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Abstract—Adapting in-vehicle systems (e.g., advanced driver
assistance systems and in-vehicle information systems) to individ-
ual drivers’ workload can enhance both safety and convenience.
To make this possible, it is a prerequisite to infer driver workload
so that adaptive aiding can be provided to the driver at the right
time and in an appropriate manner. Rather than developing an
average model for all drivers, a personalized driver workload
inference (PDWI) system considering individual drivers driving
characteristics is developed using machine learning techniques
via easily accessed vehicle related measurements (VRMs). The
proposed PDWI system comprises two stages. In offline train-
ing, individual drivers workload is first automatically splitted
into different categories according to its inherent data charac-
teristics using fuzzy C-means (FCM) clustering. Then an implicit
mapping between VRMs and different levels of workload is con-
structed via classification algorithms. In online implementation,
VRMs samples are classified into different clusters, consequently
driver workload type can be successfully inferred. A recently col-
lected dataset from real-world naturalistic driving experiments
is drawn to validate the proposed PDWI system. Comparative
experimental results indicate that the proposed framework inte-
grating FCM clustering and support vector machine classifier
provides a promising workload recognition performance in terms
of accuracy, precision, recall, F1-score, and prediction time. The
interindividual differences in term of workload are also identified
and can be accommodated by the proposed framework due to
its adaptiveness.

Index Terms—Fuzzy C-means (FCM) clustering, personalized
aiding, support vector machine (SVM), workload recognition.

I. INTRODUCTION

RECENT interest in intelligent vehicles is more con-
centrated on how to enhance safety and convenience

to drivers [1]–[4]. Different advanced functions are being
developed for such a purpose. For example, advanced driver
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assistance systems (ADASs) such as adaptive cruise control
and lane keeping system are developed to enhance the driving
safety, which perceive environmental situation in real time and
alert drivers to potential dangers. Moreover, in-vehicle infor-
mation systems (IVISs) such as navigation systems, music,
radio or even phone in certain countries [5] are also being
developed, which brings much convenience to drivers by
offering real-time advice and instructions.

However, the use of these advanced functions also creates
problems such as increasing driver’s distraction and workload,
which in turn may annoy the driver or even increase the risk of
traffic accidents [5]. Statistical reports from different countries
and regions all indicate that there is a high correlation between
traffic accidents and driver’s errors induced by distractions and
inappropriate workload [6]. As pointed out in [7], distraction
occurs when a triggering event induces an attention shift away
from the driving task, which often happens under a heavy
driving workload due to multitasking with various electronic
devices, such as a navigation system and a smart phone [8].

To guarantee driving safety while maintaining convenience,
it is important to monitor driver workload in real time, upon
which “adaptive aiding” can be supplied to the driver at the
right time and in a proper manner [5], [9]. For instance, an
earlier and clearer collision warning signal can be given to a
driver under high workload compared to a driver under low
workload [9], [10]; human machine interface can also be opti-
mized based on the awareness of drivers and vehicles [11]
(e.g., switching off certain IVIS for drivers under high work-
load). By doing so, driver workload can be potentially kept
at an appropriate level for safe driving. Following this line
of thought, this paper, rather than proposing a new ADAS or
IVIS, concentrates on driver workload inference (DWI) so that
existing advanced functions become more effective and more
acceptable without sacrificing safety.

DWI systems, due to their significance in enhancing
driving safety, are drawing increasing attention in recent
years [12]–[20]. In these systems, a mapping between diag-
nostic measurements and different levels of driver work-
load is usually built using different approaches including
machine learning, upon which the level of workload can
be identified in real time with the advent of new diag-
nostic measurements. According to different types of mea-
surements adopted in mapping building, the existing DWI
systems can be broadly classified into three categories
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including physiological measurement- vision- and vehicle
measurements-based approaches.

In the physiological measurements-based
approach [12]–[14], measurements such as electroen-
cephalogram for brain signal, electrocardiogram for heart
signal, respiration, and temperature are usually adopted.
This approach is relatively accurate and promising; the
major obstacle is its reliability in varied situations and for
different individuals. Another approach is based on computer
vision [15], [16], where eye movement metrics (e.g., eye
blinks, pupil dilation, and gaze angle) and head movements are
usually adopted to capture visual and cognitive related work-
load. This approach is undergoing a rapid development [21];
the possible challenges lie in its reliance on working condition
(e.g., light intensity) and privacy issue due to the involvement
of camera. Vehicle measurements-based approach is another
promising approach and is drawing increasing attention
recently [17]–[20]. Unlike physiological measurement and
vision-based approaches which directly measure the driver,
the vehicle measurements-based approach works on driving
performance via vehicle related measurements (VRMs) such
as lane position, speed, steering angle and accelerations. The
research in this paper falls into the last category.

