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Abstract

We present a system of virtual particles that interact using
simple kinetic rules. It is known that heterogeneous mixtures
of particles are producing particularly interesting behaviours.
Here we present a two-species swarm in which a behaviour
emerges that resembles cell division. We show that the
dividing behaviour exists across a narrow but finite band of
parameters and for a wide range of population sizes. In
a two dimensional environment the swarm’s characteristics
and dynamism manifests differently from those observable
in a three dimensional environment. In further experiments
we show that repeated divisions can occur if the system is
extended by a biased equilibrium process to control the split
of populations. We propose this repeated division behaviour
provides a simple model for cell division mechanisms, which
relates to discussions of the origin of life and is of interest
for the formation of morphological structure and to swarm
robotics.

Introduction

We investigate emergent behaviours found arising from
the interactions within a heterogeneous swarm. The
interactions are in the manner of that originally described
by Craig Reynolds (Reynolds, 1987). He introduced a
simple algorithm showing that such a swarm could manifest
flocking behaviours. Each particle is influenced only by
other particles in its local neighbourhood. Each update
of the model represents a discrete time step. On each
update every particle is drawn toward the centre of mass of
its neighbours, aligns its velocity with its neighbours and
is pushed away from any particles too close. Reynold’s
swarms were homogeneous.

Sayama (2009) extended this approach allowing multiple
swarms to interact. Each swarm may have different sets
of parameters. A set of parameters may be thought of
as defining a species. By mixing two or more species of
swarms unusual structures and dynamic behaviours have
been seen (Sayama, 2010, 2012b,a). Many swarms could be
identified that have a distinct biological look to them: cells,
amoebas, diatoms abound. It is tempting to see the dynamics
of the so-called swarm chemistry as a simple model for the
real life counterparts of these forms.
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We extend the heterogeneous swarm algorithm to include
both growth and biased equilibrium mechanisms. Our
explorations have found a set of species that show cell
division like behaviour. Density and entropy measures
allow us to make broad categorizations of behaviours.
Single homogeneous swarm show limited behaviours, but
more complex emergent behaviours are apparent with just
two interacting species. Our investigations explore the
robustness of this behaviour under parametric variation.
Specifically we studied:

e How cell division is affected by the total size of the swarm
and the populations of each subspecies.

e The differences in the behaviour exhibited in 2D and 3D
environments.

e How cell division is affected by variation of several of
each swarm’s defining parameters.

Structure and form abound in and between biological
organisms. Much of this comes about via self organization.
One benefit of this is that its resultant emergent forms are,
in some sense, available for free. Structure emerges from
interactions without the need for it to be explicitly coded.
An understanding of these rules and their application allow
us the possibility of reusing this free structure in robotic
systems.  Self-organization of structures, self repair or
growth without explicit command and control is beneficial.
This approach may provide a model that allow us look at the
automatic creation of morphological artefacts and dynamic
behaviours. The tendency of many swarms to mirror
biological forms, albeit superficially, raises the question of
whether they can also be a model of biological processes.
Theories on the origin of life often invoke mechanisms to
assure that proto-replicators are held in close association:
within rock fissures; agglomeration at thermal vents;
within the wind blown organic foams formed in the sea.
Self-organized structures offer options for such discussions.
A similar argument is made (Hutton, 2002) with reference
to artificial chemistry. However this model is limited to the
organizational dynamics arising from its kinetic interactions.
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Single cell division and the dynamics of small multicellular
groups contain the ebb and flow of chemical gradients,
protein interactions and gene expressions. Whilst much is
known, the precise chemo-mechanical details are still there
for investigation. We propose that the dynamics of our
cell division swarms may offer a simple model that allows
some of these investigations. In order to allow this we
require that a robust repeating cell division like mechanism
be implemented. Thus we also look at modifications made
to enable the observed cell division behaviour to repeat.

