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ABSTRACT 
 
Micromachining of nanocomposites is deemed to be a complicated process due to the anisotropic, 

heterogeneous structure and advanced mechanical properties of these materials associated with the 

size effects in micromachining. It leads to poorer machinability in terms of high cutting force, low surface 

quality and high rate of tool wear. In part 1 of this two-part review paper, a comprehensive review on 

mechanical properties of various nanocomposites will be presented while the second part of the paper 

will focus on the micro-machinability of these nanocomposite materials.  

Keywords: nanocomposites; micromachining; manufacturing; materials; mechanical properties 

  
1. INTRODUCTION 
 

The word ”nanocomposite” was first introduced by Blumstein in 1961 [1]. The 

primitive nanocomposite was investigated in an attempt to improve the thermal 

stability of nano-silicate reinforced polymethyl methacrylate (PMMA) [2] in 1965. 

Nanocomposites share similar terminologies as conventional composites in terms of 

their constituents except for the reinforcement size that is typically in the range of 

hundreds of nanometers. The reduction from micro-range to nano-range of fillers 

provides remarkable reinforcements in nanocomposites while requiring much lower 

content of fillers than the composites with conventional sizes(hereafter, call 

composites or conventional composites for short), hence leading to inconsiderable 

increases in weight [3]. Nowadays, many nanocomposites have been discovered and 

commercially applied in various industrial areas including (and not limited to) 

aerospace [4], automobile [5] and medicine [6] due to their superior properties, 

namely mechanical [7], thermal [8], electrical [9],  electrochemical, electromagnetic 

[10], and gas barrier properties [11]. Due to these superior properties, further 

applications of nanocomposites have been found in terms of manufacturing micro-

structured components following the miniaturization trend of modern production. The 
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discovery of nanocomposites has found many applications in microelectronics (Figure 

1a, b) [12]. Tang et al. [13] have concluded that carbon nanotubes (CNTs) reinforced 

polyimide nanocomposite is applicable for microelectronics devices due to its ideal 

electrical conductivity, storage modulus and environmental stability. Other 

applications such as high performance transistors from poly-4-vinylphenol (PVP)/ TiO2 

nanocomposite [14] or high energy density capacitor from poly-vinylidene-

fluoride/TiO2 nanocomposite [15] have exhibited better operations than their neat 

matrix counterparts. Moreover, this miniaturization trend could cover not only 

microelectronics but also micromechanical devices. Nanocomposites might be 

considered as alternatives to composites and alloys in manufacturing micro-products 

[16]. For example, manufacturing airframe [17] or wings [18] of micro-air vehicles 

(MAVs) using conventional composites [19] such as carbon fiber, glass fiber or Kevlar 

reinforced plastics could be replaced by CNTs or carbon nanofiber (CNF) 

nanocomposites that have higher strength-to-weight ratio and flexibility. The artificial 

wings for MAVs have been developed using CNT/Epoxy and CNT/PP nanocomposites 

by Kumar et al. [20]. Additionally, the additions of ceramic nanoparticles improved the 

tribological property, wear-resistance and overall mechanical properties of metal 

nanocomposites [21]. Therefore, these nanocomposites could be used in 

manufacturing pistons or linkage rods [22] (Figure 1c), micro-gears [23]   (Figure 1d-f). 

Due to their huge potentials to produce micro-products, it would be necessary to 

investigate on the mechanical properties as well as feasible processing methods to 

fabricate nanocomposites. Most of the recent techniques (Table 1) to manufacture 

nanocomposites are incapable of producing a final product (in terms of dimensional 

and geometrical accuracies as well as surface quality), instead, a near-net-shape is 
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produced. Therefore, post-processing or finishing technologies will be always required. 

Some manufacturing processes such as LIGA (Lithography, Electroplating, and 

Molding) [24], laser micromachining [25], microextrusion additive manufacturing [26], 

micro-EDM (Electrical Discharge Machining) [27] , and mechanical micromachining 

[28] have been used to generate small precision component and micro-structured 

parts [29].  

2. NANOCOMPOSITES 

In general, nanocomposites still keep the distinct characteristics of both matrix 

and fillers that make them different from alloys while their final properties depend on 

their matrix-filler interface bonding, the arrangement of fillers inside the matrix as well 

as the geometry and content of the fillers. Nanocomposites are also distinguished from 

composites in which one of the filler’s dimensions is in the range of 1-100 nm. Table 2 

demonstrates a few fundamental geometries of typical nano-fillers. The specific 

properties of each category, as well as the effect of filler phases on them, will be 

discussed in the next sections. Based on the unique properties of different 

nanocomposites, their potential or commercial applications will be given. In parallel 

with the discussion about nanocomposites, a comparison between nanocomposites 

and composites will be addressed to identify the basic differences in terms of the 

influences of size, content and properties of the filler on their properties. 

2.1 Differences between nanocomposites and composites 
 

As mentioned earlier, the basic difference between nanocomposites and 

traditional composites is the size of fillers. The revolution of composites takes place 

with the size reduction of the fillers from few millimetres in traditional composites to 

micro-scale (1-100 µm) in modern composites and recently, nanocomposites with the 
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fillers having dimensions in nano-scale. The original for size reduction of filler is to 

attain a homogenous distribution of filler within the matrix hence reduce the stress 

concentrations within the composite structure [30] that subsequently improve its 

mechanical properties. Furthermore, smaller fillers can obtain higher surface energy 

that makes stronger bonding with the matrix [31] that is, in turn, improves stiffness 

and strength of the system [32]. In essence, the reinforcing mechanism of composite 

could be divided into two main types based on the filler scale. For micro-filler, the 

continuum mechanism is employed to indicate that the micro-fillers bear a fraction of 

transferred load from the matrix hence the efficiency of reinforcement depends on the 

adhesion of matrix-filler interface [33]. For nano-filler (10-100 nm), the strengthening 

mechanism is applied when the matrix-filler interaction is in the molecular level. This 

mechanism proclaims that the nano-fillers restrict the plastic deformation of the 

matrix by impeding its dislocations, subsequently leads to the improvement of 

strength and hardness.  

Some researchers have investigated the influence of filler size on the 

mechanical properties of polymer composites. It was observed that in micro-range of 

fillers, their size effect on the tensile modulus of composites was unobvious. Some 

experimental results indicated that the moduli of epoxy-based composites were not 

considerably improved, or even decreased [34] while using various particle size of 

Al2O3 (1-12 µm) [35], glass (4.5-62 µm) [36], or silica (2-47 µm) [37]. The same trend 

could be seen with PP/ CaCO3 [38], poly-benzoxazine/CaCO3 [39] or polyester/ Al [40] 

(Figure 2). In addition, the relation between the filler size and tensile strength of 

composite also not clear. While some studies reported that tensile strengths of 

composites remarkably increased with the size reduction of fillers, using micro silica 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            6 

particles to reinforce epoxy [37, 41], another result showed no trend of tensile strength 

variation of epoxy/Al2O3 when decreasing the filler size [35]. In general, it could be 

seen that the influence of filler size in micro-scale on mechanical properties of 

composite is unremarkable.  

From the discussion above, it leads to the requirement to investigate the effect 

of filler size in nano-scales to identify whether their influence on mechanical 

properties of composites are more sensitive than the micro-counterparts or not. 

Onuegbu and Igwe [42] adapted various filler sizes (150, 300 and 420 nm) of snail shell 

powder to reinforce PP. Tensile modulus, flexural strength and impact strength were 

observed to be improved with the decrease of filler size. However, those 

improvements were not considerable. For example, the tensile strengths increased by 

around 5% when decreasing the filler size from 300 to 150 nm for every weight 

fraction. The improvement of the mechanical properties of composites was only 

considerable when keep reducing the size of filler below 100 nm. This phenomenon 

was verified when a comparative study between micro and nano-fillers in terms of 

mechanical performance of polymer composites was given by Devaprakasam et al. 

[43]. In this research, micro-silica (100 nm – 4 µm) and nano-silica (40 – 60 nm) were 

employed and the results exhibited a less variation in the modulus and hardness of the 

nanocomposite than the composite while applying different loadings. It was explained 

by the homogenous distribution of nano-fillers, strong interfacial matrix-filler bonding 

in comparison with micro-fillers. Some other researches also indicated the dominant 

effect of filler sizes on mechanical properties when they were reduced below 20 nm, 

as seen in Figure 3. This dominance was also verified by Edwards [44] that a high 

degree of reinforcement could be achieved using the fillers with sizes in below 100 nm.  
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This threshold of filler size in which the mechanical properties of composites increase 

remarkably is called ‘critical size’, according to [45]. Kumar et al. [46] investigated the 

effect of CNTs ratio on strengthening behavior of polyethene-based nanocomposites. 

They claimed that employing high-aspect-ratio CNTs provided great hardness and 

elastic modulus improvement due to high contact surface area and strong interfacial 

bonding of CNT-polymer. In addition, the presence of mechanical locking was more 

frequent in terms of high-aspect-ratio CNT due to its smaller diameter and longer 

length (Figure 4). However, most of the relevant studies only focused on experimental 

works while a few theoretical models or simulations were found (Figure 5). 

Constitutive models would be essential to provide quantitative analysis and 

explanation in terms of strengthening mechanism. Chowdhury and Okabe [47] have 

applied molecular dynamic (MD) method to investigate the effect of matrix density, 

chemical cross-links on the interface and geometrical defect of CNTs on interfacial 

shear strength (ISS) and consequently, CNT pull-out (Figure 5a). From the simulation, 

it was concluded that high matrix density, presence of cross-link and small cross-link 

switching contributed to high ISS. A 3D representative volume element (RVE) method 

has also been applied to assess the effects of CNT waviness, diameter, volume fraction, 

Poisson's ratio and matrix modulus on interfacial strength of polymer/SWCNT [48] 

(Figure 5b). Based on the aforementioned studies, it could be observed that 

investigating the interfacial bonding between nano-fiber and matrix plays a critical role 

in load transfer assessment and consequently, the mechanical strengthening efficiency 

of the reinforcement. The stress transfer behavior of SWCNT in epoxy matrix has been 

studied by Xiao and Zhang [49] using the Cox model for solid fibers [50] (Figure 5c). 

