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Abstract In this study, we used genetic interaction (GI)

and gene–chemical interaction (GCI) data to compare

mutations with different dominance phenotypes. Our

analysis focused primarily on Saccharomyces cerevisiae,

where haploinsufficient genes (HI; genes with dominant

loss-of-function mutations) were found to be participating

in gene expression processes, namely, the translation and

regulation of gene transcription. Non-ribosomal HI genes

(mainly regulators of gene transcription) were found to

have more GIs and GCIs than haplosufficient (HS) genes.

Several properties seem to lead to the enrichment of

interactions, most notably, the following: importance,

pleiotropy, gene expression level and gene expression

variation. Importantly, after these properties were appro-

priately considered in the analysis, the correlation between

dominance and GI/GCI degrees was still observed. Strik-

ingly, for the GCIs of heterozygous strains, haploinsuffi-

ciency was the only property significantly correlated with

the number of GCIs. We found ribosomal HI genes to be

depleted in GIs/GCIs. This finding can be explained by

their high variation in gene expression under different

genetic backgrounds and environmental conditions. We

observed the same distributions of GIs among non-

ribosomal HI, ribosomal HI and HS genes in three other

species: Schizosaccharomyces pombe, Drosophila mela-

nogaster and Homo sapiens. One potentially interesting

exception was the lack of significant differences in the

degree of GIs between non-ribosomal HI and HS genes in

Schizosaccharomyces pombe.

Keywords Genetic interactions � Gene–chemical

interactions � Haploinsufficiency � Genetic dominance �
Saccharomyces cerevisiae

Introduction

Genetic interaction (GI) is a phenomenon in which the effect

(fitness) associated with one gene is modified (enhanced or

alleviated) by other gene(s). During the past few years, there

has been a breakthrough in the field of genetic interactions

thanks to the appearance of the SGA (synthetic genetic

array) technique. This high-throughput method has facili-

tated the exploration of synthetic lethal and synthetic sick

genetic interactions on a genome-wide scale. With approx-

imately 30 % coverage of double deletions in the Saccha-

romyces cerevisiae genome (Costanzo et al. 2010), it has

become possible to better understand the properties of the

cellular network of genetic interactions. The degree of

connectivity of this network has been shown to be distributed

just as in other biological networks, i.e., the majority of

genes have few interactions, whereas a small number of

genes are highly connected and serve as network hubs.

Negative genetic interaction hubs have been shown to have

low expression variation, which makes them less prone to

‘epigenetic’ epistatic interactions (Park and Lehner 2013).

The essential genes and other genes showing a strong fitness

defect in knockout studies have been observed to have
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generally more genetic interactions (Costanzo et al. 2010). It

has also been shown that genes from the same pathway or

biological process tend to have similar profiles of genetic

interactions (Costanzo et al. 2010). Among the many inter-

esting applications, combining genetic perturbations with

multiple chemicals appears to be a promising step forward,

especially in medical research (e.g., anticancer drug dis-

covery; Ashworth et al. 2011).

The history of the study of genetic dominance is much

older than that of genetic interaction research. Mendel’s

studies, which laid the cornerstone of modern genetics,

were performed approximately 150 years ago. In crossing

two strains of peas, he noticed that a particular variation of

a trait (for example, the greenness of the pea) would not

appear in the next generation because the effects of a

recessive allele were masked by the presence of a dominant

one (Mendel 1901).

Since Mendel’s discoveries, dominant and recessive

alleles have been studied thoroughly, especially from an

evolutionary perspective (Bürger and Bagheri 2008). The

argument between the two fathers of population genetics,

R. A. Fisher and Sewall Wright, led to a breakthrough in

our understanding of the evolution of dominance. Fisher

suggested that dominance arose from direct selection to

modify the fitness effect of heterozygotes. Sewall Wright

(supported by J. B. S. Haldane) suggested that dominance

arose as an indirect effect of selection.

Since the time of the argument between Fisher and

Wright, our knowledge has increased considerably. The

most widely accepted theory, proposed by Kacser and

Burns (MCT; Kacser and Burns 1981), is in agreement

with Wright’s view. According to MCT, dominance is

considered to be the consequence of the kinetic structure of

an enzyme network. Although MCT is in opposition to the

‘gene modifier theory’ proposed by Fisher, it has been

shown that in some ‘‘special cases’’, dominance can be

shaped directly by natural selection (Tarutani et al. 2010).

It has been shown (comprising one of the key studies

confirming the Wright view) that novel recessive mutations

usually cause a loss of gene function (Orr 1991). Addi-

tionally, the molecular mechanisms causing the dominance

of a number of novel mutations have been identified.

Wilkie (1994) reviewed the following mechanisms:

reduced gene dosage, expression or protein activity (hap-

loinsufficiency; Seidman and Seidman 2002); increased

gene dosage (Patel et al. 1992); ectopic or temporally

altered mRNA expression (Ruvkun et al. 1991); increased

or constitutive protein activity (Mango et al. 1991); dom-

inant negative effects (Herskowitz 1987); altered structural

proteins (Sykes 1990); toxic protein alterations (Monplaisir

et al. 1986) and new protein functions (Owen et al. 1983).

