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Abstract – A checking sequence is a single input sequence 
which is able to reveal all the faults in a given fault domain. 
There are many methods for generating checking sequences 
for deterministic finite state machines (FSM); however, we are 
not aware of any generalization to nondeterministic machines. 
Nondeterministic specifications are needed for software testing, 
as they describe the behavior of a wider class of reactive 
systems than deterministic FSMs when depending on the 
environment conditions, a nondeterministic system is allowed 
to take different runs under the same input sequence. In this 
paper, we propose a method for constructing checking 
sequences when both the specification and implementations 
under test are modeled by nondeterministic FSMs.  

I. INTRODUCTION 
Testing using finite state machines (FSMs) is getting more 
and more embraced by a most of the industry.  While the 
theory of testing with finite state machines has a long 
history traced back to the 50-ties of the last century [15], 
most of the theoretical work done concerns deterministic 
machines. The mainstream methods elaborated since that 
time address a fundamental problem of generating so-called 
complete tests, which are exhaustive in a predefined fault 
domain, i.e., a finite set of all possible implementations 
under test (IUTs), modeled by deterministic FSMs. The 
methods can be roughly divided into checking sequence and 
multiple checking experiment construction methods. A 
checking sequence is a single input sequence (i.e., it is a 
simple experiment [15]), while a multiple checking 
experiment includes multiple input sequences. Examples of 
the first type of methods are [6] [7] [9], while the methods 
W [3] [25], Wp [5], HSI [26], H [4] and SPY [22] are 
examples of the second type of methods. Both, checking 
sequences and experiments, provide complete tests. To 
execute a checking sequence it is required first to initialize 
an IUT into its initial state, using either a reset operation or 
a homing sequence. If the first option is feasible then the 
reset operation is executed only once, as opposed to a 
checking experiment; to execute the latter, one needs to 
reset the IUT before each input sequence.  

While the problem of test generation from a 
deterministic FSM is still an active research topic (see, e.g., 
[9] [22]), recently in the 90-ties, nondeterministic machines 
have come to the attention of researchers [1] [2] [10] [11] 
[16] [24] [26] [27]. Nondeterministic specifications are 
needed for software testing, as they describe the behavior of 
a wider class of reactive systems than deterministic FSMs 
when, depending on the environment conditions, a 
nondeterministic system is allowed to take different runs 
under the same input sequence. At the same time, 
nondeterministic models are unavoidable once abstractions 
are employed. Some work assumes that a specification FSM 
is nondeterministic, but all IUTs are deterministic, see, e.g., 
[8] [17]. 

To test a nondeterministic IUT the existence of a reset 
operation in IUTs becomes a necessity, since a 
nondeterministic implementation has alternative runs for the 
same input sequence and to check all of them, the tester 
need to repeatedly apply the input sequence over and over 
again. This check is only possible assuming some fairness of 
a nondeterministic IUT, as in [13] [14] [23]. In the context 
of test execution against nondeterministic IUTs, the reset 
operation has to be repeatedly used to execute either a single 
input sequence or several of them. Hence, for the 
nondeterministic case, the choice between checking 
sequences and checking experiments is not based on 
whether a reliable reset is used or not, as it is in the 
deterministic case; instead, other constraints, specific to the 
application domain of the IUT, play an important role. For 
instance, in some application domains it may be preferable 
to have short tests even if their number is big, while in 
others, on the contrary, it may be more interesting to have as 
few tests as possible, even if they are longer. On the one 
hand, short tests facilitate the debugging; on the other hand, 
longer tests tend to have bigger fault coverage, far 
exceeding the fault domain in which their completeness is 
provided by construction. Minimizing the number of tests 
which need to be executed is also justified in situation when 
the test execution harness needs to be adjusted each time 
when a new test is provided. For example, different test 
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scripts should be produced for each new test. These 
adjustments can be costly and time-consuming (especially 
when manual work is involved); therefore it is of a practical 
interest to elaborate methods for generating checking 
sequences from nondeterministic FSMs.   

To the best of our knowledge, all the methods developed 
for complete test generation from nondeterministic FSMs 
follow the ideas of constructing checking experiments 
initially elaborated for deterministic FSMs, see, e.g., [13] 
[18]. We have found no attempts in generalizing the 
problem of checking sequence construction to the 
nondeterministic FSMs. 

The main contributions of this paper are twofold. First, 
we generalize the problem of generating a checking 
sequence to nondeterministic FSMs. We state conditions 
which are sufficient to ensure that a checking sequence can 
be generated. Second, we propose a method for generating 
an input sequence which satisfies those conditions. Thus, we 
propose a method for generating a checking sequence for a 
nondeterministic FSM.  

The remaining of this paper is organized as follows. In 
Sections 2, we introduce the basic notations and definitions 
for FSMs. In Section 3, we discuss how the notion of 
checking sequence can be generalized to nondeterministic 
FSMs. In Section 4, we investigate how the properties 
regarding the convergence and divergence of traces can be 
determined and, in Section 5, we propose a method for 
generating checking sequence which is based on these 
properties. In Section 6, we present an example of the 
execution of the proposed method and Section 7 concludes 
the paper. 