The main used indicator was stress transfer efficiency δ which is the ratio of maximum 
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tensile stress (σmax) to maximum shear stress (τmax) in the interfacial section. The effect 

of SWCNT length, diameter and thickness are shown in Figure 6a. Moreover, a 

comparison of stress transfer efficiency δ between SWCNT and carbon fiber (CF) has 

also been expressed with the assumption of the same hollow structure and dimension 

of CF as SWCNT. The analytical results showed a remarkable improvement of δ (128%) 

in case of epoxy/SWCNT compared to that in epoxy/CF composite. The increase 

Young’s modulus  and structural change (from solid to hollow structure) contributed 

69% and 31%, respectively to this enhancement (Figure 6b). Based on that, it could be 

seen that nano-fibers with higher aspect ratio and tensile properties can provide 

higher reinforcing efficiency compared to their micro-counterpart. Some researchers 

have claimed an equivalent or even higher strengthening effect could be achieved from 

using low loading of nano-fillers compared to that of micro-fillers. Fornes [51] 

indicated that the modulus of nylon 6 would be doubled by mixing only approximately 

6.5 wt.% nano-clay montmorillonite (MMT) platelets  whereas the same effect could 

be achieved when using three times volume of glass fiber or Campbell [52] claimed 

that a desired strength and stiffness of composite could be achieved when using 50 

wt.%  microparticles or 70 vt% of micro-fibers. Therefore, it could be seen that 

nanocomposites can provide excellent mechanical properties with low filler contents 

that can only be obtained using high filler content in conventional composites [53] 

since they proved as an efficient material to be used in demanding applications which 

require excellent strength to weight ratio. The improvement of stress transfer 

efficiency δ due to nanotube’s diameter increase has also been confirmed by Li and 

Saigal [54] using shear-lag analysis and the representative volume element (RVE) 

(Figure 5d). In addition, they also considered the effect of fiber volume fraction as it 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            9 

has not been considered in previous studies.  

The strengthening efficiency of nano-fillers such as CNT in MMNCs was also 

investigated and its mechanism is following load transfer [50], Orowan strengthening 

[55] and thermal expansion mismatch [56]. The strength improvement that is 

contributed by metal matrix grain size refinement [57], resulted from the addition of 

CNT has been found by [58]. Similar to polymer-based nanocomposites, the effect of 

reinforcement size also significantly contributed to strengthening behavior of MMNCs 

[59-61]. However, there were only a few models published that provided a 

comprehensive explanation of the strengthening mechanism of CNT reinforced 

MMNCs. Barai and Weng [62] have developed a two-scale model to analyze the 

elastoplastic behavior of CNT reinforced MMNCs that considered CNT agglomeration 

and interface properties as two main factors affecting the load transfer. Dong et al.  

[63]  have built a dislocation model that combined the effect of both matrix grain size 

and filler size on the strengthening mechanism of metal/CNT nanocomposites (Figure 

7). They claimed that the load transfer effect was improved at small grain size and high 

volume of CNT.  

2.2 Mechanical properties of nanocomposites 
 

From the discussions about the differences between nanocomposites and 

composites in the previous section, it could be intrinsically seen that reinforcing a 

matrix material by nano-fillers could lead to higher effectiveness of reinforcement than 

micro-fillers due to their advanced mechanical properties and novel nanostructures. 

Among many nano-fillers have been applied recently, CNTs, graphene and nano-clays 

are the most common reinforcing materials due to their compatibility and high 

efficiency of reinforcement with three main matrix materials including polymers, 
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metals and ceramics. The major objective of the most relevant studies is to investigate 

the changes between the neat matrix and the matrix reinforced nano-fillers in terms 

of mechanical, thermal and electrical properties that are most common. Within the 

scope of this review, only the mechanical properties will be considered due to the 

requirements for the other sections related to the micromachining of nanocomposites. 

The effectiveness when reinforcing nano-fillers depends on many factors which can be 

classified into three main groups: (i) Nano-filler nature, (ii) Filler-matrix interaction and 

(iii) Fabricating methods. 

2.2.1 CNT based nanocomposites 
 

CNTs are allotropes of carbon that made of a cylindrical rolled-up single layer 

of the carbon atom. The diameters and lengths of CNTs range from 1-100 nm and 0.1 

– 100 µm, respectively [64] with the tubular structure make them very high aspect 

ratio materials with the surface areas are in the range of 200–900 m2/g [65]. CNT was 

first discovered by Iijima in the transmission electron microscopy (TEM) image in 1991 

[66] and the first single-walled carbon nanotube was synthesized in 1993 by the same 

author [67]. Many applications have been found for CNT in different domains such as 

drug delivery [68], health care [69], electronics [70], electrics and thermal applications 

[71]. Due to their high strength-to-weight ratio, aspect ratio,   thermal and electrical 

properties [72, 73], CNTs have found huge potential applications on composite 

reinforcement. 

2.2.1.1 CNT reinforced polymer matrix nanocomposites 
 

CNTs have been employed to reinforce polymers due to their better interfacial 

interaction in comparison to ceramic [74] or metal matrix [75] and the similar 

characteristic of organic structure. Therefore, it has been witnessed that there were 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            11 

some polymer/CNTs nanocomposites with tensile strengths ranging from 0.1 to 5 GPa 

and Young’s modulus from 5 to 200 GPa  [76]. Generally, the mechanical properties 

were improved when using CNTs as reinforcement in some polymers such as epoxy 

[77-80], polystyrene (PS) [81], polyethylene [82, 83], PMMA [84, 85], poly (p-

phenylene benzobisoxazole) (PBO) [86], polyvinyl alcohol (PVA) [87], polyester 

elastomers (PEE) [88], polycarbonate (PC) [89], polyamide-6  [90] and nylon-6 [91]. The 

optimum loading of CNTs has to be considered carefully to avoid agglomerations or 

bundles that negatively affect the mechanical properties of  PMNCs, usually when CNTs 

content exceeds 2-3% [92]. Figure 8 shows some improvements in terms of Young’s 

moduli and tensile strengths when reinforcing polymer by CNTs with the 

corresponding dispersion techniques. Generally, it could be seen that the level of CNTs 

distribution in polymer matrixes, their interfacial interaction and processing methods 

significantly affect the load transfer from the matrix to CNTs, hence decide their 

effectiveness of reinforcement in terms of mechanical properties of polymer-based 

nanocomposites. From Figure 8, it was observed that both Young’s modulus and 

tensile strength of nanocomposites improved with the addition of CNTs. However, 

there are different thresholds of CNTs loading at which the tensile strengths decrease 

or even lower than pristine polymers. It is possibly due to the re-agglomeration [93-

95] of CNTs due to insufficient dispersion techniques, high loading of fillers hence 

creating the more stress concentration and reducing the effectiveness of CNT as 

reinforcement. Specifically, the poor interfacial interaction between CNT and polyester 

even leads to the negative influence on tensile strength of nanocomposite [96, 97]. In 

terms of dispersion methods, solution mixing, in situ polymerization dry mixing and 

melt mixing are the most common methods for fabricating polymer based 
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nanocomposites.  Esawi et al. [98] have investigated the effects of dispersion methods 

(dry mixing and solution mixing) on the mechanical properties of PP/CNT 

nanocomposites (Figure 9). The results have indicated a higher level of CNT 

distribution when using dry-mixing in comparison with solution-mixing. The 

degradation of the polymer, high viscosity due to the addition of solutions that limited 

the CNT distribution contributed to the lower improvements of mechanical properties 

when applying solution-mixing. In addition, employing ultra-sonication in solution-

mixing might damage the CNT structure, hence also contributed to low mechanical 

properties of nanocomposites [99].  Associated with the effect of CNT content, the 

influence of CNT structure on the mechanical properties of CNT-based 

nanocomposites has been also indicated considerable. Since CNTs have various types: 

SWCNTs, double-walled CNTs (DWCNTs) and MWCNTs, their different structures and 

properties lead to various efficiencies in terms of mechanical reinforcement. Figure 10 

shows the improvements in tensile properties when reinforcing epoxy with different 

types of CNTs. Theoretically, the addition of SWCNTs and DWCNTs exhibited higher 

reinforcement of mechanical properties than MWCNTs due to their higher mechanical 

properties, aspect ratio and specific surface area. In addition, the multi-layer structure 

of MWCNTs basically leads to the low effective surface area in comparison with less-

layer structure CNTs. However, this reinforcing effectiveness also depends on how 

homogenous the CNTs distribute within the polymer matrix. In this case, DWCNTs 

showed no agglomeration as SWCNTs that explained for a higher improvement of 

tensile properties. This phenomenon was also verified by Fornes et al. [100] and 

Sennett et al. [101] that the dispersion of MWCNTs within PC matrix was much more 

effective than SWCNT regardless the fabricating routes. They explained that SWCNT 
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had a high propensity to re-agglomerate during the synthesis making the exfoliation 

more difficult in comparison with MWCNT.  

Besides the structure, CNTs alignment also has a dominant effect on the 

mechanical properties of polymer-based nanocomposites. This feature could be 

attained using several methods such as shear flows [102], ex-situ alignment [103], 

force field-induced alignment [104], magnetic field-induced alignment [105], 

electrospinning-induced alignment [106] and liquid crystalline phase-induced 

alignment [107]. 

Figure 11 shows some experimental results that exhibited the improvements 

of tensile properties of CNT based nanocomposites with aligned CNTs in comparison 

with non-aligned CNTs. It could be basically explained by the isotropic nature of 

nanocomposites when CNT alignment was employed and also leading to better 

distribution and reducing agglomeration of CNT when filling into the polymer matrix. 

