements collected
at an eddy correlation tower deployed in a corn field near the
center of the Landsat maps in Fig. 8. If reliable, daily remote
sensing products can provide water managers with accurate
information at field, irrigation district, and basin scales about
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Fig. 7. Monthly composites of clear-sky latent heat flux (instantaneous, shortly before local noon) for 2008 over Europe, generated at 10-km
resolution by ALEXI using MSG land-surface products. Snow-covered regions have not been simulated.
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Fig. 8. Maps of daytime ET (MJ m−2 d−1) from ALEXI over Spain (top row) and instantaneous ET (shortly before local noon; W m−2)

from DisALEXI over an irrigated agricultural area along the Guadalquivir River in southern Spain (bottom row) for five days during the
2009 growing season. White box on the Aug 7 DisALEXI map indicates the 3-km MSG pixel size.

spatial and temporal patterns of water used by various crop
types to make better decisions concerning water distribution.

3.2.2 Italy

The challenge of irrigation management in the Mediter-
ranean area of Italy can also be advanced using remote-
sensing based estimations of evapotranspiration fluxes at

both plot and district scales (D’Urso, 2001; Minacapilli et
al., 2008, 2009). The main complexity of this region is the
extreme landscape spatial fragmentation, with a mean field
size of few hectares, which requires adequate high resolu-
tion (100–101 m) retrieval of ET maps. An additional de-
gree of complexity is due to the sparse configuration of typ-
ical Mediterranean crops (olive trees, grapes, citrus), where
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Fig. 9. Multi-scale clear-sky latent heat flux maps (shortly before noon) produced for 22 July 2008 with ALEXI/DisALEXI using surface
temperature data from MSG (10-km), MODIS (1-km), Landsat (60-m) and aircraft (10-m resolution). Black boxes on the orthophoto (top),
MODIS and Landsat images highlight an MSG pixel size, while the airborne image shows the Castelvetrano (Sicily) experimental site in the
Belice Watershed.

a significant fraction of exposed bare soil necessitates a de-
tailed partitioning of latent heat fluxes in its main compo-
nents (transpiration and evaporation) to get at actual crop wa-
ter consumption.

In this context, the multi-resolution capabilities of
ALEXI/DisALEXI, coupled with the two-source partitioning
facilitated by the embedded TSEB land-surface representa-
tion, provides a useful framework for addressing the major
challenges of Mediterranean agriculture. This modeling sys-
tem also significantly reduces errors caused by uncertainty
in surface-air temperature differences, to which most resid-
ual energy balance approaches are highly sensitive (Choi et
al., 2009; Norman et al., 2000).

Typical results of ALEXI/DisALEXI application are re-
ported in Fig. 9 for a test site near Castelvetrano, on the
southwest coast of Sicily (Italy), dominated by olive groves.
TheλE maps in this figure highlight how the landscape-scale
patterns are well reproduced using Landsat thermal data, and
to some extent also at the MODIS scale. However, the air-

borne retrieval shows how the field-scale ET variability is
observable only at 10-m resolution, obtainable from satellite
by means of thermal sharpening.

Moreover, the in-field variability observed at 10-m resolu-
tion, due in this case to the sparse configuration of olive trees,
emphasizes the need for a two-source modeling scheme like
DisALEXI for discriminating vegetation and soil contribu-
tions to the LST signal and to radiative and convective heat
fluxes. Cammalleri et al. (2010) compare flux estimates from
the TSEB applied to aircraft imagery over Castelvetrano
with measurements collected with coherent scintillometer
and eddy correlation systems deployed in an olive grove.
Good results are obtained with the TSEB when vegetation
clumping is properly accounted for (Fig. 10). The study of
water use in fragmentized agricultural areas, like those sur-
rounding Castelvetrano, will require the spatial and temporal
resolutions that can only be obtained by combining thermal
sharpening and data fusion techniques.
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Fig. 10. Comparison between measured and modeled flux compo-
nents obtained by applying the TSEB to aircraft imagery collected
over an olive grove in Castelvetrano (Sicily) in an experiment de-
scribed by Cammalleri et al. (2010). This plot summarizes data
from Fig. 8 in Cammalleri et al, showing results obtained using the
Goudriaan (1977) in-canopy wind profile scheme. Flux measure-
ments represent an average of eddy correlation and coherent scintil-
lometer data collected in-field.