Background

D’arcy Thompson detailed many roles that physical
processes might play in the morphological development of
creatures and their artefacts (Thompson, 1917). He saw that
the forms that soap bubbles took as their surface energies
pulled and found equilibria bore resemblances to biological
forms. He believed that this was not mere coincidence. It
has been shown that this idea is indeed true — at least in
part. Honeycomb, its hexagonal packing and shape of end
caps, are both found in bubble foams but are not derived
from a bubble formation mechanism (Ball, 2011). However
the packing of the four cones in the ommatidia of a fly’s
compound eye may be due a mechanism of simple squeezing
together like bubbles. Ball also documents work that notes
that the spicule structures of sponges appears to form via
a mechanism whereby a bubble array is created and then
inorganic compounds are allowed to permeate the interstices
of the bubble matrix. The creature is leveraging the free
structure from what Ball refers to as a fossilized foam. The
processes at all scales of life are complex when compared
to the simple mechanisms that our model uses. And yet
simple processes may shed light on the forms that life can
take. Finite subdivision rules have been used to model cell
division previously.

Reynolds’ flocking algorithm have been subject to
numerous variations, adding in: assumed fear, or leadership
roles, or desire to stay close to roost sites etc. It
has been shown (Feder, 2007) that in starlings it is the
number of neighbours (not radius), that is important, and
that the influence of neighbours was spatially anisotropic.
Nearest neighbour interactions combined with an energy
minimization argument has been used to generate line and
vee formation flocks (Klotsman and Tal, 2011). These
homogeneous swarm algorithms have been further extended
by combining multiple ‘species’. We should mention here
again the studies of Sayama in particular on the relationship
between 2D and 3D species (Sayama, 2012b). An
evolutionary approach was adopted to discover interesting
heterogeneous swarms (Sayama, 2010, 2012a).

Local interactions in biology have been much studied.
Quorum sensing, the switching of behaviours due to local
sensing, is seen in a large range of organisms from
bacteria to honeybees (Miller and Bassler, 2001; Seeley
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et al.,, 2006). Various insects employ local microrules
to drive artefact construction (Camazine et al., 2001). It
has been shown (Schmickl and Hamann, 2011; Kengyel
et al., 2009; Bodi et al., 2009) that bees, through local
interactions, locate areas of a target temperature. Such
biological inspirations have informed swarm robotic work.
Review documents (Bayindir and Sahin, 2007; Mohan
and Ponnambalam, 2009) highlight the extensive range of
behaviours that may be implemented from swarm robotic
interactions, including: pattern formation; aggregation;
chain formation; self-assembly; coordinated movement;
hole avoidance; foraging; self-deployment; grasping;
pushing; caging.

Method

The basic heterogeneous swarm algorithm (Sayama, 2012b)
gives each particle a set of parameters. Each particle’s
update of position and velocity is influenced only by its
local particles within a specific neighbourhood radius. Each
particle has a preferred normal speed, the maximum speed
being bounded. Parameters c1, ce and c3 scale the influence
of the neighbouring particles. The ¢; parameter is a measure
of cohesion, the strength of pull toward the mean neighbour
position. The co parameter is a measure of alignment, the
strength of pull toward mean neighbour velocity. The c3
parameter is a measure of avoidance, the strength of push
from close neighbours. On each update of the swarm each
particle uses neighbouring particles to update its position
and velocity.

N is the set of particles centred on particle i and being
within particle i’s neighbourhood radius. The average
position of these is
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neighbourhood radius of particle 7 is
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The acceleration of particle 7 is given by
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The dynamics are further modified by the c4 parameter
which is a probability of ignoring the neighbours’ effects.
The particle’s velocity is updated using the acceleration a;.
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The magnitude of a particle’s velocity has an upper
bound. This is one of the swarm’s parameters. Similarly
each swarm has a parameter that is the preferred magnitude
of the particles velocity. If a particle is not travelling at
this preferred velocity, vy, then parameter c; is then used to
nudge the velocity back to its toward its preferred velocity
using

Vi c5 (Vv /|Vi|.vi) + (1 —¢5) Vi
Finally each particle’s position is updated using
X; < X; + V.