In addition, functionalization has been considered as an effective treatment of CNTs to 

improve their interactive adhesions with polymer matrix, hence enhance the 

reinforcing effectiveness of mechanical properties through load transferring. Khare et 

al. [108] have indicated that reinforcing epoxy by amido-anime functionalized CNTs (f-

CNTs) led to a higher improvement of mechanical properties in comparison with 

pristine-CNTs (p-CNTs) (~ 51% of Young’s modulus). Some main reasons were given 

including lower interphase compression, matrix structure integrity, suppression of 

matrix mobility, stable-covalent bonds of epoxy-FCNTs and subsequent facilitation of 

load transfer (Figure 12).  

Unlike the improvements of tensile strength and Young’s modulus, the addition 

of CNTs exhibited different variations of fracture strain and toughness. Figure 13 shows 
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the different trends of fracture strain improvement between thermoplastic and 

thermosetting reinforced by CNTs at various weight content. It could be seen that the 

flexibility of thermoplastic nanocomposites was significantly decreased at every filler 

loadings. Although relevant studies have shown this phenomenon, a comprehensive 

mechanism to explain it has been not proposed. Wang et al. [109] claimed that the 

degradation of flexibility when adding MWCNT-NH2 into Polyimide (PI) was possibly 

due to strong interface interaction between matrix and filler. Consequently, the 

movement of polymer chains under loading could be restricted and hence, decreasing 

the flexibility of this material. However, the characterization of interfacial strength has 

not been made to support this claim. On the other hand, the fracture strains of 

thermosets could be enhanced by the addition of CNTs at certain levels of contents 

which is different from thermoplastic nanocomposites. When reinforcing epoxy by 

MWCNT, Chen et al. [110] indicated that the brittle epoxy phase was toughened by 

dispersed CNT. This enhancement of failure strain at certain low filler loadings (below 

1 wt.%) was confirmed by Gojny et al. [111]. At higher CNT loadings, CNT 

agglomeration led to stress concentration and weaken the interfacial interaction of 

polymer-CNT, hence reducing the fracture strain. Scanning electron microscope (SEM) 

imaging was employed to demonstrate these explanations in terms of CNT distribution 

at different filler contents.  

Regarding the fracture toughness, CNTs have been qualified as a potential reinforcing 

candidate to replace glass fiber (GF) or CF to attain higher toughening efficiency due 

to their high aspect ratio and stiffness [112]. The micro-mechanical toughening 

mechanism of polymer reinforced CNT nanocomposites can be expressed as follows: 

(1) crack bridging by CNTs and (2) CNTs de-bonding and pull-out or breaking depends 
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on the interface strength and applied load [113, 114] (Figure 14). Based on this 

schematic, it could be seen that the highest fracture toughness could be achieved if 

CNTs are oriented transversely with the propagated cracks in which the bridging 

mechanism takes effect. Otherwise, it will not have considerable influence on fracture 

toughness in the case of longitudinal or random distribution of CNTs [115]. In addition, 

the effect of transverse alignment could be only effective at a low loading of CNTs. 

Some studies have shown a maximum enhancement of fracture toughness (around 

51%) of polymer/CNT nanocomposites at 3 wt.% of fillers was used and decreased 

when exceeded this threshold due to filler agglomeration [115, 116]. On the other 

hand, the random distribution of CNTs did not show considerable enhancement in 

toughness at low filler content (< 1wt.%) [117]. In addition, Chen et al.  [114] have 

analyzed the effect of CNT length and interface strength on fracture toughness. They 

claimed that the fracture toughness could not be improved with the consideration of 

interface chemical bond density or fiber length only but combined them together. The 

optimal values of these indicators were around 5-10% and 100 nm, respectively. 

Optimal CNT-bridging from their experiment has confirmed this theoretical analysis. 

Generally, reinforcing polymers by long CNT can achieve high fracture toughness due 

to its high load transfer and hence, improving the interface shear strength [118, 119]. 

The structure of CNTs has also influenced the fracture toughness of nanocomposites. 

Low contents of DWCNT (<0.5 wt.%) have shown a remarkable improvement of 

fracture toughness of epoxy-based nanocomposites due to its high compatibility with 

epoxy matrix (37). However, using suitable dispersion methods and functionalization 

could make MWCNT better reinforcing candidate to enhance fracture toughness than 

other types of CNTs (18). In general, the fracture toughness improvement when 
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reinforcing polymer by CNTs has shown a complicated correlation between various 

factors including CNT content, structure, alignment, treatment as well processing 

technique. Table 3 shows some fracture toughness improvements of polymer 

reinforced CNT nanocomposites with the consideration of the aforementioned factors. 

2.2.1.2 Carbon nanotube reinforced metal matrix nanocomposites 
 

Although CNTs are theoretically considered an effective reinforcement for high 

strength-to-weight materials, few studies have concerned about using them to 

reinforce metals. The incorporation of CNTs in metals has some difficulties due to the 

inherent characteristics of both CNTs and metals, the fabricating conditions that 

negatively affect the interfacial adhesion as well as CNTs defects and subsequently, the 

improvement of mechanical properties of metal reinforced CNT nanocomposites. In 

general, there are two main challenges that hinder CNTs from achieving high 

effectiveness of reinforcement in the metal matrix. The first challenge is the poor 

interfacial adhesion between CNTs and metals. It is due to the nature of CNTs such as 

low compatibility with high surface energy (72.8 mJ.m-2) [120] high surface tension 

(721 mN/m) [121], low wettability or hydrophobicity [122] and high possibility of 

agglomeration because of Van der Waals forces [123]. Because chemical bonding 

between CNT-metal is neglected, these physical factors are dominant in the interfacial 

interaction [121]. Secondly, the undesirable chemical reactions between CNTs and 

metals at high temperature, pressure from fabricating conditions such as sintering, hot 

milling. It leads to the formation of intermetallic such as Al4C3 [124], TiC [125], Al2MgC2 

[126]. Generally, a minor formation of carbide can positively improve the interfacial 

adhesion while an uncontrolled process could lead to serious damages of CNTs and in 

situ carbide formations [127, 128] or enhance CNTs amorphization as well as their 
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thermal decomposition [129]. Some solutions have been adapted to improve the 

wettability and distribution of CNTs as well as their interfacial strength with metal 

matrix such as chemical functionalization [130], surfactant [131], coating CNTs with Ni 

[132, 133], Si [134] or in situ synthesis CNTs within metal matrix [135]. In general, some 

main improvements in terms of tensile properties and hardness when reinforcing 

metals by CNTs are shown in Table 4. The effectiveness of the improvement of 

mechanical properties of metals reinforced CNTs depends on the homogenous 

distribution of CNTs [132, 136-139], interfacial strength of metal/CNT [132, 133, 139, 

140], thermal expansion mismatch between metal and CNTs [141], grain refinement 

effect [133, 142], CNTs structure retention of plastic deformations of metal matrixes 

[132, 139, 140, 143], that all contributed to strengthening mechanism. The two last 

ones also contribute to the hardness improvement of metal/CNT nanocomposites.  

2.2.2 Graphene-based nanocomposites 
 

Graphene is a planar sheet of a single layer of sp2-bonded carbon atoms that is 

considered as an original structure element of other carbon allotropes such as CNTs, 

graphite and diamond. This two-dimensional (2D) structure provides graphene with a 

much larger specific surface area of ~ 2600 m2/g than other carbon allotropes such as 

carbon black (CB) or CNTs [144]. Graphene exhibits exceptional mechanical properties 

such as Young’s modulus (~1 TPa) or strength (130 GPa) [145] hence considered as the 

strongest material [145]. Moreover, this material is also an excellent conductor with 

high thermal and electrical conductivity of ~4000 WmK-1 [146] and ~ 6000 S.cm-1
 [147], 

respectively and other properties such as gas impermeability, optical transmittance. 

Therefore, graphene has high potential in a wide range of applications such as flexible 

electronic devices, transparent coating material, energy storage, and especially, 
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nanocomposites [148-150].  

2.2.2.1 Graphene reinforced polymer matrix nanocomposites 
 
 Many researchers have attempted to investigate the reinforcing efficiency of 

graphene in nanocomposites by considering various factors such as the effective 

modulus, filler dispersion [151], alignment [152], agglomeration [153] or fabricating 

methods [11]. All of these factors have certain influences on the filler distribution and 

graphene-matrix interfacial adhesion or stress transfer that subsequently affect the 

reinforcing effectiveness of graphene-based fillers. 

The effective modulus of thermal expanded graphite oxide (TEGO) has been 

measured when it was mixed with PC and polyethylene. Only a slight improvement of 

modulus was experimentally observed in comparison with graphite-based composites 

while its effective modulus was around 70 GPa-7% of the value for defect-free 

graphene (~1 TPa) [154, 155]. This low effective modulus of graphene is explained by 

its wrinkled geometry once dispersed in the matrix [156], which consequently unfold 

under tensile load instead of stretching. The incomplete exfoliation could also lead to 

the aspect ratio reduction of graphene [51] that contributes to this phenomenon.  

Graphene-matrix interfacial adhesion is considered as another crucial factor 

that affects the effective reinforcement [157, 158] since it makes ineffective dispersion 

as well as load transfer, hence resulting in a low modulus of nanocomposites [159]. 

Some significant increases of composite tensile moduli were observed when using 

graphene as reinforcement due to the roughness of the platelets [160] that attribute 

to mechanical interlocking within the matrix and hence, strong interfacial bonding.  

In addition, the reinforcing effectiveness of graphene also depends on the 

processing method. For instance, melt mixing has been found less suitable in 
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graphene-based nanocomposites since this method causes particle attrition [161] that 

possibly decrease the filler ratio. In situ polymerization, on the other hand, can 

generate good dispersion but it also causes polymer chain extension by graphene, 

resulting in a less modulus improvement of composites than solution-mixing method 

[11]. This comparison between different processing methods can be seen in Figure 15.  

