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Abstract. Plant phenology regulates ecosystem services at
local and global scales and is a sensitive indicator of global
change. Estimates of phenophase transition dates, such as the
start of spring or end of fall, can be derived from sensor-
based time series, but must be interpreted in terms of bio-
logically relevant events. We use the PhenoCam archive of
digital repeat photography to implement a consistent proto-
col for visual assessment of canopy phenology at 13 temper-
ate deciduous forest sites throughout eastern North America,
and to perform digital image analysis for time-series-based
estimation of phenophase transition dates. We then compare
these results to remote sensing metrics of phenophase tran-
sition dates derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Advanced Very High Reso-
lution Radiometer (AVHRR) sensors. We present a new type
of curve fit that uses a generalized sigmoid function to es-
timate phenology dates, and we quantify the statistical un-
certainty of phenophase transition dates estimated using this
method. Results show that the generalized sigmoid provides
estimates of dates with less statistical uncertainty than other
curve-fitting methods. Additionally, we find that dates de-
rived from analysis of high-frequency PhenoCam imagery
have smaller uncertainties than satellite remote sensing met-
rics of phenology, and that dates derived from the remotely
sensed enhanced vegetation index (EVI) have smaller uncer-
tainty than those derived from the normalized difference veg-

etation index (NDVI). Near-surface time-series estimates for
the start of spring are found to closely match estimates de-
rived from visual assessment of leaf-out, as well as satel-
lite remote-sensing-derived estimates of the start of spring.
However late spring and fall phenology metrics exhibit larger
differences between near-surface and remote scales. Differ-
ences in late spring phenology between near-surface and re-
mote scales are found to correlate with a landscape metric
of deciduous forest cover. These results quantify the effect
of landscape heterogeneity when aggregating to the coarser
spatial scales of remote sensing, and demonstrate the impor-
tance of accurate curve fitting and vegetation index selection
when analyzing and interpreting phenology time series.

1 Introduction

Plant phenology plays a central role in how climate change
interacts with the biosphere and affects ecosystem services,
trophic interactions and species ranges (Richardson et al.,
2013a; Morisette et al., 2009). Analysis of phenological dy-
namics through past decades and centuries therefore provides
a valuable record of how plants have responded to a chang-
ing world (Aono and Kazui, 2008; Menzel, 2000; Sparks and
Carey, 1995). While direct visual assessment of the pheno-
logical status of plants has provided long-term records of
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specific phenophases such as budburst and leaf-out, sensors
such as radiometers and digital cameras are now being used
to create automated, high-frequency, phenological time se-
ries (Richardson et al., 2013b). Sensor-based data provide
measurements that range from the local scale of site based
observations to the global extent of satellite missions (Gar-
rity et al., 2011; Huemmrich et al., 1999; Jenkins et al., 2007;
Soudani et al., 2012). A key challenge in the interpretation
of phenology derived from sensor time series is determin-
ing how they relate to plant biological events that an ob-
server would recognize. Digital repeat photography of terres-
trial ecosystems serves two purposes in this regard, supplying
both a visually interpretable record, and, through image pro-
cessing techniques, time-series data similar to those available
from radiometers (Richardson et al., 2007; Sonnentag et al.,
2012). Digital repeat photography can therefore serve as a
bridge between the traditional practice of direct visual obser-
vation of organisms, and sensor-based estimates of phenol-
ogy from near-surface and remote sensing data.

Digital repeat photography also makes consistent visual
assessment of phenology possible over broad geographic
ranges, as a single set of observers can view many sites with
relative ease via digital image archives. In previous compar-
isons of local- to landscape-scale phenology, investigators
were limited by the ground area a group of observers could
feasibly cover on foot (Liang et al., 2011). At the continen-
tal scale, comparison of ground-based phenology indicators
to remote sensing is limited by the geographic extent of any
given mode of ground observation (White et al., 2009). Con-
sequently, there is a knowledge gap in how time series of
sensor data relate to the biological events of canopy phenol-
ogy over a wide geographic range of sites.

This study applied quantitative analysis and visual as-
sessment to a collection of digital repeat photography from
a range of deciduous forests across eastern North Amer-
ica. The study sites exhibit diverse landscape characteristics,
from a nearly pure deciduous broadleaf forest in Arkansas,
to an urban stand of trees in Washington, DC. We compared
an ensemble of previously presented and new methods for
extracting dates from phenological time series, and quanti-
fied the statistical uncertainty of estimated dates. Building
on an earlier comparison study by Hufkens et al. (2012),
we also analyzed time-series data from the Moderate Res-
olution Imaging Spectroradiometer (MODIS), as well as the
MODIS and Making Earth System Data Records for Use in
Research Environments (MEASURES) phenology products,
for comparison to near-surface estimates. This study aims to
evaluate how visually assessed biological events correspond
to sensor-based estimates of phenological dates. A comple-
mentary goal is to explore how near-surface metrics of de-
ciduous canopy phenology in the spring and fall are related
to landscape-scale metrics of remote sensing across diverse
forest ecosystems.
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Figure 1. Study sites.

2 Methods

2.1 Study sites

To characterize leaf phenology of temperate deciduous
forests over a broad geographic area, we chose 13 sites in the
eastern US and Canada, based on availability of near-surface
camera observations (Fig. 1). A total of 81 site years of near-
surface and satellite remote sensing imagery were analyzed
across all sites in spring, and 83 site years were analyzed in
fall.

To characterize land cover at the study sites, 30 m resolu-
tion National Land Cover Database (NLCD) data were used
for sites in the US, and Earth Observation for Sustainable
Development of Forests (EOSD) data were used for sites in
Canada (Table 1) (Vogelmann et al., 2001; Wulder et al.,
2008). The MODIS Collection 5 Land Cover Type product
classification at 500 m resolution was also used to character-
ize land cover (Friedl et al., 2010).