Quantification

The eight parameters (c; through c5, neighbourhood radius,
speed and maximum speed) define a large parameter space.
To search this space we require automated means to detect
behaviours of interest.

In our swarms we can calculate the average density of
particles. This density measure differentiates single blobs
from both dispersed swarms and multiple blobs: single
blobs show a higher density. We note that this may
not always be true: a large hollow single blob may be
less dense than multiple blobs that are close together. A
second measure, a spatial entropy, allowed differentiation
between multiple blobs and dispersed swarms. It has been
suggested (Bonabeau et al., 1999) that a spatial entropy can
be defined as

H ==Y P(k)log P(k),
k

where P(k) is the fraction of particles found in patch k. H
decreases as clusters form. We used patches that are always
cubes of side 0.1 times the maximum extent of the swarm
i.e. the minimal cube containing the swarm is split into 1000
patches. Two similar treatments are made in (Batty, 1974)
and (Wolfram, 1984).

We also use the Kullback-Leibler divergence from an
evenly distributed population as a measure. This is defined
by

P(k)
Dir =Y P(k)log | ==,
K ; g(@(k))

where P is the distribution of the particle positions and
@ is the distribution of an evenly dispersed swarm. Note
that since Q is evenly distributed, we have simply Dy =
log (ﬁ) — H. For the cell division like behaviour D,

thus increases when the swarm has divided into separate
clumps.
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Fig. 1: Typical evolution of cell division in our swarm. Top
left shows red particles as a toroid about the yellows.
Top right shows the yellow swarm divided in two
with a separate red swarm. Bottom left has the
reds rejoining the larger yellow blob. Finally bottom
right, the process repeating and is shown at a larger

scale.

Results
Single species characterization

A homogeneous swarm appears to exhibit behaviours drawn
from a fairly limited palette of possible behaviours. We
note four behaviours: full dispersal, blob or sphere, multiple
blobs, and one we call a point swarm (all particles collapse
toward a single point). In full dispersal the particles separate
and move apart, there is little or no tendency to aggregate.
In a blob the particles form a sphere (or approximate sphere)
or shell of a sphere. Multiple blobs are simply a multiple
version of the last form. Point swarms are seen for swarm
parameters where the avoidance value is at or near zero. This
results in all particles collapsing to a single point. This state
tends to not show as a sphere or a point. Instead the particles,
which all exist in a tiny spatial volume, show as an irregular
clump of particles that jump about. Particles have discretised
speeds so at each update a particle tends towards the average
position of the clump, but the step size is larger than the size
of the clump, thus the particles are unable to actually occupy
a single point.

We find that the four single species states can be classified
by the density and spatial entropy (or Kullback-Leibler
divergence). By sweeping through the parameter space of
the cohesion and avoidance parameters it was possible to
find regions of each of the four swarm types. The spatial
entropy and densities were measured for each. A visual
check of the final state of the swarm was also made. The
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Fig. 2: Density and entropy measurements for a homogeneous swarm as a function of its cohesion (c¢;) and avoidance (c3)
parameters. The logarithm of each measure is plotted in order to squash the vertical extent of the surface plots as the

range of values extends over several decades.

measures were plotted against the parameters to generate the
surface plots shown in Fig. 2.

Cell division behaviour species

We present two species of swarms that individually formed
single blobs (multiple blobs if their populations were large
enough), but in combination result in a cell division like
behaviour. Typical stages of this are shown in Fig. 1. The
values for the parameters used in these swarms are shown in
Tab. 1.

spc | rad | spd | msp |c1 | co c3 cq cs
1 1205] 194 | 20.7 | 1 1 18.6 | 0.05 1
2 | 300 | 1558 37.08| 1 |0.05|9.11|0.47 |0.61
Tab. 1: Parameter values for the cell division like behaviour

swarms. Headings are: spc = swarm species, rad =
neighbourhood radius, spd = normal speed, msp =
maximum speed, c; = cohesion, ¢y = alignment, c3
= avoidance, ¢4 = whim, c¢5 = speed control.