Haploinsufficiency is the best-studied type of domi-

nance. Haploinsufficient genes have been shown to

predominantly encode ‘‘transcription factors and other

proteins involved in signal transduction and macromolec-

ular complexes’’ (Birchler and Veitia 2010). Haploinsuffi-

cient genes have attracted the attention of medical

researchers because mutations in such genes result in many

hereditary diseases (e.g., 299 such genes were found in a

rigorous search of the published literature and the OMIM

database; Dang et al. 2008). Moreover, many haploinsuf-

ficient genes have been shown to be connected with cancer

(Santarosa and Ashworth 2004). There are more than 100

known tumor suppressor genes (TSG) in humans. In these

cases, haploinsufficiency leads to an inability to maintain

cells, one of the causes of cancer (Manikandan et al. 2012).

Haploinsufficiency has been most thoroughly studied in

yeast. Several high-throughput studies of this matter have

been conducted in Saccharomyces cerevisiae (Deutsch-

bauer et al. 2005; studies by Oliver’s group, i.e., Delneri

et al. 2008; Gutteridge et al. 2010; Pir et al. 2012).

Importantly, various experimental techniques for the

detection of haploinsufficiency were used in those studies.

Moreover, searches for haploinsufficient genes were con-

ducted under various culture media conditions. There was

also one high-throughput study conducted in Schizosac-

charomyces pombe (Baek et al. 2008).

Haploinsufficient genes are also well recognized by the

Drosophila melanogaster research community. In this

species, loss-of-function dominant mutations result in

specific, repeatable phenotypes (prolonged development,

short and thin bristles, poor fertility and viability) called

Minutes. The initial studies of these phenotypes were

conducted approximately 90 years ago (Bridges and Mor-

gan 1923). However, additional investigations were needed

to show that almost all such mutations occur in cytoplasmic

ribosomal genes (Marygold et al. 2007). Currently, these

genes are also attracting the attention of medical

researchers, as some human mutations affecting ribosomes

(ribosomopathies) lead to disorders with specific clinical

phenotypes (Narla and Ebert 2010).

In this study, we looked at genetic dominance from the

perspective of gene–gene and gene–chemical interactions.

We tried to draw general conclusions about relationships

between dominance and sensitivity to different intracel-

lular (gene–gene) and extracellular (chemical–gene) per-

turbations in compliance with commonly accepted MCT

theory and the common assumption that selection acts

only indirectly on dominance. We made use of current

knowledge about the relationship between genetic domi-

nance and the degree of GIs, indicating that dominant

genes generally have more genetic interactions than

recessive genes (shown for human haploinsufficient genes

in a probabilistic functional interaction network (Huang

et al. 2010) and for S. cerevisiae HI genes (Park and

Lehner 2013). We also considered known factors
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correlating with the GI degree (Koch et al. 2012; Park

and Lehner 2013), especially gene importance (assessed

by the fitness defect of gene knockout) and gene

expression variation. We concentrated our efforts on

Saccharomyces cerevisiae, the only species for which

abundant genome-wide data are currently available.

We may outline the current study as follows. First, we

will evaluate differences in the distribution of genetic

interactions between dominant and recessive genes in four

organisms: S. cerevisiae, S. pombe, D. melanogaster and

Homo sapiens. Next, we will search for confounding

variables (in S. cerevisiae only) potentially affecting the

relationship between genetic dominance and genetic

interactions, and we will test this relationship with con-

founding variables taken into consideration. Finally, we

will reproduce gene–gene analyses (in S. cerevisiae only)

on gene–chemical data. We will also make the important

point that experimental design affects whole-genome-

deletion type data in the analyzed yeasts.

Materials and methods

Ribosomal genes

Lists of cytoplasmic ribosomal genes for the studied spe-

cies were obtained from the Ribosomal Protein Gene

Database (Nakao et al. 2004).

Dominance phenotypes

As our primary source, we used the set of haploinsufficient

and recessive (haplosufficient) S. cerevisiae genes pub-

lished by Oliver’s group (Pir et al. 2012). The authors

demonstrated a condition dependence of haploinsufficiency

and haploproficiency. Briefly, they analyzed haploinsuffi-

ciency and haploproficiency under rich-medium conditions

by conducting competitive fitness profiling of heterozygous

yeast deletion strains in a chemostat and a turbidostat. They

observed a strong correlation between those two experi-

ments, but there was a considerable difference in the set of

HI (haploinsufficient), HS (haplosufficient) and HP (hap-

loproficient) genes. It should be noted that in the cited

study, there was no wild type strain (without deletion)

control among the mix of deletions. Thus, both the HI and

HP gene categories are, most likely, inflated, whereas the

number of HS genes is, most likely, underestimated. To

counteract these probable biases, we restricted our analysis

to genes that had the same pattern in both experiments

(e.g., HI set defined as genes found to be HI in both

experiments) to remove probable false positives, especially

in the case of the HI and HP datasets. In all sets, the

ribosomal genes were filtered out.

As a complementary source of S. cerevisiae data, we

also used two other studies where competitive fitness

profiling was conducted in batch cultures for both

heterozygous and homozygous deletion strains (Deutsch-

bauer et al. 2005 and Steinmetz et al. 2002). For more

details, please see Online Resource 4 (Deutschbauer et al.)

and Online Resource 6 (Steinmetz et al.).

We also analyzed dominance phenotypes in three other

species: Schizosaccharomyces pombe, Drosophila mela-

nogaster and Homo sapiens (see Online Resource 1 for

more details).