Table 5 summarizes some improvements in mechanical properties when 

reinforcing polymers with graphene. In general, the elastic moduli increased with the 

addition of graphene while the tensile strengths decreased. It is explained by the 

improvement of interfacial interaction of matrix-filler due to the high aspect ratio of 

graphene [162] that effectively bridging with the matrix molecules and leading to a 

high stiffening effect [163]. As a consequence, the tensile strength of nanocomposites 

would be reduced. Moreover, this reduction is also due to the fabricating methods, re-

agglomeration of graphene that constitutes some defects in the polymer matrix. The 

presence of graphene also opposes the flow of amorphous phase and increase the 

crystallization of hard segment of a polymer matrix that subsequently contributes to 

the elastic modulus improvement and the tensile strength reduction of polymer-based 

nanocomposites [164].  

Similar to CNTs, the addition of graphene into the polymer matrix leads to 

different variations in terms of fracture strain and toughness. Fracture strain showed 

a significant reduction in the case of thermoplastic/graphene nanocomposite while 

this property was improved for thermoset plastic reinforced with low loading of 

graphene (Figure 16). However, the fracture toughness improvement when using 

graphene seems to be higher than CNT. Domun et al. [165] have collected 

experimental values of fracture toughness when using graphene to reinforce epoxy 
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from relevant studies (Figure 17). They claimed that among common nano-fillers 

(CNTs, graphene, and nano-clay), graphene exhibited higher fracture toughness 

enhancement in epoxy-based nanocomposites, mostly at low filler loadings (<1 wt.%). 

It is due to the higher surface area, aspect ratio of graphene, as well as its exceptional 

stiffness and strength, compared to CNT as aforementioned. Rafiee et al [166]., in a 

comparative study, have claimed that graphene exhibited better mechanical 

reinforcement including Young’s modulus, tensile strength and toughness than 

MWCNT. It was due to poor interfacial contact area, wetting and adhesion of MWCNT 

that showed ineffective reinforcing epoxy-based nanocomposites. On the other hand, 

higher aspect ratio allowed more interfacial contact between graphene and epoxy 

matrix in contrast with the only outer tube of MWCNT. In addition, wrinkled sheets of 

graphene also contributed to better interfacial binding, hence improving the 

toughening mechanism in epoxy/graphene nanocomposites. The micro-mechanical 

toughening mechanism of polymer reinforced graphene is also different from that in 

CNTs. While filler pull-out and de-bonding still exhibit along the cracks, there is no 

presence of graphene cracking. When the crack reaches to the graphene surface, it will 

be deflected and bifurcated then propagating around the filler. The ease of shearing 

between graphene sheets also allows the crack propagation goes through or 

penetrates within layers (Figure 18). 

2.2.2.2 Graphene reinforced metal matrix nanocomposites 

Graphene has been also applied to reinforce metal with the aim to improve 

their stiffness but subsequently leads to the reduction of ductility that was called 

‘strengthening mechanism’. However, tensile strengths have been found an increase in 

some cases [167-169] possibly due to the straightening of wrinkled graphene during 
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the plastic deformation or ball milling process [170]. In general, the strengthening 

mechanism is related to the improvements of yield strength [171], elongation [168], 

flexural strength [172], but Young’s modulus and hardness are most fundamental 

objectives. The improvements of Young’s modulus when reinforcing metal with 

graphene is ascribed to the homogenous distribution of graphene [173], compact 

interfacial bonding of metal-graphene [174] that lead to effective load transfer [175]. 

On the other hand, the improvements of hardness in nanocomposites are possibly due 

to the mismatch of thermal expansion coefficient [176] between graphene and metal 

matrix as well as the restriction or obstruction of graphene in plastic deformation [177-

180]. In addition, the formation of metal carbide due to the chemical reaction between 

graphene and metal during synthesis contributes to the strengthening effectiveness. 

Al carbide (Al4C3) has been observed in Al/graphene nanocomposite synthesis using 

hot extrusion [171]. However, its role in terms of improvement of hardness has been 

still controversial whether it leads to the reduction of strength, hardness [171] or 

enhancement of bonding strength, load transfer [181]. The interfacial reaction can be 

improved by the formation of carbide because it decreases the contact angle of liquid 

alloy hence increase the wetting [180]. Furthermore, using metal powder through ball 

milling and sintering processes in high temperature can cause oxidation or the 

formation of metal oxide. Song et al. [182] reported that the hardness of Cu/ graphene 

nanocomposite was improved due to the presence of Cu2O during the synthesis but it 

was reduced when increasing graphene loading. Similarly, Lin et al. [180] indicated that 

the formation of Fe3C after sintering decreased the contact angle between liquid-alloy 

and GO, hence increasing GO wettability (Figure 19). In case no carbide is formed, the 

interfacial bonding of metal-graphene strongly depends on matrix nature (contact 
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angle and cohesive energy of liquid-metal and filler) that has been addressed in case 

of Mg matrix [183]. Hwang et al. [184] have confirmed the compatibility between Mg 

and graphene with their high adhesion energy. In addition, pre-coating metals such as 

Ni on graphene surfaces have shown similar effects on improving the wettability of 

fillers in the Cu matrix [185] as compared to CNT cases [186]. Xu and Buehler [187] 

have pointed out that Ni-graphene has higher cohesive energy and interfacial strength 

than Cu-graphene.  

In general, the improvements of mechanical properties of metal/graphene 

nanocomposites have shown their dependences on integrity of graphene [172],  

graphene exfoliation [188] and distribution [173], interfacial bonding [172], prevention 

of metal dislocation [179] beside the aforementioned roles of intermetallic formation 

due to sintering process (Table 6). These formations of metal carbide, metal oxide 

through the synthesis might contribute to these improvements but cannot be 

evaluated whether they have positive or negative effects on mechanical properties of 

graphene reinforced metal nanocomposites. 

2.2.3 Ceramic based nanocomposites 
 
 In this section, the other nano-filler based nanocomposites will be reviewed in 

terms of their mechanical properties. There were many types of nano-fillers instead of 

CNTs and graphene that make the discussion in details for all of them not feasible 

within the scope of this review section. Therefore, some common nano-filler based 

nanocomposites will be taken into consideration including polymer/nano-clay, 

polymer/ceramic and metal/ceramic nanocomposites. These selections are also based 

on the effective reinforcements of nano-fillers with their corresponding matrices as 

well as their important applications as engineering materials. 
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Beside of CNTs and graphene, nano-clay and ceramic nanoparticles have also 

been applied as reinforcement in polymer materials due to their advanced tensile 

properties. Nanoclays are potential candidates for nanocomposite reinforcements, 

especially in terms of mechanical properties. The most common type of nanoclays has 

been applied in reinforcing nanocomposites is montmorillonite (MMT). It is derived 

from absorbent aluminum phyllosilicate clay called” bentonite” and thus named 

“organoclays”. MMT has been applied for reinforcing polymers due to their high aspect 

ratio and unique intercalation/exfoliation natures [189]. The incorporation of 

organoclays into polymer matrices has exhibited superior strength and modulus [190]. 

The most applied polymers by nanoclay reinforcements are polystyrene [191], epoxy 

resin [192], poly(methyl methacrylate) [193], poly(ε-caprolactone) [194], PP [195], 

polyurethanes [196], polyimides [197]. However, nanoclays mostly require pre-

exfoliation to attain homogenous distribution due to higher specific area and hence 

higher effective of load transfer could be achieved [198]. In general, the effectiveness 

of nanoclay reinforcements have been indicated strongly depend on intercalation 

methods [199], exfoliation nanoclays [200-202], the integrity of nanoclays [203] or 

matrices [204], and most importantly, the level of distribution of nanoclays  [205]  or 

interaction of polymer-nanoclays [201, 205]. However, the addition of nanoclays in 

polymer exhibited some negative effects on tensile strength of nanocomposites in 

some cases but no explanation was given [205]. 

On the other hands, silica nano-particles are also common nano-fillers that 

have been applied to reinforce polymers due to their high mechanical properties. The 

processing methods to fabricate these materials are similar to other polymer-based 

nanocomposites such as melt mixing for PP (63), PE (71n), PEN (62), PET (102), solution 
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mixing for epoxy [206], poly(4-methyl-2-pentyne) (PMP) (123, 124), or sol-gel 

processing for epoxy [207]. In general, the additions of nano-silica in polymer matrices 

lead to the improvements of stiffness mostly due to the homogenous distribution, high 

aspect ratio and stiffness of silica nano-particles. However, it could be seen that their 

effectiveness of stiffness improvement are not high as CNTs, graphene or nano-clays 

(Table 7). 

