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Abstract: The overarching goal of this research was to explore accurate methods of 

mapping irrigated crops, where digital cadastre information is unavailable: (a) Boundary 

separation by object-oriented image segmentation using very high spatial resolution  

(2.5–5 m) data was followed by (b) identification of crops and crop rotations by means of 

phenology, tasselled cap, and rule-based classification using high resolution (15–30 m)  

bi-temporal data. The extensive irrigated cotton production system of the Khorezm 

province in Uzbekistan, Central Asia, was selected as a study region. Image segmentation 

was carried out on pan-sharpened SPOT data. Varying combinations of segmentation 

parameters (shape, compactness, and color) were tested for optimized boundary separation. 

The resulting geometry was validated against polygons digitized from the data and 

cadastre maps, analysing similarity (size, shape) and congruence. The parameters shape 

and compactness were decisive for segmentation accuracy. Differences between crop 

phenologies were analyzed at field level using bi-temporal ASTER data. A rule set based 

on the tasselled cap indices greenness and brightness allowed for classifying crop rotations 

of cotton, winter-wheat and rice, resulting in an overall accuracy of 80 %. The proposed 

field-based crop classification method can be an important tool for use in water demand 

estimations, crop yield simulations, or economic models in agricultural systems similar to 

Khorezm.  
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1. Introduction 

Sustainable land and water management is essential for securing food production under the situation 

of climate change, decreasing water resources and growing population especially in the face of limited 

arable land [1]. Accurate crop distribution maps can substantially support this effort as they contribute 

to three important aspects: planning, modelling, and monitoring of land and water allocation in 

agriculture. For these applications, remote sensing has proven to be a valuable tool in the past decades. 

Especially for mapping crop distributions and rotations, numerous image classification algorithms 

have been developed [2]. However, optimization of classification accuracies is an ongoing process and 

advances in sensor technology, new image processing techniques as well as increasing computing 

capacities allow for perpetual improvements of existing classification concepts and methods.  

The use of mono-temporal, multi-spectral data has proven to be largely unsuitable for agricultural 

land use classification due to the spectral similarity of crops at certain cropping stages. Multi-temporal 

methods are better suited for crop mapping because they consider the phenological development of 

crops [3,4]. Due to their high temporal resolution, medium spatial resolution sensors like AVHRR [5] 

and MODIS [6,7] have been widely used. However they are only applicable at regional scales or for 

large homogeneous fields [8]. High spatial resolution sensors like Landsat-TM/ETM+ or  

SPOT-5-HRG provide less recurrence, but allow for a more detailed discrimination of agricultural land 

use at field scale [9], especially in regions where small-scale farming prevails. 

For such regions, object-oriented techniques were found superior to pixel-based classifications [10,11]. 

Small-scale differences in crop growth (e.g., due to uneven irrigation or saline patches) may easily 

lead to misclassifications at pixel level. The concept of field-based crop classifications accounts for the 

observed heterogeneity in the spectral signals of agricultural fields [12], which may be caused by 

spatially varying plant water, nutrient or pest infection stress, soil colors, or vegetation density. Field 

boundaries are used to homogenise intra-field patterns. Per-field classifiers [13] combine vector and 

raster information to GIS-ready information [14]. 

In existing studies on per-field classification, vector information on field boundaries was derived 

from ancillary layers mostly digitized from satellite images, cadastral data, or topographic  

maps [11,12]. However, if large areas are to be mapped and ancillary data is unavailable, segmentation 

techniques can be used to derive agricultural fields from raster data for subsequent classification [14]. 

The authors in [15] e.g., utilized high resolution aerial images to derive landscape objects in northern 

Italy, whereas the within-object classification was based on satellite imagery. But altogether, studies 

applying such multi-sensor approaches per-field classification methods are still rare. 

The quality of image segmentation is decisive for every ensuing object-based image classification [16]. 

The challenge is to find the optimal segmentation parameters, as to derive image objects which 

resemble real world objects as closely as possible. In most remote sensing studies, segmentations have 

been evaluated, in order to avoid over- or under-segmentation, either visually [15] or by using complex 
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(mathematical) approaches [17,18]. With regard to the subsequent classification simple and practicable 

quality estimation metrics are highly desirable. 

Independent of the origin of the field boundaries, the crop type for the field-object is mostly 

assigned by integrating the results of an underlying pixel-based land use classification. [12] and [11] 

first classified the crop type of each pixel. Calculating the modal class or majority of the underlying 

pixels led to the classification decision at field level. In [15] a more complex rule set based on several 

features for object classification, such as the predominant class, area of the predominant class, number 

of pixels within an object, etc. was developed. In contrast, [14] classified field-averaged  

spectral reflectances. 