II. DEFINITIONS 
A Finite State Machine is a tuple S = (S, s0, X, Y, hS), such 
that: 

• S is the finite set of states, with the initial state s0; 

• X is the nonempty finite set of inputs; 
• Y is the nonempty finite set of outputs; and 
• hS ⊆ S × X × Y × S is the set of transitions 

As usual, we denote (s, x, y, s') ∈ hS as (s, x/y, s'). S is 
observable if (s1, x/y, s2) ∈ hS and (s1, x/y, s3) ∈ hS implies 
that s2 = s3. In this paper, we further consider only 
observable machines. Given a state s ∈ S, � = x1y1x2y2…xkyk 
is a trace of s if there exist s1, s2, …, sk+1 ∈ S, such that s1 = 
s and (si, xi/yi, si+1) ∈ hS, for 1 ≤ i ≤ k; we let �S(s, �) denote 
the final state sk+1. Moreover, for each 1 ≤ i ≤ k; we say that 
� covers transition (si, xi/yi, si+1). The FSM S is strongly-
connected if for any pair of states (s, s') there exists a trace � 
such that �S(s, �) = s'. For the initial state s0, we often write 
�S(�) instead of �S(s0, �). Figure 1 shows the example of 
FSM. It has four states 1, 2, 3, and 4 with state 1 as the 
initial state; three inputs a, b, and c; and two outputs 0 and 
1. It is a strongly-connected machine. 
 

 
Figure 1.  An FSM S 

 
The set of traces of state s is denoted by trS(s). We 

denote by ε the empty trace, such that for any s ∈ S, ε ∈ 
trS(s), and �S(s, ε) = s. The input projection of �, denoted by 
�↓X, is the input sequence x1x2…xk, while the output 
projection of �, denoted by �↓Y, is the output sequence 
y1y2…yn. Given a state s ∈ S and an input sequence � ∈ X*, 
we use tracesS(s, �) to denote the traces of s with the input 
projection �, i.e., tracesS(s, �) = {� ∈ trS(s) | �↓X = �}. For 
the initial state s0, we simply write tracesS(�). Given a set 
tracesS(β) of sequences, the notation pref(tracesS(β)) is used 
to denote the set of all prefixes of sequences of the set. 
Given two set of traces A and B, we denote by A.B the set of 
traces obtained by appending traces of B to traces of A, i.e., 
A.B = {�� | � ∈ A and � ∈ B}. 

The set of all the traces of state s ∈ S is trS(s) and that of 
the FSM S is trS(s0) or simply trS. For any FSM S, there 
exists an observable FSM S', such that trS' = trS. Two states 
(FSMs) are equivalent if they have the same set of traces. 
An FSM is minimal if it has no equivalent states. We note 
that the FSM in Figure 1 is minimal. 

We now lift �S, trS and tracesS to sets of states and sets 
of traces. Given a set of states R ⊆ S, a set of traces A and a 
set of input sequences B, we define:   

• �S(R, A) = {�S(s, �) | s ∈ R and � ∈ A}; 
• trS(R) = ∪trS(s) over s ∈ R 
• tracesS(R, B) = ∪ tracesS(s, �) over s ∈ R and � ∈ 

B. 
For simplicity, we use the only element of a singleton 

set as the set itself, i.e., a is used instead of {a}. 
S is deterministic if (s1, x1/y1, s2) ∈ hS and (s1, x1/y2, s3) 

∈ hS implies that y1 = y2 and s2 = s3. S is complete if for each 
s ∈ S and x ∈ X, there exists (s, x/y, s') ∈ hS for some y ∈ Y 
and s' ∈ S. In this paper, we assume that the FSMs are 
observable and complete, but possibly nondeterministic. In 
fact, the FSM in Figure 1 is non-deterministic, but 
observable. 

A set of traces A is a state cover, if for each state A 
contains a trace which leads to this state, i.e., for each s ∈ S 
there exists � ∈ A such that �S(�) = s; A is a transition cover 
(for S), if for each transition, A contains a trace which 
covers it. The set of traces A is initialized if ε ∈ A. 
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III. PROBLEM STATEMENT 
In fault model-based testing, a fault domain is a finite set 

of all possible implementations which represent all the faults 
that a tester is interested in detecting in an implementation 
under test (IUT); once the fault domain is established, a set 
of tests can be generated from a given specification to check 
whether the IUT contains any of those faults. Usually, when 
the specification is a formal model, the implementation is 
assumed to be some unknown model of the same kind (see, 
[13] [23]). This is called a testing hypothesis. In our case, as 
we are dealing with FSM, we assume that the 
implementation can also be represented as some FSM. We 
denote by ℑ(S) the set of complete, observable FSMs with 
at most as many states as S and the same set of inputs. This 
set is then a fault domain, since each machine models a 
particular combination of implementation faults.  

Fault detection relies on a conformance relation between 
specification and implementation models. An 
implementation N ∈ ℑ(S) passes an input sequence ω if 
tracesS(ω) = tracesN(ω); otherwise, N fails the input 
sequence ω. N is trace equivalent to S if trN = trS. We 
assume that for an FSM N ∈ ℑ(S) and an input sequence ω, 
there exists a natural k such that if ω is applied to N k times, 
each trace in tracesN(ω) is observed. This assumption is used 
to reason about nondeterministic implementations. It is 
called all-weather conditions in [14], fairness in [23] and 
complete testing assumption in [13]. In practical situations, 
the higher the value of k the more reliable the test verdict 
pass. We also assume that N has a “reliable reset”, which 
brings N to its initial state and is needed to be able to 
observe all the traces with a given input sequence according 
to the all-weather conditions assumption.  