In the case of ceramic reinforced MMNCs, the main challenge is the 

incorporation of ceramic nano-particles into molten metal matrices due to their poor 

wettability.    Besides high wetting could be seen in some metal/ceramic systems with 

strong (chemical) reactions and low contact angles (θ) such as Cu/WC (θ = 200) or 

Au/ZrB2 (θ = 250), most of the other ceramic nano-fillers generate non-covalent 

(physical) bonds with liquid metals with low wettability such as Ag/Al2O3, Cu/SiO2 ( θ 

= 120°–140°); Au/BN(θ = 135°–150°) at high temperature [208]. The inhomogeneous 

distribution of ceramic nano-particles and their agglomerations within metal matrix 

have been indicated resulting from their low wettability associated with high specific 

surface areas. Some dispersion routes have been employed to overcome these 

obstacles including ex-situ and in-situ techniques [209]. The basic difference between 

these two methods is whether the reinforcements (ceramic nano-particles) are 

fabricated within the matrices (in-situ) [210] or separately synthesized outside by CVD 

[211], spray conversion process [212] or laser-induced gas-phase reaction [213] and 

then subsequently incorporated into metal matrices via powder metallurgy (PM) [214] 

or mechanical alloying (MA) [215]. Although the traditional PM method has been 

successfully applied to synthesis metal/ceramic nanocomposites, especially in 

aluminium-based matrices, it still exhibited obvious agglomerations of ceramic nano-



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            25 

particles and hence their inhomogeneous distribution [216, 217] (Figure 20). The low 

wettability of as-produced ceramic nano-particles, as well as their high specific surface 

area, have indicated the main reasons for this drawback. It could be improved by 

employing MA methods with better dispersion of ceramic nano-fillers with significant 

grain size reduction [218, 219]. In addition, the densification of MA is mainly 

conducted by hot pressing, HIP or extrusion. On the other hand, In-situ route has been 

claimed more suitable than the aforementioned methods in terms of generating the 

homogenous distribution of ceramic nano-particles such as Al3Ti [220] or TiC [221] at 

high loadings (50 vol.% and 18 vol.%, respectively) and subsequent ultrafine 

microstructures. In general, the additions of ceramic nano-particles lead to the 

improvements of tensile strength, yield strength and hardness associated with the 

sacrifice of ductility. All these changes in tensile properties follow strengthening 

mechanisms including Orowan strengthening, mismatch of thermal expansion 

coefficients between matrix and filler (CTE) and grain size refinement. In addition, the 

reductions of ductility have been claimed due to the presence of porosities within the 

system or brittle nano-fillers [216, 222] although some improvements of ductility could 

be seen when using Mg-based matrices [223, 224] without sufficient explanation. The 

role of ceramic nano-fillers on hindering the matrix dislocations and the effect of grain 

size reduction have discussed in most relevant researches that were the main reasons 

for hardness increments [216, 222, 223, 225-228]. Table 8 summarizes the mechanical 

properties of some common ceramic nano-particles reinforced MMNCs with their 

corresponding fabricating methods and discussion. 
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3. CONCLUSIONS 

The first part of this paper has addressed relevant studies including the 

fabrication and characterization of nanocomposites. Based on that, it has been 

observed that the addition of nano-fillers as reinforcement improved mechanical 

properties of nanocomposites. The level of enhancement depends on many factors 

such as the nature of both filler and matrix, their interaction, filler size and fabricating 

methods. Strenthening and toughening mechanisms were also employed to explain 

these variations via modelling and experimental approaches. This review paper has 

focused on nanocomposite materials that require mechanical micromachining 

processes in order to produce the final product. These include polymer/CNT, 

polymer/graphene and metal/ceramic nanocomposites. This part of the review will be 

the basis to analyse the machinability of nanocomposites when employing mechanical 

micromachining techniques where the mechanical properies will be correlated with 

different machining measures.  
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Figure Captions List 
 
Figure 1 Micro-features as applications of micromachining of nanocomposites. (a 

- b) SEM images of MTA/MWCNT micro-capacitors and micro-resistors 

made by precise 3D printing (Reprinted from [12] Copyright 2016, with 

permission from Society of Photo-Optical Instrumentation Engineers 

(SPIE)); (c) SEM image of a stainless steel/Al2O3 piston and a linkage rod 

made by soft molding (Reprinted from [22] Copyright 2009, with 

permission from Acta Materialia); (d) SEM image of a stainless 

steel/titania micro-gear made by soft molding (Reprinted from [23] 

Copyright 2009, with permission from Elsevier); (e) Optical image of a 

Epoxy/SiO2 wheel and (f) SEM image of a epoxy/SiO2 micro-gearwheel 

made by UV-LIGA methods (Reprinted from [229] Copyright 2009 , with 

permission Elsevier) 

Figure 2  Normalized tensile modulus of epoxy-based composites as a function of 

micro-filler size (Adapted from [35-37], [230]) 

Figure 3 Normalized tensile modulus of polymer-based nanocomposites as a 

function of nano-filler size (Adapted from [231, 232]) 

Figure 4  Graphical representation of the effect of CNT aspect ratio while 

interacting with polymer chains  (Reprinted from [46] Copyright 2015, 

with permission from Elsevier) 

Figure 5 Theoretical models representing the micromechanical strengthening 

mechanism of polymer/CNT nanocomposites via the analysis of 

interfacial stress transfer with the consideration of various factors: (a) 
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Effects of polymer matrix density, chemical cross-links and CNT defect 

(Reprinted from [47] Copyright 2006, with permission from Elsevier); (b) 

Effects of SWCNT waviness (Adapted with permission from [48] 

Copyright © 2011 Elsevier); (c) Effects of tube length and diameter 

(Reprinted from [49] Copyright 2004, with permission from Woodhead 

Publishing); (d) Effects of nanotube aspect ratio and fiber volume 

fraction (Reprinted from [54] Copyright 2006, with permission from 

Elsevier) 

Figure 6 (a) Effect of SWCNT’s diameter, thickness and length on the stress 

transfer efficiency (δ); (b) Effect of Young’s modulus on the stress 

transfer efficiency (δ) (Assumed that CF had the same hollow structure 

with d= 3nm and t= 0.142 nm as SWCNT) (Fiber volume fraction Vf ~ 0.17 

% )(Reproduced from [49]); (c) Effect of nanotube diameter on stress 

transfer efficiency (Vf = 0.1%); (d) Effect of nanotube volume fraction on 

stress transfer efficiency (d = 0.7086 nm) (Reproduced from [54]) 

Figure 7 (a) Schematic of the microstructure of CNT-reinforced MMCs with DPZs. 

(b) The entire composite is decomposed into CNT and effective matrix 

phase, and the effective matrix is comprised of DPZs and pure metal 

matrix (Reprinted from [63] Copyright 2014, with permission from 

Elsevier) 

Figure 8 Mechanical properties of polymers reinforced CNTs with corresponding 

dispersion techniques (Adapted from [94, 96, 100, 233-236]) 
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Figure 9 Effects of dispersion method on mechanical properties of CNT reinforced 

PMNCs (Reproduced from [98]) 

Figure 

10 

Effect of CNT structure on mechanical properties of polymer 

nanocomposites  at a filler content of 0.3 wt.% (Adapted from [117]) 

Figure 

11 

Effect of CNT alignment on mechanical properties of epoxy-based 

nanocomposites (Adapted from [237, 238]) 

Figure 

12 

Effect of CNT functionalization on tensile modulus of CNT reinforced 

epoxy matrix nanocomposites (Adapted  from [80, 108, 117]) 

Figure 

13 

Fracture strain improvement of CNT based polymer nanocomposites as 

a function of filler content (Adapted from [94, 96, 109, 110, 239-241]) 

Figure 

14 

Schematic representing fracture toughening mechanism of CNT 

reinforced polymer nanocomposites (Reprinted from [113] Copyright 

2017, with permission from Elsevier) 

Figure 

15 

Normalized Young’s moduli of TPU/graphene nanocomposites in 

different processing methods) (Adapted from [11]) 

Figure 

16 

Fracture strain improvement of graphene-based PMNCs as a function of 

filler content (Adapted from [164, 242-244]) 

Figure 

17 

Comparative fracture toughness improvement of epoxy-based 

nanocomposites using different nano-fillers [165] (Open access from The 

Royal Society of Chemistry) 

Figure 

18 

Schematic representing fracture toughening mechanism of CNT 

reinforced PMNCs (Adapted from [152] Copyright 2015 The Authors – 

Open access from Elsevier) 
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Figure 

19 

The formation of carbide when fabricating metal/GO (2 wt.%) 

nanocomposites (Reprinted from [180] Copyright 2014, with permission 

from Acta Materialia) 

Figure 

20 

The agglomerations of ceramic nano-particles in Al matrices: (a) 

Al/Al2O3 4 vol.% [217]  and (b) Al/SiC 3 wt.% [216] (Open Access from 

Metals) 
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Table 1 Nanocomposite manufacturing techniques 
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Table 3 Fracture toughness of polymer reinforced CNT nanocomposites with 
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Information Regarding Figures and Tables 
 

 
 
Figure 1: Micro-features as applications of micromachining of nanocomposites. (a - b) 

SEM images of MTA/MWCNT micro-capacitors and micro-resistors made by precise 3D 

printing (Reprinted from [12] Copyright 2016, with permission from Society of Photo-

Optical Instrumentation Engineers (SPIE)); (c) SEM image of a stainless steel/Al2O3 

piston and a linkage rod made by soft molding (Reprinted from [22] Copyright 2009, 

with permission from Acta Materialia); (d) SEM image of a stainless steel/titania micro-

gear made by soft molding (Reprinted from [23] Copyright 2009, with permission from 

Elsevier); (e) Optical image of a Epoxy/SiO2 wheel and (f) SEM image of a epoxy/SiO2 

micro-gearwheel made by UV-LIGA methods (Reprinted from [229] Copyright 2009 , 

with permission Elsevier) 

MTA: thiol-acrylate; MWCNT: multi-walled carbon nanotube; SWCNT: single-walled 

carbon nanotube; PP: polypropylene 
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Figure 2: Normalized tensile modulus of epoxy-based composites as a function of 

micro-filler size (Adapted from [35-37], [230]) 
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Figure 3: Normalized tensile modulus of polymer-based nanocomposites as a function 

of nano-filler size (Adapted from [231, 232]) 
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Figure 4: Graphical representation of the effect of CNT aspect ratio while interacting 

with polymer chains  (Reprinted from [46] Copyright 2015, with permission from 

Elsevier) 
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Figure 5: Theoretical models representing the micromechanical strengthening 

mechanism of polymer/CNT nanocomposites via the analysis of interfacial stress 

transfer with the consideration of various factors: (a) Effects of polymer matrix 

density, chemical cross-links and CNT defect (Reprinted from [47] Copyright 2006, 

with permission from Elsevier); (b) Effects of SWCNT waviness (Adapted with 

permission from [48] Copyright © 2011 Elsevier); (c) Effects of tube length and 

diameter (Reprinted from [49] Copyright 2004, with permission from Woodhead 

Publishing); (d) Effects of nanotube aspect ratio and fiber volume fraction (Reprinted 

from [54] Copyright 2006, with permission from Elsevier) 
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Figure 6: (a) Effect of SWCNT’s diameter, thickness and length on the stress transfer 

efficiency (δ); (b) Effect of Young’s modulus on the stress transfer efficiency (δ) 