The diagnostic measures in this paper are VRMs comprising
vehicle speed and three-axis accelerations. It should be noted
that this paper mainly focuses on proposing a personalized
DWI system and its validation using experimental data from
real-world naturalistic driving experiments; different sources
of measures can be accommodated by the proposed framework
by augmenting them into the measurement vector. These mea-
surements are chosen by the following two observations. First,
they are nonintrusive, easily accessed thorough low cost hard-
ware available on vehicles and have a lower requirement on
working condition. Second, they are closely related to indi-
vidual drivers’ driving performance and surrounding driving
situations, and have been proved to be effective for workload
inference in previous works (see [2], [17]–[20] among others).

After diagnostic measurements are defined, the next step
is to interpret the data. For a large dataset with multiple
dimensions, it is generally hard to work out the relationship
in an explicit manner. To this end, machine learning tech-
niques are adopted [19], which extract relationships in an
automatic manner. The proposed DWI system compromises
two stages including offline training and online implementa-
tion. In offline training, different from the existing machine
learning-based approaches [17]–[20] where only classifiers are
trained, the proposed DWI system contains two steps. In this
first step, individual drivers’ workload is divided into several
categories using clustering algorithms, where the number of
clusters are determined in an automatic and optimal manner
using a particular criterion. This is done by observing the
following.

1) Different drivers may undergo different levels of work-
load even for a similar driving situation.

2) Different drivers may have different numbers of work-
load category.

3) Even the number of workload category is the same, the
threshold may be different.

As a result, to make the DWI system effective and adaptive
to individual drivers, the personal driving characteristics
(reflected by driving performance data) should be accom-
modated [17], [22]. Owing to the presence of this step, the
proposed DWI is adaptive to different drivers without fur-
ther parameter tuning and hence termed Personalized DWI
(PDWI). In the second step, a mapping between VRMs and
different levels of driver workload is built using classification
algorithms since each cluster represents a particular level of
workload. In the stage of online classification, the trained clas-
sifier is adopted to process new measurements so that driver’s
workload category can be pinpointed in real time.

Unlike previous results where the dataset for algorithm val-
idation is obtained in a simulated environment [13], [19], the
proposed PDWI system is validated by a recently collected
dataset from real-world driving experiments of about 30 min
with ten participants of various backgrounds. The experiments
were conducted by the human–computer-interaction (HCI)
Laboratory, University of Stuttgart, in 2013 [23]. Different
algorithms for different components of the framework are
compared using this dataset. Particularly in unsupervised
learning phase, the clustering performance between centroid-
based fuzzy C-means (FCM) clustering [24] and density-
based density-based spatial clustering of applications with
noise (DBSCAN) algorithm [25] are compared. In online
classification, Gaussian mixture model (GMM)-based classi-
fier [26], [27] and support vector machine (SVM) [28], [29]
are compared. Comparative experimental results demonstrate
that the proposed PDWI system integrating FCM clustering
and SVM classifier obtains a promising workload recognition
performance and is able to adapt to different drivers.

To the best of the authors’ knowledge, this is the first
attempt to combine clustering and classification to solve the
problem of personalized driver workload inference (PDWI),
particularly the proposed framework is validated using a
recently collected dataset from real world driving experi-
ments with promising results. To be more exact, the main
contributions of this paper are summarized.

1) Clustering and classification algorithms are integrated
systematically so that a PDWI system is developed to
solve the problem of PDWI.

2) Nonintrusive and easily accessed VRMs are fed into the
proposed PDWI system allowing the driver workload to
be inferred.

3) The proposed PDWI is adaptive to different drivers in an
automatic manner due to the presence of unsupervised
workload clustering.

4) A recently collected dataset from real-world driving
experiments rather than simulated environment is drawn
to verify the whole framework. Comparatively exper-
imental results demonstrate that the proposed PDWI
system integrating FCM clustering and SVM classifier
provides a promising workload recognition performance
in terms of accuracy, precision, recall, F1-score, and
prediction time.

The reminder of this paper is organized as follows.
Section II discusses the framework of the proposed PDWI
system. Section III introduces FCM clustering for workload
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Fig. 1. Diagram of PDWI system.

categorization. Section IV discusses different classifiers for
the implicit mapping establishment. In Section V, comparative
experiments are conducted to validate the proposed framework
using HCILab dataset. Section VI concludes this paper along
with future work.