1.1. Objectives 

This study focuses on accurate per-field classifications of crops in irrigation systems, where digital 

cadastre information is unavailable or lacking in quality. It was conducted on irrigated croplands in the 

Khorezm region, Uzbekistan. In this region, accurate information on crop distribution and crop 

rotation are essential for estimations of water demand and the prediction of crop yields. 

The first objective was to derive agricultural field boundaries from high resolution satellite data 

(SPOT 5, 2.5–5 m) by utilizing image segmentation techniques. The use of high resolution data for 

segmentation has also been considered advantageous by [15], because medium resolution data  

(15–30 m) often result in less accurate segmentation results. Special emphasis was on an objective 

procedure for selecting appropriate segmentation settings (optimization of field geometry). By 

achieving this target, all other non-agricultural land use or land cover classes such as settlements, 

desert, or water bodies can be omitted from subsequent classifications.  

We secondly aimed at the classification of crop types and crop rotations within the field boundaries 

using multi-temporal data of medium spatial resolution (bi-temporal ASTER, 15–30 m) and analysing 

tasselled cap indices in a rule-based approach. The idea was to analyse the composition of vegetation 

cover and soil wetness within a field and its temporal development during different phenological 

stages (cropping calendar). According to [19] the tasselled cap indices brightness and greenness were 

assumed to represent soil wetness and green vegetation cover (vegetation density), respectively.  

In theory it is desirable to have multiple images over the growing season for crop classification.  

Bi-temporal data was selected to account for two cropping seasons and to minimize data costs, because 

relatively cheap high resolution solutions can more easily be adopted by land and water managers in 

Central Asia. We want to show that by carefully selected acquisition dates two data sets suffice for 

accurately mapping winter and summer crops occurring in the Uzbek study area.  

2. Study Area 

The Khorezm province is located in the Aral Sea Basin between the Amu Darya River to the north 

and the Turkmen border to the south (see Figure 1a). The climate is dry and continental and the region 

belongs to the zones of deserts and steppes [20]. On average, approximately 100 mm of annual 

precipitation falls, predominantly during winter with high spatial and temporal variability. Annual 

potential evapotranspiration is approximately 1,500 mm [21].  
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Figure 1. The study area. (a) Countries and irrigation regions of Central Asia. The 

Khorezm region is highlighted. (b) Administrative boundaries of the Rayons in the 

Khorezm region and the extent of the satellite images used in this study. (c) Boundaries of 

the Water User Associations (WUAs) in Khorezm. The SPOT 5 scenes used in this study 

are displayed in the background. Highlighted are the WUAs that are investigated in this 

study (1: Jayhun; 2: Amir Temur; 3: Shomahulum; 4: P. Mahmud; 5: Madir Yop). 

 

Khorezm represents a major cotton production system of the former Soviet Union which is facing 

serious economic and ecological problems [22]. Since the independency of Uzbekistan 1991, demand 

on the scarce water resources has been increasing due to the introduction of winter-wheat for  

self-sufficiency. Soil quality in the region is low, shallow and saline groundwater in combination with 

inappropriate management practices, formerly described by [23], further increase the soil salinity [24] 

throughout the region. Furthermore, Khorezm is strongly affected by periodic droughts and resulting 

shortages in irrigation water supply. Altogether, sustainable land and water management is hardly 

achievable, since crop production is strongly dependent on an adequate supply of fertilizers and water.  

The region comprises an area of roughly 5,600 km2, approximately 2,750 km2 are used for irrigated 

agriculture [25]. Dominant crop types are cotton, winter wheat and rice, constituting around 70–80% 

of the arable lands. A schematic cropping calendar for these crops is presented in Figure 2. Wherever 

possible, another crop is grown on the winter-wheat fields after harvest, mostly rice. Fodder maize, 

alfalfa, sunflower as well as fruits and vegetables are also cultivated, but their allotment is 

comparatively low [26].  
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Khorezm is subdivided into eleven administrative units, so-called Rayons (Figure 1b). The 

irrigation system is managed and maintained by so-called Water User Associations (WUAs,  

Figure 1c), which comprise numerous private farms. The classification was carried out on a subset 

from the Amu Darya River in the north-east to the desert in the south-west. It was defined by the 

intersection between the Khorezm region and the extent of the ASTER and SPOT 5 data (Figure 1b). 

Five WUAs located in this area were selected for sampling (Figure 1c). It will be shown in Section 

3.3.1., that this transect encompasses large parts of the ecological variability of all WUAs in Khorezm. 

Field boundaries however, were delineated for the entire extend of the SPOT scenes (see Figure 1b). 

Figure 2. Idealized cropping calendar of the study region, Khorezm. 

