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Abstract. Soil erosion is a two-phase process consisting of
the detachment of individual particles and their transport by
the flowing water. This study discusses the results of labo-
ratory experiments in which for three soils, the runoff depth,
sediment yield, splash erosion and sediment size were mea-
sured. Rainfall intensity, slope and antecedent moisture con-
tents were varied in the experiment. The soil types ranged
from clay to sandy clay loam (Alemaya Black soil, Regosols
and Cambisols). Rainfall was applied for six sequential 15-
min periods with rainfall intensities varying between 55 and
120 mm h−1. The three slopes tested were 9, 25, and 45 %.
Results show that as slope increased from 9 to 25 %, splash
erosion and sediment yield increased. An increase in slope
from 25 to 45 % generally decreases in splash erosion. Sedi-
ment yield for one soil increased and one soil decreased with
slope and for the third soil the trend was different between the
two initial moisture contents. Sediment yield was correlated
(r = 0.66) with runoff amounts but not with splash erosion.
Interrill erosion models that were based on the flowing water
and rainfall intensity fitted the data better than when based
on rainfall intensity solely. Models that assume a positive
linear relationship between erosion and slope may overesti-
mate sediment yield.

1 Introduction

Most of sub-Saharan Africa suffers from environmental
degradation that is negatively affecting agricultural produc-
tion (Fekadu, 2000). In east Africa, soil degradation is most
severe in Ethiopia (Hurni, 1985). Soil erosion continues to
be a major agricultural problem in the Ethiopians highlands
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(Constable, 1985). Little research has been done on the
mechanisms of soil erosion and information is limited for
sound soil conservation measures.

Detachment, transport, and deposition are basic processes
of soil erosion. In this paper, we are interested in under-
standing the loss of soil from interrill areas. For interrill
erosion, detachment is caused by raindrop impact. Trans-
port of detached particles is by overland flow (Bradford and
Huang, 1996). Rainfall intensity, topography, and soil prop-
erties are the main factors that determine interrill erosion.
Several models have been proposed to explain the process of
erosion.

Currently available interrill erosion models vary from a
simple rainfall intensity-erosion relationship (Meyer, 1981)
to more complex models which include one or more of
the following parameters: soil properties, intensity, runoff,
and slope steepness such as by Foster (1982), Liebenow et
al. (1990), Watson and Laflen (1986), Neal (1938) and Kin-
nell (1993) (Table 1).

Models III, IV and V (Table 1) assume that there is posi-
tive correlation of erosion rate with slope. Although this cor-
relation has been observed for selected soils (Bradford and
Foster, 1996), it is not true in every case (Lillard et al., 1941;
Neal, 1938). While, generally, erosion becomes greater with
increasing slopes from 0 to 10 %, in many cases erosion rate
decreases when the slope is greater than 10 %.

With such contradictory research results, applying models
without further experimentation may lead to erroneous inter-
rill erosion estimates. Specifically, the assumption that ero-
sion increases with slope may grossly overestimate soil loss
in countries like Ethiopia, where cultivated lands as steep as
60 % slope are common. Interrill equations that were devel-
oped on agricultural lands in which slopes are less than 30 %
are not applicable under high slope conditions. Given the
lack of experimental soil erosion research in Ethiopia, the
specific objectives of our research are to (1) determine the
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Table 1. Available interrill erosion models and slope steepness factor.

Models Equation Parameters

Model I E = aIb a andb are fitting constants,
Meyer (1981) and Foster (1982) I rainfall intensity,

Model II E = KiI
2 q is runoff rate,Ki is

Meyer (1981) interrill erodibility coefficient,S
Model III E = KiI

2Sf is slope gradient,Sf slope
Liebenow et al. (1990) steepness factor, andθ is

Model IV E = KiIqS angle in degree
Neal (1938)

Model V E = KiIqSf

Kinnel (1994)
Sf = 1.05–0.85 e−4sinθ

Liebenow et al. (1990)

effect of slope steepness and antecedent soil moisture content
on splash erosion, infiltration, runoff and soil loss, (2) esti-
mate the interrelation between various soil erosion and runoff
parameters and evaluate the validity of different rainfall in-
tensity and rainfall intensity-runoff based soil erosion mod-
els, and (3) test the hypothesis that the slope steepness term
as expressed in several interrill erosion models varies with
soil conditions. The research is carried out for three major
soils of the Alemaya watershed and that at the same time are
representative for other soils in Ethiopia.