Genetic interactions

We used the best studied network of S. cerevisiae, con-

structed by Costanzo et al. (2010). They modeled colony

size as a multiplicative combination of the mutant fitness,

time, and experiment. Then, they compared the fitness of

single deletions with double deletions, introducing a

genetic interaction score (e) metric. Costanzo et al. inferred

negative genetic interactions in cases where the fitness of

double deletions was significantly higher than the additive

effects of single deletions (genetic interaction score sig-

nificantly less than zero). Analogously, Costanzo et al.

inferred positive genetic interactions for cases in which

genetic interaction scores were significantly greater than

zero.

We followed the recommendation of Costanzo et al. for

high-throughput studies and used the dataset with a strin-

gent cutoff applied. In that dataset, a negative interaction

between two given genes was inferred if the genetic

interaction score (e) was below -0.12 (and the p value

\0.05). Positive interaction was inferred if e was [0.16

(and the p value\0.05).

As a second dataset in the analysis, we used all other

high-throughput studies of genetic interactions (excluding

the Costanzo data) conducted to date. We retrieved them

from BioGRID (Stark et al. 2006). Similarly to Costanzo

et al., we considered BioGRID interactions annotated as

phenotypic enhancement, synthetic growth defect and

synthetic lethality to be negative genetic interactions.

Conversely, BioGRID interactions annotated as phenotypic

suppression and synthetic rescue were considered positive.

We also analyzed the distribution of genetic interactions

in three other species: Schizosaccharomyces pombe, Dro-

sophila melanogaster and Homo sapiens (see Online

Resource 1 for more details).

Gene expression variation

We obtained data from Choi and Kim (2009; supplemen-

tary materials), who gathered genome-wide data on gene

expression variation resulting from stochastic noise,
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environmental perturbations, genetic perturbations and

evolutionary changes.

Single mutant fitness, multifunctionality

and expression level

We obtained the data from Koch et al. (2012; supple-

mentary materials) who gathered genome-wide data for S.

cerevisiae from various studies.

Chemogenetic interactions

Chemogenetic interactions for both heterozygous and

homozygous collections of S.cerevisiae deletion strains

were obtained from the study of Hillenmeyer et al. (2008;

supplementary materials).

Statistical methods

In most cases, the properties of the studied sets of genes/

alleles did not follow normal distributions. Thus, we

applied a nonparametric method, namely, a two-sample

permutation test, to evaluate the statistical significance of

observed differences between the distributions (two-sided,

p value 0.05, with 100,000 Monte Carlo replications).

Standard errors were generated from 10,000 random per-

mutations and defined as one standard deviation below and

above the mean.

All statistical analyses were conducted in R. We used

the MASS package (Venables and Ripley 2002) to conduct

multiple regression analyses for S. cerevisiae and S. pombe

data. The perm package (Fay and Shih 2012) was used to

conduct the two-sample permutation tests.

We chose a negative binomial regression model as our

multiple regression model. For the count data, we evaluated

four possible regression models (Poisson binomial regression,

negative binomial regression, zero-inflated binomial regres-

sion, and zero-inflated Poisson regression). Of these, the best-

fitting model was the negative binomial regression model.

We analyzed the enrichment of Gene Ontology terms

(Ashburner et al. 2000) with Ontologizer (Bauer et al.

2008).

Results

Haploinsufficient genes have more genetic

interactions than recessive genes

We studied the degree of genetic interactions in S. cere-

visiae with two datasets: (1) the high-throughput study of

Costanzo and (2) all the other HT studies, merged as one

dataset. In all cases, cytoplasmic ribosomal genes were

treated as a separate group, i.e., they were filtered out from

other haploinsufficient genes. For clarity, starting with the

next paragraph, we use the term haploinsufficient genes

(HI) when we discuss haploinsufficient non-ribosomal

genes. Analogously, we use the term haplosufficient genes

(HS) when we discuss haplosufficient non-ribosomal

genes.

We used the Pir et al. study as our primary source of HI

and HS genes in S. cerevisiae. We found that HI genes had

more genetic interactions in both the Costanzo and Bio-

GRID GI sets (Fig. 1). We also found that HS genes had

fewer genetic interactions than genes on average (p val-

ues = 0.067 and 0.4 in case of Costanzo and BioGRID

data respectively), while HI genes had significantly more

genetic interactions than genes on average (p val-

ues = 4e-05 in both Costanzo and BioGRID data). These

results suggest that the HI and HS sets from the Pir et al.

study are representative of the whole genome.

Our analysis distinguished between two main classes of

genetic interactions: positive and negative ones. Those

classes are usually associated with fundamentally different

biological interpretations. Thus, it was not obvious, albeit

expected, that the trend would be similar in both cases.

Indeed, in both cases, HI genes were observed to have a

significantly higher number of both positive and negative

genetic interactions in comparison with HS genes (with

p values = 0.016 and\2e-5 in case of Costanzo data and

p values = 1.4e-4 and\2e-5 in case of BioGRID data).

S. cerevisiae is not the only model organism in which

analyses combining the GI network and haploinsufficiency

are possible. We conducted similar analyses for S. pombe,

D. melanogaster and H. sapiens and observed similar

patterns (see Online Resource 1 for more details). One

potentially interesting exception was the lack of significant

differences in the degree of GIs between HI and HS genes

in S. pombe. However, those analyses appear to be of

limited value because of observed data quality issues, e.g.,

small GI network in S. pombe, network of H. sapiens based

on co-occurrence data, and set of small scale-studies in the

D. melanogaster biased towards dominant genes (see

Online Resource 1 for more details).

