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Abstract. Combining information derived from satellite-
based passive and active microwave sensors has the potential
to offer improved estimates of surface soil moisture at global
scale. We develop and evaluate a methodology that takes ad-
vantage of the retrieval characteristics of passive (AMSR-E)
and active (ASCAT) microwave satellite estimates to pro-
duce an improved soil moisture product. First, volumetric
soil water content (m3 m−3) from AMSR-E and degree of
saturation (%) from ASCAT are rescaled against a reference
land surface model data set using a cumulative distribution
function matching approach. While this imposes any bias
of the reference on the rescaled satellite products, it adjusts
them to the same range and preserves the dynamics of orig-
inal satellite-based products. Comparison with in situ mea-
surements demonstrates that where the correlation coefficient
between rescaled AMSR-E and ASCAT is greater than 0.65
(“transitional regions”), merging the different satellite prod-
ucts increases the number of observations while minimally
changing the accuracy of soil moisture retrievals. These tran-
sitional regions also delineate the boundary between sparsely
and moderately vegetated regions where rescaled AMSR-E
and ASCAT, respectively, are used for the merged product.
Therefore the merged product carries the advantages of bet-
ter spatial coverage overall and increased number of obser-
vations, particularly for the transitional regions. The com-
bination method developed has the potential to be applied
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to existing microwave satellites as well as to new missions.
Accordingly, a long-term global soil moisture dataset can be
developed and extended, enhancing basic understanding of
the role of soil moisture in the water, energy and carbon cy-
cles.

1 Introduction

Passive and active microwave satellites have been shown to
provide useful retrievals of near-surface soil moisture varia-
tions at regional and global scales (Wagner et al., 2003; Wen
et al., 2003; Njoku et al., 2003; Owe et al., 2008; Gao et
al., 2006; McCabe et al., 2005). They can penetrate cloud
cover and are sensitive to soil water. A series of opera-
tional satellite-based passive microwave sensors have been
available since 1978, including the Scanning Multichannel
Microwave Radiometer (SMMR) (1978–1987), the Special
Sensor Microwave Imager (SSM/I) of the Defense Meteo-
rological Satellite Program (since 1987), the microwave im-
ager from the Tropical Rainfall Measuring Mission (TRMM)
(since 1997), and more recently the Advanced Microwave
Scanning Radiometer – Earth observing system (AMSR-E)
onboard the Aqua satellite (since 2002). In terms of active
microwave sensors, the European Remote Sensing (ERS-1)
scatterometer began its operation from 1992, ERS-2 started
collecting data from March 1996, and the Advanced Scat-
terometer (ASCAT) onboard the Meteorological Operational
satellite programme (MetOp) was launched in October 2006.
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The Soil Moisture and Ocean Salinity (SMOS) satellite
launched in November 2009 carries the low frequency L-
band sensor. While currently at the calibration stage, it is ex-
pected to continue the developing record of globally retrieved
soil moisture data. In the coming years, numerous new satel-
lite missions with microwave instruments are scheduled for
launch (e.g., Soil Moisture Active Passive (SMAP), Aquar-
ius, Deformation, Ecosystem Structure and Dynamics of
Ice (DESDynI), and the Argentine Microwaves Observation
Satellite (SAOCOM)). These are expected to bring soil mois-
ture retrievals with further enhanced accuracy.

Various retrieval algorithms have been developed to esti-
mate soil moisture from microwave observations (e.g., Owe
et al., 2008; Njoku et al., 2003; Jackson, 1993; Wagner et al.,
1999). Here we consider soil moisture products derived from
two algorithms, one using passive microwave and the other
active microwave observations. The algorithm developed by
VU University Amsterdam in collaboration with the National
Aeronautics and Space Administration (VUA-NASA) can be
used for all bands in the passive microwave domain (Owe et
al., 2008), allowing data collected by different satellites to be
combined. The change detection algorithm developed by Vi-
enna University of Technology (TU-Wien) has been applied
on ERS-1/2 and ASCAT (Wagner et al., 1999; Bartalis et al.,
2007), and provides a global satellite-based active microwave
soil moisture product starting 1992.