When displaying the particles the parameters ¢; through
c3 are used to define the displayed colour of the particles.
Here, species 1 displays as a yellow colour and species 2 as
a red colour. Clearly if we alter these parameter values the
colours will alter. For descriptive convenience we choose to
describe the two swarms as the yellow and the red swarms
respectively. Typically the swarm population constructed of
around ten yellow particles for every red particle. When
this heterogeneous swarm is run the initially mixed species
separate. A toroid of red particles forms about the yellows
until a split occurs. The separate yellow blobs move apart,
with the red particles forming a blob in between. At some
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point the reds are drawn into one of the yellow blobs and the
process repeats. The repetition only occurs within a single
blob of the yellows.

Comparison with 2D Swarm Chemistry

We explored the differences in 2D and 3D behaviour of
our swarms. With no change to the swarm parameters cell
division behaviour still occurred. Differences in the 2D
version included: the red particles travel to the inside of a
yellow circle of particles causing an inside out division to
occur; the separated blobs do not travel apart; and the red
particles do not get drawn back into one of the yellow blobs.

An outside in division was achieved via modification of
both swarms’ parameters, Fig. 3. As parameters have been
changed, the particles no longer appear as red and yellow
but as magenta and cyan respectively. Now the red particles
form a ring around the yellow circle and squeeze it until
division occurs. Again the separate parts do not travel apart.

It is possible that reintegration of the red particles with
one of the yellow blobs would occur if the swarm was
left to run. It is also possible that with further parameter
modification a recipe may be found that results in the split
parts separating.

Robustness under population dynamics

Yellow versus red populations. We varied the two
species’ populations to determine the limits on the cell
division like behaviour. Each run lasted for 2000 time
ticks. The density and entropy measures were captured at
the end of each run. For confirmation the final state of the
swarm was captured as an image. Yellow populations were
varied over a range from 100 to 550 in steps of 50, and red
population over the range 10 to 90 in steps of 10. Fig. 4
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Fig. 4: Density and entropy measurements for a heterogeneous swarm as a function of its yellow and red populations (p; and
p2). The logarithm of each measure is plotted in order to squash the vertical extent of the surface plots as the range of

values extends over several decades.

Fig. 3: 2D cell division. Upper row shows an ‘inside out’
division. Lower row shows and ‘outside in’ division.

shows the density and entropy measures as a surface plot
for all combinations of these populations. Cell division is
marked by low density (blue on left hand plot) and high
entropy (red on right hand plot). We see that the cell division
behaviour extends over a wide range of populations. Very
low red or high yellow populations tend to never show cell
division. The line between division and no division is noisy.
We assume this is due to variability in starting position
of particles and/or the arbitrary duration of each run. We
explore both of these possibilities.

We fixed the red population at 50, and executed 5 runs for
yellow populations varying from 300 to 600 in steps of 25.
When the yellow population is below 375 division always
occurred. For populations above 450 it never occurred. In
the range between division may or may not occur. The
difference between each run was the randomized initial
positions of the particles in the swarms. The KL divergence
and the density (averaged over the 5 runs) are summarized
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in Fig. 5. The density increases and the KL measure drops
above a population of 350 coinciding with the onset of
swarms that fail to divide. When division never occurs the
values level off.
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Fig. 5: Density and Kullback-Leibler divergence measures
as function of yellow population after 2000 time
ticks. For a fixed population of red particles (50), we
vary the population of the the yellow swarm (from
300 to 600).