2 Methodology

2.1 Description of the study area

This study consists of a laboratory based soil erosion ex-
periment on soils found in the Alemaya watershed, eastern
Ethiopia. The Alemaya watershed (area between 1850 and
2200 meters above mean sea level elevation) is classified
as “Woina Dega” agro-ecological zone with an average an-
nual rainfall of 870 mm (560–1260 mm range). There are
six months (March to September) with more than average
monthly rainfall. The area receives rainfall amounts more
than 160 mm per month in April, May, August and Septem-
ber.

2.2 Experimental design and treatments

2.2.1 Experimental design

These experiments were conducted in the laboratory using
an FEL 3-A, rotating disc nozzle type, rainfall simulator and
laboratory erosion pans. The research was proposed to be
done at predetermined intensities and, as a result, calibration
of the simulator was found essential to determine the various
combinations of pressure, disc speed and aperture size that
provide different intensities. Accordingly, calibration of the

simulator was made prior to the commencement of the study
following the procedures given by the manufacturer of the
simulator and the spatial uniformity of simulated rainfall was
also determined.

The FEL 3-A (rotating disc type) rainfall simulator used
consists essentially of two units: the rainfall simulator and
its service module which stands alongside. The service mod-
ule comprises a glass fiber tank which is connected to the
main water supply via a ball-lock to maintain the level. Wa-
ter is pumped from the tank to the rainfall simulator by a
centrifugal pump through the flexible PVC tube.

In this study, an erosion pan similar in design to Brad-
ford and Foster (1996) with slight modification in size was
used. The test area of this pan was 320 mm wide by 450 mm
long and 150 mm deep. An additional component, a 200 mm
wide soil buffer surrounding the central test area, was also
provided. Two 30 mm wide by 450 mm long troughs located
along both sides of the test area were used to collect splash.
A slot along the lower end of the test area collected runoff
and wash. Drainage outlets at the bottom of each compart-
ment were provided for percolation of water. The advantage
of this type of erosion pan is the ability to measure splash
and sediment yield separately and the buffer areas reduce the
edge effect.

2.2.2 Selection of treatments

Four treatments (soil type at three levels, slope steepness
at three levels, antecedent moisture content at two levels,
and three rainfall intensities in two sequences) were se-
lected. The experiment was a four factor factorial experi-
ment (3× 3× 2× 2) in a completely randomized design at
two replications which was a total of 72 simulations run.

Three soil materials from freshly plowed surface soils
were selected from the available major soil series that oc-
cur in the study area. The selected soil series (Regosols,
Cambisols, and Vertisols) represent about 70 percent of the
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Table 2. Particle size distribution (%) of soils studied.

Soil Major soil Coarse Medium Fine Silt Clay Organic
classifications sand Sand sand matter

Soil A Alemaya black 8 9 7 41 35 6∗

soil (Vertisol)
Soil B Godie soil 18 23 11 16 32 14∗

series (Cambisols)
Soil C Alemaya series eroded 21 17 11 32 19 4∗

phase (Regosols)

∗ Percent taken from the total soil material.

Table 3. Mean size distribution of soil aggregate (%).

Particle size distribution (%)

Soil type 5.60 mm 4.475 mm 2.675 mm 1.59 mm 0.89 mm 0.45 mm 0.225 mm

Soil A 33.0 15 18 11 18 3 2
Soil B 15 13 32 16 17 4 3
Soil C 4 8 9 34 29 7 9

soils occurring in Alemaya area. Prior to the collection of
sample, maize was grown on Soil-A (Vertisols) and Soil-C
(Cambisols). On Soil-B (Regosols), the crop grown was for-
age and naturally fertilized (livestock dug) for more than ten
years. Each soil sample was air dried and sieved through a
10 mm sieve before being used in simulation runs.