(Assumed that CF had the same hollow structure with d= 3nm and t= 0.142 nm as 

SWCNT) (Fiber volume fraction Vf ~ 0.17 % )(Reproduced from [49]); (c) Effect of 

nanotube diameter on stress transfer efficiency (Vf = 0.1%); (d) Effect of nanotube 

volume fraction on stress transfer efficiency (d = 0.7086 nm) (Reproduced from [54]) 
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Figure 7: (a) Schematic of the microstructure of CNT-reinforced MMCs with DPZs. (b) 

The entire composite is decomposed into CNT and effective matrix phase, and the 

effective matrix is comprised of DPZs and pure metal matrix (Reprinted from [63] 

Copyright 2014, with permission from Elsevier) 
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(ABS: Acrylonitrile butadiene styrene; PAN: Poly-acrylonitrile; HDPE: High-density 

Polyethylene) 

Figure 8: Mechanical properties of polymers reinforced CNTs with corresponding 

dispersion techniques (Adapted from [94, 96, 100, 233-236])  
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Figure 9: Effects of dispersion method on mechanical properties of CNT reinforced 

PMNCs (Reproduced from [98]) 
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Figure 10: Effect of CNT structure on mechanical properties of polymer 

nanocomposites  at a filler content of 0.3 wt.% (Adapted from [117]) 
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Figure 11: Effect of CNT alignment on mechanical properties of epoxy-based 

nanocomposites (Adapted from [237, 238]) 
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Figure 12: Effect of CNT functionalization on tensile modulus of CNT reinforced epoxy 

matrix nanocomposites (Adapted  from [80, 108, 117]) 
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Figure 13: Fracture strain improvement of CNT based polymer nanocomposites as a 

function of filler content (Adapted from [94, 96, 109, 110, 239-241]) 
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Figure 14: Schematic representing fracture toughening mechanism of CNT reinforced 

polymer nanocomposites (Reprinted from [113] Copyright 2017, with permission from 

Elsevier) 
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Figure 15: Normalized Young’s moduli of TPU/graphene nanocomposites in different 

processing methods) (Adapted from [11]) 
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Figure 16: Fracture strain improvement of graphene-based PMNCs as a function of 

filler content (Adapted from [164, 242-244]) 
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Figure 17: Comparative fracture toughness improvement of epoxy-based 

nanocomposites using different nano-fillers [165] (Open access from The Royal Society 

of Chemistry) 
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Figure 18: Schematic representing fracture toughening mechanism of CNT reinforced 

PMNCs (Adapted from [152] Copyright 2015 The Authors – Open access from Elsevier)  
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Figure 19: The formation of carbide when fabricating metal/GO (2 wt.%) 

nanocomposites (Reprinted from [180] Copyright 2014, with permission from Acta 

Materialia)  
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Figure 20: The agglomerations of ceramic nano-particles in Al matrices: (a) Al/Al2O3 4 

vol.% [217]  and (b) Al/SiC 3 wt.% [216] (Open Access from Metals)  
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Table 1: Nanocomposite manufacturing techniques 

 

Nanocomposites Manufacturing method Ref. 

Polymer matrix 

nanocomposites 

(PMNCs) 

 

Melt mixing [245] 

Solution mixing [246] 

In situ polymerisation [247] 

In situ formation [248] 

Sol-Gel [249] 

Metal matrix 

nanocomposites 

(MMNCs) 

 

Spray pyrolysis  [250] 

Infiltration  [251] 

Rapid solidification  [252] 

High energy ball milling and powder metallurgy 

(consolidation) 
[253] 

Chemical vapour deposition  [254] 

Physical vapour deposition  [255] 

Colloidal suspension [256] 

Sol-Gel and hot pressing [257] 

Ceramic matrix 

nanocomposites 

(CMNCs) 

 

Powder processing (Compression, rolling, and 

extrusion) 
[258] 

Polymer precursor [259] 

Sol-Gel and consolidation [260] 
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Table 2:  Nano-filler geometries  

 

1D-Planar shape 2D-Tubular shape 3D- Spherical shape 

  

 

at least one 
dimension ≤ 100 nm 

at least two 
dimensions ≤ 100nm 

all three dimensions 
≤ 100nm 

Graphene [261] 
 

 

 
SWCNT (Reprinted 
with permissons from 
[262] Crown copyright 
© 2004) 

 

Silica (Reprinted with 
permissons from 
[263] Copyright © 
2016 Elsevier) 
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Table 3: Fracture toughness of polymer reinforced CNT nanocomposites with the 

consideration of various factors 

Matrix Factors Variables 
Filler 

content 
(wt.%) 

Fracture 
toughness 

Improvement 
(%) 

Ref. 

Epoxy 
- CNT structure 
-Functionalization 
- Filler content 

SWCNT 

0.05 10.8 

[117] 

0.1 23.0 

0.3 12.3 

DWCNT 

0.1 16.9 

0.3 30.8 

0.5 30.7 

DWCNT-NH2 

0.1 18.5 

0.3 41.5 

0.5 43.0 

MWCNT 
0.1 21.5 

0.3 23.0 

MWCNT 

0.1 24.6 

0.3 30.8 

0.5 29.2 

Epoxy - CNT diameter 

Type A (20-30 
nm) 

0.5 

31.8 

[264] 

Type B (30-40 
nm) 

26.4 

Type C (40-50 
nm) 

24.2 

Type D (50-60 
nm) 

21.2 

Epoxy - CNT length 

2091 nm 

0.1 

46.6 

[265] 

1689 nm 43.3 

1332 nm 8.7 

992 nm 2.0 

503 nm -14.7 

Epoxy 
- CNT alignment 
- Filler content 

Random 
orientation 

0.05 6.2 

[237] 

0.1 11.6 

0.3 16.9 

0.5 13.8 

Aligned 
orientation 

0.05 23.3 

0.1 36.1 

0.3 53.0 

0.5 31.1 

Epoxy 
 
 

Three-Roll 
Milling 

0.1 58.3 
[266] 

0.5 64.5 
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-Processing 
technique 

(TRM) 1 68.5 

1.5 60.0 

2 57.7 

HPH (High 
Pressure 
Homogenization) 

0.1 48.3 

0.5 56.4 

1 64.2 

1.5 56.0 

2 42.0 

HPH + TRM 

0.1 82.6 

0.5 72.5 

1 78.5 

1.5 78.0 

2 74.0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            70 

Table 4: Mechanical properties of CNT reinforced metal matrix nanocomposites  

 

Material 
Tensile 
strength 
(MPa) 

Young’s 
modulus 
(GPa) 

Hardness 
(GPa) 

Elongation 
(%) 

Reasons 
Fabricating 
methods 

Al/MWCNT  
1wt.% [139] 

521.7 
(35.7%) 

102.2 
(41.3%) 

0.136 
(30.8%) 

17.9 
(-5%) 

Good interfacial 
bonding, 
homogenous 
distribution, high 
elastic behavior of 
CNT, integrality of Al 

Powder 
metallurgy 
cold isostatic 
press, hot 
extrusion 

Al/MWCNT  
0.5wt.% [138] 

130 
(9.2%) 

60 
 (20%) 

-- 
18.7 
(-25.8%) 

Good distribution of 
CNT due to rolling 
process 

Mechanical 
mixing, hot 
rolling 

Al/(Si) 
MWCNT 10wt.% 
 [143] 

83.1 
(4%) 

120.4 
(78%) 

-- 
8.8E-4 
(-54%) 

Strengthening by 
retained CNT and 
nano-crystalline 
structure 

Thermal spray, 
plasma 
spraying (SPS) 

Al/(Si) 
CNT 10wt.% 
[267] 

-- 
125 
(39%) 

2.1 
(141%) 

-- 

Good distribution of 
CNTs due to Si-
coating and 
dispersing method 

Spark plasma 
sintering  (SPS) 

Al/(Ni) 
CNT 5wt.%  
[132] 

213 
 (52%) 

-- 
3200 
(113.3%) 

-- 
Homogenous 
dispersion, CNT 
structure retention, 
strong interfacial 
strength due to 
molecular mixing in 
in-situ CVD synthesis 
as compared to ball 
milling 

Ball milling 

398 
(184%) 

-- 
6.5 
(333%) 

-- 
In situ CVD 
synthesis 

Cu/MWCNT 
20 vol.% [137] 

-- 
106.5 
(108%) 

1.304 
(72%) 

-- 

Homogenous 
distribution and 
reduction of 
MWCNT 
agglomerations 

SPS and 
electroless 
deposition 

Cu/MWCNT 
10 vol.% [136] 

196 
(45%) 

135 
(95%) 

1.75 
(207%) 

-- 
Homogenous 
distribution of CNT 

SPS, cold 
rolling 

Cu/(Ni) CNT 
12 vol.% [268] 

-- -- 
21.5a 
(111%) 

-- 
Highest mechanical 
reinforcement at 12 
vol.% of CNT 

Mechanical 
mixing and hot 
pressing 

Cu/(Ni) MWCNT 
 0.75wt.% [140] 

279 
(76%) 

-- 
1.383 

(54%) 
-- 

CNTs resist plastic 
deformation, 
thermal expansion 
mismatch, 
homogenous 
distribution, good  
interfacial bonding, 
high hardness of Ni 

Ball milling and 
hot 
pressing 

Cu/MWCNT  
0.5 vol.% [269] 

307.4 
(81.6%) 

-- 
106 

(14.7%) 
38.44 
(55%) 