2.2 Near-surface imagery: visual assessment
of phenological transitions

The PhenoCam network is a continental-scale phenological
observatory, spanning a wide range of biogeoclimatic zones
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Table 1.Study sites with land cover characterization. Fractional coverage of each land cover type was calculated from the NLCD (National
Land Cover Database) for study sites located in the US, and EOSD (Earth Observation for Sustainable Development of Forests) for sites
located in Canada. “Other” includes shrub/scrub, developed; low intensity, developed; medium intensity, developed; high intensity, grass-
land/herbaceous, emergent herbaceous wetlands, pasture/hay, and barren land (rock/sand/clay). MODIS land cover product classification: D
– deciduous forest, M – mixed forest, and U – urban.

Site MODIS Deciduous Mixed Evergreen Woody Developed; Open Other
land forest forest forest wetlands open space water
cover

Acadia M 0.11 0.32 0.21 0.02 0.06 0.12 0.17
Arbutus Lake D 0.41 0.07 0.13 0.12 0.01 0.23 0.01
Bartlett M 0.37 0.48 0.08 0.00 0.05 0.00 0.02
Boundary Waters M 0.10 0.24 0.21 0.22 0.04 0.04 0.14
Dolly Sods D 0.56 0.04 0.21 0.11 0.06 0.00 0.03
Groundhog M 0.16 0.55 0.19 0.02 0.00 0.03 0.05
Harvard Forest M 0.41 0.22 0.20 0.12 0.04 0.00 0.00
Mammoth Cave D 0.67 0.01 0.23 0.05 0.00 0.02 0.02
Queens M 0.05 0.43 0.18 0.00 0.00 0.32 0.02
Smoky Look D 0.72 0.05 0.08 0.00 0.09 0.00 0.06
U. of Michigan D 0.68 0.06 0.03 0.04 0.05 0.01 0.13
Biological Station
Upper Buffalo D 0.97 0.00 0.00 0.00 0.03 0.00 0.00
Washington DC U 0.01 0.00 0.00 0.05 0.25 0.24 0.43

Figure 2. ROI shown on canopy image for Arbutus Lake in New
York.

and vegetation types, primarily in the United States. In addi-
tion to retrieving imagery from publicly available webcams
with either hourly or half-hourly temporal resolution, the
network consists of 85 cameras deployed following a stan-
dardized protocol, which upload half-hourly imagery to the
PhenoCam server from 4 a.m. to 10 p.m. each day. Imagery
and data products are available at the PhenoCam web page:
http://phenocam.sr.unh.edu/webcam/.

PhenoCam imagery was used to visually identify decid-
uous canopy transition dates for this study. Six observers

looked through daily images and used a common protocol
to identify the following dates for each site year of data:

1. when the majority of trees started leafing out

2. when the canopy reached full maturity

3. when the canopy first started to change color in the fall

4. when the canopy exhibited the brightest fall colors

5. when the majority of trees had lost all leaves.

To reduce inter-observer variability in visually assessed
dates, the earliest and latest estimates of each date were dis-
carded, and the remaining dates were averaged to provide a
single date for each event. Using the median observation (not
reported here) gave similar results to the mean.

2.3 Near-surface imagery: time-series estimates
of phenological transitions

To automatically extract phenology transition dates from
near-surface images, we defined regions of interest (ROIs)
representing the deciduous canopy in the foreground at each
site (shown in Fig. 2), and analyzed them using software
written in Matlab (R2013a, The Mathworks, Nattick, MA),
available athttps://github.com/klostest/PhenoCamAnalysis.
ROIs contained approximately 10–100 trees depending on
the site. To quantify phenological status of the forest canopy
over time, we calculated the green chromatic coordinate
(GCC) for each image from average red (R), green (G), and
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blue (B) pixel digital numbers (DNs) over the ROI, where
GCC is defined as

GCC=
G

R + G + B
. (1)

We recorded images at some sites from before sunrise until
after sunset. As shown by Sonnentag et al. (2012), images
recorded at dawn and dusk, under very low levels of diffuse
illumination and with no direct solar beam, tended to have
much lower GCC values than those recorded at midday. We
therefore excluded extremely dark images (low average val-
ues ofR, G, or B DNs in the ROI) from further considera-
tion. Because camera characteristics varied from site to site
(e.g., color balance, maximum exposure time, automatic gain
control, and internal image processing), it was necessary to
manually determine the DN threshold used to discard im-
agery across sites. Final processing consisted of selecting the
90th percentile value from a 3-day moving window (Sonnen-
tag et al., 2012). To quantify dynamics in canopy redness in
fall, the red chromatic coordinate (RCC) was calculated in
the same way:

RCC=
R

R + G + B
. (2)

2.4 Remote sensing data

We downloaded MODIS data for the 13 study sites through
the MODIS web service (http://daac.ornl.gov/MODIS/
MODIS-menu/modis_webservice.html) for comparison to
near-surface observations. Nadir bidirectional reflectance
distribution function (BRDF) adjusted surface reflectances
(NBAR) from the MCD43A4 product in the red, near-
infrared (NIR), and blue bands were used to characterize
vegetation dynamics at 500 m spatial resolution (Schaaf et
al., 2002, 2011). NBAR measurements are based on surface
reflectances taken from 16-day moving windows of MODIS
data, and produced every 8 days. NBAR measurements were
associated with the middle day of the 16-day composit-
ing period from which the measurements were drawn (Zhu-
osen Wang and Crystal Schaaf, personal communication).
The NBAR data were filtered to remove observations over
urban areas, ice, or water using the MODIS MCD12Q1
Land Cover Type product, and remaining data were fil-
tered to remove interference from snow using the MODIS
BRDF albedo quality product (MCD43A2). Filtered NBAR
reflectances were used to compute the enhanced vegetation
index (NBAR-EVI), and the normalized difference vegeta-
tion index (NBAR-NDVI), which provide metrics of canopy
greenness (Huete et al., 2002; Rouse et al., 1973):

NBAR−EVI =
2.5(NIR − R)

(NIR + 6R − 7.5B + 1)
(3)

NBAR−NDVI =
(NIR − R)

(NIR + R)
. (4)

To account for inherent noise in MODIS data due to
cloud cover, atmospheric interference, and uncertainty in the
ground area measured by the MODIS sensor (Xin et al.,
2013), we used median NBAR values taken over 3× 3 win-
dows of 500 m pixels centered on PhenoCam locations. The
resulting time series were then smoothed using the median of
a three-point moving window to remove spikes due to snow-
fall and other sources of noise that were not captured using
the MCD43A2 product.