A number of previous studies (Vischel et al., 2008; Brocca
et al., 2010; Albergel et al., 2009; Gruhier et al., 2010;
Rüdiger et al., 2009; Draper et al., 2009; Wagner et al.,
2007) evaluated these passive and active microwave soil
moisture products against in situ measurements and found
that VUA-NASA passive microwave product performs better
over sparsely vegetated regions, whereas the TU-Wien active
microwave product shows better agreement for regions of
moderate vegetation density. Over the sparsely to moderately
vegetated regions, both products have similar performances.
Scipal et al. (2008) and Dorigo et al. (2010) applied the triple
collocation approach with VUA-NASA passive microwave,
TU-Wien active microwave and model simulated soil mois-
ture products to estimate the relative error of each product at
global scale. These three products are derived from differ-
ent approaches and can be considered as having independent
error characteristics, the key requirement for this approach.
The results confirmed that the errors of VUA-NASA pas-
sive microwave are smaller than those of the TU-Wien active
microwave product for sparsely vegetated regions and larger
over moderately vegetated regions. Their errors are compara-
ble over the regions with low to moderate vegetation density.

Theoretically, passive and active microwave instruments
with similar frequencies should give similar response over
the same region regardless of vegetation density. The
primary reason for different performances between VUA-
NASA and TU-Wien soil moisture products lies in differ-
ent ways that they account for vegetation influence on the
signal. Empirical evidence suggests that the TU-Wien soil

moisture performs reasonably well over regions with appar-
ent seasonal vegetation variations (e.g., south France, Spain
and southern Great Plains, see Rüdiger et al., 2009; Wagner
et al., 2007; Crow et al., 2010). The VUA-NASA algorithm
uses a radiative transfer model to extract soil moisture and
vegetation density simultaneously. Within this algorithm, the
vegetation is considered to behave like a one-layered semi-
transparent medium (Owe et al., 2008). With increasing veg-
etation density, the accuracy of soil moisture would be ex-
pected to decrease, as is confirmed by empirical evidence
(e.g., Gruhier et al., 2010; Draper et al., 2009; De Jeu et al.,
2008).

There may be value in developing an approach that com-
bines both passive and active microwave soil moisture prod-
ucts over these varying vegetation types to develop an im-
proved global satellite-based soil moisture product. The po-
tential of combining passive and active microwave soil mois-
ture was also noted by Njoku et al. (2002), Piles et al. (2009)
and Das et al. (2010). Their studies were conducted using
airborne data collected at small scales and short time periods
at the microwave measurement level, whereas our study are
conducted using multiple established satellite-based datasets
at global scale and for a long time period at the soil moisture
products level.

It is noted that apart from satellite observation, soil mois-
ture can also be simulated using models (e.g., Rodell et al.,
2004), based on an understanding of (simplified) physical
processes (e.g., Dai et al., 2003) and observed meteorology.
Data assimilation is an approach to incorporate remotely
sensed soil moisture into model simulations to improve soil
moisture estimates, but the final product remains primarily
a modeled product. It is not clear whether the final product
retains key characteristics (e.g., inter-annual variations and
long term trends) detected by remotely sensed soil moisture.
In any case, data assimilation is beyond the scope of this
study. The objective of our study is to generate a satellite-
based long term global soil moisture product by combining
TU-Wien active and VUA-NASA passive microwave prod-
ucts.

There are some challenges. First, no single satellite cov-
ers the entire period. Differences in sensor specifications
(e.g., different microwave frequencies and resolutions) pre-
vent merging soil moisture estimates from different instru-
ments directly. Second, the currently available VUA-NASA
passive and TU-Wien active microwave products represent
different quantities, that is, volumetric soil moisture and de-
gree of saturation, respectively. Third, the accuracy of pas-
sive or active microwave products varies as a function of veg-
etation cover, making the selection of the better retrieval a
nontrivial task, particularly where both products have com-
parable performances.