In each simulation run, a 60 mm thick layer of soil was
packed over laying 90 mm of gravel in the central area of
the erosion pan. Soil particle size distribution of the three
soils, which were determined by pipette methods following
the procedures of the US Soil Conservation Service (1967)
and sedimentation time recommended by Tanner and Jack-
son (1947), is described in Table 2 and the mean size distri-
bution of soil aggregate is described in Table 3. Two lev-
els of antecedent moisture content, i.e., air-dried and pre-
wetted conditions, were selected. Pre-wetting took place by
applying water through the drain for 24 h. The experiment
was conducted at 9, 25, and 45 % slopes. Rainfall intensi-
ties were applied in 15 min sequences (55, 70, 120, 70, 55,
120 mm h−1) for a total of 90 min.

2.3 Data collection and analysis

2.3.1 Data collection

Splash detachment, runoff and sediment yield were measured
at 15 min intervals throughout the 90 min rainfall. Surface
shear strength/resistance was measured using a fall cone pen-
etrometer after each rainfall sequence application, follow-
ing procedures adopted by Al-Durrah and Bradford (1981),
Bradford et al. (1987a, b) and Truman and Bradford (1993).

Stream power was calculated using the equation: Stream
power (ω) =ρgqS, whereρ is density of water,g accelera-
tion due to gravity,q is the volumetric flux of runoff per unit
width of erosion surface (m3 m−2 s−1) andS is the sine of
the erosion surface slope. Flow depth was calculated using
the following equation: Flow depth (h) = (qn/s1/2)2/5; where
q is discharge;n is Manning’s hydraulic roughness andS is
slope steepness.

To evaluate interrill erosion models, data collected at each
15 min interval were used. However, to evaluate the effect
of slope steepness and antecedent moisture content on the
erosion variables, the 15 min interval data were merged for
the total 90 min rainfall. The collected samples were oven
dried at 105◦C for 24 h for further analysis.

Particle sizes of the collected sediment were determined
by gently sieving sand-sized particles followed by drying and
weighing. Silt and clay were determined in the suspension
passing the sieve by drying pipetted volumes of the suspen-
sion that were sampled at fixed depths after different settling
times.

2.3.2 Data analysis

Analysis of variance was carried out according standard pro-
cedures and means were separated using a protected least sig-
nificance difference method at 0.05 probability level (Fisher,
1935). The significance of factors influencing splash erosion,
soil loss, runoff, and sediment size distribution were evalu-
ated. Using the appropriate statistical tests, the correlations
between erosion variables were calculated and significances
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Table 4. Shear strength (Resistance), sediment yield, splash detachment and runoff rate values for each combination of soil type, slope
steepness, and initial moisture contents.

Soil Slope Initial Shear Sediment Splashed Proportion Runoff Stream Mean interrill
(%) MC strength yield erosion of sediment rate power∗ overland flow

(K Pa) (kg m−2 h−1) (kg m−2 h−1) transported (mm h−1) ×10−2 overland flow
by runoff (W m−2)

Soil A 9 AD 6.9 1.0 2.6 0.4 62.7 1.6 1.4

PW 7.4 0.7 2.4 0.3 37.6 0.9 1.0

25 AD 8.3 1.4 5.2 0.3 56.1 3.9 1.0

PW 7.6 0.8 3.2 0.3 50.6 3.5 0.9

45 AD 9.5 1.5 4.0 0.4 49.4 6.2 0.8

PW 16.3 0.6 2.8 0.2 31.4 3.9 0.6

Soil B 9 AD 7.7 0.8 3.5 0.2 47.3 1.2 1.2

PW 9.9 0.5 2.6 0.2 59.9 1.5 1.4

25 AD 6.0 0.8 4.2 0.2 43.1 3.0 0.8

PW 8.2 0.7 2.2 0.3 49.6 3.4 0.9

45 AD 9.1 0.1 2.9 0.1 5.8 0.7 0.2

PW 10.0 0.4 3.1 0.1 22.6 2.8 0.5

Soil C 9 AD 14.7 0.7 3.1 0.2 62.2 1.6 1.4

PW 14.5 0.5 2.3 0.2 39.4 1.0 1.1

25 AD 13.0 1.3 3.7 0.4 61.2 4.3 1.0

PW 12.7 1.2 3.1 0.4 47.3 3.3 0.9

45 AD 16.7 1.5 2.8 0.5 46.0 5.8 0.7

PW 17.0 1.5 2.3 0.6 68.4 8.6 0.9

∗ calculated values. AD = Air dried, PW = Pre-wetted.

of the correlation coefficients were tested. In this study, all
relations withp < 0.05 were considered as significant.