We also analyzed GCC time series from MODIS NBAR,
calculated according to Eq. (1). MODIS GCC time series suf-
fered from lower quality than EVI and NDVI, with more
noise and outliers, even after applying the quality control
procedures used on those time series. Unfortunately, the
lower quality of MODIS GCC time series caused relatively
high statistical uncertainty in estimated phenophase transi-
tion dates. For example, the average statistical uncertainty
(95 % confidence interval) for phenophase transition dates
identified from MODIS GCC time series using the general-
ized sigmoid method (described below) was 17 days, twice
as large as that for EVI time series. Because of this uncer-
tainty, we do not report MODIS GCC results here. However,
we note that Hufkens et al. (2012) used remote sensing data
to calculate phenology dates with the excess greenness index,
a spectral index similar to GCC, and obtained similar results
to NDVI, an index used in this study.

In addition to the MODIS time-series data, we examined
two operational phenology products derived from satellite
remote sensing. The MODIS Land Cover Dynamics Prod-
uct (MCD12Q2) provides annual phenophase transition dates
and related growing season metrics at 500 m spatial res-
olution. To do this, the MCD12Q2 algorithm fits logistic
functions (Eq. 5, below) to smooth and gap-fill time se-
ries of NBAR-EVI data, and reports the timing of local
maxima and minima in the rate of change of curvature as
phenophase transition dates (Ganguly et al., 2010; Zhang et
al., 2003). In addition, we also used data from a 30-year
archive of multi-sensor harmonized vegetation indices cre-
ated as part of the National Aeronautics and Space Admin-
istration (NASA) MEASURES project (http://vip.arizona.
edu). The MEASURES phenology product reports similar
metrics to the MCD12Q2 algorithm, but has the advantage of
nearly 20 additional years of historical data, using measure-
ments from the Advanced Very High Resolution Radiometer
(AVHRR). The MEASURES phenology data are produced
at a spatial resolution of 0.05 degrees, or approximately 5 km
for the region studied here.

2.5 Estimating dates from time-series data

We used three sigmoid-based methods and a data smoothing
and interpolation method to explore different approaches for
extracting dates from phenological time-series data. The sim-
plest sigmoid-based method, hereafter called the simple sig-
moid, has been widely used in the remote sensing community

Biogeosciences, 11, 4305–4320, 2014 www.biogeosciences.net/11/4305/2014/
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(Hufkens et al., 2012; Liang et al., 2011; Zhang et al., 2003):

f (t) =
c

1+ exp(a + bt)
+ d. (5)

In Eq. (5),f (t) represents the modeled value of a vegetation
index such as GCC, at timet . d defines the dormant season
baseline value of greenness,c is the amplitude of increase or
decrease in greenness,a controls the timing of increase or de-
crease, andb controls the rate of increase or decrease. Equa-
tion (5) was separately fit to spring and fall data for each site
year to account for independent green-up and green-down
dynamics, using the Matlab function lsqnonlin.

To account for the decreasing summer time greenness that
is widely observed in vegetation indices prior to leaf senes-
cence, Elmore et al. (2012) presented a modified double sig-
moid model that adds a new parameter (m7), thereby provid-
ing more accurate model representation of seasonal vegeta-
tion time-series data in many forest canopies:

f (t) = m1 + (m2 − m7t) (6)[
1

1+ exp((m3 − t)/m4)
−

1

1+ exp((m5 − t)/m6)

]
,

where the double sigmoid model in Eq. (6) is fit to entire
years of vegetation index time series.

In addition we also tested a more flexible approach, using
a generalized sigmoid formula which introduced two addi-
tional parameters (qi andvi), to allow different rates of in-
crease near the lower and upper asymptotes of the sigmoid
(Richards, 1959). Our implementation of this generalized
sigmoid also accounts for nonlinear decrease in summertime
greenness, as observed in many site years of data (parameters
a2 andb2), as well as a changes in the dormant season value
via parametera1:

f (t) = (a1t + b1)

+
(
a2t

2
+ b2t + c

)[
1

[1+q1 exp(−h1(t−n1))]v1 −
1

[1+q2 exp(−h2(t−n2))]v2

] . (7)

Equation (6), hereafter referred to as the generalized sigmoid,
was also fit to entire years of data.

For each of the sigmoid models, phenological transition
dates were estimated using local extrema in the rate of
change of curvaturek (Kline, 1998):

k =
f ′′ (t)(

1+ (f ′ (t))2
) 3

2

. (8)

Points where the curvature changes most rapidly occur at
the beginning, middle, and end of seasonal transitions. In the
simple and green-down sigmoids (Eqs. 5, 6), extrema in the
curvature change rate were used to identify the start, mid-
dle, and end of spring (SOS, MOS, and EOS), following the
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Figure 3. Example comparison of the simple sigmoid, green-down
sigmoid, generalized sigmoid, and smoothing and interpolation ap-
proaches for 1 year of GCC and NBAR-EVI data. Phenology date
estimates represent start of spring, middle of spring, and end of
spring (SOS, MOS, and EOS, as shown in panelb). The simple sig-
moid, green-down sigmoid, and generalized sigmoid models also
have start of fall, middle of fall, and end of fall (SOF, MOF, and
EOF, as shown in panelb). A single fall phenology date is identi-
fied from RCC using the smoothing and interpolation model (RCC
max, as shown in panelg).

method proposed by Zhang et al. (2003). These points ap-
proximately correspond to 10, 50, and 90 % of amplitude in
springtime greenness. A similar technique was used for the
start, middle, and end of fall (SOF, MOF, and EOF). For the
generalized sigmoid (Eq. 7), the third extreme in the cur-
vature change rate was used to identify the end of spring.
However, because this model allows asymmetric growth of
the sigmoid function, the first two extrema were frequently
found to occur significantly later than 10 and 50 % of am-
plitude in springtime greenness. Consequently, the start and
middle of spring were identified as the times corresponding
to 10 and 50 % amplitude between the dormant season and
the end of spring values of greenness for the generalized sig-
moid, with a similar approach used in fall.
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To quantify uncertainty in estimates of transition dates
from the sigmoid-based methods, we used the Jacobian ma-
trix of parameter sensitivities (provided by the Matlab rou-
tine lsqnonlin) to calculate the parameter covariance matrix.
The covariance matrix was then used in a Monte Carlo pro-
cedure to generate 100 samples of the parameter space, each
of which was used to produce a new set of phenology dates.
Monte Carlo ensembles were used to construct confidence in-
tervals using the inner 95 % range for each phenology date,
which we use here to quantify the statistical uncertainty of
estimated dates.