As a first step towards a long term global soil moisture
dataset, we developed a methodology that can address the
latter two challenges. That is, to adjust two products that, re-
spectively, represent volumetric soil moisture and degree of
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saturation to the same range, and to delineate regions over
which passive, active microwave products or combination of
both are used in the final product. More details about VUA-
NASA and TU-Wien products are described in Sect. 2, as
well as model simulated and in situ measured soil moisture
that were used. The Sect. 3 is the primary part of this method-
ology paper, demonstrating how both microwave soil mois-
ture products are adjusted to the same range and then merged
for an improved product. In addition, the differences and
similarities between original products and the merged prod-
uct are displayed. The last section summarizes the method-
ology and puts forward suggestions for future research.

2 Data sources

2.1 AMSR-E (VUA-NASA product)

The AMSR-E sensor onboard NASA Aqua satellite has pro-
vided passive microwave measurements at 6.9 GHz (C-band)
and five higher frequencies (including 36.5 GHz Ka-band)
since May 2002, with daily ascending (13:30 equatorial local
crossing time) and descending (01:30 equatorial local cross-
ing time) overpasses, over a swath width of 1445 km.

The VUA-NASA algorithm uses the Land Parameter Re-
trieval Model (LPRM), requiring horizontal (H) and verti-
cal (V) polarization C-band brightness temperatures (Tb),
and V polarization Ka-bandTb from which soil surface tem-
perature is estimated (Owe et al., 2008; Holmes et al., 2009).
The vegetation optical depth (dimensionless, an indicator of
vegetation density) and soil dielectric constant are derived si-
multaneously. The soil moisture (m3 m−3) is solved from the
dielectric constant using the Wang-Schmugge mixing model
(Wang and Schmugge, 1980).

We used soil moisture and vegetation optical depth re-
trievals acquired by descending passes (01:30 equatorial lo-
cal crossing time) as the minimal temperature gradients at
midnight are more favourable for the retrievals (De Jeu,
2003). The C-band soil moisture represents the top few cen-
timetres of soil, depending on the wetness. The AMSR-E
products (soil moisture and vegetation optical depth) were
re-sampled into 0.25◦ (about 25 km) resolution for the period
from 1 January through 31 December 2007.

2.2 ASCAT (TU-Wien product)

The ASCAT onboard the MetOp is a real aperture radar
instrument operating at 5.255 GHz (C-band) since Octo-
ber 2006. Three antennas on each side of the satellite ground
track measure the backscatter from the earth surface in two
550 km wide swaths. The three antennas on each side are ori-
ented to broadside and±5◦ of broadside, respectively, mak-
ing sequential observations of the backscattering coefficient
of each point of interest from three directions.

Soil moisture variations are adjusted between the histor-
ically lowest (0%) and highest (100%) values, producing a

time series of relative soil moisture for the topmost centime-
tres of the soil. This TU-Wien change detection algorithm,
originally developed for soil moisture retrievals from ERS-
1 and 2 (Wagner et al., 1999) was applied to ASCAT with
minor adaptations (Naeimi et al., 2009).

The descending and ascending equatorial crossing time of
ASCAT are respectively 09:30 and 21:30. To allow compari-
son with AMSR-E descending (01:30) product, the morning
swaths and the evening swaths of the day before were aver-
aged. ASCAT soil moisture was also re-sampled into 0.25◦

resolution for the period from 1 January through 31 Decem-
ber 2007.