II. PERSONALIZED DRIVER WORKLOAD INFERENCE

As highlighted in Section I, there exist substantial distinc-
tions between different drivers in term of driving characteris-
tics. Consequently, awareness of individual drivers’ workload
with a satisfying performance will be of particular impor-
tance, which can be seen as the basis and prerequirement
for adaptive aiding systems [9]. The concept of personalized
system is now drawing increasing attention in a wide range
of applications. For example, to make ADAS cooperate bet-
ter with human drivers, personalized driver steering model is
developed in [1] by considering each driver’s desired path.
Personalized driver modeling is used in [2] to describe driv-
ing behavior so that driving styles are evaluated in a better
way. In [22], personalized lane change models are developed
by considering the dynamics and characteristics of individual
driver/vehicle system during lane change maneuvers. In com-
parison to a model for all drivers, the personalized model is
more effective and acceptable to drivers without sacrificing
safety [22]. To this end, instead of proposing a new ADAS
or IVIS, this paper develops a framework for PDWI. This
is not easy since driver workload is not directly measurable
and difficult to quantify, but only limited related measure-
ments are available. So, machine-learning algorithms including
clustering and classification are integrated. Clustering han-
dles the adaptiveness of the proposed system, which divides
driver workload into different categories automatically accord-
ing to the intrinsic workload data characteristics. Classification
exploits the implicit relationship between diagnostic measure-
ments and different levels of driver workload so that given new
diagnostic measurement the corresponding workload can be
worked out.

The diagram of the proposed PDWI system is shown in
Fig. 1, which mainly comprises two layers including offline
training and online classification. All the data used in this
paper are from [23] as detailed in Section V-A. In offline
training, individual drivers’ workload is first divided into dif-
ferent categories using clustering algorithms (e.g., FCM [24]).

Statistical analysis (e.g., workload mean) is then performed
on each cluster so that a nominal name (e.g., low, middle, and
high) is given to each cluster according to its mean value and
cluster number. An implicit mapping between VRMs and dif-
ferent levels of workload is further built using classification
algorithms (e.g., SVM [30]). In online implementation, VRMs
data are classified via the trained classifier so that the driver
workload category can be identified. Based on the real time
workload information, adaptive aiding can be provided to the
driver at the right time and in an appropriate manner [5], [9]. In
the following sections, different components of the proposed
PDWI system will be discussed in detail.

III. WORKLOAD CLUSTERING

In practical applications, as highlighted in Section I, it is
generally challenging to determine the number of drivers’
workload categories. To make the DWI system adaptive to dif-
ferent drivers, clustering algorithms are applied in this paper
to determine the “optimal” number of workload categories in
an automatic manner.

Clustering is one of the key techniques in unsupervised
learning. They can be categorized into density-based and
centroid-based algorithms. Centroid-based ones form clusters
using the positions of cluster centroids. Several well-known
centroid-based clustering algorithms are available such as
k-mean clustering and FCM clustering [31]. In this paper,
FCM is chosen due to its fine properties including better
results for overlapped data [32] by incorporating uncertain
information [33]. In density-based clustering, the data points
are classified as core points, reachable points and outliers,
where DBSCAN is a recognized density-based clustering algo-
rithm [25]. To identify a more suitable algorithm for workload
clustering, both centroid-based and density-based clustering
algorithms are experimented, compared and analyzed. From
the experimental results in Section V, it is discovered that
FCM is more suitable for driver’s workload clustering. In this
following part, both DBSCAN and FCM clustering algorithms
are introduced.

A. DBSCAN Clustering

DBSCAN is a popular density-based clustering algo-
rithm [25], where no cluster number is required and can
find arbitrary shaped cluster. In this approach, points closely
packed together with many nearby neighbors are grouped as a
cluster, and points lying alone in low-density regions (whose
nearest neighbors are far away) are marked as outliers. There
are two key parameters including the minimum points within a
cluster “minPts” and the maximum radius of the neighborhood
ε. Its details are omitted due to the lack of space; however,
the main steps are summarized in Algorithm 1.

B. FCM Clustering With Optimal Cluster Number

Centroid-based FCM clustering is further discussed in this
part, particularly the determination of its optimal cluster
number is elaborated using a particular criterion.
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Algorithm 1: Steps for DBSCAN Clustering Algorithm
(1) Select a point P and retrieve all points density-reachable from

P with respect to ε and minPts;
(2) If P is a core point, a cluster is formed;
(3) If P is a border point, no points are density-reachable from P,

then visit the next point;
(4) Continue the process until all points are processed.