Dominance significantly correlates with GI degree

after taking confounding variables into account

Koch et al. (2012) analyzed the correlation of negative GIs

with twenty different factors. They conducted the analysis for

non-essential genes of S. cerevisiae with GI data from the

Costanzo study. Koch et al. showed that the negative GI

degree correlated with many factors. We checked whether

these properties have different distributions in HI and HS

genes (Fig. 2). Indeed, we found that HI genes were more

important (in terms of a stronger fitness defect of gene
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knockouts; p value = 1.8e-4), more multifunctional (higher

level of disorder; p value\ 2e-5, more protein–protein

interactions; p value\ 2e-5, more Gene Ontology terms

describing molecular functions, on average; p value\ 2e-5)

and more evolutionarily constrained (slower evolving genes,

i.e., lower dN/dS; p value = 8e-5, higher evolutionary

conservation; p value = 8e-5). We also observed that HI

genes have a higher level of gene expression (about twofold;

p value\ 2e-5) and optimized expression (p value

\ 2e-5), as indicated by codon usage bias estimated with

CAI and Nc.

Park and Lehner (2013) showed that GI degree is neg-

atively correlated with variation in gene expression

regardless of the source of this variation (i.e., stochasticity,

genetic perturbations, environmental perturbations, evolu-

tion). We found the variation in gene expression to be

lower in HI genes in comparison to HS genes and genes on

average (Fig. 3). This trend was statistically significant for

all four measures and with consideration of the different

sources of gene expression variation (classification pro-

posed by Choi and Kim 2009; p value = 1.9e-3 in case of

stochasticity, p value = 4.3e-3 in case of environmental

Fig. 1 Degree of genetic interactions (positive in the first column,

negative in the second) observed for dominant haploinsufficient (in

orange), recessive (in blue) and ribosomal (in green) genes in S.

cerevisiae. Merged high-throughput studies from BioGRID and a

single high-throughput study by Costanzo were used. The HI and HS

sets were inferred from the Pir et al. study. Haploinsufficient genes

have significantly more interactions than recessive ones. Ribosomal

genes are depleted in genetic interactions. The means are shown, and

the error bars represent one standard deviation of the mean over

10,000 bootstrapped samples of the distribution. A two-sample

permutation test (two-sided, p values are shown above the error bars)

was used to evaluate the difference between selected sets of genes.

The number of genes in selected sets is shown in brackets. The

horizontal dotted line represents the genome average. HI—non-

ribosomal haploinsufficient genes, HS—haplosufficient (recessive)

genes, RIB—ribosomal genes. (Color figure online)

Genetica

123



Fig. 2 Distribution of selected properties (known to be correlated

with GI degree) among three groups of genes: haploinsufficient genes

(HI; in orange), haplosufficient genes (HS; recessive; in blue) and

ribosomal genes (in green) HI genes (compared with HS genes) are

more important genes (stronger single fitness defect), more evolu-

tionarily constrained [higher evolutionarily conservation and lower

rate of evolution (dN/dS)], more pleiotropic [i.e., participate in more

functions in the cell as indicated by: higher number of Gene Ontology

terms (multifunctionality), higher fraction of protein disorder and

higher number of protein–protein interactions]. Moreover, HI genes

are more highly expressed, have lower variation in gene expression

and better optimized gene expression (i.e., codon usage bias as

indicated by CAI). Ribosomal genes (in comparison with HS genes

and genome average), similar to HI genes, are more important genes,

more evolutionarily constrained, and have higher gene expression

(one order of magnitude difference). However, (opposite to the case

of HI genes) ribosomal genes are less pleiotropic and have a higher

variation in gene expression. The HI and HS sets were inferred from

the Pir et al. study. Ribosomal genes were filtered out from both HI

and HS groups. The means are shown, and the error bars represent one

standard deviation of the mean over 10,000 bootstrapped samples of

the distribution. A two-sample permutation test (two sided, p values

are shown above the error bars) was used to evaluate the differences

between selected sets of genes. The number of genes in selected sets

is shown in brackets. The horizontal dotted line represents the

genome average. HI—non-ribosomal haploinsufficient genes, HS—

non ribosomal haplosufficient (recessive) genes, RIB—ribosomal

genes. (Color figure online)
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perturbations, p values = 6.4e-4 and 7.2e-3 in case of

two measures of genetic perturbations and p value = 0.033

and 7e-3 in case of two measures of evolution).

We conducted a negative binomial regression analysis to

assess how genetic dominance affects the GI distribution

and how it is affected by other factors known to be cor-

related with the GI degree (Fig. 4; see also Online

Resource 2). As expected, single mutant fitness correlated

most strongly with GI. Other factors also slightly affect the

correlation between the GI degree and dominance (see

Online Resource 2). Importantly, in the final model dom-

inance was still significantly correlated with the GI degree

(Fig. 4; see also Online Resource 3).

HI genes are more sensitive to chemical

perturbations than recessive genes or the genome

average

Hillenmeyer et al. (2010) performed more than 1100

chemical genomic assays on the whole-genome set of

heterozygous (single allele) and homozygous (double

allele) deletion mutants. Thus, they were able to assess the

sensitivity of each deletion strain to a plethora of different

chemical perturbations by evaluating the level of growth

fitness defect.