2.3 Land surface model product

Noah is a land surface model that forms a component of
the Global Land Data Assimilation System (GLDAS). The
Noah model product with 3-h time interval and 0.25◦ reso-
lution is available for 2000 onwards (ftp://agdisc.gsfc.nasa.
gov/data/s4pa/). The model was forced by combination
of NOAA/GDAS atmospheric analysis fields, spatially and
temporally disaggregated NOAA Climate Prediction Center
Merged Analysis of Precipitation (CMAP) fields, and obser-
vation based downward shortwave and longwave radiation
fields derived using the method of the Air Force Weather
Agency’s Agricultural Meteorological system (see Rodell et
al., 2004 for further details).

Noah model uses a four-layered soil description with a 10-
cm thick top layer and takes into account the fractions of
sand and clay. Soil moisture dynamics of the top layer are
governed by infiltration, surface and sub-surface runoff, gra-
dient diffusion, gravity and evapotranspiration.

2.4 In situ measurements

In situ soil moisture measurements used for comparison with
the estimates from AMSR-E, ASCAT and Noah, include ob-
servations from the:

– OZNET network in south-east Australia
(Young et al., 2008; R̈udiger et al., 2007);

– REMEDHUS network in central Spain
(Mart́ınez-Ferńandez and Ceballos, 2005);

– SMOSMANIA network in southern France
(Albergel et al., 2008; Calvet et al., 2007); and

– CNR-IRPI network in Italy
(Brocca et al., 2008, 2009).

Data were downloaded from the International Soil Moisture
Network website (Dorigo et al., 2011). The shallowest mea-
surements represent approximately the top 5–10 cm, compa-
rable with estimates derived from microwave observations
and Noah simulations. Some characteristics of these differ-
ent networks are listed in Table 1. Predominant land cover
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Table 1. Comparison of major characteristics of in situ soil moisture measurements used in this study. The OZNET network includes
measurements within five catchments or basins. Numbers of in situ stations and grid cells covered are shown (more than one in situ station
located within the same 0.25◦ grid cell in some networks).

Network Location in situ 0.25◦ Climate Major Vegetation Soil Moisture Instruments
stations grid cel

REMEDHUS central Spain 21 5 Semi-arid Crops Stevens Hydra Probe
Mediterranean

CNR-IRPI central Italy 4 1 Semi-humid Grass EnviroSCAN Sentek
Mediterranean sensor technology

SMOSMANIA southern France 12 12 Atlantic (east) to Natural fallow Theta Probe ML2X
Mediterranean (west)

OZNET southeastern Australia 52 30 Semi-arid (inland) Pasture, Grass, Campbell Scientific
(Murrumbidgee, Yanco to temperate (east) Crops and Oats 615 & 616,
Kyeamba, Adelong, Stevens Hydra Probe
and Goulburn)

types around the measurement stations are grasslands, crops
and pasture, which may be considered representative for low
to moderate vegetation density.

2.5 Data pre-processing

A snow mask was developed based on ERA-Interim reanaly-
sis data. ERA-Interim is the latest global atmospheric reanal-
ysis produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF), covering the data-rich period
since 1989 (Simmons et al., 2007a, b; Uppala et al., 2008;
Dee and Uppala, 2009). ERA-Interim products are publicly
available on the ECMWF Data Server and have 1.5◦ resolu-
tion (http://data-portal.ecmwf.int/data/d/interimdaily/). Soil
moisture and vegetation optical depth from AMSR-E and
soil moisture from ASCAT were masked when the reanaly-
sis indicated surface temperature below 0◦ or non-zero snow
depth.

The original unit of Noah soil moisture is kg m−2. Consid-
ering that the top soil layer depth is 10 cm, Noah soil mois-
ture (kg m−2) could be converted to volumetric soil moisture
(m3 m−3). The 3-hourly Noah simulated soil moisture was
aggregated to daily averages.