 

3. Materials and Methods 

The conceptual framework of this study comprises two major parts, illustrated in Figure 3. At first, 

field boundaries were derived from mono-temporal high resolution SPOT 5 data by segmentation. The 

segmentation was optimized using the geometry of digitized reference fields and cadastre maps. 

Secondly, the resulting polygons were subsequently classified into fields and other objects and 

validated against the same vector information. The classification decision for each field-parcel was 

based on bi-temporal ASTER data. The tasseled cap indices greenness and brightness served as 

features for classifying basic cover types indicating the vegetation density and soil wetness of each 

pixel (sparse, medium, and dense vegetation; dry and wet soil). Bi-temporal information of vegetation 

density and soil wetness was then analyzed within the field-parcels using ground-truth samples and the 

cropping calendar (Figure 2) to establish a rule-base for the final classification. It has to be noted, that 

in regions, where digital field boundaries are available, the extraction of the field-parcels using high 

resolution remote sensing data can be omitted. 
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Figure 3. Schematic workflow of the study. The left part shows the separation of field 

boundaries for per-field classification, the right part highlights the classification steps. 

Note: the segmentation of field boundaries can be replaced by any other source of vector 

field boundaries. 
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The following sections contain a description of the satellite data and the preprocessing, and both 

methodological parts, the separation of the field boundaries and the crop classification. 

3.1. Satellite Data and Pre-Processing 

Field boundaries were derived from SPOT 5 High Resolution Geometric (HRG) data. In Khorezm 

most field boundaries coincide with irrigation or drainage canals. Thus, they were considered constant 

for a couple of years which is in agreement with the assumption of [12]. SPOT images were acquired 

mid-season in 2006 (Table 1), after wheat harvest and before cotton reached full vegetation cover. 

Wheat and cotton fields were therefore dry and bare. The remaining fields were either flooded for rice 

cultivation or covered by secondary crops (Figure 2). ASTER images, used for crop classification, 

were recorded twice during the growing season 2007, nearly time-synchronous to ground truthing. 

Two dates of imagary were selected in order to distinguish between winter and summer crops, in 

particular different crop rotations of wheat.  



Remote Sens. 2010, 2                            

 

 

1041

Table 1. Characteristics of the ASTER and SPOT images used in this study. 

              Sensor   

Characteristics 

SPOT 5-HRG 

[27] 

Terra-ASTER 

[28] 

Product level 1B—Radiance at sensor 1B—Radiance at sensor 

Number of scenes 2 4 

Date of image collection 19. / 22.06.2006 
01.06.2007 (2) 

03.07.2007 (2) 

Bands used* PAN (1), VNIR (3), SWIR (1) VNIR (3), SWIR (6) 

Spatial resolution [m] 2.5, 10, 20 15, 30 

Swath width [km] 60–80 60 

* PAN = PANchromatic band; VNIR = Visible and Near InfraRed spectra, SWIR = Short Wave 

InfraRed spectra 

The first pre-processing steps consisted of atmospheric and geometric corrections. Despite 

relatively good atmospheric conditions, the ASTER imagery was atmospherically corrected to be able 

to apply one rule set to both images [29]. ATCOR 6.4 [30] was used for correction. The aerosol type 

was set to ‘dry rural’ and the calibration coefficients for ASTER were selected according to [31]. 

SPOT PANchromatic (PAN) images were corrected for atmospheric influences to sharpen the contrast 

between the mostly dry fields and the vegetated canals at the field boundaries. SPOT PAN scenes were 

subsequently ortho-rectified using the software XDibias [32] and eight ground control points per 

image based on differential GPS measurements. The rectification resulted in sub-pixel accuracies of 

the images. Afterwards SPOT Multi-Spectral (MS) and ASTER scenes were fitted to the PAN images 

using a second order polynomial model and 24 to 32 ground control points per image, collected  

on-screen. Final geo-location accuracy was also below one pixel. In support of the segmentation 

described below, a 5 × 5 variance texture image was calculated from SPOT PAN data. Moreover, a 

pan-sharpening of the SPOT data was conducted using a High Pass Filter (HPF) algorithm [33].  

3.2. Segmentation of Agricultural Fields Using Pan-Sharpened SPOT Data 

A layerstack of pan-sharpened SPOT data and the variance texture image was segmented and 

subsequently classified into fields and non-fields using the software Definiens Developer 7. Two 

parameters control the segmentation process in Definiens: the scale parameter (controlling object size) 

and the relation between object compactness and smoothness [16]. To determine optimal parameter 

settings for segmentation, several combinations of parameters were tested and validated against actual 

field boundaries (see also [17]).  

The range of possible values for the scale parameter was set by visual inspection of different 

segmentation results. The multi-resolution segmentation algorithm was applied [34] with the following 

scale parameters: 70, 90, 110 and 130. These were combined with three color (0.9, 0.7, and 0.5) and 

three shape (0.5, 0.7, and 0.9) parameters. Altogether, 36 (4 × 3 × 3) different segmentation settings 

were tested.  