As the implementation is (assumed to be) an FSM from 
a given fault domain, we can generate tests by considering 
each and every FSM from the fault domain and, if it is not 
trace equivalent to the specification, determine an input 
sequence for which the implementation fails. These input 
sequences can eventually be merged into a single input 
sequence following the ideas of Moore [15]. However, even 
though the fault domain is finite (upon isomorphism 
between machines), it is usually huge and the approach 
described above is unfeasible. Our goal is then to determine 
input sequences which can detect any implementation which 
is not trace equivalent, without having to enumerate them. 
In particular, we investigate whether it is possible to 
generate a single input sequence with this capacity. Such a 
sequence is called a checking sequence, which is formally 
defined as follows. 

 
Definition 1. An input sequence ω ∈ X* is a checking 
sequence for S (w.r.t. ℑ(S)) if for each N ∈ ℑ(S), N passes 
ω only if S and N are equivalent, i.e., tracesN(ω) = 
tracesS(ω) implies that trN = trS.  

 

Definition 1 generalizes the notion of checking sequence 
when both the specification and the implementation FSMs 
are deterministic [7]. For the deterministic case, there are 
numerous methods for generating checking sequence [6] [7] 
[9] [19]. However, to the best of our knowledge, there is no 
method which considers a more general case when the 
specification and the implementation can be 
nondeterministic. 

We also generalize the definition of a distinguishing 
sequence, which is used in many checking sequence 
generation methods. The input sequence � is a 
distinguishing sequence for S if for any two different states 
s and s' of S, tracesS(s, �) ≠ tracesS(s', �). It is known that 
not every complete reduced FSM has a distinguishing 
sequence. In this paper, we consider the specification FSM 
which has such a sequence and thus, is minimal. The 
distinguishing sequence � of the FSM S allows one to 
separate states reached after different traces by the sets of 
traces which emanate from these states as response to �. By 
direct inspection one can assure that the FSM S has a 
distinguishing sequence γ = ab. Indeed, tracesS(1, ab) = 
{a0b0, a1b1}, tracesS(2, ab) = {a0b1}, tracesS(3, ab) = 
{a2b1, a1b2} and tracesS(4, ab) = {a1b0}. 

We can now state the problem we are addressing in this 
paper. Given a strongly-connected, complete, observable 
(possibly nondeterministic) FSM with a distinguishing 
sequence, generate a checking sequence. In the next section, 
we establish properties of traces which will be used to 
elaborate an algorithm for checking sequence generation. 
The properties, which are based on convergence and 
divergence of traces, generalize our previous work [19] [20] 
to dealing with nondeterministic FSMs. 

IV. TRACE CONVERGENCE AND DIVERGENCE 
In a nondeterministic machine, a given input sequence 

may take the machine into several states, but in an 
observable machine, a trace leads to a unique state. Any two 
traces are either convergent if they lead to the same state or 
divergent otherwise. These notions are generalized to a set 
of NFSMs as follows. 
  
Definition 2. Given a set of observable FSMs � over input 
alphabet X and output alphabet Y two traces of all FSMs in 
� are �-convergent, if they converge (i.e., lead from the 
initial state to the same state) in each FSM of the set Σ; and 
two traces are �-divergent, if they diverge (i.e., lead from 
the initial state to different states) in each FSM of Σ. Two 
traces are S-convergent (S-divergent) if they are {S}-
convergent ({S}-divergent). Moreover, when it is clear from 
the context, the set in which tests are convergent or 
divergent will be omitted.  

Here we notice that differently from [19] [20], the 
notions of convergence and divergence are defined in terms 
of traces of nondeterministic FSMs and not input sequences 
as in the case of deterministic FSMs. To illustrate the notion 
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of trace divergence and convergence, consider the FSMs S 
in Figure 1, and M and N in Figure 2. The FSM M was 
obtained from the FSM S by replacing the transition (2, a/0, 
2) by the transition (2, a/0, 4), while the FSM N was 
obtained from the FSM S by replacing the transition (3, a/1, 
4) by the transition (3, a/1, 2), The traces a1a0 and a0a1 are 
{S}-divergent, while the traces a1a0 and c1b2 are {S}-
convergent. The traces a1a0 and a0a1 are neither {S, N}-
divergent nor {S, M}-divergent. In fact, the traces a1a0 and 
a0a1 are {M, N}-convergent. 

 
(a) FSM M 

 
(b) 

(b) FSM N 
Figure 2.  Two FSMs in ℑ(S) 

Trace convergence and divergence with respect to a 
single observable FSM are complementary, i.e., any two 
traces are either convergent or divergent. However, when a 
fault domain Σ with more than one FSM is considered, some 
traces may be neither Σ-convergent nor Σ-divergent. 
Nevertheless, it is possible to relate convergent and 
divergent traces as follows. 

 
Lemma 1. Given Σ-convergent traces α and β, the 
following properties hold: 

a) αγ and βγ are also Σ-convergent, for any trace γ over 
input alphabet X and output alphabet Y; 

b) For any trace ϕ over input alphabet X and output 
alphabet Y, if α and ϕ are Σ-divergent, then β and ϕ are Σ-
divergent as well. 

c) For any trace ϕ over input alphabet X and output 
alphabet Y, if α and ϕ are Σ-convergent, then � and ϕ are 
Σ-convergent as well. 

Proof. Property (a) follows from the fact that the FSMs 
in Σ are observable. The proof of Properties (b) and (c) is 
straightforward.♦ 

 
Let Σω be the set of FSMs in Σ which pass ω. These are 

implementations conforming to the specification (recall that 
the trace equivalence is our conformance relation). 
 