1) FCM Clustering: In FCM clustering, data points are
assigned to each cluster by fuzzy membership. Let X =
(x1, . . . , xn) denote a set of n data points to be partitioned
into d clusters. The algorithm is an iterative optimization that
minimizes the cost function

J =
n∑

i=1

d∑

j=1

um
ij

∥∥xi − oj
∥∥2

where uij represents the membership of data point xi in the jth
cluster; oj is the jth cluster center; ‖ • ‖ is a norm metric; and
m is a constant controlling the fuzziness of the resulting parti-
tion. For a given data point xi, the sum of the membership
values satisfies

∑d
j=1 uij = 1. The cost function is mini-

mized when data points close to the centroid of their clusters
are assigned high membership values, and low membership
values are assigned to data far from the centroid. The mem-
bership function represents the probability that a data point
belongs to a specific cluster. In FCM clustering, the probabil-
ity is dependent solely on the distance between data point and
each individual cluster center. The membership functions and
cluster centers are updated by

uij = 1

∑C
k=1

(∥∥xi − oj
∥∥

‖xi − ok‖

) 2
m−1

, cj =
∑n

i=1 um
ij xi∑n

i=1 um
ij

.

Starting with an initial guess for each cluster center, FCM
converges to a solution oj, where convergence can be detected
by comparing the changes in the membership function or the
cluster center at two successive steps.

2) Optimal Cluster Number: FCM is a centroid-based clus-
tering algorithm; the determination of its optimal cluster
number k∗ is challenging. In this paper, the k∗ is obtained
using silhouette [13], [34]. The silhouette value is a measure
of how similar that point is to points in its own cluster in
comparison to points in other clusters. The silhouette value Si

for the ith point is given by

Si = bi − ai

max(ai, bi)
(1)

where ai is average distance from the ith point to other points
in the same cluster, and bi is the minimum average distance
from the ith point to points in a different cluster, minimized
over clusters. From the definition, it is clear that −1 ≤ Si ≤ 1.
A high silhouette value indicates that the ith point is well-
matched to its own cluster and poorly matched to neighboring
clusters. So if most points have a high silhouette value, then
the clustering result is appropriate. And if many points have a
low or negative silhouette value, then the clustering configura-
tion may have either too many or too few clusters. Therefore,

Algorithm 2: Steps for FCM Clustering With Optimal Cluster
Number

(1) Given a user-defined maximum clustering number k;
(2) Perform a series of FCM clustering under cluster number i =

2, · · · , k resulting in FCM(2), · · · , FCM(k) using the results
in Section III-B1;

(3) Calculate the corresponding Silhouette values (all points) for
each clustering configuration using the formula (1) resulting in
S(2), · · · , S(k);

(4) The optimal cluster number is determined by k∗ =
arg

k
max
i=2

S(i), with FCM(k∗) being the optimal clustering con-

figuration.

silhouette value is adopted as a criterion to optimize the clus-
ter number. The main steps for the optimized FCM clustering
are summarized in Algorithm 2.

IV. FEATURE AND CLASSIFIER DETERMINATION

Different workload clusters corresponding to different lev-
els of driver workload have been established in Section III. In
this section, different classification algorithms are then applied
to build an implicit mapping between VRMs features and dif-
ferent levels of driver workload so that given new VRMs the
corresponding workload category can be pinpointed and adap-
tive aiding can be performed. Before detailing the different
classifiers, the input features for classification algorithms are
first discussed.

A. Feature Determination

In comparison to other diagnostic measures, VRMs are
nonintrusive, easily accessed and have a lower requirement
on working condition, and more importantly they have been
proved to be effective for workload inference in previous
works [17]–[20]. For example, GPS and IMU sensors are eas-
ily available for most of modern vehicles, where position,
speed, three-axis accelerations, and orientation information
can be obtained. Other VRMs may include steering angle,
distance from leading vehicle, lateral derivation. In this paper,
speed and three-axis accelerations are chosen as the fea-
ture vector since these measurements are easily available and
can reflect both driver’s driving characteristics and environ-
mental information [20]. As discussed in Section I, other
sources of measurements can also be accommodated by the
proposed framework by augmenting the measurement vector
along with possible feature engineering (e.g., feature extraction
and feature selection).

Remark: It is noted that contextual information regarding
the driver (e.g., age, gender, and sleep quality), the vehicle
(e.g., vehicle type) and driving environment (e.g., road type,
traffic condition, and weather condition) is also important in
DWI. Considering that this paper is mainly focused on PDWI
using VRMs (i.e., low level sensing information), this type
of information is not considered. Interested readers may refer
to [35] and [36] for probabilistic approaches (i.e., Bayesian
network) accommodating this type of information.
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B. Classifier Determination

Given input features, the next step is to build an implicit
mapping between features and different levels of workload
using classification algorithms. Different algorithms are avail-
able to achieve this task, and without loss of generality two
popular algorithms are considered in this paper including the
parametric GMM-based classifier [26], [27] and nonparametric
SVM classifier [28], [37].