Finally, in the smoothing and interpolation approach, time-
series data were first smoothed using the loess algorithm in
Matlab, which reduces noise by estimating a local regression
to a second-order polynomial at each point in the time series.
The fraction of annual data used for the local regression was
set to 0.1 for near-surface data and 0.2 for remote sensing
data, to account for the different temporal resolutions of 3
and 8 days, respectively. After smoothing, cubic spline inter-
polation was applied to obtain a sub-daily resolution time se-
ries for estimating phenological transitions. Spring transition
dates were identified as the times when greenness crossed
10, 50, and 90 % thresholds of the springtime amplitude in
greenness. The smoothing and interpolation method was also
applied to RCC time series in fall, where a single phenology
date was identified as the fall maximum of the processed time
series. To illustrate each of the date estimation methods, an
example year of data from Arbutus Lake in 2009 is shown for
both near-surface and satellite remote sensing data (Fig. 3),
with model fits and date estimates for each approach.

To compare phenology transition dates derived from vi-
sual assessment, near-surface, and satellite remote sensing
time series, the root mean square deviation (RMSD), bias,
andr2 statistic were computed for each phenological transi-
tion across all site years of data. These statistics quantify the
magnitude of differences between corresponding dates from
different methods, the average signed difference, and the de-
gree of correlation, respectively.

2.6 Geographical and environmental patterns
in phenology

To characterize geographical patterns and environmental
drivers of phenology, we estimated linear regressions of phe-
nology dates using two predictors: a location predictor con-
sisting of site latitude and elevation, and a climate predic-
tor consisting of average daily temperature and cumulative
precipitation during the periods April–May for spring tran-
sitions, and September–November for fall transitions, using
the DAYMET data set (http://daymet.ornl.gov).

3 Results

3.1 Statistical uncertainty in date estimates

We used inter-observer variability from visual assessments
and parameter uncertainty from curve fitting methods to cal-
culate measures of the statistical uncertainty in phenology
date estimates derived from near-surface digital photography.
The average range of dates estimated from visual assessment
was larger than the average 95 % confidence interval from
curve fitting of GCC data for both spring phenology dates,
particularly at the end of spring (Table 2). However in fall,
inter-observer variability was smaller than the statistical un-
certainty of curve fits for the middle and end of fall. These
results suggest that dates derived from curve fitting analysis
of greenness time series generally have less statistical uncer-
tainty than visual assessment in the spring, although this is
less pronounced in fall.

Near-surface GCC data from PhenoCam provided esti-
mates of phenology dates with less uncertainty (average 6-
day confidence interval, across methods and dates reported
in Table 2) than NBAR-EVI and NBAR-NDVI data from
satellite remote sensing (average 12- and 19-day confidence
intervals, respectively). This may be due to the higher tem-
poral resolution of near-surface data, which more effectively
constrains parameter estimates. Since NBAR-EVI data were
found to result in less uncertainty for remote sensing esti-
mates of phenology than NBAR-NDVI, we focus on the use
of NBAR-EVI in the following analysis.

Of the three sigmoid methods that we tested, the gener-
alized sigmoid curve fit the time-series data with the low-
est RMSD and produced the least uncertain date estimates in
most cases, particularly using the near-surface data (Table 2).
Using NBAR-EVI data, the simple sigmoid function identi-
fied the middle of spring transition with the lowest uncer-
tainty. However the green-down sigmoid and the generalized
sigmoid curves resulted in more certain estimates for dates
corresponding to the beginning and end of spring, respec-
tively. The generalized sigmoid appears to provide the best
overall functional representation of vegetation dynamics for
NBAR-EVI in terms of certainty from the beginning to end
of spring, likely because of its flexibility. Results presented
hereafter therefore consider all of the time-series approaches
described above, but emphasize the generalized sigmoid.

3.2 Comparison of visual assessment to estimates from
near-surface time-series data

Phenological dates derived from visual assessment exhibited
varying degrees of correspondence to dates identified using
time-series data, depending on the date estimation method
and seasonal transition (Table 3). The start of spring was
most closely associated with visual assessments for the date
when the majority of trees started to leaf out (Fig. 4a). For
this date, all time-series methods matched visual assessment
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Figure 4. Scatterplots of the comparison between visually assessed dates (y axis) and dates identified from near-surface GCC (x axis) using
the generalized sigmoid method.

Table 2. Statistical uncertainty in estimated phenology dates. Statistical uncertainty in sigmoid-based methods is calculated as the average
width of inner 95 % confidence intervals for each phenology date. SOS, MOS, and EOS are start, middle, and end of spring. SOF, MOF, and
EOF are start, middle and end of fall. Statistical uncertainty in visual assessment is calculated as the average length of time between earliest
and latest assessments, after removing the minimum and maximum estimates from the raw data. All units are in days.

Time-series
Index method SOS MOS EOS SOF MOF EOF

GCC simple sigmoid 7 3 7 13 7 16
green-down sigmoid 4 2 6 14 7 11
generalized sigmoid 1 1 0 3 5 7

EVI simple sigmoid 9 4 9 24 13 28
green-down sigmoid 8 5 15 24 14 18
generalized sigmoid 8 6 8 8 9 12

NDVI simple sigmoid 16 8 16 24 15 27
green-down sigmoid 16 11 38 42 30 37
generalized sigmoid 10 6 10 11 14 18

Visual assessment 7 22 19 4 6

with an RMSD of less than 10 days, with the generalized sig-
moid yielding the lowest bias of 0 days. The visually assessed
date of canopy maturity was less consistent with time-series
estimates than the date of leaf-out. While correlations were
generally good, withr2 ranging from 0.45 to 0.73 across
methods, all time-series estimates for this date were biased
by about 10 days early with respect to visual assessment. For
the generalized sigmoid method, the end of spring was less

biased with respect to visual assessment for spring transitions
that ended later in the year (Fig. 4b).