Definition 3. Given a specification FSM S, a set of traces A 
is  

• Σω-convergent if any pair of traces of A is Σω-
convergent;  

• Σω-convergence-preserving if any pair of S-
convergent traces of A are Σω-convergent;  

• Σω-divergent if any pair of traces of A are Σω-
divergent. 

 
The notion of convergence preserving traces is central in 

the proposed method; in fact it is straightforward to verify if 
two traces are convergent in the specification. If two traces 
are convergent in the specification and we can ensure that 
they both belong to a Σω-convergence-preserving set, by 
definition, those two traces are convergent in any FSM in Σ 
which passes ω. Consider again the FSMs in Figure 1 and 2. 
Let Σ = {S, M, N} and S be the specification FSM. Let ω be 
the empty sequence; thus, both M and N pass ω. The set of 
traces {b0, a0a1, a0c1} is Σω-convergence-preserving, since 
the only pair of traces which is S-convergent is b0 and a0c1, 
which is also convergent in M and N. On the other hand, the 
set {a0a1, c1} is not Σω-convergence-preserving, since the 
traces are S-convergent, but are not N-convergent. Notice 
that only the convergence of the traces which are convergent 
in the specification is relevant. Moreover, only the FSM 
which passes ω should be considered. Thus, for the input 
sequence χ = aaa, we have that the set {a0a1, c1} is Σχ-
convergence-preserving, since N does not pass χ. 

Now we are ready to state sufficient conditions for an 
input sequence to be a checking sequence of a given 
possibly nondeterministic FSM. 
  
Theorem 1. Given an FSM S, let ω be an input sequence 
such that pref(tracesS(ω)) contains an ℑ(S)ω-convergence-
preserving initialized transition cover. Then, ω is a checking 
sequence of S. 
Proof. Let T ⊆ pref(tracesS(ω)) be an ℑ(S)ω-convergence-
preserving initialized transition cover and N ∈ ℑ(S)ω. 
Define the relation ξ : S × N as ξ = {(�S(�), �N(�)) | � ∈ T}. 
As T is a transition cover of S, thus T contains a state cover, 
i.e., for each s ∈ S, there exists n ∈ N, such that (s, n) ∈ ξ. 
Moreover, as T is ℑ(S)ω-convergence-preserving and FSM 
N is observable, for each s ∈ S, there exists only one n ∈ N, 
such that (s, n) ∈ ξ; thus, ξ is a mapping. As T is initialized, 
 
   ξ(s0) = n0. (1) 
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Let (s, x/y) be a transition of S. As T is a transition cover for 
S, there exists �, �xyβ ∈ T, such that �S(�) = s and β could 
be an empty trace. Thus, 
 
    ξ(�S(�S(�), xy)) = ξ(�S(�xy)) = �N(�xy) =  
            �N(�N(�), xy) = �N(ξ(�S(�)), xy) (2)  
 
As N passes ω, then tracesS(ω) = tracesN(ω). Thus, for � ∈ 
T, trS(�S(�)) = trN(�N(�)) and, consequently, for each x ∈ X,  
 
    trS(�S(�), x) = trN(�N(�), x) =  
        tracesN(ξ(�S(�)), x). (3) 
 
Therefore, from (2) and (3), we conclude that ξ is an 
isomorphism and, from (1), that N is equivalent to S. ♦ 
 

Thus, to construct a checking sequence, it is sufficient to 
generate an input sequence that produces a set of traces 
covering transitions of the specification FSM, which 
contains the empty word and is convergence-preserving in 
all the machines that correctly react to this sequence. In the 
following we first present a chain of statements which show 
how this could be done. The idea is to use a distinguishing 
sequence to ensure the divergence of prefixes of the traces 
caused by the input sequence being constructed. Then, based 
on the fact that the maximal number of states in the 
implementation is assumed to be known and not exceeding 
that of the specification FSM, the convergence of the 
prefixes which do not diverge is guaranteed first to obtain a 
state cover and then a transition cover with the desired 
properties. 

The S-divergence and eventually Σω-divergence of a 
pair of traces can be ensured when the FSM S reaches two 
distinct states after them. Then their Σω-divergence can be 
demonstrated by using the distinguishing sequence in those 
states. To this end, we introduce the notion of separable 
traces. 

 
Definition 4. Given an input sequence ω, two traces α, β ∈ 
pref(tracesS(ω)) are ω-separable if there exists an input 
sequence γ, such that (�↓X)γ, (�↓X)γ ∈ pref(ω) and 
tracesS(δS(s0, α), γ) ≠ tracesS(δS(s0, β), γ). 
 

In fact, a distinguishing sequence of a given FSM S will 
be used while constructing an input sequence ω with ω-
separable traces. According to Definitions 2 and 4, two ω-
separable traces are divergent in all FSMs which pass ω, as 
stated in the next lemma. 

 
Lemma 2. Given an input sequence ω, two ω-separable 
traces are ℑ(S)ω-divergent. 
Proof. Let traces α and β be ω-separable. Thus, there exists 
an input sequence γ such that (�↓X)γ, (�↓X)γ ∈ pref(ω) and 

tracesS(δS(α), γ) ≠ tracesS(δS(β), γ). Let N ∈ ℑ(S)ω; then 
tracesS(ω) = tracesN(ω). It follows that tracesS(δS(α), γ) = 
tracesN(δN(α), γ) and tracesS(δS(β), γ) = tracesN(δN(β), γ). We 
have that tracesN(δN(α), γ) ≠ tracesS(δN(β), γ). Thus, δN(α) ≠ 
δN(β). ♦ 
 

While the divergence of traces can be directly certified 
by the different responses (i.e., different sets of traces) 
exhibited for the same input sequence, the convergence of 
two traces cannot be straightforwardly verified, since they 
can lead to different states which happen to produce the 
same set of traces. However, as the number of states of any 
FSM in the fault domain ℑ(S)ω does not exceed that of the 
specification FSM, a set of divergent traces can be used to 
ensure that two traces are convergent. 