We used the aforementioned chemogenetic data to

evaluate whether dominant and recessive genes differ in

sensitivity to chemical perturbations in both homozygous

and heterozygous collections of deletion strains. We

observed that dominant genes were significantly more

sensitive to chemical perturbations in both heterozygous

and homozygous deletion strains (p value \2e-5 in both

cases; Fig. 5). We reproduced the results with negative

binomial regression models (analogous to models in GI

degree analyses, with the same confounding factors taken

into account; Fig. 6).

In the case of homozygous deletion strains, we observed

the same results as in the case of GI analyses, i.e., genes

with stronger fitness defects, more pleiotropic genes and

genes with lower variation in gene expression were found

to be more sensitive to chemical perturbations. However,

the correlation between the level of chemical perturbation

and fitness growth defects was significantly lower than in

the case of the GI degree analyses (approximately 100

orders of magnitude lower, with the p value slightly

smaller than the significance level, i.e., 0.025). Importantly,

after taking all these factors into account, we found that

homozygous (double) mutants of dominant genes were

more prone to chemical perturbations than homozygous

mutants of recessive genes.

Heterozygous deletion mutants of HI genes were found

to be strongly sensitive to chemical perturbations relative

to recessive genes. Moreover, other factors such as

multifunctionality, variation in gene expression, fitness and

gene expression level were not found to affect the observed

higher sensitiveness of HI mutants to chemical perturba-

tions. It is probable that this finding is the most striking

result of our analysis. Note that all previous networks

analyzed above (of gene–gene and gene–chemical inter-

actions) were constructed based on the phenotypes (fitness

decrease) of homozygous deletion strains. Here, pheno-

types of heterozygous deletion strains were evaluated. To

our knowledge, this is the only such high-throughput study

conducted in S. cerevisiae. Moreover, it is probable that

this is the most valuable study from the perspective of

dominance, as mutations of haploinsufficient genes result

from insufficient gene dosage (heterozygous deletion)

rather than complete lack of gene expression (homozygous

deletion strains).

The results of our analysis of the Hillenmeyer

heterozygous dataset indicated that there are probably a

large number of novel gene–gene interactions that can be

inferred from high-throughput studies of the fitness of

heterozygous double deletions. To date, almost all high-

throughput genetic interactions have been inferred from

homozygous double deletion mutants where there was

complete lack of gene expression for two given genes of

interest. DAmP (Schuldiner et al. 2005) and temperature

sensitive (Ts; Ben-Aroya et al. 2010) deletion mutants are

the exceptions. However, such mutants were constructed,

in most cases, only for essential genes, which are pre-

dominantly recessive genes. Moreover, in the genetic

interaction studies conducted to date, DAmP and Ts

mutants comprised queries, whereas their baits were

always homozygous (double deletion) mutants.

Ribosomal genes comprise a unique group of HI

genes, being depleted in negative and positive GIs

as well as GCIs

Cytoplasmic ribosomal genes were analyzed separately, as

we assumed, for the following reasons, that cytoplasmic

ribosomal genes could bias the results considerably. First,

they were considered over studied. Secondly, they are

highly important genes (strong fitness defect of gene

knockout (Fig. 2; p value \2e-5), large fraction of

essential genes). We expected, therefore, that they would,

most likely, form hubs in the GI network.

The genetic picture of cytoplasmic ribosomal genes

turned out to be rather unexpected (Fig. 1). Cytoplasmic

ribosomal genes had fewer GIs than non-ribosomal HI

genes in the Costanzo dataset (with p values = 0.24 and

0.012 for positive and negative GIs respectively). More-

over, in the BioGRID dataset, cytoplasmic ribosomal genes

had significantly fewer positive and negative GIs than other

analyzed groups, i.e. non-ribosomal HI genes (with
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p values = 0.021 and\2e-5 for positive and negative GIs

respectively), recessive genes (with p values \2e-5 for

both positive and negative GIs).

We observed that ribosomal genes in HT studies con-

ducted with S. cerevisiae (except for Costanzo) have been

understudied (Table 1; p value = 5e-19). Still, this find-

ing explains only to some extent the distribution of genetic

interactions for ribosomal genes in yeasts. It also showed

the value of a single HT study with high coverage, which is

definitely less prone to many biases in comparison with the

merged set of genetic interaction, even from HT studies.

We also found that deletion mutants of S. cerevisiae

ribosomal genes were resistant to different chemical per-

turbations in the case of both homozygous and heterozy-

gous strains. They were observed to be sensitive to a

significantly lower number of chemical species in com-

parison with deletion mutants of both HS and HI genes

(Fig. 5; p value\2e-5 in all cases).

Discussion

Two classes of haploinsufficient genes have different

properties, resulting in opposite positions in gene–

gene and gene–chemical networks

The pioneering studies on haploinsufficiency conducted in

Drosophila melanogaster were connected with Minutes

mutations. It was found that almost all such mutations

occur in cytoplasmic ribosomal genes (Marygold et al.