Greenness-derived estimates for the beginning and end of
fall generally showed less agreement with dates derived from
visual assessment than for spring phenology; fall estimates
derived from greenness time series had larger average RMSD
(23 and 16 days, respectively; Table 3) across methods than
either of the spring dates (8 days for the start of spring and
13 days for the end of spring). Fall dates derived using the
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Table 3. Statistics comparing visual assessment to phenology de-
rived from near-surface image processing. Visually assessed dates
were compared to time-series methods as follows: the date when the
majority of trees started leafing out was compared to SOS, the date
of canopy maturity to EOS, the date of first color change to SOF,
the date of brightest fall colors to MOF, and the date of leaf loss to
EOF. Near-surface imagery dates were estimated from greenness,
except for SOF, MOF, and EOF dates in the smoothing and inter-
polation approach, which were estimated from redness. Statistics
include RMSD and bias in units of days, andr2 for the comparison
of corresponding dates and methods across all site years. Bias is
calculated relative to time-series estimates, so a negative bias indi-
cates that the corresponding visual assessment is later. 73 site years
of data were used in this analysis.

Time-series
method Statistic SOS EOS SOF MOF EOF

simple RMSD 8 16 17 9 16
sigmoid Bias 3 −14 5 −6 −11

r2 0.79 0.69 0.45 0.80 0.64

green-down RMSD 7 13 22 9 16
sigmoid Bias 3 −11 16 −2 −14

r2 0.81 0.73 0.60 0.77 0.70

generalized RMSD 7 11 16 9 12
sigmoid Bias 0 −9 3 −6 −8

r2 0.80 0.70 0.52 0.80 0.68

smoothing RMSD 9 13 35 7 19
and Bias 3 −8 31 3 −18
interpolation r2 0.73 0.45 0.36 0.78 0.84

generalized sigmoid had comparable or lower RMSD than
visually assessed dates from other curve fitting approaches,
and indicated that estimates for end of fall were generally less
biased with respect to visual assessment for timing of abscis-
sion when this occurred later in the calendar year (Fig. 4e).
While the visually assessed start of color change in fall and
the end of abscission were closer to greenness-derived met-
rics, timing of the brightest fall colors had similar RMSD
with respect to date estimates from time series of both red-
ness and greenness (Table 3).

3.3 Climate and geographical analysis of
phenophase transitions

Phenology dates were moderately correlated with latitude
(Fig. 4), although for deciduous forests in eastern North
America this relationship is confounded by site elevation ac-
cording to Hopkins’ law (Hopkins, 1919), as well as local
weather (Richardson et al., 2006), both of which affect leaf
phenology. We compared the effects of site location and local
weather on phenology by calculating linear regression mod-
els of phenophase transition dates on site latitude and ele-
vation, along with a separate regression model on average
temperature and cumulative precipitation during the periods

April–May for spring transitions, and September–November
for fall transitions.

In spring, we found that SOS was delayed 1.9± 0.3 (re-
gression slope± standard error) days per degree latitude and
1.6± 0.5 days per 100 m in elevation, each about half of what
Hopkins’ law predicts, and similar to the delay of leaf un-
folding of 1.1 to 3.4 days per 100 m elevation that was previ-
ously observed in a study of beech and oak trees in southern
France (Vitasse et al., 2009), as well as 2.7 days per 100 m
elevation in a study of a hardwood forest in New Hampshire
(Richardson et al., 2006). In fall, the effect of latitude was
more pronounced as EOF advanced 2.9± 0.3 days for each
degree of latitude, but elevation was not significantly differ-
ent from zero with an advance of 0.3± 0.5 days for each
100 m increase in elevation.

From the weather analysis, we found that SOS for decid-
uous trees advanced 3.5± 0.3 days for each 1.0◦C change
in mean April–May temperature, which is within the range
observed in experimental warming studies of deciduous tree
leaf phenology of 1–7 days per 1◦C (Morin et al., 2010;
Norby et al., 2003). SOS was relatively insensitive to pre-
cipitation, with a delay of 0.02± 0.01 days for each 1 mm
change in cumulative precipitation. In fall, MOF was delayed
3.6± 0.4 days for each 1◦C change in average September–
November temperature, but precipitation effects were again
not significantly different from zero. These findings are con-
sistent with studies indicating that eastern deciduous forest
phenology is generally insensitive to observed variation in
precipitation (Dragoni and Rahman, 2012); however, the ef-
fects of precipitation may influence fall phenology through
soil water balance (Archetti et al., 2013). From the climate
analysis we conclude that temperature has significant effects
on deciduous forest phenology in the spring and fall, while
precipitation does not. From geographical analysis we find
that the timing of both spring and fall phenology correlates
with latitude, but that only spring phenology correlates with
elevation.

3.4 Comparison of near-surface and remote
sensing phenology

The generalized sigmoid model, the time-series method with
the least uncertainty, and the smoothing and interpolation ap-
proach, with the most flexibility, each produced an average
RMSD of about 9 days between remote sensing and near-
surface imagery across the beginning, middle, and end of
spring dates (Table 4, Figs. 5a–c). The magnitude (absolute
value) of bias was low across all methods for the beginning
and middle of spring, less than 1 week in nearly all cases
(Table 4). As spring progressed however, the signed bias be-
tween satellite remote sensing and near-surface phenology
became more negative, indicating satellite remote sensing
was later in comparison to near-surface phenology. The trend
of a more negative bias for later spring phenology dates was
not isolated to one particular method; across all methods and
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Figure 5. Scatterplots of the comparison between near-surface GCC analysis and remote sensing of NBAR-EVI using the generalized
sigmoid method.

indices, dates derived from satellite remote sensing were 2
and 8 days later, on average, than near-surface metrics for
the middle and end of spring, respectively (Table 4).

To examine whether landscape characteristics at individual
sites played a role in the late spring bias, we calculated the
fractional coverage of deciduous forest and mixed forest land
cover types from NLCD data (Table 1). The bias between
results from near-surface GCC and satellite remote sensing
NBAR-EVI with the generalized sigmoid method (Fig. 6)
showed a significant pattern (r2

= 0.73, p < 0.001) of less
bias for sites that had greater fractions of deciduous or mixed
forest coverage.