1) GMM-Based Classifier: GMM-based classifier is a pop-
ular statistical classifier, and has been proved to be very
effective and computationally inexpensive in different appli-
cations including speaker recognition and motion mode clas-
sification [26]. In this approach, there are generally two steps
including GMM establishment and classification. The first
step is to model feature distribution in each cluster using
GMMs. GMM has the ability to form smooth approximation
for general non-Gaussian probability density functions through
a weighted sum of M component Gaussian functions, given by

p(x|λ) =
M∑

i=1

wig(x|μi, �i)

where x is a D-dimensional data vector representing the fea-
tures, M is the number of components, wi represents the
mixture weights for ith component, and g(x|i, �i) is the
ith component Gaussian density function. Each component
density is a D-variate Gaussian function of the form

g(x|μi, �i) = 1

(2π)
D
2

√|�i|
e− 1

2 (x−μi)
T�−1

i (x−μi)

where μi, �i denote mean and covariance matrix. The mixture
weights wi satisfy the constraint

∑M
i=1 wi = 1. As a result, the

complete GMM is parameterized by the mean vectors, covari-
ance matrices and mixture weights of all component densities,
which are collectively represented by the notation

λ = {wi, μi, �i}, i = 1, . . . , M. (2)

In this paper, each GMM corresponding to each cluster
represents a class of driver’s workload category such as low
workload, middle workload, and high workload based on its
physical meanings. In GMM establishment, there are two
issues to be solved including optimal component number deter-
mination and parameter optimization so that the derived model
best matches the distribution of the training data. In this
paper, the optimal component number is determined using
variance ratio criterion (VRC) [38]. And the parameters λ

in (2) are optimized using maximum likelihood estimation via
expectation-maximization (EM) algorithm [39] with initializa-
tion using k-mean++ so that the GMM likelihood given the
training data is maximized.

Given different GMMs representing different levels of work-
load, the classification in GMM classifier is achieved by com-
puting the distances through likelihood function between a new
sample and different GMMs. And the cluster category could
be determined by the corresponding GMM with smallest dis-
tance (or maximum similarity value) [26]. Suppose there are k∗
clusters with corresponding GMMs, GMM(1), . . . , GMM(k∗),

Algorithm 3: Steps for GMM Classifier With Optimal
Component Number

(1) Given component number k = 1, · · · , M for GMM(i) with
i = 1, · · · , k∗, establish a series of GMMs using EM algorithm
for parameter optimization along with k-mean++ initialization;

(2) Determine the optimal component number for GMM(i) with
i = 1, · · · , k∗ by maximizing the VRC;

(3) Perform classification using the formula in (3).

the cluster that a test sample sequence X = [X(1), . . . , X(j)]
belongs to is determined by the following formula:

cluster

∣∣∣∣∣∣
X = arg

k∗
min
i=1

j∑

k=1

−ln p[X(k)|GMM(i)

⎤

⎦ (3)

where −ln p[X(k)|GMM(i)] denotes the negative log-
likelihood function of X(k) given the ith GMM. The main
steps for GMM classifier is summarized in Algorithm 3.

2) Support Vector Machine: Another popular classification
algorithm is SVM, which is a nonparametric statistical algo-
rithm, and no particular assumption is made on the underlying
data distribution [28]. Given a training set T = {(xi, ci)|1 ≤
i ≤ τ } with xi the feature and ci the class label, they can
be projected into a Hilbert space H using a proper mapping
�(.) resulting in T = {((�(x))i, ci)|1 ≤ i ≤ τ }. The SVM
separates the data using an optimal hyperplane Hp, which
is determined by jointly maximizing the margin 2/‖w‖ and
minimizing the sum of classification errors

∑τ
i=1 ξi under the

constraint ci(xiw + b) − 1 ≥ 0, 1 ≤ i ≤ τ

	(w, ξ) = 1

2
‖w‖2 + C

τ∑

i=1

ξi

where ξ ’s are slack variables accounting for data nonsepara-
bility, and constant C is regularization parameter controlling
the penalty assigned to errors and can effectively control the
shape of decision boundary. A large value of C may lead
to over-fitting and consequently requires optimization. The
optimization problem can be solved by considering the dual
optimization through the use of Lagrange multipliers αi

{
max

α
:

∑τ
i=1 αi − 1

2

∑n
i,j=1 αiαjcicj〈�(x)i,�(x)j〉H

subject to:
∑τ

i=1 αici = 0, 0 � αi � C,∀i ∈ [1, τ ].
(4)