2.4 Evaluation of interrill erosion models and Slope
steepness factor

The 15-min soil loss and runoff data were fitted to the five
models. Their performances in replicating the observed data
were evaluated and theirR2 values were compared. Regres-
sion analyses were conducted to identify or estimate the fitted
constants of the selected interrill erosion models.

3 Results and discussion

3.1 Runoff and infiltration rates

Soil types have a highly significant effect on runoff rate. The
mean runoff rate observed on Soil C (54 mm h−1) was signif-
icantly greater than the mean runoff rate value of 38 mm h−1

for Soil B (Tables 4 and 5). Soil B and C had approximately
the same sand content (50 %, Table 2) but the organic mat-
ter was 14 % for Soil B while it was only 4 % for Soil C.
Thus Soil B was better structured and therefore has a greater
conductivity and more interflow than Soil C.

As indicated in Fig. 1, runoff rate generally decreases with
increased slope except for Soil C wet. Greater slope in-
creases interflow and therefore reduces runoff. In addition,
Soil A and Soil C at 9 and 25 % slope have greater runoff
rates for the dry soils than for wet soils. This was not ex-
pected because it is generally assumed that infiltration rates
for dry soils are greater than for wet soils and suggests that
these soils have some form of water repellency. Only Soil B,
which has the greatest organic matter content (Table 2), has
less runoff when dry than when wet.
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Table 5. Effect of the different combinations of soil type and mois-
ture content on runoff rate.

Moisture content Runoff rate (mm h−1)

Soil A Soil B Soil C Mean

Air-dry 56.1 32.1 56.4 48.2
Pre-wetted 39.9 44.0 51.7 45.2
Mean 48.0 38.0 54.0 46.7

Soil type Moisture content Moisture-Soil
interaction

SEM (Standard Error 1.5 1.3 2.2
of the Mean)
LSD (Least 4.4 3.6 6.2
Significant Difference)

Table 6. Effect of the different combinations of antecedent moisture
content and slope on splash detachment.

Slope (%) Splash (kg m−2h−1)

AD PW Mean

9 3.0 2.4 2.7
25 4.4 2.8 3.6
45 3.2 2.7 3.0

Mean 3.5 2.6

Slope Initial moisture Slope x initial
content moisture

SEM 0.11 0.09 0.16
LSD 0.32 0.26 0.46

3.2 Splash erosion

Although there were no any discernable differences and
trends of splash erosion among the different soil types, the
magnitude of the mean splash from Soil A at higher slopes
(25 and 45 %) was higher than that of Soil C (Table 4). Less
splash erosion took place for initially wet soils than for dry
soils (Tables 4 and 6). The average splash rate for wet soil
was almost the same at 2.6 kg m−2 h−1 and varied for wet
soil from 3.0 (Soil A) to 4.4 kg m2 h−1 (Table 6). Although
the splash rate for the 25 % slope is generally greater than
for the other two slopes, there is no consistent trend of splash
rate with slope (Fig. 2). Similarly, there is no consistent re-
lationship between the amount of splash and shear strength
(third column, Table 4). Although other studies have reported
a decrease of splash with water depth, the relationship is not
valid for this set of experiments, because water depth, gener-
ally decreased with slope (last column, Table 4) while splash
was the greatest at the middle slope. Our results are similar
to Foster and Martin (1969), who found the maximum splash
at 33 % and less for other slopes.

Table 7. Effect of the different combinations of soil type and mois-
ture content on sediment yield.

Moisture Sediment yield (Kg m−2hr−1)
content

Soil A Soil B Soil C Mean

AD 1.3 0.6 1.2 1.0
PW 0.7 0.6 1.0 0.8
Mean 1.0 0.6 1.1 0.9

Soil Moisture Soil X
condition moisture

SEM± 0.03 0.03 0.05

LSD0.05 0.10 0.08 0.07
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Figure 1 Effect of the different levels of slope steepness on runoff rate for the three soils at two 
levels of initial moisture content 
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Fig. 1. Effect of the different levels of slope steepness on runoff rate
for the three soils at two levels of initial moisture content.