Where there were multiple in situ monitoring stations lo-
cated in one 0.25◦ grid cell, their average was taken. Time
series of in situ soil moisture for grid cells with more than
three (inclusive) monitoring stations are shown in Fig. 1,
illustrating the spatial heterogeneity of soil moisture varia-
tions. Given this, absolute numerical agreement in satellite-
based and in situ soil moisture values should not be expected.
Relative patterns are similar among in situ stations, however.

Fig. 1. Time series of in situ soil moisture for the eight 0.25◦ grid
cells within which more than three (inclusive) in situ stations were
located. Blue represents measurement from individual in situ sta-
tions and black is the average value. Location, latitude and lon-
gitude (center of the grid cell), and number of in situ stations are
listed.

3 Methods and results

In the merged product, the VUA-NASA and TU-Wien prod-
ucts were used over sparsely and moderately vegetated re-
gions, respectively. Since passive and active products per-
form similarly well, both products were used over the
sparsely to moderately vegetated regions (hereafter referred
to as “transitional regions”). Over transitional regions, both
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Fig. 2. Time series of soil moisture estimates from(a) Noah, (b)
AMSR-E and(c) ASCAT for a grid cell (centered at 41.375◦ N,
5.375◦ W) in 2007. Circles represent days when Noah, AMSR-E
and ASCAT all have valid estimates.

products are expected to be well correlated due to their sim-
ilar performance. The challenge is to determine an appro-
priate threshold of correlation coefficient, above which an
improved soil moisture product can be produced by combin-
ing both products.

To determine this threshold, we first adjusted both original
products (having units of m3 m−3 and % respectively) to a
common range and then compare the resulting estimates to
in situ measurements. Details on the method followed are
presented below.

3.1 Cumulative distribution function matching

To combine VUA-NASA AMSR-E (m3 m−3) and TU-Wien
ASCAT (%) soil moisture products, we adjust both against
one reference data set. The reference data set requires global
coverage with a spatial resolution and temporal interval that
are comparable with the AMSR-E and ASCAT products
(e.g., roughly 25 km resolution and daily interval); a long
time record; and reasonable surface soil moisture estimates
for all land cover types (e.g., representative soil layer is not
deeper than 10 cm).

The GLDAS-Noah model was identified as satisfying
these requirements and therefore selected as the reference
data set against which both satellite-based observations are
rescaled. The Noah model and the VUA-NASA algorithm
also use a common soil property dataset (i.e., soil poros-
ity and fractions of clay and sand) (http://ldas.gsfc.nasa.gov/
gldas/GLDASsoils.php), based on the Food and Agriculture
Organization (FAO) Soil Map of the World that was devel-
oped from a global database of over 1300 soil samples.

The cumulative distribution function (CDF) matching ap-
proach was used to adjust microwave satellite observed
against the Noah simulated soil moisture. This approach
was used in a number of previous studies. Reichle and
Koster (2004) used it to merge satellite soil moisture observa-
tions with model data. Both Lee and Anagnostou (2004) and

Fig. 3. Example illustrating how the cumulative distribution func-
tion (CDF) matching approach was implemented to rescale original
AMSR-E and ASCAT against Noah soil moisture product in this
study. (a, b, c) CDF curves of AMSR-E, Noah and ASCAT soil
moisture estimates for the grid cell shown in Fig. 2.(d) Linear re-
gression lines of AMSR-E against Noah for 12 segments.(e) Same
as (d), but for ASCAT and Noah.(f) CDF curves of Noah (black),
rescaled AMSR-E (blue) and rescaled ASCAT (red) soil moisture
products.

Atlas et al. (1990) established reflectivity-rainfall relation-
ships for the calibration of radar or satellite observations of
precipitation, and Liu et al. (2009) produced a 29-year satel-
lite soil and vegetation moisture data set over Australia by
merging several passive microwave products using the CDF
matching technique.