 
Lemma 3. Given an input sequence ω, let T be a ℑ(S)ω-
divergent set with n traces, where n is the number of states 
of S. Let � and � be S-convergent traces, such that � ∈ T 
and the set T \ {�} ∪ {�} is ℑ(S)ω-divergent. Then, � and � 
are ℑ(S)ω-convergent. 
Proof. Let N be an FSM in ℑ(S)ω. As T is ℑ(S)ω-divergent, 
the traces in T reach n distinct states in N, as T is a state 
cover of S. As T \ {�} ∪ {�} is ℑ(S)ω-divergent, � is 
ℑ(S)ω-divergent with each trace in T \ {�}. As T \ {�} is 
ℑ(S)ω-divergent, the traces in T \ {�} reach (n – 1) distinct 
states in N. If � and � are N-divergent, then the traces in T \ 
{�} ∪ {�} would reach (n – 1 + 2) = (n + 1) distinct states 
in N. As N has at most n states, we conclude that � and � are 
N-convergent and, therefore, ℑ(S)ω-convergent. ♦ 

V. GENERATING CHECKING SEQUENCES 
In this section, a method for generating checking 

sequences from a nondeterministic FSM with a 
distinguishing sequence is proposed. First, we apply the 
results of the previous section to obtain a suitable 
convergence-preserving set. 

The next lemma states that the set of traces which are 
followed by a distinguishing sequence form a convergence-
preserving set, i.e., for any two of those traces, the 
convergence in the specification is certainly preserved in 
any FSM of the fault domain which passes the input 
sequence ω.  
 
Lemma 4. Let ω be an input sequence and � be a 
distinguishing sequence. Let also K ⊆ pref(ω) be the set of 
prefixes of ω which are followed by � in ω, i.e., K = {� | �� 
∈ pref(ω)}. If �S(tracesS(K)) is a state cover of S then 
tracesS(K) are ℑ(S)ω-convergence-preserving. 
Proof. We prove that if the traces �, � ∈ tracesS(K) are S-
convergent, they are also ℑ(S)ω-convergent. Assume that � 
and � are S-convergent. Consider a subset T ⊆ tracesS(K) 
such that � ∈ T and for each state s ∈ S, there exists one and 
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only one trace χs ∈ T, such that s = �S(χs). Thus, for each 
trace χs ∈ T, χs.tracesS(s, �) ⊆ pref(tracesS(ω)). Let N ∈ 
ℑ(S)ω; χs, χs' ∈ T, χs ≠ χs', n = �N(χs), n' = �N(χs'). As N 
passes ω, it holds that tracesS(ω) = tracesN(ω). Hence, 
tracesS(s, �) = tracesN(n, �) and tracesS(s', �) = tracesN(n', �). 
As � is a distinguishing sequence and s ≠ s', we have that 
tracesS(s, �) ≠ tracesS(s', �) and, consequently, tracesN(n, �) 
≠ tracesN(n', �). Thus, n ≠ n', i.e., χs and χs' are N-divergent. 
It follows that χs and χs' are ℑ(S)ω-divergent and, therefore, 
T is ℑ(S)ω-divergent. 

We now show that T \ {�} ∪ {�} is also ℑ(S)ω-
divergent. As T \ {�} is ℑ(S)ω-divergent, it is sufficient to 
show that � is ℑ(S)ω-divergent with each trace in T \ {�}. 
Let χ ∈ T \ {�}, s = �S(�), s' = �S(χ), n = �N(�), n' = �N(χ). As 
� and χ are S-divergent while � and � are S-convergent, we 
have that � and χ are S-divergent, i.e., s ≠ s'. Following the 
same reasoning as stated above, we conclude that n ≠ n', i.e., 
� and χ are N-divergent. Thus, � and χ are ℑ(S)ω-divergent 
and, consequently, T \ {�} ∪ {�} is also ℑ(S)ω-divergent. 
Finally, by Lemma 3, � and � are ℑ(S)ω-convergent. ♦ 
 

Lemma 4 shows that a set of traces, which is a state 
cover (for the FSM S), is convergence-preserving if each of 
its traces is followed by a distinguishing sequence. 

Constructing an input sequence ω such that the set of 
traces pref(tracesS(ω)) contains an ℑ(S)ω-convergence-
preserving initialized transition cover, we proceed in two 
steps. First, we generate an input sequence σ such that the 
set of traces pref(tracesS(σ)) contains an ℑ(S)σ-
convergence-preserving initialized state cover. Then, we 
extend the input sequence until the ℑ(S)σ-convergence-
preserving set covers all transitions. Recall that to cover a 
transition (s, x/y, s'), this set of traces should contain a trace 
α leading to the state s, as well as its extension αxyβ.  

Constructing a transition cover with the desired 
properties, it is convenient to use the following definition.  

 
Definition 5. Given an input sequence σ, a trace χ of a 

state s, we say that the trace χ is verified at the state s if 
there exists an ℑ(S)σ-convergence-preserving set C, such 
that �, �χ ∈ C and �S(α) = s. A transition (s, x/y, s') is 
verified if xy is verified at s. 