3.3 Africa: hydrologic decision support

3.3.1 Nile River Basin

Another 10-km resolution domain has been started over
Africa for ET and drought monitoring, with a higher reso-
lution 6-km assessment focused over the Nile River Basin
in support of hydrologic modelling (see Fig. 11). The goal
of this project is to combine hydrologic modelling (LDAS)
driven by meteorological data from the Global Data Assim-
ilation System (GDAS; Derber et al., 1991) or the European
Centre for Medium-Range Weather Forecasts (ECMWF;
Persson and Grazzini, 2007), with remotely sensed ET to
provide improved information for water management along
the Nile basin. LDAS soil moisture, runoff and ET esti-
mates coupled with routing models will provide streamflow
and lake level estimates to be used in a river forecasting sys-
tem. The remote sensing ET from ALEXI will be used as an
independent estimate of water diverted in support of irrigated
agriculture within the basin. Employing the data fusion and
Landsat thermal sharpening techniques described above, sea-
sonal estimates of daily ET at the scales approaching that of
individual irrigated parcels in heavily agricultural areas, such
as in the Nile River Delta (Fig. 11). This will provide objec-
tive information about how water is being distributed across
the complex irrigation networks that have developed along
the river basin.

4 Future work

4.1 Global applications

Global implementation of ALEXI is a multi-sensor endeav-
our, and requires recovery of imagery from multiple geosta-
tionary platforms operated by many different countries. For-
tunately, archives of global geostationary data are now being
constructed to support global monitoring applications.

A 3-hourly, 10-km global dataset has been assembled by
the US National Oceanic and Atmospheric Administration
(NOAA) as part of the International Satellite Cloud Clima-
tology Project (ISCCP) B1 data rescue project, instigated
for the purpose of preserving a valuable global climatolog-
ical data record (Knapp, 2008). The archive covers a period
of record from 1983 to present, and includes data from the
GOES satellites (covering the Americas), the Meteosat satel-
lites, the Japanese Geostationary Meteorological Satellites
(GMS) and Multi-Function Transport Satellites (MTSAT),
and the Chinese Fen-yung (FY2) satellites. Preliminary in-
vestigations using 3-h datasets from the GEWEX Continen-
tal Scale International Project (GCIP) covering North Amer-
ica have confirmed that reasonable flux estimates can be re-
trieved by ALEXI using geostationary data at this temporal
resolution, although the morning temperature rise computa-
tion is best facilitated by hourly data.

More recently, global LST and insolation datasets are be-
ing developed at 5-km resolution by the Geoland2 project
under the European GMES (Global Monitoring for Environ-
ment and Security) initiative (Lacaze et al., 2010). Data
currently are archived from 2008 to present at 3-hourly
timesteps prior to June 2010 and hourly timesteps thereafter.

A pilot project generating global ALEXI flux maps using
the Geoland2 LST and insolation data is currently underway
for comparison with other global flux datasets generated un-
der the GEWEX LandFlux initiative (Jimenez et al., 2011).
This implementation will use LAI from MODIS and atmo-
spheric data (primarily near surface wind speed and ABL
lapse rate) from the NASA Global Modeling and Assimi-
lation Office’s (GMAO) Modern Era Retrospective Analy-
sis for Research and Applications (MERRA; Bosilovich et
al., 2008). The MERRA time period covers from 1979 to
present, providing full 3-D atmospheric analyses (42 con-
stant pressure levels; potential temperature) at a spatial res-
olution of 1.25◦ every 3 h. Additionally, 2-D surface fields
(e.g. temperature and wind speed) are available at the same
spatial resolution every hour. Table 2 summarizes input data
sources for the proposed global ALEXI domain.

At high latitudes (exceeding±60◦), the view zenith an-
gle from geostationary platforms becomes too oblique to
support LST retrieval, so a different approach will be re-
quired to supply ET estimates over land-surface area near
the poles. One possible approach is to use the Dual-Time-
Difference method described by Norman et al. (2000), ex-
ploiting the increased overpass frequency (multiple looks per
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Fig. 11. Monthly composites of clear-sky latent heat flux (instantaneous, shortly before local noon) for 2008 over the Nile River Basin,
generated at 6-km resolution by ALEXI using MSG land-surface products (top row). Blanked areas were perpetually cloud-covered. Also
shown for resolution comparison are Landsat-7 maps of NDVI (30-m resolution) and LST (60-m) for a sub-region in the Nile Delta for
1 June 2008.

day) of polar orbiting thermal sensors like MODIS at high
latitudes. A TIR-based snow energy balance modeling com-
ponent, adapted from the work of Kongoli and Bland (2000),
is under development to facilitate ALEXI application over
snow-covered land-surfaces.