Five representative WUAs (see Section 3.3.1.) and 10 randomly selected square subsets with a size 

of 2.5 × 2.5 km each served for validation. Reference field boundaries were manually digitized from 

the pan-sharpened SPOT data and cross-checked with official land register maps, if available.   
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Figure 4. Metrics used for segmentation suitability assessment. 

 

Two similarity metrics were defined for evaluation of the selected combinations of segmentation 

parameters (Figure 4). Metric 1 is defined as the ratio between the wrongly segmented area (Aw) and 

the total area of the digitized reference field (A0). The closer the first metric is to zero, the smaller the 

wrongly segmented area and the better the segmentation result. The number of segmented objects (N0) 

per reference field is summarized in metric 2. The metric showed highest performance in case of 

having a value of one.  

Local and global validation according to [18] was carried out against 2,235 digitized fields to select 

the best segmentation settings. First each reference field and the corresponding image objects were 

considered (local validation). After intersection of the reference field with the selected objects, only 

those objects were selected that fulfilled either condition (a) the intersecting area covers more than 

40% of the digitized reference object or (b) the area percentage of a segmented object intersecting with 

the reference field is higher than 60%. This secured that only those objects were selected which 

significantly correspond with the actual field. Otherwise too many segmented objects would have been 

included which only partly touch or surround the actual field. By evaluating the selected metrics, the 

segmentation quality for each specific field was estimated. Global validation was conducted by 

calculating average values of the metrics for all image objects (local validation). Standard deviation 

was also calculated for integrating local validation results in the assessment process. A comparison of 

both mean and standard deviation led to the final choice of segmentation parameters.  

After segmentation, agricultural fields were distinguished from other objects (settlements, desert, 

water, etc.). The features ‘compactness’, ‘contrast to neighbor pixels of the texture layer’ [34] and 

‘GLDV Angular Second Moment’ served as input for the Definiens classification algorithm. GLDV 

ASM is based on the grey level co-occurrence matrix (GLCM) principle [35], which has been reported 

to enhance classification results [36]. The results were validated against sample objects collected  

on-screen for validation from the representative WUAs and square subsets. Overall, User’s and 



Remote Sens. 2010, 2                            

 

 

1043

Producer’s accuracy were calculated according to [37]. All subsequent work was based on the 

resulting agricultural field layer. 

3.3. Per-Field Irrigated Crop Classification 

3.3.1. Ground Truth Data 

Ground truthing was carried out from May to July 2007. In order to balance the need for sufficient 

data with costs, WUAs representing the environmental variability in terms of climate, irrigation water, 

and ecological settings were chosen as appropriate sampling locations. The environmental situation 

was assumed to encompass differences in crop growth patterns. Therefore, a statistical stratification of 

the WUAs in the Khorezm region was applied. Average data on soil quality, soil salinity, groundwater 

level (indicating the location properties), distance from water intake points (potential water supply), 

evapotranspiration (actual water consumption) and rice-cropped area (permanent water availability) 

served as input. The data was provided by the central database of the ZEF/UNESCO Khorezm  

project [38].  

For stratification a hierarchical cluster analysis followed by a K-means cluster analysis was 

conducted on all 119 WUAs. Five clusters were chosen to be representative of the study region. For 

ground truth data collection, one WUA was selected for each cluster (Figure 1c). Within each WUA, a 

cluster sampling scheme [39] was applied to receive an acceptable number of reference datasets for 

classification. This sampling method fulfils the requirements of a probability sampling design, thus 

allowing for subsequent statistical analysis and an appropriate accuracy assessment [40]. In total, 253 

fields were sampled comprising the following crop types: ‘Cotton’ (99), ‘Wheat’ (78), ‘Rice’ (74), 

‘Wheat-rice’ (47), ‘Fallow’ (41) and ‘Other’ (29). 

3.3.2. Per-Pixel Derivation of Vegetation Density and Soil Wetness 

At the start of a cropping period, agricultural fields are usually bare, which is followed by an 

increase of green vegetation cover and turns to yellow upon the ripening state of crops. The tasselled 

cap (TC) indices brightness, greenness, yellowness reflect this course of varying environmental state 

within a remote sensing pixel over agricultural areas [41]. According to the concept of [19], the TC 

index brightness represents the soil line, which allows for the separation of dry and wet soil in regions 

where colors of dry soil are homogeneous. Analogous the greenness can be understood as a “green 

stuff vector” showing the cover of green vegetation within one pixel [19]. We used this concept to 

simply categorize the density of green vegetation within one pixel and—in case of no vegetation 

cover—the soil wetness. The area portions of the resulting five basic land cover classes within one 

field were later used for the final crop classification (Section 3.3.3.). 
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Table 2. Coefficients for the calculation of the tasselled cap indices derived from 

atmospherically corrected ASTER data over Khorezm, Uzbekistan.  