Effect of lengthening run time. We repeated the previous
investigation but allowing the model to run now for 10000
steps. There is still no distinct population boundary between
split/no split behaviour. Yellow populations less than 425
always result in division. Those greater than 475 never
divide. Populations between these limits may divide. Fig. 6
confirms this observation in that the step up in density occurs
at higher yellow populations. Executing the swarm for still
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Fig. 6: Density and Kullback-Leibler divergence measures
as function of yellow population after 10000 time
ticks. For a fixed population of red particles (50),
we vary the population of the yellow swarm (from
300 to 600).

longer durations suggested that with relatively small red
swarms the whole swarm may be unable to divide. However
when the red population was increased (to 180) the swarm
which appeared to be stable would occasionally eject a small
blob of yellow particles. This suggests that such a swarm
may slowly lose yellow particles until the remaining yellow
blob is small enough to show the normal division behaviour.

Robustness under parameter variation

A full search of the parameter space is currently too onerous.
Therefore we choose a simpler approach. We look to
vary single parameters whilst keeping all other parameters
unchanged. We vary the parameter being studied until the
cell division behaviour disappears.

Variation of neighbourhood radius. Using a yellow:red
population mix of 300:50 we varied, independently, the
neighbourhood radii of each swarm. For cell division
behaviour the red species was required to have a
neighbourhood radius greater than 125 and for the yellow
‘species’ it needed to be within the range of about 13 to 25.
Samples are shown in Fig. 7. Each swarm was run for 2000
time ticks. Yellow radii above 28 result either in a single
cloud or have the red particles held within the yellows.

Variation of avoidance and cohesion parameters. We
separately swept through combinations of avoidance and
cohesion parameters. First we varied red avoidance between
5 and 40, yellow between 10 and 60. Then we varied the red
and yellow cohesion values from 0.2 to 1.0. A number of
different behaviours were noted. Several behaviours would
not be distinguishable via the use of measurements alone,
so each run was watched and categorized. A single run of
each permutation was made. All runs lasted 2000 time ticks.
Tab. 2 shows the results for avoidance variation and Tab. 3
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(c) Red radius = 300, yellow radii of 10, 20, 30.

Fig. 7: Final states of each run. Examples of neighbourhood
radius variation.

shows the results for cohesion variation.

Cell division behaviours exist over narrow ranges of both
these parameters. Cell division behaviour of the sort we
have been looking at is thus very sensitive to the values of
both avoidance or cohesion parameters. As with the other
parameter studies whether this is true for other population
and parameter mixes is unknown. It appears that for small
yellow avoidance values (c3< 40) the red avoidance value
needs to be around half that of the yellow value for any
division to occur. Given the parameter set of the swarms,
it appears that larger yellow cohesion values are needed to
stop the yellow swarm from disintegrating. Perhaps above
this level (around 0.6) the yellow swarm requires a greater
‘pull’ from the reds to begin to divide. As with the other
parameter studies whether this is true for other population
and parameter mixes is unknown.

Repeated division

The cell division behaviour in the previous sections splits
a clump of yellow particles in two. Only one of those
clumps will subsequently divide again. This occurs as the
red particles tend to only associate with the larger clump
of yellow particles. In order for this division behaviour
to be seen as a possible model for real world division we
needed a mechanism that would allow any yellow clump
to potentially divide. In (Sayama, 2012a) each particle
is modelled as expressing one parameter set drawn from
a group of parameter sets. This formulation allowed a



= =) S S > >
R R R
2 2 2 2 2 2
Avoidance % % % % % %
values > > > > > >
Red=5 3D | 2D | 2D | 2D | 2D Y
Red=10 0 3D | 2D | 2D 2D 2D
Red=15 0 0 0 3D 3D 2D
Red=20 0 0 0 0 3D 2D
Red=30 0 0 0 0 3D Y
Red=40 0 0 0 0 3D Y