4.2 Joint thermal-microwave data assimilation

Incomplete cloud-clearing is a major source of error and
noise in ALEXI flux determination, contributing to poor as-
sessment of the morning surface temperature rise signal. Im-
provements to the ALEXI pre-processing infrastructure, in-
cluding implementation of redundant input data-streams and
improved cloud masks, are underway and should help to re-
duce noise in future reprocessing of ALEXI fluxes. Depen-
dence on clear-sky conditions required for thermal-band LST
retrieval, however, necessarily places a physical limitation
(related to cloud climatology) on the frequency of sampling
achievable with the ALEXI ET algorithm. Therefore, the op-
timal remote sensing approach may be a multi-band solution

integrating thermal data with microwave (MW) based soil
moisture information, which can be obtained under clear or
cloudy skies.

Hain (2010) showed that joint assimilation of TIR ET/PET
(from ALEXI) and MW soil moisture into the Noah LSM in
NLDAS provides better soil moisture estimates than does ei-
ther retrieval method (TIR or MW) in isolation. The two
retrievals are quite complementary: TIR provides relatively
high resolution and low temporal resolution (due to cloud
cover) retrievals over a wide range of vegetation cover frac-
tion, while MW provides relatively low spatial resolution
and high temporal resolution (can see through clouds), but
only over areas with sparse vegetation. Furthermore, MW
retrievals are sensitive to soil moisture only in the soil sur-
face layer (0–5 cm), while TIR provides information about
soil moisture conditions integrated over the full root zone,
reflected in the observed canopy temperature. The added
value of TIR assimilation over MW alone is most signifi-
cant in areas of moderate to dense vegetation cover (>60%),
where MW retrievals have little sensitivity to soil moisture at
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any depth. These conditions characterize much of the east-
ern US Joint assimilation of both TIR ET/PET and MW soil
moisture into a prognostic LSM would serve to maximize
both spatial and temporal sampling of surface moisture con-
ditions, and would provide additional hydrologic information
such as runoff, streamflow, and groundwater recharge.

5 Conclusions

We have presented a multi-sensor, multi-scale approach to
mapping ET using thermal remote sensing data from both
geostationary and polar-orbiting satellite platforms. This
approach is physically based, requiring no subjective end-
member selection as employed by many other thermal-based
models, and can be fully automated for full global coverage.
Use of time-differential TIR observations from geostationary
satellites coupled to an ABL growth model improves robust-
ness of continental-scale flux estimates to inevitable errors
in LST retrieval and avoids the need for air temperature as a
model input. Disaggregated flux fields using moderate and
fine resolution TIR imagery from polar orbiting systems can
be fused to generate daily ET maps at sub-field scales (10-m
resolution).

This system has been used for applications in drought
monitoring, irrigation management, and hydrologic decision
support conducted in the US, Europe and Africa, with
expansion to full global coverage underway. A new TIR-
based Evaporative Stress Index (ESI), based on temporal
anomalies in the actual-to-potential ET ratio, provides
useful surface moisture proxy information without requiring
precipitation data, and is well-suited for applications over
areas lacking dense radar/raingauge networks. Diagnostic
ET estimates from ALEXI/DisALEXI are also being used
to evaluate more detailed hydrologic assessments generated
with prognostic water balance models. Joint assimilation
of TIR- and microwave-based soil moisture estimates will
likely provide an optimal approach to hydrologic modelling.

Edited by: B. Su
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Sobrino, J. A., Jiḿenez-Mũnoz, J. C., Zarco-Tejada, P. J., Sepulcre-
Cant́o, G., de Miguel, E., S̀oria, G., Romaguera, M., Julien, Y.,
Cuenca, J., Hidalgo, V., Franch, B., Mattar, C., Morales, L.,
Gillespie, A., Sabol, D., Balick, L., Su, Z., Jia, L., Gieske, A.,
Timmermans, W., Olioso, A., Nerry, F., Guanter, L., Moreno,
J., and Shen, Q.: Thermal remote sensing from Airborne Hy-
perspectral Scanner data in the framework of the SPARC and
SEN2FLEX projects: an overview, Hydrol. Earth Syst. Sci., 13,
2031–2037, doi:10.5194/hess-13-2031-2009, 2009.

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K.,
Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D.,
Miskus, D., and Stephens, S.: The Drought Monitor, B. Am.
Meteorol. Soc., 83, 1181–1190, 2002.

Trigo, I. F., DaCamara, C. C., Viterbo, P., Roujean, J.-L., Olesen, F.,
Barroso, C. F., Camacho-de Coca, F., Carrer, D., Freitas, S. C.,
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