Well dispersed of 
MWCNTs 
Stable interface 
blocks dislocation 

Ball milling and 
hot 
pressing 

Ni-P/MWCNT 
0.21wt.% [270] 

-- 
665.9 
(303%) 

28.9 
(331%) 

-- 
Strengthening 
effects due to 
MWCNT presence 

Electroless 
deposition 

Ni/MWCNT 
0.1wt.% [271] 

1140.7 
(14.2%) 

-- 
4.824 

(74.5%) 
7.69 
(-29.7%) 

High quality 
dispersion and 
integrity of MWCNT 
due to surfactant 
treatment 

SPS 
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Mg-Zn/CNT 
1 vol.% [142] 

321 
(13.6%) 

52 
(42.5%) 

-- 
17 
(-54.5%) 

Homogenous, single 
distribution of CNTs, 
no reaction at 
interface, grain 
refinement 

Melting and 
solidification 

Mg/(Si)MWCNT 
5 vol.% [134] 

296 
(44.4%) 

-- 
1.569 

(100%) 
1.3 
(-74%) 

High wettability of 
MWCNTs due to Si-
coating leads to 
good distribution, 
bonding strength 

Ball mill and 
hot pressing 

Mg/CNT  
1.3wt.% [272] 

210 
(9%) 

-- 
46b 

(2.2%) 
-- 

The coefficient 
mismatch of 
thermal expansion 
and elastic modulus 
of Mg-CNT 

Melt 
deposition and 
hot extrusion 

Mg/(Ni) 
MWCNT 
0.3wt.% [133] 

237 
(38.6%) 

-- 
0.54 

(41%) 
-- 

Improved adhesion 
of Mg-(Ni)MWCNT 
due to Ni coating 
leading to Mg2Ni 
intermetallic 
formation, grain 
refinement 

Powder 
metallurgy, 
microwave-
assisted 
sintering 

Mg 
alloy/MWCNT 
2wt.% [273] 

297 
(6.1%) 

-- 
0.8 

(0.37%) 
9.2 
(-36%) 

Strengthening 
mechanism, thermal 
mismatch of CNT-
Mg alloy 

Ball mill, hot 
compact  

a: HRB; b: HR15T
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Table 5: Mechanical properties of graphene reinforced polymer matrix 

nanocomposites 

 
Material 

Tensile 
Strength 

(MPa) 

Young’s 
modulus 

(GPa) 
Reasons 

Fabricating 
methods 

EP/GNP  
0.3 wt.% 
[274] 

64.4 
(12.6%) 

2.16 
(30%) 

The high temperature in low viscosity system, 
low concentration of Gr leading to low 
agglomeration and uniform distribution of 
Graphene 

Solution mixing 

EP/APTS-GO  
0.2 wt.% 
[244] 

81.2 
(16%) 

3.3 
(32%) 

Uniformly distributed APTS-GO, strong 
interfacial stress 

Solution mixing 

EP/NH2-GNP 
4 wt.% [275] 

66 
(1.5%) 

3.4 
(17%) 

GNP aggregation, poor GNP dispersion Solution mixing 

EP/EGS  
3 wt.% [276] 

41 
(20%) 

3.7 
(25%) 

High aspect ratio and uniformly distributed 
EGS, good interfacial adhesion of EP-EGS 

Solution mixing 

EP/RGO 
0.2 wt.% 
[277] 

52.6 
(-0.8%) 

3.1 
(7%) 

Weak interfacial bond of EP-RGO, RGO 
agglomeration, RGO curvature 

Solution mixing 

EP/GNP 
0.1 wt.% 
[278] 

78 
(40%) 

3.7 
(31%) 

The high specific surface area of GNPs, strong 
matrix-filler adhesion/interlocking due to 
wrinkled surface of GNPs 

Solution mixing 

EP/GNP 
0.3 wt.% 
[279] 

70.4 
(23%) 

1.28 
(47%) 

High effect of Sodium Dodecyl Sulphate (SDS) 
as solution on GNP dispersion, effect of 
surfactants 

Solution mixing 

ABS/CO(OH)2/ 
GNS 4 wt.% 
[242] 

43.2 
(50%) 

-- High modulus GNS, homogenous dispersion Melt mixing 

PMMA/GO 
1 wt.% [243] 

70.9 
(22%) 

4.39 
(28%) 

High aspect ratios and good dispersions of GO 
at low loading, wrinkled platelets 

In situ 
polymerization 

PC/FLG 
1 wt.% [280] 

60 
(10%) 

1.45 
(26%) 

Optimizing the aspect ratio of the graphene 
flakes 

Solution mixing 

HDPE/GNS 
3 wt.% [281] 

47 
(77%) 

2.033 
(87%) 

High specific area and flat-structure of GNS, the 
mechanical interlocking of HDPE-GNS, 
enlarging the interphase zone 

Melt mixing 

LDPE/RGO 
5 wt.% [282] 

-- 
10.1 

(60.7%) 
Homogeneous distribution of exfoliated carbon 
sheets in functionalized PE 

Solution mixing/ 
melt compounding 

TPU/EG 
10 wt.% [164] 

9 
(-84%) 

0.091 
(237%) 

Homogenous distribution, HS crystallization, EG 
hindering the amorphous phase, weak 
interfacial interaction of TPU-EG, EG 
agglomerations 

Melt mixing 

PVA/GNS 
3 wt.% [162] 

43.2 
(122%) 

1.186 
(155%) 

Homogenous distributed Gr and strong 
interfacial interaction of PVA-GNP. GNP 
restricting polymer chain movements 

Solution mixing 

APTS-GO: amino-functionalized – graphene oxide; EGS: Graphene stack; FLG: Few layer graphene sheets; EG: 
Expanded graphite; GO: Graphene oxide; RGO: Reduced graphene oxide; GNP: Graphene nano-platelet; GNS: 
Graphene nano-sheet; GNP: Graphene nano-platelet 

 

 

 

 

 

 

 

 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            73 

Table 6: Mechanical properties of graphene reinforced metal matrix nanocomposites 

 
Material 

Tensile 
Strength 
(MPa) 

Young’s 
modulus 
(GPa) 

Hardness 
(GPa) 

Elongation 
(%) 

Reasons 
Fabricating 
methods 

Al/RGO 
0.3wt.% 
[172] 

-- 
90.1 

(18%) 
1.59 

(17%) 
-- 

High quality of RGO, 
uniform dispersed of RGO, 
strong interfacial bonding 
of Al-RGO 

Compacting and 
hot pressing 

Al-Mg-
Cu/Gr 
0.3wt.% 
[283] 

454 
(25%) 

72 
(-1%) 

-- 
11.8 
(7%) 

 

Evenly distributed of Gr, 
good interfacial bonding, 
Gr structure retention 

Ball milling, hot 
isostatic pressing 
(HIP) and 
extruding 

Al/GO 
15 mg ml-1  
[284] 

192 
(-7%) 

-- -- 
28 

(50%) 

Dynamic recrystallization 
of matrix phase due to 
shear deformation, heat 
from FSP and grain 
refinement 

Friction stir 
processing (FSP) 

Al/GNS 
1 wt.% 
[285] 

248 
(68.7%) 

-- -- 
8.3 

(-52%) 

Homogenous distribution 
of GNFs, no metallurgical 
at interfaces of Al-GNF 

Blending, cryo-
milling, degassing 
and hot extrusion 

Cu/FLG 
3 wt.% 
[286] 

-- -- 
0.46 

(39%) 
16 

(-71%) 

Disruption of Gr layers due 
to Cu deformation by 
rolling, Gr partly hinder 
grain growth 

Rolling 

Cu/RGO 
2.5 vol.% 
[184] 

335 
(30%) 

131 
(30%) 

-- -- 
Strong interfacial bonding 
of Cu-RGO 

Compacting and 
SPS 

Cu/GO 
0.5 gL-1  
[287] 

-- 
137 

(30%) 
2.5 

(96%) 
-- 

Uniform distribution of Gr, 
grain size refinement 

Pulse reverse 
electrodeposition 

Cu/(Ni)GPL 
0.8 vol.% 
[288] 

245 
(42%) 

-- -- 
9 

(-67.8%) 

Good dispersion of GPL 
and strong interfacial 
bonding Cu-GPL (Ni), 
covalent interaction of Ni-
GPL 

Solution, 
sonication, SPS 

Cu/(Ni)GNS 
1 vol.% c 

320 
39.1%) 

132 
(61%) 

-- -- 

Homogenous dispersion of 
GPL and strong interfacial 
interaction of Cu-GPL due 
to Ni coating 

Solution, 
sonication, SPS 

Cu/GNP 
1.3 wt.% 
[289] 

485 
(107%) 

104 
(21%) 

-- 
9 

(-64%) 

Homogenous dispersion of 
GNPs due to pre-coating of 
Cu on GNPs 

Electroless 
plating, SPS 
tensile 

Cu/RGO 
0.3 wt.% 
[290] 

308 
(41%) 

109 
(12%) 

-- -- 

Less structural damage on 
RGO, randomly oriented of 
RGO benefit the load 
transfer of nanocomposite 

Hot pressing 

Ni/GO 
0.12 wt.% 
[174] 

-- 
252.76 
(51.6%) 

6.85 
(278.4%) 

-- 

Compact interfacial 
bonding of Ni-GO, 
homogenous dispersion of  
GO 

Electrodeposition 

Ni/Gr 
0.05 gL-1 

[179] 
-- 

240 
(70%) 

4.6 
(20%) 

-- 
High interaction of Ni-Gr, 
Gr preventing Ni 
dislocation 

Electrochemical 
deposition 

Mg/Ti/GNP 
0.18 wt.% 
[188] 

230 
(8.5%) 

-- -- 
14 

(27%) 
High specific area and 
adhesion of Gr 

Semi powder 
metallurgy 

Mg-Al-Sn/ 
GNP 0.18 
wt.% 
[291] 