To avoid computing the inner products in the transformed
space 〈�(x)i,�(x)j〉H, kernel function K is introduced in [37]
so that 〈�(x)i,�(x)j〉H = K(xi, xj). The decision rule is
finally given by

f (x) = sign

( Ns∑

i=1

ciαiK(si, x) + b

)
(5)

where si, 1 ≤ i ≤ Ns denote the support vectors. Different
kernels lead to different SVMs, where the commonly used are
polynomial kernel of order p, Kpoly(x, z) = (〈x, z〉 + 1)p, and
Gaussian kernel Kgauss(x, z) = exp(−γ ‖x− z‖2) with γ being
a parameter inversely proportional to the width of the Gaussian
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Algorithm 4: Steps for SVM Classifier With Parameter
Optimization

(1) Find the optimal Hyperplane Hp using (4) along with an appro-
priate kernel (e.g. Gaussian kernel);

(2) Optimize the penalty C and kernel parameters (e.g. γ in
Gaussian kernel);

(3) Identify the support vectors si, 1 ≤ i ≤ Ns;
(4) Perform online prediction for a new sample using the

formula (5).

kernel. Different mechanisms are available for multiclass clas-
sification, in this paper, one-versus-one is adopted due to its
simplicity and effectiveness. The main steps for SVM classifier
is summarized in Algorithm 4.

V. EXPERIMENTAL VALIDATION

In this section, experimental validation is conducted on
the proposed framework for DWI. Particularly, different algo-
rithms for different components of the PDWI system are com-
pared. The experiments are designed for clustering algorithms
for workload categorization and classification algorithms for
real-time workload inference. They are discussed in detail
after the introduction of the dataset for algorithm validation in
Section V-A.

A. Driving Dataset

The dataset for algorithm validation is from a real world
driving experiment of about 30 min with ten participants; the
experiment was conducted by the HCI Laboratory, University
of Stuttgart, in 2013 [23]. In this experiment, speed and three-
axis accelerations are collected by a smart phone, where speed
is recorded by a GPS at the frequency of 1 Hz and three-axis
accelerations are recorded by an accelerometer at 12 Hz. The
dataset also includes data from other sensors, where the high-
est frequency is 128 Hz. As a result, data extrapolation has
been done in [23] to create a uniformed data set at 128 Hz.
The feature vector in this paper includes speed and three-
axis accelerations. Along with physical sensors, there are also
two webcams to record the driving scenario (passenger view
onto the road) and a view of the driver. After returning from
the drive, each participant was guided to the lab and directly
performed a post-hoc video rating evaluating the perceived
workload, where workload values lie between 0 (no work-
load) and 1000 (maximum workload). This method is termed
subjective rating approach [15], which is a common approach
to deriving workload ground truth data. The driving route is
shown in Fig. 2, which consists of various road types such as
highway, freeway, and tunnel among others. To demonstrate
the distinctions between different drivers and the adaptiveness
of the proposed system to different drivers, all ten partici-
pants available in the dataset are tested, where the results are
summarized in Section V-C.

To make sure that different road types and driving situations
are covered in training and testing datasets, only the first 50%
of data in terms of time length (equivalent to 70% of the length
of trajectory, see Figs. 3 and 4 for illustration) are used for
offline training including clustering and classifier training. If

Fig. 2. Driving route for the dataset shown in the open street map from [23].

Fig. 3. Clustering results using DBSCAN approach: different colors represent
different workload clusters.

Fig. 4. Clustering results using FCM: driver 1 (left) and driver 2 (right).
Different colors represent different workload clusters.

the first 70% in terms of time length of data are used for
training, only a short distance of data would be available for
testing, making the testing data lack of diversity. To test the
algorithm, 1000 fragments (with length of 1 s per fragment)
are randomly generated from the remaining data (see [14] for
similar idea), and consequently each fragment contains 128
measurements of the feature vector. The fragment containing
128 feature measurements is treated as a testing sample for
GMM-based classifier, and the mean value of feature vector
in each fragment along with mean workload becomes a testing
sample for SVM classifier. It is believed that this approach is
more robust to sensor noises in real-time applications.

B. Workload Clustering Performance

As shown in Fig. 1, the first step in offline training is
workload clustering so that different workload categories can
be generated. In this paper, two commonly used clustering
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TABLE I
DBSCAN CLUSTERING RESULTS

TABLE II
SILHOUETTE VALUES UNDER DIFFERENT CLUSTER NUMBER

k FOR DRIVER 1 (TOP) AND DRIVE 2 (BOTTOM)

algorithms are tested and compared including density-based
approach and centroid-based approach. Without loss of gener-
ality, two drivers’ data are adopted to illustrate the uniqueness
of individual drivers’ driving characteristics, demonstrating the
necessity of personalized system.