2007). The first genome-wide study of haploinsufficiency

(Deutschbauer et al. 2005) conducted in S. cerevisiae

confirmed the dominant loss-of-function phenotype of most

ribosomal genes and other translation-related genes. A

second genome-wide study of haploinsufficiency in S.

cerevisiae (Pir et al. 2012) revealed that HI genes often

participate in the process of gene expression. Thus, HI

genes in S. cerevisiae are currently considered to be enri-

ched in transcription and translation-related genes.

bFig. 3 Comparison of distribution of gene expression variation

(known to be negatively correlated with GI degree) among three

groups of genes: haploinsufficient genes (HI; in orange), haplosuffi-

cient genes (HS; recessive; in blue) and ribosomal genes (in green). HI

genes have a lower variation in gene expression (than HS genes and

genome average) regardless of the source of the variation (stochasticity:

STN, environmental perturbations: RES, genetic perturbations: TRV

and MUV (reversed Y-axis) or evolution: ISV and DIV). The pattern of

gene expression variation is much more complex in the case of

ribosomal genes. Ribosomal genes have very low stochastic variation,

while the variation originating from environmental and genetic

perturbations is surprisingly high. The HI and HS sets were inferred

from the Pir et al. study. Ribosomal genes were filtered out from both

HI and HS groups. The means are shown, and the error bars represent

one standard deviation of the mean over 10,000 bootstrapped samples

of the distribution. A two-sample permutation test (two-sided, p values

are shown above the error bars) was used to evaluate the differences

between selected sets of genes. The number of genes in selected sets is

shown in brackets. Horizontal dotted line represents the genome

average. HI—non-ribosomal haploinsufficient genes, HS—non riboso-

mal haplosufficient (recessive) genes, RIB—ribosomal genes, STN—

stochasticity, RES—responsiveness, TRV—trans variability, MUV—

mutational variance, ISV—interstrain variation, MUV—mutational

variance. (Color figure online)

Fig. 4 Comparison of effects of selected properties: evolutionary

constraints (as single-mutant fitness—in blue), multifunctionality (in

red), genetic dominance (in beige), variation in gene-expression (in

grey) and gene expression level (in violet) on GI degree. A negative

binomial regression was conducted for each GI network as a function

of the selected properties. In each case (except CPOS, probably due to

missing data for a large fraction of the genes), dominance signif-

icantly affected the GI degree even after taking into account

confounding factors (especially single-mutant fitness, multifunction-

ality and variation in gene expression). The statistical significance of

the regression is shown by -log10 (p value) on the y axis. The

threshold of statistical significance was 1.3 (-log10 of 0.05). The

values of single-mutant fitness are rescaled (values orders of

magnitude larger than other analyzed properties). The analysis was

conducted for the S. cerevisiae HI and HS genes identified in Pir et al.

study. The numbers of genes analyzed in each GI network are shown

in brackets. BNEG negative GIs from BioGRID; CNEG negative GIs

from Costanzo study; BPOS positive GIs from BioGRID; CPOS

negative GIs from Costanzo study. (Color figure online)
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We found that both classes of HI genes, in comparison

with HS genes, differ in properties connected with gene

expression. By definition, HI genes are the ones that are

dosage-sensitive. Thus, changes in their transcript level are

considered to result in phenotypic changes, which were

indeed observed in genome-wide studies of S. cerevisiae.

Therefore, we would expect HI genes to have a low level of

stochastic variation in gene expression compared with HS

genes. Indeed, Li et al. (2010) showed that genes with low

stochastic noise are enriched in gene-expression-related

genes. Moreover, we also observed that HI genes are more

highly expressed in comparison to HS genes, which agrees

well with the higher fraction of essential genes among them

and higher fitness defects of their mutants. Observed dif-

ferences in gene expression properties seem to explain why

direct selection is stronger in the case of HI genes (acting

indirectly) and is in agreement with MCT theory as pro-

posed by Kacser and Burns (1981).

Costanzo et al. (2010) showed that the fitness defect of

mutants correlates best with the number of genetic inter-

actions. Thus, a strong fitness defect allows us to assume

that HI genes will have a high number of GIs. Moreover,

ribosomal genes with a very high fitness defect should be

hubs in a GI network. Indeed, in agreement with such

assumptions, ribosomal genes were found to be hubs in the

negative GI network predicted by Koch et al. (2012).

Unexpectedly, we found only the non-ribosomal HI genes

enriched in GIs and GCIs, whereas ribosomal genes were

found depleted in GIs and GCIs. The same pattern (GI

analysis only) was observed in S. pombe, D. melanogaster

and Homo sapiens (with the exception of S. pombe, where

the differences in GI degrees among non-ribosomal HI

genes and HS genes were insignificant). Although the data

for these three species suffer from quality issues (see

Online Resource 1 for more details), the aforementioned

results furnish additional confirmation for the pattern

observed in S. cerevisiae.

We asked why there was a bimodal distribution of GIs

and GCIs observed between two groups of HI genes. We

analyzed the functions of non-ribosomal HI genes with

Gene Ontology. It was found that non-ribosomal HI genes

are often regulatory genes, especially encoding for regu-

lators of gene expression, with transcription factors form-

ing one of the functional classes being overrepresented. We

also found that HI genes are often members of the RNA

polymerase complex and other macromolecular complexes

such as the histone deacetylase complex and the regulatory

subcomplex within the proteasome. Moreover, HI genes

were found to be located often either in the Golgi apparatus

or the nucleoplasm (see Online Resource 8).

It is expected that transcription factors (TFs) and other

regulatory genes will tend to have more genetic

Fig. 5 Degree of gene–chemical interactions (for heterozygous

deletion strains in the first column and homozygous deletion strains

in in the second column) observed for dominant haploinsufficient (in

orange), recessive (in blue) and ribosomal (in green) genes in S.

cerevisiae. A single high-throughput study by Hillenmayer et al. was

used. The HI and HS sets were inferred from the Pir et al. study.