269 
(14%) 

-- -- 
10.9 

(-34.7%) 

High specific surface area, 
superior nano-filler 
adhesion and two-
dimensional structure of 
GNPs 

Semi-powder 
metallurgy 
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Mg/GNP 
0.3 wt.% 
[173] 

246 
(32.2%) 

13.84 
(131%) 

55HV 
(34%) 

16.9 
(74.2%) 

High specific surface area 
of GNPs, uniform 
dispersion 

Compaction, 
sintering, 
extruding   
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Table 7: Mechanical properties of ceramic nano-fillers reinforced polymer matrix 

nanocomposites 

Material 
Tensile 
Strength 
(MPa) 

Young’s 
modulus 
(GPa) 

Reasons 
Fabricating 
methods 

PP/MMT 15 
wt.% [292] 

38 
(13%) 

3.36 
(100%) 

Well-dispersed MMTs 
Melt mixing, 
injection molding 

PP/MMT 10 
wt.% [199] 

41.6 
(38.7%) 

-- 
The intercalation of MMT layers in the matrix 
due to the presence of MAPP 
compatibilization 

Melt mixing, 
injection molding 

PP/MMT 2 wt.% 
[203] 

32 
(18%) 

0.9 
(82%) 

The persistence of silicate layers, modification 
of PP structure, partially immobilized polymer 
segments 

Melt mixing  

PA6/MMT 7.2 
wt.% [204] 

-- 
5.7 

(107%) 
High molecular weight  and integrity of matrix Melt mixing 

SPU/30B 7 wt.% 
[205] 

21 
(-53.3%) 

0.024 
(220%) 

 
Well-dispersed and delaminated  of Cloisite 
30B regardless processing methods, good 
interaction of PU-clay, preferable solution 
mixing due to PU and surfactant degradations 
from melt mixing, larger improvements of the 
stiffness of SPU due to higher fraction of soft 
segment 

Solution mixing 
Melt mixing 

HPU/30B 7 
wt.% [205] 

34 
(-41.3%) 

0.134 
(168%) 

SPU/30B 7 wt.% 
[205] 

7 
(-66.7%) 

0.0193 
(168%) 

HPU/30B 7 
wt.% [205] 

15 
(-66%) 

0.119 
(95%) 

EVA/ Cloisite Na 
3 wt.% [201] 

25.9 
(-8.8%) 

0.0135 
(10.7%) 

The dominant effect of exfoliation on tensile 
properties of  
nanocomposites, high interaction between 
EVA and Cloisite 30B 

Melt mixing, 
compression 
molding 

EVA/ Cloisite 
20A 3 wt.% 
[201] 

25.8 
(-9.2%) 

0.0249 
(104.1%) 

EVA/ Cloisite 
25A 3 wt.% 
[201] 

26.2 
(-7.7%) 

0.022 
(80.3%) 

EVA/ Cloisite 
30B 3 wt.% 
[201] 

30.7 
(8.1%) 

0.0228 
(86.9%) 

EVA/ Nanofile 
757 3 wt.% 
[201] 

27.6 
(-2.8%) 

0.0116 
(-4.9%) 

EVA/ Nanofile 
15 3 wt.% [201] 

26.7 
(-6%) 

0.024 
(96.7%) 

EVA/ Somasif 
ME100 3 wt.% 
[201] 

24.5 
(-13.7%) 

0.0124 
(1.6%) 

EVA/ Somasif 
MAE 3 wt.% 
[201] 

25.1 
(-11.6%) 

0.021 
(72.1%) 

EP/SMC 2 wt.% 
[200] 

57 
(25%) 

3.3 
(10%) 

Homogenous distribution and high exfoliation 
of SMCs 

Solution mixing 

EP/SiO2 3.72 
vol.% [206] 

-- 
3.96 

(12%) 
Less agglomeration, well dispersed and high 
aspect ratio of Silica at low loadings 

Solution mixing 

EP/SiO2 4 wt.% 
[293] 

42.3 
(30.57%) 

-- Optimal interaction of EP-SiO2 at 4 wt.%  Solution mixing 

EP/SiO2 13.4 
vol.% [207] 

-- 
3.85 

(30%) 
High modulus, well dispersion and no 
agglomeration of Silica 

Sol-gel mixing 

EP/SiO2 20 wt.% 
[294] 

-- 
3.97 

(26.4%) 
High stiffness of silica Solution mixing 

EP/SiO2 20.2 
wt.% [295] 

-- 
3.85 

(30%) 
Well-dispersed silica Solution mixing 

MMT: montmorillonite; SMC: Silane-modified clay; SPU: Soft polyurethane; HPU: Hard polyurethane; EVA: 
Ethylene-vinyl acetate 
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Table 8: Mechanical properties of ceramic nano-particle reinforced metal matrix 

nanocomposites 

Material 
Hardness 

(GPa) 

Tensile 
strength 

(MPa) 

Yield 
strength 

(MPa) 

Elongation 
(%) 

Reasons 
Fabricating 
methods 

Al/SiC 3 
wt.% [216] 

0.55 
(39.5%) 

164.4 
(29.3%) 

145 
(31%) 

165.3 
(-32.8%) 

Homogenous 
distribution of SiC, 
effects of Orowan 
strengthening, grain size 
refinement (yield 
strength), mismatch of 
thermal expansion 
coefficients between Al 
and SiC (CTE). Porosities 
lead to a reduction of 
ductility. SiC hindered 
metal matrix dislocation 
that increasing hardness 

Powder 
metallurgy (PM), 
ultrasound- 
assisted stirring 
and planetary 
agitation, hot 
compressing 

Al/SiC 6.5 
vol.% 
[219] 

-- 
807 

(26.5%) 
610.8 
(9.5%) 

59 
(-91.8%) 

Homogenous dispersed 
SiC, grain size 
refinement, Orowan 
strengthening 

Mechanical 
alloying, cryo-
milling, HIP 
consolidation 

Al/SiC 1.25 
vol.% 
[222] 

-- 
(69%) 

-- 
(109%) 

-- 
3.6 

(-40%) 

Homogenous 
distribution of SiC and 
CTE strengthening at 
low loading, residual 
stresses, high 
dislocation density and 
grain size reduction 
increased hardness, 
agglomeration and 
porosity at a high 
loading of SiC. Hard 
particles reduced 
ductility.  

Mechanical 
alloying, ultra-
sonication 

Al/SiC 2 
wt.% [228] 

-- 
301 

(12%) 
156.3 

(43.4%) 
3.4 

(26%) 

Uniformly dispersed SiC, 
CTE, high dislocation 
density, restriction of 
dislocations 

Mechanical 
alloying, ultra-
sonication 

Al/Al2O3 4 
vol.% 
[217] 

66.6 
(109.5%) 

245.5 
(67%) 

183.7 
(138.6%) 

12.8 
(-51.7%) 

Evenly distributed 
Al2O3 Orowan 
strengthening and grain 
size refinement effects 
at below 4 vol.% of 
loading 

PM, wet mixing, 
cold isotropic 
pressing 
(CIP) and 
sintering 

Al alloy/SiC 
10 wt.% 
[227] 

87.2 BHN 
(9%) 

265 
(12.3%) 

257 
(16.8%) 

18.2 
(-6.2%) 

The composite density 
was reduced, SiC 
hindered alloy 
dislocations, uniform 
distribution of SiC and 
their high wettability 
due to Mg coating 

Stir casting 

Al alloy/SiC 
10 wt.% 
[226] 

78 BHN 
(28%) 

188 
(0.53%) 

-- 
2.4 

(-22.6%) 

Insufficiently 
homogenous 
distribution of SiC due 
to improper stirring led 
to the low improvement 
of tensile strength, hard 

PM, mechanical 
mixing 
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SiC hindered 
dislocations that 
contributed to hardness 
improvement 

Al alloy/SiC 
6 wt.% 
[296] 

116 BHN 
(62%) 

267 
(29%) 

-- 
3.6 

(-41%) 

SiC possessed advanced 
hardness, strong 
interface of Al alloy - SiC 

Liquid 
metallurgy 

Mg 
alloy/SiC 
1.5 wt.% 
[224] 

-- 
199.3 
(90%) 

71.7 
(73%) 

20 
(135%) 

Grain size refinement, 
strong bond of Mg/4Zn-
SiC, SiC clusters, no 
reason for ductility 
improvement 

MA, ultrasonic 
cavitation 

Mg/SiC 3 
vol.% 
[225] 

0.58 
(180%) 

288 
(21.5%) 

-- 
6 

(-40%) 

Grain size refinement, 
dispersion hardening, 
strain hardening due to 
extrusion, dislocation 
hindering 

PM, ball milling 

Mg/SiC 
1.84 wt.% 
[223] 

0.42 
(10%) 

203 
(18%) 

157 
(25.6%) 

7.6 
(31%) 

Hard SiC led to a high 
constraint of matrix 
deformation that 
improved hardness, 
dislocation density, 
internal stresses 
formation due to 
thermal expansion 
mismatch, Orowan 
strengthening and the 
mismatch of elastic 
reinforcing phase - 
plastic matrix phase 
contributed to tensile 
properties increments, 
the activation of non-
basal slip and SiC-Mg 
interfacial integrity led 
to ductility 
improvement 

MA, pressing, 
microwave hot 
sintering 

Mg/SiO2 
10 vol.% 
[297] 

1.03 
(75%) 

251 
(32%) 

225 
(60.7%) 

4 
(-69%) 

Uniform distribution of 
SiO2, grain size 
refinement, Mg2Si, 
MgO formations during 
FSP 

FSP 

Al/TiC 10 
wt.% 
[221] 

44.17 
HV5 

(143.6%) 
-- 

189 
(136%) 

5 
(-83.3%) 

Strong TiC particles, 
grain size refinement 

In situ 

 

 

 

 

 