1) Clustering by DBSCAN: The density-based clustering
algorithm DBSCAN in [25] is first tested. Following the
steps in Algorithm 1, the two key parameters are chosen as
minPts = 135 and ε = 10−4, respectively, through trial and
error. The clustering results under this parameter setting for
driver 1 are shown in Fig. 3 and the corresponding statistics
are summarized in Table I. First it can be seen from Table I
that the mean workload values are too close to each other (e.g.,
cluster nos. 5 and 6). Second 42 clusters are generated, which
will bring challenges for real-time classification. To summa-
rize, DBSCAN algorithm is not suitable for driver workload
clustering.

2) Clustering by FCM: To this end, alternative centroid-
based FCM clustering described in Algorithm 2 is exploited.
In this paper, the fuzzy overlap controller is chosen m = 2
following the suggestion in [33]. First, silhouette values under
different cluster numbers k from 2 to 9 are shown in Table II
for driver 1 (left) and driver 2 (right).

One can see from Table II that the maximum silhouette
values for two different drivers occur when k equals 3 and
4, respectively, consequently the driver’s workload is divided
into three and four clusters, respectively. Under this param-
eter setting, the workload clustering results for two different
drivers are shown in Figs. 4 (for display on the map) and 5
(for histogram). The corresponding statistics (i.e., mean and
standard derivation) for two different drivers are summarized

Fig. 5. Clustered workload histogram: driver 1 (left) and driver 2 (right).
Different colors represent different workload clusters.

TABLE III
WORKLOAD CATEGORIES FOR DRIVER 1 (TOP) AND DRIVER 2 (BOTTOM)

TABLE IV
CLUSTER NUMBER FOR ALL TEN PARTICIPANTS

in Table III. The cluster number for all ten participants are
given in Table IV.

Two observations can be drawn from the aforementioned
figures and tables.

1) In comparison with density-based DBSCAN algorithm,
the results of FCM clustering are more reasonable in
term of cluster number and their physical meanings. One
can see from Table IV that the optimal cluster numbers
for all drivers are within the range [2, 5], which is con-
sistent with the existing results in [13]. One can also see
from Fig. 4(left) that high workload appears in corner-
ing (shown in blue for driver 1), which is consistent with
real scenario where corning involves careful manoeuvre.
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2) By comparing the results of drivers 1 and 2 in Fig. 5 and
Table III, and workload categorization for all ten partic-
ipants in Table IV, one can see that there exist apparent
differences between different drivers in terms of work-
load category number and their statistics. However,
the proposed PDWI system using workload clustering
is adaptive to different drivers without any parameter
retuning.

C. Workload Inference Performance

In this section, online classification is validated on the basis
of workload clustering and classifier off-line training. Both
GMM classifier and multiclass SVM discussed in Section IV
are tested and compared so that a more suitable classifier can
be identified for the proposed PDWI system. All related algo-
rithms in PDWI system are implemented in MATLAB 2017a
under Windows 7 Operation System and are evaluated on a
PC with the following configuration: Intel Core i5-CPU at
3.20 GHz with 16 GB of RAM.

1) Performance Measures: To quantitatively evaluate their
performance, four commonly used criteria are adopted includ-
ing accuracy, precision, recall, and Fβ -score. As defined in (6),
accuracy measures the proportion of true positive and true
negative; precision measures the proportion of identified pos-
itives that are correctly positive as such; recall measures the
proportion of positives that are correctly identified as such;
and F-score Fβ in (7) is widely used to evaluate overall
performance of both recall and precision

Accuracy = tp + fp
tp + tn + fp + fn

, Precision = tp
tp + fp

Recall = tp
tp + fn

(6)

where tp is true positive, tn is true negative, fp is false positive,
and fn is false negative

Fβ = (1 + β2) × Precision × Recall(
β2 × Precision

)+ Recall
(7)

where β is the parameter weighting the importance of preci-
sion and recall. In this paper, β = 1 (termed harmonic average)
is chosen putting same weight on precision and recall.

2) SVM Optimization: To make a fair performance com-
parison between GMM classifier and SVM classifier so that
a more suitable classifier can be identified for the proposed
PDWI system, the parameters of SVM including error penalty
C in (4) and Gaussian Kernel scale γ in Section IV-B2 are
optimized using a common heuristic approach in [40], where
C ∈ (0.01, 0.1, 1, 10, 100) and γ ∈ (0.01, 0.1, 1, 10, 100).
Without loss of generality, the overall accuracy for driver 1
under different parameter settings are taken as an illustrating
example in Table V.