Haploinsufficient genes have significantly more gene–chemical

interactions than recessive ones. Ribosomal genes are depleted in

gene–chemical interactions. The means are shown, and the error bars

represent one standard deviation of the mean over 10,000 boot-

strapped samples of the distribution. A two-sample permutation test

(two sided, p values are shown above the error bars) was used to

evaluate the differences between selected sets of genes. The number

of genes in selected sets is shown in brackets. The horizontal dotted

line represents the genome average. HI—non-ribosomal haploinsuf-

ficient genes, HS—haplosufficient (recessive) genes, RIB—ribosomal.

Chemo: Het: heterozygous chemogenetic network; Chemo Hom:

homozygous chemogenetic network. (Color figure online)
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interactions than other genes. There are two different, not

mutually exclusive, potential explanations for this obser-

vation. First, it is well known that regulatory genes tend to

have genetic interactions with target genes. The second

potential explanation is based on the recent studies on

expression noise. These studies have shown that in regu-

latory networks, the propagation of expression noise is

attenuated in the case of TFs, whereas, in the case of their

target genes (TGs), the noise is enhanced (Li et al. 2010).

This finding was shown to be connected with the syner-

gistic interactions between TFs, in which the noise is

buffered. Moreover, such buffering was suggested by

Huang et al. (2010) in the human probabilistic functional

network, where HI genes were found to have more inter-

action partners and a greater network proximity to other

known HI genes than other genes.

We asked whether our observations suggested that gene

expression noise could have an impact on the number of

genetic interactions. Such a hypothesis was indicated by a

recent study by Park and Lehner (2013), which showed that

the number of genetic interactions correlated negatively

with gene expression noise. Importantly, they showed that

such a correlation was observed not only in the case of

stochastic variation in gene expression but also in other

contexts of gene expression. In more detail, they found that

genes with a high degree of GIs degree also have low gene

expression variation among different environmental con-

ditions, in different genetic backgrounds (trans-variability)

and in the evolutionary context. The authors hypothesized

that genes enriched in GIs determine a higher expression

robustness in bakers’ yeast cells, which, in turn, determines

phenotypic robustness.

The results of the current study agree with Park and

Lehner’s hypothesis. Non-ribosomal HI genes have small

gene expression variation in all analyzed contexts. Note that

we found the non-ribosomal HI genes of S. cerevisiae to be

enriched in gene–gene and gene–chemical interactions even

when we considered confounding variables (including

variation in gene expression). In our opinion, this may be

connected with the underestimation of the impact of the

analyzed confounding variables or with the lack of other

confounding variables correlated with the degree of GI and

GCI. Importantly, in case of Hillenmeyer heterozygous

dataset (GCIs), only the latter explanation is possible.

The small number of GIs and GCIs in the case of

ribosomal genes is also in agreement with Park and Lehner

hypothesis. While ribosomal genes represent the functional

groups of genes with the lowest variation in stochastic gene

expression (in the S. cerevisiae genome), they also have

high gene expression variation in different environmental

conditions and in different genetic backgrounds (when

comparing to other analyzed groups: non-ribosomal HI, HS

and genome average). Such high variation of gene

expression among ribosomal genes in different environ-

mental conditions is well explained by the rate of growth

(see Regenberg et al. 2006; Airoldi et al. 2009).

Fig. 6 Comparison of effects of selected properties: evolutionary

constraints (as single mutant fitness—in blue), multifunctionality (in

red), genetic dominance (in beige), variation in gene-expression (in

grey) and gene expression level (in violet) on GCI degree. A negative

binomial regression was conducted for each chemogenetic network

(built upon a collection of homozygous and heterozygous deletion

mutants) as a function of the selected properties. In both homozygous

and heterozygous chemogenetic networks, dominance significantly

affected the GI degree even after taking into account confounding

factors (especially single mutant fitness, multifunctionality and

variation in gene expression). The statistical significance of the

regression is shown by -log10 (p value) on the y axis. The threshold

of statistical significance was 1.3 (-log10 of 0.05). The values of

single-mutant fitness are rescaled (values orders of magnitude larger

than other analyzed properties). The analysis was conducted for the S.

cerevisiae HI and HS genes identified in Pir et al. study. The numbers

of genes analyzed in each GI network are shown in brackets. Chemo:

Het: heterozygous chemogenetic network; Chemo Hom: homozygous

chemogenetic network. (Color figure online)

Table 1 Ribosomal genes are understudied in high-throughput

studies of genetic interactions

Species Observed fraction Expected fraction p value

S. cerevisiae 0.161 (351/21823) 0.259 (150/5800) 5e-19

S. pombe 0.117 (42/3600) 0.266 (132/4970) 5e-8

Data were obtained from BioGRID. Only studies with at least 100

genes analyzed were considered to be high-throughput ones (51 such

studies in case of S. cerevisiae, 4 in case of S. pombe). Observed

fraction was calculated as the number of times when ribosomal genes

were queries or baits in HT studies compared with analogous data for

all queries and baits in these studies. The expected fraction was

calculated as the number of ribosomal genes compared with the

number of all protein-coding genes of given species. The high-

throughput study with the highest coverage for S. cerevisiae (Cost-

anzo et al.) was filtered out from the analysis. The high-throughput

study with the highest coverage for S. pombe (Frost et al.) was not

deposited in BioGRID at the time of data analysis
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The datasets obtained from the Deutschbauer et al.

and Steinmetz et al. studies do not support

the findings obtained with the Pir et al. dataset

Deutschbauer et al. (2005) were the first group to use

homozygous and heterozygous deletions to predict hap-

loinsufficient genes in S. cerevisiae by searching for genes

with significant fitness defects in heterozygous deletions.