 Band 1 Band 2 Band 3 Band 4 Band 5 

Brightness 0.371787 0.418112 0.498587 0.530955 0.395544 

Greenness −0.408106 −0.486785 0.759667 0.051994 −0.203129 

Yellowness −0.561422 −0.145937 −0.388770 0.650341 0.299036 

“Non-such“* −0.294651 0.564806 0.063013 0.244846 −0.728186 

*”Non-such” = according to [19]. 

Figure 5. Tasseled cap brightness and greenness indices for the WUA ‘Jayhun’. Top: June 

data, Bottom: July data; The scatter plots at the right show brightness (x-axis) and 

greenness (y-axis) for the respective ASTER data sets. 

 

The TC transformation was calculated according to [42]: Gram-Schmidt orthogonalization was 

applied to ASTER reflectance data (bands 1–5). Average spectra were derived from 100 pixels collected 

on-screen for each of the following classes: dry soil, wet soil, vegetation, senescent vegetation and water. 

The resulting band wise TC coefficients (Table 2) were applied to the entire ASTER scene. The 

calculated TC indices were checked by visually inspecting outputs and scatter plots (Figure 5), as 

suggested by [43]. In a second step, classification rules based on tasseled cap indices were defined 

through on-screen evaluation of training data for classification. The following rule sets were applied: Dry 

soil (brightness > 20 and greenness = 0), wet soil (brightness ≤ 20 and greenness = 0), dense vegetation 

(greenness > 8), medium vegetation (greenness > 4 and greenness ≤ 8), and sparse vegetation 

(greenness > 0 and greenness ≤ 4).  
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3.3.3. Per-Field Crop Classification 

Based on the bi-temporal basic land cover classification, a classification of crop rotations was 

conducted on the field-object level. Rules were derived using ground truth data and expert knowledge 

(cropping calendar, Figure 2). The ground truth data was divided into two halves. One half supported 

visual interpretation and rule generation, the other accuracy assessment. The rule set was also 

implemented with Definiens Developer 7. The feature ‘relative area of sub-objects’ [34] was used to 

analyze land cover changes (phenology) between the image acquisition dates. For each field, area 

percentages of all five basic cover classes were derived by summarizing the underlying pixel-levels. 

Analysis of tables and bar plots (Figure 6) showing relative area of dry soil, wet soil, and dense, 

medium, and sparse vegetation within the training fields allowed the development of general rules 

(Figure 7). De Wit et al. [11] similarly derived a decision tree but from multi-temporal NDVI data 

averaged per field. The classification was done in a sequential way.  

Figure 6. Within-field fractions of basic land cover classes (bar plots between 0 and 1) of 

all samples used for training the classes ‘fallow’, ‘cotton’, ‘rice’, ‘wheat-rice’ and ‘wheat’. 

 
 

First, fallow land was classified, which typically showed high percentage of bare soil during both 

acquisition dates. Afterwards, rice was separated using two rules. Many rice fields were still bare at the 

beginning of June and flooded in July. It has to be noted that the class wet soil partially also included 

flooded rice fields. Others were already watered in June, which was expressed by a dominance of wet 

soil. They still had a high water cover in July (second rule for rice, Figure 7). The classification of 

cotton was then possible by separating those pixels, which showed very low vegetation cover in June, 
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mainly expressed by high area percentages of dry soil. High vegetation cover in June was primarily 

used to classify winter-wheat in rotation with rice. Other rotations of wheat were identified by 

separating pixels with high percentage of bare soil in July. The remaining pixels were classified to the 

class ‘other’. The further extraction of clear rules failed, because they only showed confusing patterns. 

Some benchmarks were adjusted after the validation, if too many pixels expected to be in the class 

‘other’ were misclassified.  

Figure 7. Rule base for final classification at field level. Note: DS = dry soil, WS = wet 

soil, D&MV = dense and medium vegetation, t1 = first ASTER record (01.06.2007),  

t2 = second ASTER record (03.07.2007)  

 

It has to be noted that the cropping calendar was only partly useful for rule generation. It is an 

average scheme with high inter-annual variations due to varying water availability in the study area. 