It can be seen that the parameter combination C = 1 and
γ = 1 obtains the best performance in a finite number of tested
parameter combinations for driver 1. Following this procedure,
the optimal parameter combinations for all ten participants can
be derived, given in Table VI.

TABLE V
OPTIMAL SVM PARAMETERS FOR DRIVER 1

TABLE VI
OPTIMAL SVM PARAMETERS FOR ALL TEN PARTICIPANTS

3) Performance Comparison: A comparison between
GMM classifier and optimized SVM classifier for all ten par-
ticipants is drawn using the performance measures discussed
in Section V-C1. Moreover, the average prediction time per
sample is also calculated to evaluate its feasibility in real-time
applications. All results are summarized in Table VII, where
the algorithm with better performance in terms of different
performance measures is highlighted in bold. The following
conclusions can be drawn from Table VII.

1) The SVM classifier obtains consistently better results
over the GMM classifier in terms of accuracy, preci-
sion, recall, and F1-score for all drivers except drivers
1, 4, and 9; for driver 1, the GMM classifier obtains
slightly better results in terms of different performance
measures except precision; for drivers 4 and 9, GMM
classifier obtains slightly better results than SVM classi-
fier in terms of Precision and F1-score but poorer results
in term of Accuracy.

2) In terms of average performance for all ten testing
drivers, SVM classifier obtains much better results than
GMM classifier in terms of accuracy, precision, recall,
and F1-score, particularly the average accuracy has
increased from 67.22% to 76.51%.

3) The computation time of SVM classifier is 27 times
of GMM classifier. This is because there are a large
number of support vectors in SVM classifier (non-
parametric approach) while the log-likelihood function
calculation in GMM classifier is fast due to a lim-
ited number of parameters (parametric classification
approach). However, both of them are feasible for
real-time computation.

4) Considering classification performance and computation
time for real-time applications simultaneously, the opti-
mized SVM is chosen as the classifier for the proposed
PDWI system.

To summarize, the proposed PDWI system integrating FCM
clustering for workload categorization and SVM classifier
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TABLE VII
CLASSIFICATION RESULTS FOR TEN DRIVERS: GMM CLASSIFIER VERSUS SVM CLASSIFIER

for real-time workload inference can effectively infer driver
workload with an accuracy of 76.51% using all ten drivers’
data available in the real-world dataset collected by HCI
Laboratory. More importantly, the proposed framework is
adaptive to individual drivers without parameter retuning due
to the introduction of unsupervised workload clustering.

VI. CONCLUSION

To adapt driver assistance systems to individual drivers’
workload level so that these systems become more effec-
tive and more acceptable to drivers, this paper developed a
framework for PDWI by learning from easily accessed VRMs.
This is achieved by integrating FCM clustering algorithm and
SVM classifier, where FCM is to automatically split individ-
ual drivers’ workload into different categories according to its
intrinsic data characteristics, and SVM is to build an implicit
mapping between VRMs features and different levels of driver
workload.

The proposed framework is validated by a recently col-
lected dataset (i.e., HCILab dataset) from a real-world driv-
ing experiment of ten drivers of different backgrounds. The
interindividual differences in term of workload (i.e., number
of categories) for different drivers are first identified, which
demonstrates the necessity of a personalized learning sys-
tem. Then comparatively experimental results using all ten
drivers’ data demonstrate that the proposed framework obtains
a promising workload recognition performance in terms of
accuracy (76.51%), precision, recall, F1-score, and computa-
tion time. Moreover, it is also adaptive to different drivers due
to its special hierarchical structure.

This paper mainly focused on proposing a systematic
framework for PDWI system and initially demonstrated its
feasibility using a recently collected real-world naturalistic
driving dataset. There is still room for further development,
where the following aspects are identified.

1) Different advanced clustering, feature engineering and
classification algorithms can fit into the proposed frame-
work so that workload inference performance can be
further improved.

2) More VRMs (e.g., steering angle, vehicle lateral devia-
tion, and vehicle headway) can be accommodated into
the framework; this can be done by augmenting them

into the measurement vector along with possible feature
engineering.

3) The driving environmental information (e.g., road types,
traffic condition, and weather condition) and driver’s
characteristics (e.g., age, gender, and sleep quality) pro-
viding certain prior information on workload may also
be incorporated; data fusion techniques such as Bayesian
network may be useful.

4) Online learning may be added to the proposed frame-
work, since individual drivers’ workload categories may
change with more driving experience being accumu-
lated; this inevitably requires new driver’s labeled data.
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