3.3 Sediment yield

The rate of sediment yield varied significantly with moisture
content (Table 7). Wetting decreased sediment yield of Soil
A by almost 50 %. The sediment yield for Soil B was in-
dependent of wetness. The erodibility of wet Soil C was
20 % less than for the dry soil (Table 7). As slope increased
from 9 % to 25 %, sediment yield increased for all three soils.
However, as slope increased from 25 % to 45 %, sediment
yield decreased for the wet Soil A and Soil B, but increased
for Soil C and the dry Soil A (Fig. 3). Even though little work
has been done on steeper slopes, the results of our study are
in part consistent with findings of Lillard et al. (1941) and
Neal (1938), who found a decrease in soil loss for steeper
slopes.

Similarly to the sediment yield, the sediment splash ratio
increased for both initial moisture contents of Soil C and the
dry Soil A and the ratio decreased for the wet Soil A and both
antecedent moisture contents of Soil B (Fig. 4). As expected
from Fig. 4, correlation was poor between splash erosion and
sediment yield, indicating higher splashed sediment does not
necessarily mean higher sediment yield.
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Table 8. Size distribution of the washed and splashed sediment for the three soils.

Soil Slope Moisture Fraction by weight in size class (%)
(%) content

Coarse sand Medium sand Fine sand Silt Clay
2.0–0.60 mm 0.6–0.21 mm 0.21–0.08 mm 0.08–0.002 mm<0.002 mm
(Washed; (Washed; (Washed; (Washed; (Washed;
Splashed) Splashed) Splashed) Splashed) Splashed)

Soil A 9 % AD (0.11; 0.13) (0.07; 0.04) (0.07; 0.03) (0.48; 0.49) (0.27; 0.31)

PW (0.08; 0.14) (0.05;0.04) (0.04; 0.04) (0.39; 0.39) (0.44; 0.39)

25 % AD (0.10; 0.15) (0.07;0.04) (0.10;0.05) (0.51;0.44) (0.22;0.32)

PW (0.08;0.12) (0.06;0.04) (0.06;0.05) (0.33;0.41) (0.47;0.38)

45 % AD (0.08;0.12) (0.06;0.04) (0.06;0.06) (0.40;0.67) (0.40;0.11)

PW (0.05;0.11) (0.04;0.04) (0.04;0.05) (0.29;0.47) (0.58;0.33)

Soil B 9 % AD (0.11;0.16) (0.10;0.10) (0.11;0.07) (0.36;0.35) (0.32;0.32)

PW (0.10;0.19) (0.07;0.04) (0.09;0.03) (0.44;0.27) (0.30;0.47)

25 % AD (0.14;0.14) (0.13;0.10 (0.13;;0.09) (0.30;0.35) (0.30;0.32)

PW (0.23;0.25) (0.05;0.05) (0.09;0.05) (0.42;0.43) (0.21;0.22)

45 % AD (0.19;0.23) (0.03;0.05) (0.02;0.12) (0.38;0.45) (0.38;0.15)

PW (0.09;0.13) (0.04;0.06) (0.04;0.03) (0.12;0.68) (0.71;0.10)

Soil C 9 % AD (0.09;0.12) (0.02;0.06) (0.15;0.16) (0.31;0.36) (0.43;0.30)

PW (0.12;0.32) (0.03;0.10) (0.13;0.14) (0.28;0.10) (0.44;0.34)

25 % AD (0.13;0.44) (0.10;0.12) (0.07;0.02) (0.32;0.21) (0.38;0.21)

PW (0.33;0.37) (0.11;0.10) (0.05;0.03) (0.22;0.25) (0.29;0.25)

45 % AD (0.23;0.40) (0.11;0.11) (0.10;0.06) (0.32;0.32) (0.24;0.11)

PW (0.18;0.36) (0.15;0.11) (0.10;0.09) (0.21;0.22) (0.36;0.22)
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Figure 2 Effect of the different levels of slope steepness on splash for the three soils at two levels 
of initial moisture content. 
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Fig. 2. Effect of the different levels of slope steepness on splash for
the three soils at two levels of initial moisture content.
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Figure 3 Effect of the different levels of slope steepness on sediment yield for the three soils at 
two levels of initial moisture content. 
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Fig. 3. Effect of the different levels of slope steepness on sediment
yield for the three soils at two levels of initial moisture content.
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Table 9. Exponents, coefficients, andR2 values for equations describing interrill soil loss.