We repeated our chemogenetic and GI network analyses

with the Deutschbauer dataset. Surprisingly, the results

based on the Deutschbauer datasets are not in agreement

with the results observed for the Pir et al. dataset. Impor-

tantly, we did not observe a higher number of gene–gene

and gene–chemical interactions among HI genes after

controlling for confounding factors (see Online Resource 4

for more details). We found that genes encoding for reg-

ulators of gene expression (especially those regulating

transcription) were overrepresented among the genes

excluded from the Deutschbauer et al. study (because of

data quality issues; see Online Resource 5). This finding

explains the observed differences between compared

studies, as regulators of gene expression were, on the

contrary, enriched among non-ribosomal HI genes in the

Pir et al. dataset.

Interestingly, in the case of the data of Deutschbauer

et al. we also did not observe significant relationship

between gene expression variation and GI number, while

Park and Lehner (2013) described a lower gene expression

variation of HI genes in the same dataset when compared

with other genes. The observed disagreement stems from

differences in procedures. First, Parker and Lehner did not

control for confounding variables, especially fitness

defects; we did so. Second, they chose too liberal HS

dataset (other genes), for which fitness defects are an order

of magnitude higher than for the HI dataset.

Steinmetz et al. (2002) were the first group to provide

high-throughput data on homo- and heterozygous deletions

in yeast cultured in YPD medium. They evaluated fitness

defects of gene deletions to find the genes whose deletions

result in significantly different growth rates in fer-

mentable media compared with non-fermentable media.

Interestingly, Steinmetz’s data were then intensely dis-

cussed with respect to dominance (Phadnis 2005; Delneri

et al. 2008; Manna et al. 2012). We used Steinmetz’s

experimental data (raw reads from Affymetrix Tag3

library) to predict HI and HS genes in a way analogous to

the procedure that we applied to the Deutschbauer et al.

data (see Online Resource 6 for detailed description).

Similar to the results of the analysis of the Deutschbauer

data, and also in the case of Steinmetz’s data, we observed

a disagreement with the results derived from the analysis of

the Pir et al. data. In addition, in Steinmetz’s dataset we

found HI genes to have significantly less gene–gene

(network of negative GIs) and gene–chemical (homozy-

gous deletion mutants) interactions before and after con-

trolling for confounding variables (see Online Resource 6

for more details). We found that HS genes in Steinmetz’s

dataset were enriched in regulators of the gene expression

category (see Online Resource 7). In our opinion, they are

misclassified and are, in fact, HI genes, which may explain

the observed disagreement between the analyses of data

derived from Steinmetz and Pir.

In the case of the yeast model, the detected

haploinsufficiency is affected by the experimental

design (culture type)

We compared the studies conducted on S. cerevisiae

(Deutschbauer et al. and Pir et al.) and found significant

differences in experimental design and data quality. We

believe that the type of culture (batch culture vs. continu-

ous culture) represents a key difference in this case. It has

already been shown that continuous cultures were more

reproducible and stable than batch cultures (Knijnenburg

et al. 2009), with a significantly lower average intralabo-

ratory coefficient of variation (Piper et al. 2002). Thus, it is

not surprising that in the case of Deutschbauer et al., pre-

dicted fitness defects had a higher level of variation com-

pared with Pir’s. Moreover, they had to apply a very liberal

approach to yield significant results (at least one tag of

given gene with significantly different growth rate to be

considered haploinsufficient or haploproficient, without

multiple hypothesis correction; see Online Resource 4 for

more details). This is not the case for the Pir et al. studies,

which were conducted in continuous cultures.

Note that besides the experimental design, there were

also other differences between the Pir et al. and Deutsch-

bauer et al. studies. For example, Pir et al. chose statistical

procedures that were less prone to make incorrect

assumptions (those authors used non-parametric tests to

calculate p value) and less sensitive to outliers, e.g., robust

regression models (please see Online Resource 9 for a

detailed comparison of the Deutschbauer et al. and Pir et al.

studies). However, in our opinion, other differences did not

substantially affect the observed discrepancies between

these two studies.

We used Steinmetz’s data (derived from batch cultures

as well) to predict HI and HS genes similarly as in the

case of the Deutschbauer et al. study. We observed the

same data variation and similar pattern of GO enrich-

ments among HI genes (presence of ribosomal genes and

absence of regulators of gene expression, especially

transcription-related), which furnishes an additional con-

firmation that experimental design (batch cultures) affec-

ted the predicted haploinsufficiency in the Deutschbauer

et al. study.
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The only high-throughput study addressing haploinsuf-

ficiency in S. pombe was conducted in batch cultures

5 years ago. In our opinion, a re-analysis of fitness defects

of S. pombe genes in continuous cultures (e.g., by using a

microfluidic microchemostat array; see Nobs and Maerkl

2014) will, most likely, significantly improve our knowl-

edge of haploinsufficiency in S. pombe, potentially result-

ing in the same quality shift as that observed in the case of

the Pir et al. study of S. cerevisiae. Such an experiment is

especially interesting in the light of the predominantly

haploid life cycle of fission yeast, making this species a

unique eukaryotic model organism.
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