CDF matching was applied for each grid cell individually.
An example grid cell (centered at 41.375◦ N, 5.375◦ W) is
shown in Fig. 2, where time series of soil moisture estimates
from Noah, AMSR-E and ASCAT are plotted. Soil mois-
ture values from days when Noah, AMSR-E and ASCAT are
all available are marked with circles. It is expected that the
CDF curves of these circled soil moisture values from differ-
ent products are more directly comparable than those of all
available values. The CDF curves of these circled values are
shown in Fig. 3a, b and c. A piece-wise linear CDF matching
approach was applied: dividing the CDF curve into several
segments, performing linear regression analysis for each seg-
ment, and finally using the linear equations (slope and inter-
cept) to rescale data falling into different segments.

We used the 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95
and 100 percentiles of the CDF curves to define 12 seg-
ments (see Fig. 3a–c). The 13 percentile values from the
AMSR-E and ASCAT CDF curves are plotted against those
of Noah (Fig. 3d and e) and the scaling linear equations (e.g.,
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Fig. 4. Correlation coefficients(R) between Noah and(a) original AMSR-E,(b) original ASCAT, (c) rescaled AMSR-E and(d) rescaled
ASCAT.

slope and intercept) for each segment are obtained. Next,
AMSR-E and ASCAT data falling into different segments
were rescaled against Noah data. The CDF curves of orig-
inal AMSR-E and ASCAT values (Fig. 3a and c) obtained
after rescaling are displayed in Fig. 3f. As demonstrated, the
piece-wise linear CDF matching approach well adjusts CDF
curves of AMSR-E and ASCAT to that of Noah. The AMSR-
E and ASCAT values outside of the range of CDF curves can
also be properly rescaled, using the linear equation of the
closest value.

The impacts of CDF matching and Noah simulated
products on the AMSR-E and ASCAT soil moisture prod-
ucts were examined. That is, the correlation coefficients(R)

between Noah and original/rescaled satellite-based products
at global scale were compared (Fig. 4), together with the
root mean square error (RMSE) between Noah and origi-
nal/rescaled AMSR-E product (Fig. 5). For the grid cells
where only one satellite product is available, the CDF match-
ing is done using only that satellite product.R and RMSE
were only calculated for grid cells where AMSR-E or AS-
CAT and Noah have more than 20 common values. Over
extremely dry regions (e.g., Sahara desert), AMSR-E has
fewer soil moisture retrievals, possibly due to the constant
value of surface roughness used in the VUA-NASA algo-
rithm (Schneeberger et al., 2004; Escorihuela et al., 2007;
De Jeu et al., 2009; Liu et al., 2010).

The results indicate that the rescaling process does not
change the variations of original satellite-based products
(compare Fig. 4a and c; Fig. 4b and d), but imposes the
value range of Noah (see Fig. 5). In most applications, it

Fig. 5. The root mean square error (RMSE) between Noah and(a)
original and(b) rescaled AMSR-E soil moisture estimates (Unit:
m3 m−3).

is more important that the relative dynamics of soil moisture
are reproduced rather than their absolute values (Brocca et
al., 2010). Therefore the appropriate indicator to compare
data would be the correlation coefficient(R) instead of the
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Fig. 6. Comparisons of in situ and rescaled/merged satellite-based
soil moisture were conducted. The grid cell is the same as Fig. 2.
Relationships between in situ and(a) rescaled AMSR-E (AMSR-
E*), (b) ASCAT (ASCAT*) and (c) merged AMSR-E* and AS-
CAT* (AMSR-E*/ASCAT*). (d) Relationship between AMSR-E*
and ASCAT*.

RMSE. The CDF matching approach does not change rela-
tive patterns in the AMSR-E and ASCAT products.