Soil Slope Moisture content Model I Model II Model III Model IV Model V
(%)

b R2 Ki ×106 R2 Ki ×106 R2 Ki ×106 R2 Ki ×106 R2

Soil A 9 AD 0.46 0.65 0.10 0.34 0.21 0.61 1.73 0.66 0.34 0.73

PW 0.57 0.99 0.86 0.94 0.19 0.98 2.05 0.99 0.41 0.99

25 AD 0.72 0.81 0.22 0.64 0.30 0.81 1.43 0.80 0.49 0.83

PW 1.16 0.88 0.20 0.81 0.28 0.91 1.29 0.95 0.44 0.95

45 AD 1.14 0.99 0.41 0.98 0.47 0.99 1.56 1.00 0.79 1.00

PW 0.79 0.99 0.11 0.99 0.12 0.99 0.57 0.99 0.29 0.99

Soil B 9 AD 1.24 0.85 0.25 0.88 0.54 0.94 5.53 0.91 1.09 0.91

PW 1.58 0.99 0.21 0.99 0.45 0.84 3.03 0.99 0.60 0.99

25 AD 1.30 0.95 0.09 0.94 0.35 0.97 1.54 0.95 0.53 0.95

PW 0.98 0.99 0.06 0.98 0.24 0.99 1.04 0.98 0.36 0.99

45 AD 1.48 0.91 0.13 0.92 0.14 0.96 1.37 0.98 0.70 0.99

PW 1.75 0.87 0.18 0.92 0.24 1.00 0.34 0.94 0.43 1.00

Soil C 9 AD 0.71 0.96 0.12 0.92 0.26 0.96 2.00 0.99 0.39 0.99

PW 1.72 0.64 0.13 0.52 0.17 0.98 1.09 0.98 0.22 0.98

25 AD 0.93 0.98 0.30 0.98 0.41 0.99 1.85 0.99 0.64 0.99

PW 1.03 0.99 0.29 0.98 0.40 0.99 1.89 0.99 0.65 0.99

45 AD 0.82 0.99 0.30 0.98 0.34 0.99 1.28 0.99 0.65 0.99

PW 1.47 0.60 0.34 0.41 0.23 0.91 0.67 0.96 0.33 0.96

Increase in runoff rate was reasonably well correlated with
increase in sediment yield (r = 0.83 with 0.001 significant
level). When the correlations between these variables were
analyzed for each soil, the best correlation coefficient was
obtained for Soil B.

3.4 Sediment size distribution

Independent of the original soil composition, the splashed
sediment had a large fraction of silt and clay particles than
the original soil (compare Tables 2 and 8). Both Soil B and
Soil C had over 50 % sand in the original soil, while in all
cases the sand and silt fraction in the splashed sediment was
over 50 %. Thus the sand fraction is increasing at the sur-
face of the soil and forms a shield (Gao et al., 2003; Rose
et al., 1994). In addition, since Soil A had the smallest sand
fraction in both the original soil and the splashed sediment,
a dependence of sediment size distribution existed with the
original soil. Finally, in almost for all soils, Table 8 shows
the clay fraction in the splashed sediment was greater for the
initially wet soil than for the dry soil. In few of the cases,
there was an opposite trend, where the silt content increased
more than the clay content decreased.
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Figure 4 Sediment splash ratios by soil type and moisture content under different slope steepness 
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Fig. 4. Sediment splash ratios by soil type and moisture content
under different slope steepness.

3.5 Evaluation of interrill erosion models

To test the validity of the assumption thatb = 2, in Model I
(E = aI b), values for each treatment combination were de-
termined by linear regression of the log transformed data (Ta-
ble 9). Values ofb ranged from, 0.46 for Soil A-dry at 9 %
slope, to 1.75 for Soil B-wet at 45 % slope. In general, theb

values were smaller for the fine structured Soil A than for the
sandier Soils B and C. Other than that, we could not discover
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a consistent trend forb with either slope or initial moisture
content. Our results are consistent with the findings of Meyer
(1981) who found similarly that clay soils had lowerb values
than for sandier soils.