Especially for cotton, the year 2007 deviated strongly from that scheme. Climate data showed a 

delayed start of season, because the frost period was elongated and daily minimum temperatures did 

not exceed 10 °C until the end of May. Temperatures above 10° C are essential for cotton cultivation 

in Khorezm [44]. In average years, those cultivations can be expected in the beginning of May. Thus, 

the rules had to be adjusted to actual environmental conditions. 
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4. Results and Discussion 

The first part of the result chapter comprises the segmentation results. Focus is set on the evaluation 

of the segmentation parameters and the separation of agricultural fields from non-fields. Afterwards, 

the rule-based per-field classification is presented, analyzed, and discussed. The accuracy assessments 

are reflected against the background of environmental variability in the Khorezm region.  

4.1. Segmentation and Generation of the Field Layer 

The quality of the field boundaries achieved with varying segmentation parameter settings is depicted 

in Figure 8 (global validation). The average of wrongly segmented area in relation to the actual field area 

varied between 0.59 and 1.05 (red line). Especially, high color parameters resulted in comparatively 

strong segmentation errors, also indicated by large standard deviations of metric 1 (red bars). 

Figure 8. Assessment of SPOT segmentation settings. Note: Metric 1 and metric 2 are 

colored red and blue, respectively. The upper plot shows the mean values, the lower plot 

the standard deviations. The legend explains the labeling of the x-axes for the different 

settings (scale, color, compactness). 
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An increased scale parameter intensified this effect. This pattern emphasizes that segmentation 

accuracy in agricultural areas is mostly dependent on the shape of the fields. 

On the other hand, comparatively small shape parameters led to significant over-segmentation, as 

shown by metric 2 (blue line). There was a consequent decrease from 2.94 to 1.17 objects generated 

per field, induced by increasing shape parameters and decreasing influence of multispectral 

information (colors) during the segmentation process. The optimum value of one was nearly reached 

for the largest scale parameters applied (130). However, comparatively high values of metric 1 clearly 

indicate errors in location and size of the segmented objects, if only one object was derived for each 

field. The impact of standard deviations of metric 2 (blue bars) was found negligible for selecting 

optimum segmentation settings. 

The setting S110_60 is a compromise between a small average number of segments representing a 

single field and acceptable segmentation errors.  The selected parameter combination corresponds with 

the following Definiens settings: scale parameter 110, color 0.7 and compactness 0.9. The total area 

error of all segments in relation to the digitized field boundaries averaged at 0.6. This error seems to be 

high, but it can be explained by the 1.44 polygons which were segmented for each digitized field 

(metric 2). Additional visual assessments proved the chosen settings to be closest to reality but also 

disclosed major problems of the segmentation. 

In Khorezm fields are usually surrounded by irrigation and drainage channels with vegetated slopes. 

Because of the sharp contrast, bare fields were persistently segmented more accurately than fields 

covered by vegetation or water. Segmentation errors mostly stem from boundaries between fields not 

being wide enough to be significant at SPOT resolution. In case of currently flooded and vegetated 

neighboring fields one segment often comprised two or more actual fields. On the other hand one 

actual field could be covered by more than one segmented objects. Partly flooded or vegetated fields 

featured additionally a much stronger spatial variability in their spectra, which bolstered  

over-segmentation and thus further reduced accuracy. 

Table 3. Accuracy assessment for the separation of agricultural fields using SPOT data. 

Subset name Prod.’s accuracy User’s accuracy Overall accuracy Validation 

object class 

‘field’ 

Validation 

object class ‘no 

field’ 

East 1 0.98 0.98 0.98 57 50 

East 2 0.90 0.87 0.89 53 59 

East 3 0.96 0.90 0.93 50 57 

East 4 0.91 0.96 0.92 69 44 

East 5 0.91 0.76 0.83 60 77 

West 1 0.96 0.97 0.96 75 62 

West 2 0.89 0.92 0.90 68 63 

West 3 0.79 0.84 0.84 68 87 

West 4 0.94 0.95 0.94 94 70 

West 5 0.94 0.85 0.86 67 41 

Amir Temur 0.93 0.99 0.95 191 116 
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Table 3. Cont. 

Jayhun 0.98 0.89 0.92 185 149 

Madir Yop 0.93 0.95 0.94 133 111 

P. Mahmud 0.92 0.85 0.89 138 154 

Shomahulum 0.82 0.95 0.85 318 155 

Total 0.92 0.91 0.91 1909 1448 

 

Given the wide range of approaches for the validation of segmentation, it is generally difficult to 

directly compare results of different studies. In [45] a similar measure to compare the field geometries 

after segmentation with digitized field boundaries was utilized and an accuracy of 87% was achieved. 

For comparison we implemented the same technique and resulted in 81 % for the finally selected 

segmentation settings (S110_60). However, the results remain hardly comparable, because [45] 

integrated existing official cadastre information into a three-step segmentation optimization routine 

applied to Landsat TM data in large-scale agriculture of the Netherlands. The approach presented in 

this study targeted to regions where such information is unavailable. 