Time-series estimates of fall phenology from near-surface
and satellite remote sensing generally differed more than
spring dates; the average RMSD for fall dates was higher
than spring in all methods and indices used for date esti-
mation (Table 4). This is likely due to larger statistical un-
certainty in estimated fall dates; GCC-, NBAR-EVI- and
NBAR-NDVI-derived dates were roughly twice as uncertain
as those in fall (Table 2). GCC-derived near-surface fall dates
from the generalized sigmoid method were biased roughly
a week earlier than dates from NBAR indices, which was
characteristic of a negative bias for fall dates observed across
most greenness time-series results, particularly for the mid-
dle and end of fall. In contrast, near-surface dates derived
from redness, which best corresponded to the middle of fall
date extracted from satellite remote sensing (Table 5), were
consistently biased positively. Both greenness- and redness-
derived near-surface dates had the lowest magnitude of bias

at the MOF date, with several methods producing bias of less
than a week.

3.5 Comparison of near-surface phenology to
MCD12Q2 and MEASURES
phenology products

The MCD12Q2 and MEASURES phenology products pro-
vide remotely sensed phenology estimates at different spa-
tial scales than the analysis of NBAR data presented above.
The NBAR analysis conducted for this study used MODIS
data at an effective resolution of 1.5 km due to spatial win-
dowing. In contrast, the MCD12Q2 phenology product is
produced at 500 m resolution, and the MEASURES is pro-
duced at approximately 5 km resolution. In comparison to
the MODIS NBAR data analyzed here, both of these phe-
nology products exhibited similar signs in bias, but differ-
ent magnitudes, relative to date estimates from near-surface
time series. The coarse-resolution MEASURES spring dates
exhibited a low average bias of less than 2 days at the be-
ginning of spring, while the middle and end of spring dates
were progressively biased later by an average of−9 and
−17 days, respectively (Table 6), similar to the late spring
bias presented above, but larger in magnitude. RMSDs be-
tween MEASURES and near-surface dates were also larger
(by over a week for most transition dates) relative to dates
from NBAR data. The MCD12Q2 product, encompassing
the smallest land area of the three remote sensing analyses
used here, showed qualitatively similar characteristics to the
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Table 4. Statistics comparing remote-sensing-derived to greenness-derived near-surface phenology. Statistics are computed as in Table 3.
The time-series method indicated in the table was used for both near-surface and remote sensing date estimates. Bias is calculated relative to
near-surface estimates, so a negative bias indicates that the corresponding remote sensing estimate is later. 81 site years of data were used in
this analysis.

Remote Time-series
sensing index method Statistic SOS MOS EOS SOF MOF EOF

EVI simple RMSD 10 6 14 28 10 24
sigmoid Bias 4 −4 −12 20 −1 −22

r2 0.74 0.91 0.76 0.11 0.51 0.74

green-down RMSD 9 7 17 21 11 18
sigmoid Bias 4 −5 −14 10 −3 −15

r2 0.76 0.91 0.73 0.20 0.58 0.65

generalized RMSD 9 6 12 14 10 11
sigmoid Bias 1 −3 −9 −6 −7 −8

r2 0.67 0.88 0.68 0.32 0.72 0.77

smoothing RMSD 8 6 13
and Bias 0 −4 −10
interpolation r2 0.72 0.90 0.65

NDVI simple RMSD 18 7 12 21 17 27
sigmoid Bias 9 1 −6 −3 −3 −3

r2 0.41 0.82 0.71 0.18 0.27 0.11

green-down RMSD 7 6 15 19 10 19
sigmoid Bias 1 0 −2 3 −6 −15

r2 0.81 0.83 0.47 0.23 0.76 0.67

generalized RMSD 13 10 13 15 11 12
sigmoid Bias 0 −1 −3 −7 −7 −6

r2 0.31 0.54 0.43 0.30 0.70 0.67

smoothing RMSD 12 6 12
and Bias 5 0 −7
interpolation r2 0.49 0.81 0.56

coarse-scale MEASURES results, but with larger biases (Ta-
ble 7). In consideration of the analysis presented above, re-
sults from MEASURES and MCD12Q2 indicate that satellite
remote sensing results based on data with spatial resolutions
that are intermediate between these two products, processed
with the methods presented here, may result in better agree-
ment with near-surface data.

4 Discussion

Phenological data available from near-surface and satellite
remote sensing measurements present a large and grow-
ing resource for monitoring the interaction between global
change and the biosphere, but involve significant challenges
for analysis. For example, lack of standard protocols compli-
cates determination of which biological events correspond
to data-driven estimates of phenophase transitions in di-
verse and geographically dispersed ecosystems (White et al.,
2009). Furthermore, while several methods exist for estimat-

ing transition dates from time-series data, few studies pro-
vide concrete guidance regarding how to distinguish between
these approaches (but see Cong et al., 2012), or quantify
the uncertainty associated with various methods. This study
compared an ensemble of date estimation methods to as-
sess how near-surface metrics of deciduous forest phenol-
ogy, here derived from high-frequency digital camera im-
agery, relate to both visual assessment of canopy status, and
to landscape-scale estimates from satellite remote sensing
platforms, across a range of temperate deciduous forests. Our
results show that the choice of analysis method affects the
certainty with which dates can be estimated at both near-
surface and remote scales. The choice of analysis method can
also affect the RMSD, magnitude of bias, and in some cases
the direction of bias when comparing near-surface phenol-
ogy metrics to metrics derived from visual assessment and
satellite remote sensing.
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Table 5. Statistics comparing remote-sensing-derived to redness-
derived near-surface phenology. Statistics are reported as in Table 4.
Smoothing and interpolation was used to estimate dates from near-
surface redness time series, while the time-series method indicated
in the table refers to analysis of remote sensing indices.