Tab. 2: Division types as function of avoidance parameter,
cs, for a selection of the parameter variations tried.
Categories are: ‘0’ — No division seen, reds may
form toroid round yellows. ‘3D’ — Division seen,
behaviour was characteristic of the standard 3D cell
division. ‘2D’ — Considered the same as 2D case.
Inside out split but clumps are largely static after

split. Reds may be drawn in. ‘Y’ — Yellows
disintegrate into small clumps, reds form their own
clump.
o < o) % S
=) =) = = —
[ I [ [ I
2 2 2 2 2
= 2 = =2 =2
Cohesion values = = ~ = =
Red=0.2 Y Y Y 0 0
Red=0.4 Y Y 3D 0 0
Red=0.6 Y Y 0 0 0
Red=0.8 Y Y 3D 0 0
Red=1.0 Y 2D | 2D | 3D 3D

Tab. 3: Division types as function of cohesion parameter,
c1. Categories are as per Tab. 2.

natural extension to evolutionary techniques to be applied.
We choose a similar approach. Each particle expresses
itself either as a red or a yellow particle. There is a
small probability that any particle may change the behaviour
it expresses. This is modelled as a biased equilibrium
processes. Each yellow, on being chosen to pick a behaviour,
will select changing to red with a 0.1 probability. Each
red will select changing to yellow with a 0.9 probability.
This ensures a rough 90:10 percent mix in the population,
but allows any clump of yellow particles to develop a red
population. This mechanism only works as a divided cell
tends to move apart. If the parts remain close, either
by artificial confinement or as would be the case in the
2D version, then any new reds in one clump tend to be
immediately sucked into the clump with the larger red
population.

This mechanism alone provides for each clump to
continue to divide over time. However, as clumps do not
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Fig. 8: Repeated division. Top left shows first division.
Top right shows the second division. Bottom Left
shows multiple blobs with red particles from the bias
equilibrium process. Bottom right shows multiple
divisions occurring.

tend to recombine the ultimate future for this approach is
a dispersed swarm. We added a growth mechanism to
allow clumps to increase in size. New particles would be
created close to randomly chosen existing particles. This
can be viewed as new particles being recruited from the
environment. Fig. 8 shows some examples from a swarm
that implements both the biased equilibrium and growth
mechanisms. The swarm still tends to appear somewhat
dispersed, however, there are still many clumps that continue
to divide.

Discussion

We presented a heterogeneous swarm that exhibits cell
division like behaviour. Prior to dividing, the red particles
form a toroid — but only because the yellows support it.
There are configurations where this appears a long lived
phenomenon. Division occurs for a wide range of swarm
sizes, but there appears to be a size above which the yellow
swarm tends to stability. We found some evidence that
such a swarm may gradually lose yellow particles suggesting
that cell division may reappear if the swarm runs for long
enough. Balancing the growth and biased equilibrium can
be hard and the population will tend to fragment. It would be
appealing to improve the linkage between these mechanisms
so that division would become more regularly periodic.

We observed differences in the emergent behaviour
depending whether the swarm ran in a 2D or 3D
environment. If the parameter values used in a 3D
environment were used, unchanged, in a 2D environment
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then we observed an ‘inside out’ division. This resulted
in a relatively static set of divided clumps. By modifying
the parameter values used we were able to recapture the
‘outside in’ division seen in 3D. This still failed to show
the full dynamics seen in 3D. However, the fact that there
are parameter mixes that show behaviour in 3D that matches
that seen in 2D suggest the opposite may also be true.

The cell division behaviour was sensitive to the swarms’
parameter recipes. Yellow neighbourhood radius needs to
be in a narrow band. The red neighbourhood radius appears
to have a lower limit, while much larger values seem to
result in division behaviour. Cell division behaviour is seen
only across a narrow band of both avoidance and cohesion
parameters. On one side of the band no division is observed.
On the other side either an ‘inside out’ division similar to
that seen in 2D, or a spontaneous yellow disintegration that
requires no interaction with the red particles, is observed.

The inclusion of a biased population equilibrium and
growth mechanisms enabled the swarm to show ongoing cell
division like behaviours.
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