For Model II (E = KiI
2), the effect of initial moisture

content on the erodibility coefficients (Ki) were determined
for each soil at three levels of slope. For Soil A, at 9 % and
25 % slope, pre-wetting had little effect. However, there was
a highly significant difference between the erodibility values
of air-dry and pre-wetted treatments at 45 % slope. For Soil
B, the effect of pre-wetting on Ki was little. Pre-wetting de-
creased the erodibility coefficient at 9 % and 25 % slope and
increased the coefficient at 45 % slope by 38.5 %. For Soil
C, the effect was little and its decrease or increase depended
on slope steepness (Table 9).

Erodibility coefficient values were also determined for
Model III, including the slope factor (E = Ki I2Sf ). There
were differences between calculated values of the erodibility
coefficients at the three levels of slope. An appropriate slope
steepness factor should result in equalKi values for a range
of slope steepness (Truman and Bradford, 1993). For Soil A,
Ki values increase significantly as slope increased from 9 %
to 45 %. This result shows that a slope adjustment factor is a
function of soil type and antecedent moisture content.

Kinnell (1991) suggests that, theI2 term in Model III be
replaced by the product ofI andq (flow). According to the
author, the product ofI andq provides a better measure of
the raindrop impact and flow interactions occurring in rain-
impacted flows. As shown in Table 9, using the same slope
steepness factor, for most of the treatment combinations, the
rainfall intensity-flow discharge models (Models IV and V)
were proven to be better for determining the interrill soil loss
than Model III (based onR2 values). However, Models IV
and V, with slope steepness factor and with slope steepness
in percent respectively, provided similarR2 values.

3.6 Soil erodibility

Erodibility was calculated using two models (Model III and
Model V) (Table 10). The values for each soil, slope steep-
ness, and moisture content combination are given in Ta-
ble 10. The table indicates that for both models, the highest
average soil erodibility was observed for Soil C and the low-
est was observed for Soil B. However, the erodibility values
were not the same for all soil conditions. The other inter-
esting result observed was the variation in erodibility values
with changes in slope steepness. Even though it was expected
to be constant, for most observations, erodibility values de-
creased with increases in slope. However, for Soil B, the
erodibility values increased as slope increased from 9 to 25 %
and decreased as slope increased from 25 to 45 %.

Table 10.Soil erodibility values for the three soils at different slope
and initial moisture content interactions.

Soil type Slope (%) Moisture Erodibility Erodibility (x106)
content (x106)∗ Kg s m−4

(Kg s m−4) (Model V)
(Model III)

Soil A 9 AD 1.22 1.59

PW 0.78 1.67

25 AD 1.07 1.56

PW 0.60 0.96

45 AD 0.92 1.53

PW 0.36 0.93

Average erodibility for Soil A 0.83 1.37

Soil B 9 AD 0.92 1.59

PW 0.64 0.88

25 AD 0.63 1.19

PW 0.55 0.91

45 AD 0.08 1.18

PW 0.23 0.82

Average erodibility for Soil B 0.51 1.10

Soil C 9 AD 0.86 1.07

PW 0.57 1.17

25 AD 0.97 1.30

PW 0.85 1.45

45 AD 0.92 1.63

PW 0.92 4.78

Average erodibility for Soil C 0.85 1.90

∗ Column 4 and column 5 erodibility values were calculated based on Model III and V,
respectively.

4 Conclusions

In general, the results obtained from this study support the
findings of Foster and Martin (1969) that for steeper slopes
more than (33 %), such as 45 %, splash detachment de-
creases. However, slope independent of soil type and ini-
tial moisture content may not determine or explain the actual
detachment process of a soil. Though slope was assumed
to have a positive effect on soil erosion (Wischemier and
Smith 1965), the investigation made in this study indicated
a decline in an average soil loss for steep slopes. Moreover,
the actual effect was dependent on soil type and moisture
content.

The experimental investigation somewhat supported the
conceptual model that was suggested by Foster and Meyer
(1975). However, as they suggested, the limiting process was
not necessarily be detachment, rather, it is the soil type, the
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available detached sediment and transporting capacity of the
transporting agent.

Supplementary material related to this
article is available online at:
http://www.hydrol-earth-syst-sci.net/15/2367/2011/
hess-15-2367-2011-supplement.pdf.
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