Remote Time-series
sensing index method Statistic SOF MOF EOF

EVI simple RMSD 50 13 23
sigmoid Bias 48 10 −22

r2 0.03 0.69 0.60

green-down RMSD 31 9 18
sigmoid Bias 28 5 −16

r2 0.29 0.70 0.57

generalized RMSD 23 7 17
sigmoid Bias 21 2 −15

r2 0.50 0.74 0.61

NDVI simple RMSD 27 10 13
sigmoid Bias 23 6 −9

r2 0.23 0.66 0.51

green-down RMSD 25 7 20
sigmoid Bias 21 1 −15

r2 0.37 0.72 0.33

generalized RMSD 25 7 16
sigmoid Bias 22 3 −12

r2 0.42 0.77 0.53

4.1 Comparison of PhenoCam curve fitting to visual
assessment and remote sensing in spring

Time-series estimates of the start of spring at the near-surface
scale are generally well correlated with visual assessments
for the first appearance of leaves (Fig. 4a), the stage of leaf
phenology which immediately follows budburst. This indi-
cates that the SOS metric represents the release of ecodor-
mancy in buds on deciduous trees, the stage of bud devel-
opment at which limitations of environmental factors are re-
moved (Basler and Korner, 2014). A significant outlier oc-
curred, however, in the spring of 2007 at the Upper Buf-
falo Wilderness. Observers consistently identified the start
of leaf-out as DOY 90, earlier than other years for this site.
However after this early leaf-out, a spring frost delayed fur-
ther leaf development (Gu et al., 2008), likely resulting in
the later start of spring (DOY 120) identified by curve fitting
analysis.

Consistent with previous studies, estimates for the start
of spring were also highly correlated for metrics derived
from satellite remote sensing and near-surface remote sens-
ing. Liang et al. (2011) noted that start of spring estimated
from MODIS EVI time series matched the date of bud-
burst directly observed on trees to within 2 days in a mixed
deciduous–coniferous forest in Wisconsin, and Soudani et
al. (2008) found a similar result for deciduous forests located
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Figure 6. Scatterplot of bias in the end of spring (EOS) between
near-surface GCC date estimates and remote sensing NBAR-EVI
estimates using the generalized sigmoid method. Fractional forest
cover is defined as the fraction of 30 m resolution pixels in the de-
ciduous forest land cover class plus half of the fraction of pixels in
the mixed forest class at each study site.

throughout France. A recent study by Hmimina et al. (2013)
also found good agreement between near-surface and satel-
lite remote-sensing-derived estimates for the beginning of
spring. However we found that data-driven estimates of later
spring phenology from near-surface imagery, intended to
represent the final stages of springtime leaf development, ex-
hibited less correspondence to estimates derived from both
visual assessments and satellite remote sensing.

The visually assessed date of leaf maturity was later than
the end of spring date derived from near-surface GCC. At
visually assessed maturity, leaves were dark green, whereas,
at the GCC-derived end of spring date, leaves were bright
yellow-green. The shift from brighter to darker green was as-
sociated with an increase in the relative brightness of the blue
channel. Recent studies explored possible reasons for this,
finding that GCC from tower-mounted cameras reached its
springtime maximum 2 to 3 weeks before a suite of leaf and
canopy physiological traits, including chlorophyll fluores-
cence, total chlorophyll concentration, leaf area and mass, ni-
trogen, carbon, and water content, and leaf area index (LAI;
Keenan et al., 2014; Yang et al., 2014). Keenan et al. (2014)
concluded that GCC reaches its peak as the effective LAI
viewed from tower-mounted cameras saturates, and GCC be-
comes insensitive to further increases in LAI, but begins to
decrease due to changes in leaf color.

Comparison of near-surface GCC and MODIS NBAR in-
dices for late spring phenology shows that, across all date
estimation approaches, metrics derived from MODIS were
biased later by an average of 8 days (Table 4). Different spec-
tral indices exhibit different temporal trajectories (Yang et
al., 2014), and have been reported to correlate with different
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Table 6.Statistics comparing the MEASURES phenology product to near-surface imagery. Statistics computed as in Table 4.

Time-series
method Statistic SOS MOS EOS SOF MOF EOF

simple RMSD 19 16 25 32 19 20
sigmoid Bias 1 −9 −19 16 5 −5

r2 0.29 0.36 0.20 0.01 0.05 0.18

green-down RMSD 19 16 24 39 20 21
sigmoid Bias 1 −8 −18 27 10 −8

r2 0.28 0.36 0.21 0.00 0.06 0.24

generalized RMSD 19 17 23 31 19 20
sigmoid Bias −2 −9 −15 17 8 −3

r2 0.26 0.30 0.11 0.00 0.07 0.23

Table 7. Statistics comparing the MODIS phenology product to
near-surface imagery. Statistics computed as in Table 4.

Time-series
method Statistic SOS EOS SOF EOF

simple RMSD 17 28 55 16
sigmoid Bias 11 −22 50 −10

r2 0.37 0.30 0.01 0.53

green-down RMSD 17 25 65 16
sigmoid Bias 12 −19 60 −12

r2 0.39 0.33 0.00 0.52

generalized RMSD 16 25 52 13
sigmoid Bias 8 −18 48 −6

r2 0.23 0.22 0.02 0.57

plant traits. Hufkens et al. (2012) noted that both the ex-
cess green index (a color index similar to the GCC used in
this study) and NDVI from MODIS tended to saturate be-
fore EVI, and were insensitive to later changes in LAI. How-
ever, recent results have shown that EVI from satellite re-
mote sensing has a 2- to 3-week temporal bias, similar to
GCC from tower-mounted cameras, with respect to the suite
of leaf physiology measurements mentioned above (Keenan
et al., 2014). Further, recent work indicates that bias between
end of spring phenology at the near-surface and landscape
scales may not be caused by differences in vegetation index;
Hmimina et al. (2013) found a similar late spring bias using
NDVI from remote sensing and near-surface NDVI sensors.

Camera fields of view are smaller than ground areas as-
sociated with satellite pixels. Consequently, GCC from cam-
eras can only be expected to agree with satellite vegetation
indices to the extent that the camera field of view represents
the vegetation and land cover in the satellite pixel. To explore
this, we conducted a land cover analysis, focusing on the
source of bias found in this study (Fig. 6). Results from this

analysis show that landscape composition affects the mag-
nitude of the bias, where sites with a smaller proportion of
deciduous and mixed forests tended to have estimates of end
of spring phenology from satellite remote sensing that were
systematically later than near-surface estimates. For the other
phenological transitions (SOS, MOS, SOF, MOF, and EOF),
the statistical relationship between this bias and fractional
forest cover was not significant (p > 0.05).