3.2 Comparison with in situ measurements

In this section, we compare in situ measurements with the
rescaled and merged satellite-based estimates to decide an
appropriate threshold for the combination of both microwave
soil moisture products. Figure 6 shows that combination
of both satellite-based products can improve the number of
observations. All in situ measurements are compared with
AMSR-E* (hereafter * refers to rescaled values) and AS-
CAT* (as example in Fig. 6) in terms ofR and shown in
Fig. 7. At least one satellite product agrees reasonably well
(R > 0.5) with in situ measurements for all grid cells. When
both satellite products are highly correlated, their correlation
with in situ data is similar (Fig. 7b). WhenR between
AMSR-E* and ASCAT* is greater than 0.65, the differ-
ence between their individualR with in situ measurements is
smaller than 0.1. A high correlation coefficient between two
satellite-based products does not directly prove that both are
highly correlated with in situ data, but the fact that two fully
independent datasets capture very similar temporal variations
provides more confidence in both. In addition, we plot theR

between the merged product and in situ data (cf. Fig. 6c) with
their individualR with in situ data before merging (cf. Fig. 6a
and b) in Fig. 8. In general,R values between the merged

Fig. 7. (a) Plot of R between AMSR-E* and ASCAT* (horizon-
tal axis) against their individual correlation coefficient with in situ
measurement (vertical axis). Different catchments or basins are
marked with different colors. Triangle and square symbols, re-
spectively, representR between in situ and ASCAT* and AMSR-
E* soil moisture. The larger the symbol, the more in situ stations
located within one 0.25◦ grid cell. (b) Plot of R between AMSR-
E* and ASCAT* (horizontal axis) against the absolute difference
between their individual correlation coefficient with in situ mea-
surement (vertical axis). First-order and second-order polynomial
regression lines are also shown.

product and in situ data are intermediate between their indi-
vidualR with in situ data. However, for cases where the two
products are well correlated (inset in Fig. 8), merging them
frequently leads to higherR values as well as an increased
number of observations.

Given these results, we conclude that merging both prod-
ucts increase the number of observations while minimally
degrading or improving the accuracy of soil moisture esti-
mates, whenR between AMSR-E* and ASCAT* is higher
than 0.65. Therefore the threshold of 0.65 was chosen;
AMSR-E* and ASCAT* were combined where their corre-
lation coefficient was greater than 0.65.

3.3 Spatial coverage

The correlation analysis between AMSR-E* and ASCAT*
soil moisture products was carried out globally to delineate
regions with a correlation coefficient(R) above 0.65, i.e.,
transitional regions (Fig. 9). The AMSR-E vegetation optical
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Fig. 8. Relationships between correlation coefficients(R) between AMSR-E* (square), ASCAT* (triangle), and AMSR-E*/ASCAT* (i.e.,
merged product) (blue closed circles) with in situ observations, respectively.

Fig. 9. Regions with high correlation coefficient (R > 0.65) be-
tween rescaled AMSR-E and rescaled ASCAT for 2007.

depth, retrieved simultaneously with AMSR-E soil moisture,
is an indicator of vegetation density (Fig. 10). The aver-
age vegetation optical depth over the “transitional regions” is
0.42±0.18. The VUA-NASA AMSR-E soil moisture prod-
uct is used to cover the regions with lower vegetation density,
whereas the TU-Wien ASCAT soil moisture product is used
for regions with higher vegetation density. The spatial dis-
tribution of regions covered by AMSR-E, ASCAT and the
merged product is shown in Fig. 11, and the average vege-
tation optical depth for these regions is, respectively, 0.20,
0.65 and 0.42. This spatial distribution corresponds with the
results of Dorigo et al. (2010) who used the triple colloca-
tion technique with VUA-NASA AMSR-E, TU-Wien AS-
CAT, and Noah soil moisture to determine areas where either
AMSR-E or ASCAT had a smaller error value.

3.4 Temporal resolution and overall performance

The temporal coverage of the individual and merged prod-
ucts can be expressed as the fraction of the total number
of days within the observation period. On average, this ra-
tio is around 50% for the descending overpass of AMSR-E
(Fig. 12a), that is, it takes two days to achieve the global

Fig. 10. Annual average of global vegetation density (via optical
depth) derived from AMSR-E C-band using VUA-NASA algorithm
for 2007.