The negative effect of vegetation and soil wetness observed during the geometry assessments 

became even more evident when distinguishing between fields and non-fields. The accuracy of this 

initial classification was assessed by sampling 3357 reference objects on-screen. The overall  

accuracy [37] for all validation objects was 0.91 (Table 3) and varied slightly between the selected 

WUAs and the ten validation squares (see Section 3.2). Again, problems mainly occurred with fields 

covered by vegetation or water. For instance, subset East 5 characterized by flooded and partly also 

abandoned fields showed a relatively low accuracy of 0.83 for field/non-field separation, whereas East 

1 dominated by bare fields achieved 0.98. 

The consequences of reduced spectral contrast were also reflected in the comparison of WUA 

statistics (from digitized fields) and the segmented objects (Table 4). The number of fields digitized 

was generally lower than the number of objects categorized as agricultural fields. WUAs with a high 

proportion of vegetated or flooded fields at image acquisition time, such as the WUAs Madir Yop or P. 

Mahmud, exhibit a disproportional number of segmented fields.  

Table 4. Object-based statistics of the investigated WUAs resulting from SPOT 

segmentation and field identification. 

WUA Characteristic 

 
Jayhun  

Amir 

Temur 

Shoma-

hulum  
P. Mahmud  

Madir 

Yop 

Size of WUA (ha) 3,927  3,004 4,042 2,503 2,618 

No. of fields in WUA (digitized) 699  435 589 418 186 

Situation 

SPOT  

No. of bare fields 363  243 248 226 80 

No. of vegetated/flooded 

fields 
336  192 341 192 106 

Results 
No. of generated objects 2,270  1,688 2,241 2,105 1,156 

No. of classified fields 760  535 733 594 356 

 

Altogether segmentation quality and subsequent field classification are strongly dependent on the 

land cover of the agricultural fields at the overpass date. Using more than one satellite image for the 
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generation of the field layer would be one solution to further reduce errors in both, segmentation and 

field-masking. An additional image should consequently be acquired for a period when fields which 

are vegetated or flooded on the first image are bare. A manual correction of segmentation errors may 

also be a viable solution for smaller extents. 

In total, 142,201 objects with an average size of 2.59 ha and a standard deviation of 11.22 ha were 

generated for the study area (see Figure 1). The classification based on bi-temporal ASTER data was 

finally conducted for 84,311 agricultural fields (average area: 1.88 ha) extracted from all objects 

(Section 3.3).  

4.2. Per-Field Crop Classification 

The analysis of basic land cover information acquired from ASTER data at two time steps during 

the vegetation period resulted in per-field crop distribution maps of the study area, exemplified in 

Figure 9. The final map (Figure 10) shows the spatial distribution of crop types in the study area. 

Figure 9. Per-field crop map of the WUA Jayhun (close to the Amu Darya River) derived 

from bi-temporal ASTER data. 

 
 

The overall accuracy of the classification was 80 % (Table 5). The identification of crop rotations 

with winter-wheat, rice and cotton and the localization of fallow land performed mostly above average. 

Lowest accuracies were found for the class other. This is partially due to the fact that this class is very 

heterogeneous encompassing multiple crops with different spatial & spectral characteristics and 

phenology. An adequate number of training samples and one or two additional acquisition dates would 

be essential for a better discrimination of this class and a better integration into the classification rules. 

The confusion matrix additionally indicates that the knowledge-based classification scheme probably 

needs additional options to classify single classes or some automation to avoid overfitting to the 

training samples. A relatively high portion of cotton and rice samples missed all rules and ended up in 

the class “other”.  
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Figure 10. Map showing the per-field crop distribution over the entire study area derived 

from bi-temporal ASTER data recorded in 2007. 

 

Table 5. Accuracy assessment of the crop distribution maps at object level: confusion 

matrix, user’s & producer’s accuracy and overall accuracy. 

 Cotton Rice Wheat 
Wheat-

Rice 
Fallow Other  Sum 

User’s 

accuracy 

Cotton 31 0 0 0 3 4  38 0.816 

Rice 0 30 1 0 0 0  31 0.968 

Wheat 0 0 30 3 0 9  42 0.714 

Wheat-Rice 0 5 0 26 0 0  31 0.839 

Fallow 0 0 0 0 24 0  24 1.000 

Other 6 5 2 0 1 16  30 0.533 

Sum 37 40 33 29 28 29  196  

Prod.’s accuracy 0.838 0.750 0.909 0.897 0.857 0.552   
Overall: 

0.801 
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The same problem with a collective class for crops covering minor area portions (‘other crops’) was 

observed by [11]. Final accuracy of this classification carried out in the Netherlands based on Landsat 

scale was around 90 %, and seven agricultural classes were distinguished. The reasons for the slightly 

higher accuracy of those investigations are most likely threefold. In [11] image segmentation was 

deemed too inaccurate but had the advantage of existing digital cadastre maps. They observed the 

phenological cycle on a higher level of detail, because a third image acquisition date was available 

during the cropping season. The within-field heterogeneity of crop growth can be assumed reduced in 

rainfed agriculture areas like the Netherlands. In Khorezm, however, a patchwork of growing 

conditions could be observed within single fields, which were caused by non-uniform supply of 

irrigation water and fertilizers or spatial variability of soil salinity. 