Other researchers have explored the effect of vegetation
heterogeneity on measurements of albedo across multiple
sites (Cescatti et al., 2012), finding that more homogeneous
sites produced better agreement between scales. However
this study appears to be the first to document a linear corre-
lation between forest coverage and temporal bias in canopy
phenology between the organism and pixel scales, indicat-
ing a way that landscape characteristics may determine the
fidelity of satellite remote sensing measurements.

4.2 Comparison of PhenoCam curve fitting to visual
assessment and remote sensing in fall

In fall, variability between observers was smaller for the
dates of brightest fall colors and leaf abscission than for the
first signs of senescence (Table 2), indicating that fall colors
associated with the middle of senescence, and the eventual
loss of leaves, give the clearest visual indicators of fall phe-
nology. Estimates using peak RCC from near-surface images
matched visual assessments of the timing of leaf coloration
with similar RMSD to GCC-based estimates of the middle of
fall (Table 3), with peak RCC biased 3 days later and GCC
biased 2–6 days earlier.

We found that the statistical uncertainty in curve fit esti-
mates of fall dates was larger than that of spring dates (Ta-
ble 2). This may be caused by within-canopy heterogeneity,
with some trees senescing before others. This is exemplified
in Fig. 2 where some trees are in advanced stages of senes-
cence while others still have many green leaves. Integrating
all of these trees into a single region of interest tends to cause
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a longer, more drawn out transition in fall than in spring
(Fig. 3). This more gradual change leads to less well-defined
extrema in the curvature change rate in Eq. (7) of GCC
time series and greater statistical uncertainty in estimated
fall dates than spring dates. Based on this alone, we would
expect larger RMSD between camera- and satellite-derived
dates in fall than spring. On a larger scale, variation in species
composition and land cover type below the spatial resolu-
tion of MODIS also complicates the interpretation of NBAR-
EVI and NBAR-NDVI measurements in fall (Cescatti et al.,
2012; Dragoni and Rahman, 2012), similar to effects on near-
surface GCC and RCC (Richardson et al., 2009).

To more accurately study spatial variation in fall phenol-
ogy, and to further study the late spring bias in heterogeneous
forested landscapes reported above, digital photography from
cameras with larger fields of view, with ROIs that include
more plants and plant functional types, should be obtained
(Hufkens et al., 2012). Similarly, the use of multiple cameras
at a single site or multiple regions of interest in individual im-
ages (Richardson et al., 2009) could be used in combination
with mixture models that combine phenological information
from diverse plant functional types. In parallel, direct visual
assessments of organisms are needed to complement these
measurements, thereby supporting biological interpretation
of metrics derived from digital cameras and other sources of
time-series data.

4.3 Remote sensing phenology products

While the simple sigmoid approach used here with NBAR
data is identical to that used for the MCD12Q2 and MEA-
SURES products, each of these products is based on data
with different spatial resolution, leading to divergent results.
The MCD12Q2 algorithm does not use the spatial averag-
ing approach employed here, and therefore represents remote
sensing measurements associated with individual 500 m pix-
els. Consequently, the MCD12Q2 data are more suscepti-
ble to gridding artifacts of remote sensing measurements and
other sources of noise (see Fig. 1 in Xin et al., 2013). Spa-
tial averaging, which accounts for the values in neighboring
pixels, appears to improve the remote sensing representa-
tion of deciduous canopy phenology in comparison to near-
surface measurements: the simple sigmoid method applied to
MODIS NBAR data here yielded results with generally lower
RMSD and bias with respect to ground measurements, rela-
tive to the MCD12Q2 product (Tables 4 and 7). The larger
land area of measurements used to derive the MEASURES
phenology product also resulted in smaller biases with re-
spect to near-surface phenology dates than MCD12Q2, al-
though RMSDs were similar for spring and late fall phenol-
ogy (Table 6).

5 Conclusions

This study used near-surface digital repeat photography to
derive both visual assessment- and time-series-based esti-
mates of leaf phenology, over a broad geographic range
of temperate deciduous forests. To evaluate landscape-scale
phenology metrics from both satellite remote sensing and
near-surface metrics, a common framework of curve fitting
methods was applied to estimate phenophase transition dates
from both data sources. Results indicate that visual assess-
ment of the start of leaf-out in spring was very similar to es-
timates of the start of spring from curve fitting, and across the
jump in scale from near-surface to satellite remote sensing.
However in later spring, study sites with more heterogeneous
land cover exhibited greater differences between estimates of
phenology from near-surface and satellite remote sensing. In
particular, estimates of late spring phenology from satellite
remote sensing were biased later relative to near-surface es-
timates, with progressively larger bias for ecosystems with
lower fractional forest cover.

These results have broad implications for methods and
models that simulate or estimate ecosystem services that de-
pend on accurate monitoring of phenological events. For ex-
ample, remote sensing data are used to infer the phenology
of deciduous trees in ecosystem and earth system models
(Lawrence et al., 2011; Medvigy et al., 2009). If an artifi-
cially late end of spring is detected in regions with smaller
fractions of forest cover, this may lead to later attainment of
full photosynthetic capacity in the modeled canopy, resulting
in lower estimates of annual sums of net productivity in forest
ecosystems (Goulden et al., 1996; Richardson et al., 2012).
Near-surface imagery could be used in such ecosystems to
separate phenological signals of diverse land cover types, for
more accurate quantification of ecosystem services.

In addition to site heterogeneity, this study found that both
the analysis methods and data sources for phenological time
series affect the uncertainty associated with derived phenol-
ogy dates. Dates derived from NBAR-EVI had less statistical
uncertainty than dates calculated using NBAR-NDVI. Anal-
ysis methods with more flexibility for describing seasonal
variation in vegetation greenness, particularly a generalized
sigmoid method, resulted in lower uncertainty in estimated
dates and better agreement with visual assessment of canopy
phenology, demonstrating the importance of accurate func-
tional representation of phenological time series for identifi-
cation of phenophase transition dates.
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