 
Notice that if a transition is verified, then it is covered 

by an ℑ(S)σ-convergence-preserving set. Thus, it is clear 
that if all transitions are verified by an ℑ(S)σ-convergence-
preserving initialized state cover, then it is also an ℑ(S)σ-
convergence-preserving initialized transition cover. That is, 
according to Theorem 1, a checking sequence can be 
obtained by verifying each transition. Consider the transition 
(s, x/y, s') and the input sequence σ. Let � ∈ tracesS(σ) be 
such that s ∈ �S(�). Lemma 4 suggests a way for including 
αxy into an ℑ(S)σx-convergence-preserving set; it is 

sufficient to extend the input sequence σx by the 
distinguishing sequence γ. According to Definition 5, to 
verify the transition (s, x/y, s'), it is also required that � itself 
is in the ℑ(S)σx-convergence-preserving set. However, 
Lemma 4 cannot be used, since if we extend σ by the 
distinguishing sequence �, we will not be able to extend σx 
with � (except for the special case where � = xx…x, i.e., the 
distinguishing sequence is a sequence of the same input 
symbol). Hence, in order to be able to verify the transition 
(s, x/y, s'), we need first to ensure that all the traces of σ is 
an ℑ(S)σ-convergence-preserving set. This is achieved in 
the following way.  

Assume that an input sequence σ is followed by two 
distinguishing sequences in a row, i.e., it is followed by ��. 
According to Lemma 4, all traces of σ and σ� are in an 
ℑ(S)σγγ-convergence-preserving set and, thus, each trace χ 
∈ tracesS(s, γ) is verified at each state s ∈ �S(tracesS(σ)). 
Suppose now that for each state s ∈ S, there exists an input 
sequence σ, such that σ is followed by �� and s ∈ 
�S(tracesS(σ)), i.e., each trace χ in tracesS(s, γ) is verified at 
s. Then for any input sequence φ that is followed by a 
distinguishing sequence �, all the traces of φ are in a ℑ(S)φγ-
convergence-preserving set, due to Lemma 4, as well as all 
the traces of φ�, due to Lemma 1.a and Definition 5. In other 
words, once we have guaranteed that each state is reached 
and followed by two distinguishing sequences ��, all the 
traces of any input sequence which ends with � is also in a 
convergence-preserving set. Therefore, in order to verify all 
of the transitions, we need first to verify all traces of the 
distinguishing sequence � at each state. This is 
accomplished by Algorithm 1.  
 
Algorithm 1 
Input: A strongly-connected, complete, observable  FSM S 
= (S, s0, X, Y, hS) with a distinguishing sequence γ. 
Output: A sequence ω such that for each state s and each 
trace χ ∈ �S(tracesS(s, γ)), χ is verified at s and the set of 
traces pref(tracesS(ω)) contains an ℑ(S)ω-convergence-
preserving initialized state cover. 
1. R := ∅ 
2. ω := ε 
3. while R ≠ S do 
4.  Let � be a shortest input sequence, such 
that �S(tracesS(ω�)) \ R ≠ ∅.  
5.  ω := ω� 
6.  R := R ∪ �S(tracesS(ω)) 
7.  while �S(tracesS(ωγ)) \ R ≠ ∅ do 
8.   ω := ω� 
9.   R := R ∪ �S(tracesS(ω)) 
10.  end 
11.  ω := ω�γ 
12.  end 
13.  return ω 
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The next lemmas state the key properties of the obtained 
input sequence ω. Lemma 4 characterizes which prefixes of 
ω are followed by the distinguishing sequence; it also states 
that ω begins with the distinguishing sequence and ends 
with two distinguishing sequences in a row. 

 
Lemma 5. Let ω be the input sequence obtained by 
Algorithm 1 for a distinguishing sequence �. Then,  

a) for each s ∈ S, there exists � ∈ pref(ω), such that s ∈ 
�S(tracesS(�)) and ��� ∈ pref(ω); 

b) � ∈ pref(ω); and 
c) there exists �, such that ��� = ω. 

Proof. First, notice that the algorithm terminates when R 
contains all states of S. Thus, whenever the outer loop 
(Steps 3-12) is executed, there exists at least one state which 
is not currently in R. The input sequence � is selected such 
that at least one state which is not in R is reached. As S is 
strongly-connected, such an input sequence always exists. 
Then the inner loop (Steps 7-10) will be executed, as long as 
extending ω with γ reaches states which have not been 
reached yet. Thus, eventually, all states will be added to R. 
Thus, for each state s ∈ S, there exists an input sequence � 
that is a prefix of ω such that s ∈ �S(tracesS(�)). When the 
inner loop is completed, in Step 11, � is extended with γγ. 
Therefore, Property (a) holds.  

Property (b) also holds, since in the beginning of the 
execution, ω is the empty sequence and R is empty. Thus, 
the input sequence � selected in Step 4 should also be empty 
sequence, since �S(tracesS(ω�)) = �S(tracesS(ε)) = {s0}, and, 
ε is a shortest such a sequence.  

As the last step executed by the algorithm is the 
extension of ω with γγ, Property (c) also holds.  ♦ 
 

The next result states that if an input sequence � is 
followed by ��, then �, �� and ��� are in a convergence-
preserving set. 
 