Fig. 11.Spatial coverage by AMSR-E (blue), ASCAT (red) and the
merged product (orange). Tropical rain forests are masked out due
to their high vegetation density.

coverage. The same frequency is achieved by the ascending
and descending overpass of ASCAT combined (Fig. 12b).
Over the transitional regions where AMSR-E and ASCAT
products are combined, this increases data frequency to 80%
(Fig. 12c).
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Table 2. Comparisons of overall performance between final merged product and individual products over different in situ soil moisture
networks.

Network
AMSR-E* ASCAT* Final Product

AverageR with in situ AverageR with in situ AverageR with in situ
(Average Temporal Ratio) (Average Temporal Ratio) (Average Temporal Ratio)

SMOSMANIA 0.44 (69%) 0.67 (56%) 0.67 (56%)
Goulburn 0.79 (48%) 0.67 (51%) 0.72 (59%)
Italy 0.71 (60%) 0.61 (44%) 0.70 (67%)
Murrumbidgee 0.66 (65%) 0.59 (55%) 0.67 (79%)
Spain 0.72 (73%) 0.76 (55%) 0.74 (88%)
Yanco, Kyeamba and Adelong 0.73 (62%) 0.73 (54%) 0.76 (79%)

Fig. 12. Temporal coverage (i.e., fraction of days with observa-
tions) of(a) original AMSR-E,(b) original ASCAT and(c) merged
product, for 2007.

Comparisons of overall performance between final merged
product and individual products over different in situ net-
works are displayed in Table 2. In general, the final merged
product has higher number of observations while retaining
good temporal patterns of individual products.

4 Discussions and conclusions

We developed a methodology to rescale and merge VUA-
NASA AMSR-E and TU-Wien ASCAT C-band retrievals
and produce an improved soil moisture dataset. The AMSR-
E and ASCAT products were rescaled against GLDAS-Noah
simulated soil moisture using a CDF matching approach.
This method does not effectively change the temporal pattern
of the original products. Comparison with in situ measure-
ments showed that provided both satellite products are well
correlated (R > 0.65), merging can improve the temporal res-
olution of the data. In addition, the rescaled AMSR-E and
ASCAT products were used for sparsely and moderately veg-
etated regions, respectively.

This approach would be applicable to both past and cur-
rent microwave satellites, as well as new missions that are
expected to bring higher accuracy of soil moisture retrievals.
This allows for a long term global satellite-based soil mois-
ture product to be generated and extended. The transitional
regions delineated here largely correspond with the regions
defined by Koster et al. (2004) where strong coupling be-
tween soil moisture and precipitation are expected. The
enhancement of information by combining passive and ac-
tive microwave products may help understand land surface-
atmosphere interactions and improve weather and climate
prediction skill over these regions.

There are a number of opportunities for improvements.
One potential issue is the effect of radio frequency interfer-
ence (RFI) on the AMSR-E C-band retrievals and is observed
in United States, Japan, the Middle East and elsewhere
(Njoku et al., 2005). A possible solution might be the use of
AMSR-E X-band instead of C-band soil moisture retrievals
over these regions, although these data will correspond to
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a reduced penetration depth. When soil moisture retrievals
from new missions (e.g., SMOS and SMAP) are available,
blending them with existing products should provide a fur-
ther improved merged product as L-band radiometer and
scatterometer would bring more accurate estimates of sur-
face soil moisture (Kerr et al., 2000; Entekhabi et al., 2010).

Spatial and temporal gaps still exist in our merged product,
primarily due to satellite orbits and swath widths. This may
affect the application of satellite-based soil moisture, particu-
larly for analyses on short time basis (e.g., daily and weekly).
Filling the gaps in satellite-based soil moisture products in a
reasonable manner will be one of the emphases in the future
analysis.
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