In [12] in contrast, crop rotations was classified at field level in Turkey, where fields were partly 

under irrigation. They received overall accuracy of 81 % which is similar to the presented findings. 

Three Landsat acquisition dates were classified to distinguish eleven crop types. It can be assumed that 

the thematic level of detail could have been increased in the presented study if more image 

acquisitions were available. However, the agrodiversity in Khorezm is pretty low compared to other 

agricultural regions. For the task of mapping the dominating rotations of cotton, rice, and wheat, two 

ASTER satellite images proved to be sufficient. In summary, it seems inappropriate to directly 

compare different per-field classification methodologies, since tasks, requirements, agro-ecosystems 

etc. usually differ widely. 

The impact of the ecological and infrastructural settings represented by the cluster analysis (see 

Section 3.3.1.) on the classification results was negligible. Only producer’s accuracy for the class 

wheat-rice was below average for the WUAs P. Mahmud and Shomahulum. Both WUAs are located in 

downstream positions of the irrigation network and sometimes expect retarded water supply [46]. 

Delayed wheat harvest likely shifted field preparation (flooding) for rice beyond the second ASTER 

image acquisition. Therefore the classification rules might not have been optimal in this case, however, 

the number of samples within the single WUAs were generally too low for substantial interpretation.  

Unsurprisingly, cotton (50,000 ha) was evenly distributed throughout the entire region. This reflects 

the overall importance of cotton as the dominant export commodity. Rice fields (25,000 ha) on the 

other hand, were mainly located along the Amu Darya and in the south, where numerous small lakes 

and river-like collectors are located. Wheat-rice rotations (10,000 ha) and other crops (30,000 ha) 

appeared disproportionately in the East of the study area, in the surroundings of the capital Urgench 

and the city Khonka. Another reason for this intensive use (fields include for example rotations of 

wheat with maize or sunflowers and wheat intercropping with mulberry trees) is the high reliability of 

water supply in central Khorezm [46]. Wheat followed by fallow or crop rotations with minor 

vegetation coverage were also mapped nearly evenly throughout the region (26,000 ha). Fallow lands 

(13,700 ha) were concentrated to the west of Urgench and close to the desert in the South, where fields 

are marginal and soils sandy. 

The spatial cropping patterns strongly coincide with previous findings in the same study region  

by [6]. Their classification, based on MODIS NDVI time series of the year 2004, exhibited the same 

spatial distribution of cotton, rice fields and winter-wheat crop rotations.  
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5. Conclusions 

In this study, a multi-sensor concept was designed to support classifications of mainly wheat, rice, 

and cotton rotations in the irrigation system of Khorezm, Uzbekistan. The concept consisted of two 

steps: (a) the delineation of field boundaries using very high resolution satellite data and (b) the 

classification of multi-temporal medium resolution satellite data for distinguishing crops and crop 

rotations within each field object. The first part was designed for regions where digital cadastre 

information are unavailable. The approach was implemented using 2.5 m SPOT, and bi-temporal  

15–30 m ASTER data.  

An objective selection of segmentation settings was proposed to accurately delineate agricultural 

fields. The suggested metrics for comparisons of the segmented geometry (similarity-size, shape- and 

congruence) indicated a high potential for an objective assessment and selection of the optimum 

segmentation settings. Despite optimization of segmentation settings, geometric discrepancies were 

persistent due to environmental conditions blurring field boundaries. Multi-temporal segmentation 

approaches are still an outstanding research but they might minimize such effects and could also 

improve to distinguish between fields and non-field objects (e.g., settlements, deserts, water bodies).  

An overall accuracy of 80 % confirmed the success of the selected per-field classification rule-base 

applied to analysis of within-field land cover composition (vegetation cover, soil wetness) categorized 

for both ASTER acquisitions. In theory, the usage of the tasseled cap indices greenness (representing 

the density of green vegetation cover) and brightness (soil wetness) makes the developed rule-set very 

flexible and transferable, because it can be applied independently of a specific sensor system. With a 

few adaptations, such as the integration of additional image acquisitions, the introduction of automated 

classification methods, or the use of new sensor constellations covering more area than ASTER, the 

approach of the Khorezm region can be easily transferred to other irrigation systems of Central Asia 

and beyond.  
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