Corollary 6. Let ω be the input sequence obtained by 
Algorithm 1 for a distinguishing sequence �. Let also K = 
{�, ��, ��� | ��� ∈ pref(ω)} Then, the following properties 
hold: 

a) �S(tracesS(K)) is a state cover of S; 
b) K is initialized; 
c) ω ∈ K; 
d) the set tracesS(K) is ℑ(S)ω-convergence-

preserving. 
Proof. Properties a), b) and c) follow from the respective 
items of Lemma 5, whereas Property d) follows from 
Lemma 4 and Lemma 1.a. ♦ 
 

Thus, the set C = tracesS(K) is an ℑ(S)ω-convergence-
preserving initialized set of traces. We then extend ω, if 
needed and, accordingly, the ℑ(S)ω-convergence-preserving 

set C, so that C becomes a transition cover; thus, by 
Theorem 1, ω is a checking sequence.  

Therefore, we extend ω, until all transitions are verified. 
Let P be the set of all states which may be reached in the 
specification after the application of input sequence ω, i.e., 
P = �S(tracesS(ω)), where ω is the input sequence obtained 
by Algorithm 1. By Corollary 6.c, it follows that  

 
tracesS(ω) ⊆ C. (4) 

 
Thus, applying an input x after ω would result in 

traversing all transitions starting in any state of P with input 
x. Notice that, due to the all-weather conditions assumption, 
x is also applied sufficiently many times, and thus, each 
transition (s, x/y, s'), such that s ∈ P and output y ∈ Y, is 
covered. We then apply the distinguishing sequence �, to 
check the end states of the transitions, obtaining the input 
sequence ωx�. By Lemma 4,  

 
   C ∪ tracesS(ωx) is ℑ(S)ω-convergence-preserving. (5) 

 
From (4) and (5), it follows that each transition (s, x/y, 

s') is verified. From (5) and Lemma 1.b, we have that C ∪ 
tracesS(ωx) ∪ tracesS(ωx�) is also ℑ(S)ωx�-convergence-
preserving. Thus, we can update ω to ωx�, the set P to 
�S(tracesS(ωx�)) and the set C to C ∪ tracesS(ωx) ∪ 
tracesS(ωx�), and we iterate again to verify transitions not 
yet verified. 

It may happen that there are no unverified transitions 
starting in states in P. In this case, there is a path of verified 
transitions which leads to states with unverified transitions. 
Let Z be the set of states with unverified transitions. As the 
specification is strongly-connected, it is always possible to 
reach states in Z from states in P using a trace with only 
verified transitions; let � be a shortest such trace and � = 
�↓X. Due to the all-weather conditions assumption, the trace 
� will eventually be executed. As � is a shortest trace from 
states in P to states in Z formed only by verified transitions, 
all traces in tracesS(�) are also produced only by verified 
transitions. By Lemma 1.b, we have that C ∪ tracesS(ω�) is 
ℑ(S)ω-convergence-preserving. Thus, we update ω to ω�, 
the set P to �S(tracesS(ω�)) and the set C to C ∪ 
tracesS(ω�). Then, we iterate again to verify transitions not 
yet verified. The idea is formalized in the following 
algorithm. 

The algorithm for verifying the transitions is shown 
below.  
 
Algorithm 2 
Input: A strongly-connected, complete, observable FSM S 
= (S, s0, X, Y, hS) with a distinguishing sequence γ and the 
input sequence ω obtained from Algorithm 1 
Output: A checking sequence ω. 
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/* P is the set of states currently reached in the specification 
by ω */ 
P := �S(tracesS(ω))  
/* V is the set of all pairs (s, x) ∈ S × X such that all 
transitions from the state s under the input x are verified. 
Initially, no transition is verified. * / 
V := ∅  
/* While there are unverified transitions do */ 
While V ≠ S × X 
 /* R is the set of pairs (s, x) s.t. there exists an 
unverified transition starting at s with input x */ 
 Let R = (S × X) \ V 
 /* Z is the set of states with unverified outgoing 
transitions */ 
 Let Z = {s | ∃ x ∈ X, s.t. (s, x) ∈ R} 
 /* Check if there is any state which is currently 
reached and has unverified transitions */ 
 If Z ∩ P ≠ ∅ then 
  /* Let x be input such that there is an 
unverified transition with input x from some state in Z ∩ P*/  
  Let x be s.t. {(s, x) ∈ R | s ∈ Z ∩ P} ≠ ∅. 
  ω := ωx� 

/* W is the set of all pairs ‘state, input’ 
where a transition from the state under the 
input is just verified */ 

  W := (P × {x}) ∩ R 
  V := V ∪ W 
  /* Update the currently reached states */ 
  P := �S(P, tracesS(P, x�)) 
 Else /* there is no unverified transition in a current 
state */ 
  /* Then, we apply an input sequence 
which leads S from some state in the set P to a state with 
unverified transitions */ 
  Let � be a shortest input sequence, s.t. 
�S(P, tracesS(P, �)) ∩ Z ≠ ∅. 
  ω := ω� 
  /* We update P and in the next iteration, 
the if condition will be satisfied. */ 
  P := �S(P, tracesS(P, �)) 
 End 
End 
return ω. 
 
Theorem 2. The above algorithms return a checking 
sequence ω. 
Proof. In fact, a sequence returned by Algorithm 1 
establishes one-to-one correspondence between states of 
FSM S and an IUT N ∈ ℑ(S) and yields a convergence-
preserving initialized state cover. The set of traces of a 
sequence extended by Algorithm 2 covers all transitions. 
Thus, the traces of the resulting ω contains an ℑ(S)ω-
convergence-preserving initialized transition cover, and, by 
Theorem 1, ω is a checking sequence for S.♦ 

Here we briefly discuss the complexity issues. Similar 
to deterministic FSMs, the length of a distinguishing 
sequence can be exponential [12], however, in most cases, 
when such a sequence exists its length is less than the 
number of states of the specification FSM. The complexity 
of algorithms 1 and 2 is polynomial w.r.t. the number of 
states (transitions) of the specification FSM. 
Correspondingly, the length of a checking sequence is 
polynomial w.r.t. the number of transitions of the 
specification FSM multiplied by the length of a 
distinguishing sequence.  The main difference with 
deterministic FSMs is that when checking non-deterministic 
implementations a checking sequence should be applied 
several times in order to satisfy the complete  testing 
assumption.  

VI. EXAMPLE 

Consider the specification FSM S in Figure 1, which has the 
distinguishing sequence � = ab. We now construct a 
checking sequence using Algorithms 1 and 2. 

Initially, we apply Algorithm 1. The set R is empty and 
ω is the empty sequence ε. As R � S, the while loop is 
executed. As �S(tracesS(ω)) contains the state s0, which is 
not in R, we have that � = ε is selected in Step 4. Thus, ω = 
ω� = ε, and R = {s0} = {1}. Then, � is applied and ω is 
updated to � = ab. The states 2 and 3 are added to R, since 
�S(tracesS(ab)) = {2, 3}; thus R is updated to {1, 2, 3}. 
Another application of � does not reach any new states, 
since �S(tracesS(abab)) = {2, 3}. To ensure that all traces of 
� is verified at states 1, 2 and 3, the distinguishing sequence 
is applied twice, resulting in ω = ababab. Then, we 
determine an input sequence which reaches a state which is 
not in R; in this case, we have that �S(tracesS(ababab)) = 
{3} and only 4 is not in R yet. Thus, we select the input 
sequence c and obtain the input sequence ω = abababc. The 
set R is updated and now contains all states; finally, 
Algorithm 1 applies the distinguishing sequence twice and 
returns the sequence ω = abababcabab.  

We now verify each transition of the specification FSM 
S. The set P of states reached by ω is {2} and no transition 
is verified yet. Thus, select the transition (2, a/0, 2) to be 
verified. We apply a� = aab, obtaining ω = 
abababcababaab. The states reached by ω are still {2}. We 
verify the transition (2, b/1, 2), obtaining ω = 
abababcababaabbab. Again, the set of reached states 
remains {2}, thus, we verify the last unverified transition (2, 
c/1, 4). The resulting ω is abababcababaabbabcab, which 
reaches the state 3. We now verify the transitions (3, a/1, 4) 
and (3, a/2, 2), by applying aab. Thus, ω becomes 
abababcababaabbabcabaab; the set of reached states is {2, 
3}. We verify the transition (3, b/0, 3) by applying bab. 
Notice that the transition (2, b/1, 2) was (re-)verified as 
well. The obtained ω is abababcababaabbabcabaabbab, 
which reaches the state 2. As there is no unverified 
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transition at the state 2, a shortest input sequence leading to 
a state with unverified transitions is determined; in this case, 
the input c is chosen, since it leads to state 4. The obtained 
ω is abababcababaabbabcabaabbabc. Then, the transition 
(4, a/1, 3) is verified, by applying aab, resulting in ω = 
abababcababaabbabcabaabbabcaab. Up to this point, the 
following transitions have been verified: (2, a/0, 2), (2, b/1, 
2), (2, c/1, 4), (3, a/1, 4), (3, a/2, 2), (4, a/1, 3), and ω 
reaches the state 2. The remaining steps of the execution of 
Algorithm 2 are presented in Table I. The resulting checking 
sequence ω is 
abababcababaabbabcabaabbabcaabcbabccabcababcacabc
aabcacbabccab. The total number of inputs in ω is 62. 
 

TABLE I.  GENERATING A CHECKING SEQUENCE FOR THE FSM OF 
FIGURE 1. 

Current 
States P 

Verified Transitions Applied Sequences 
(transfer sequence 
�, input x, and �) 

{2} (4, b/2, 2) (c, b, ab) 
{2} (4, c/1, 4) (c, c, ab) 
{2} (3, b/0, 3) (ca, b, ab) 
{2} (3, c/1, 1) (ca, c, ab) 

{2, 3} (1, a/1, 2), (1, a/0, 3) (c, a, ab) 
{2} (1, b/0, 1) (cac, b, ab) 

{2, 3} (1, c/0, 3) (c, c, ab) 
 

For the sake of comparison, a checking experiment 
(complete test suite) was generated by the method from 
[18]. It contains 12 different input sequences, with 57 
inputs. Even though the checking sequence has slightly 
more inputs than the checking experiment, but the latter 
contains multiple input sequences and, therefore, may 
require more efforts to execute, since in this case, each input 
sequence should be executed several times. 

VII. CONCLUSIONS 
In this paper, we addressed the problem of generating a 
checking sequence for nondeterministic FSMs, generalizing 
results from the deterministic case. We stated conditions 
under which a checking sequence can be generated and used 
them for proposing a method for generating an input 
sequence which satisfies these conditions. To the best of our 
knowledge, this is the first method developed for checking 
sequence generation from nondeterministic FSMs. 

The presented results are also applicable to a class of 
Input/Output Transition systems (IOTS), called Mealy-IOTS 
in [21], which have no input enabled in an unstable state.  

As future work, it would also be interesting to 
investigate possibilities of constructing checking sequences 
when conforming implementations can be “less 
nondeterministic” than their specifications. 
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