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ABSTRACT  

Background: Coeliac disease is a chronic intestinal inflammatory disorder due to an aberrant 

immune response to dietary gluten proteins in genetically predisposed individuals. Mucosal 

immune response through IgA secretion constitutes a first line of defence responsible for 

neutralizing noxious antigens and pathogens. The aim of this study was the characterization 

of the relationships between immunoglobulin-coated bacteria and bacterial composition of 

faeces of coeliac disease (CD) patients, untreated and treated with a gluten-free diet (GFD) 

and healthy controls. 

Results: IgA-coated faecal bacterial levels were significantly lower in both untreated and 

treated CD patients than in healthy controls. IgG and IgM-coated bacterial levels were also 

significantly lower in treated CD patients than in untreated CD patients and controls. Gram-

positive to Gram-negative bacteria ratio was significantly reduced in both CD patients 

compared to controls. Bifidobacterium, Clostridium histolyticum, C. lituseburense and 

Faecalibacterium prausnitzii group proportions were less abundant (P<0.050) in untreated 

CD patients than in healthy controls. Bacteroides-Prevotella group proportions were more 

abundant (P<0.050) in untreated CD patients than in controls. Levels of IgA coating the 

Bacteroides-Prevotella group were significantly reduced (P<0.050) in both CD patients in 

comparison with healthy controls.  

Conclusions: In CD patients, reduced IgA-coated bacteria is associated with intestinal 

dysbiosis, which altogether provide new insights into the possible relationships between the 

gut microbiota and the host defences in this disorder.   
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BACKGROUND 

Coeliac disease (CD) is a chronic intestinal inflammatory disorder triggered by the ingestion 

of gluten proteins in susceptible individuals. The active phase of the disease is characterized 

by a pro-inflammatory intestinal milieu resulting from an aberrant immune response to 

dietary gluten, along with increased epithelial permeability, which may favour the traffic of 

luminal antigens to the submucosa [1]. In CD patients, gliadin peptides can activate either an 

adaptive immune response dominated by Th1 pro-inflammatory cytokines (e.g. IFN-γ) within 

the mucosa or an innate immune response mediated by IL-15, both of which lead to epithelial 

cell killing [2]. Gliadin also activates the zonulin pathway leading to an increase in intestinal 

permeability [1].  

The aetiology of CD is multifactorial, involving genetic and environmental factors. This 

disorder is strongly associated to the human leukocyte antigen genes (HLA). Approximately 

95 % of the patients inherit the alleles encoding for the HLA-DQ2 and HLA-DQ8 molecules, 

but only a small percentage develops CD [3]. Studies of identical twins have also shown that 

one twin did not develop CD in 25% of the cases studied [4], supporting the role played by 

environmental factors in the aetiology of this disorder. However, the elements leading to a 

breakdown in oral tolerance to gluten in predisposed individuals are as yet unknown. The gut 

microbiota constitutes a complex pool of antigens separated from the mucosal 

immunocompetent cells by just a single layer of epithelial cells. In this mucosal immune 

system IgA constitutes a first line of defence responsible for neutralizing noxious antigens 

and pathogens [5]. In fact, malfunction of immune cells of Peyer Patches in production of 

secretory IgA has been considered a risk factor for CD development [6]. It has also been 

speculated that a transient infection could promote inflammation and increase permeability of 

the mucosa to antigens by activating a Th1 response with secretion of IFN-γ, the major pro-

inflammatory cytokine in CD patients [7, 8]. Moreover, alterations in the intestinal 
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microbiota composition of CD children in comparison with that of healthy controls, as well 

as changes in the metabolites derived from the gut microbial activity have been recently 

reported [9,10-12]. Nevertheless, the possible relationship between the gut microbiota 

composition and the first line of immune defence in CD patients remains uncharacterized.  

Herein, the percentage of immunoglobulin-coated bacteria and the faecal microbiota 

composition of children with CD (untreated and treated with a gluten-free diet [GFD]) and 

controls were evaluated, thus shedding light on the possible associations between the 

intestinal bacteria and the host defences in this disorder. 

 

 

RESULTS 

Immunoglobulin-coated bacteria of faeces from CD patients  

Immunoglobulin-coated bacteria were quantified in faeces of both CD patient groups and 

healthy controls to establish whether CD could be associated with gut barrier defects or 

abnormal immune responses to the intestinal microbiota (Figure 1). Overall, higher 

percentages of IgA, IgM and IgG-coated bacteria were detected in healthy controls than in 

both CD patient groups. The proportions of IgA-coated bacteria were significantly lower in 

untreated (P=0.018) and treated CD patients (P=0.003) than in healthy controls. The 

proportions of IgG and IgM-coated bacteria were also significantly lower in treated CD 

patients than in controls (P<0.001 and P=0.003, respectively) and untreated CD patients 

(P<0.001 and P=0.009, respectively). The levels of IgG were also slightly lower in untreated 

CD patients than in healthy controls but the differences were not significant (P= 0.069).  

 

General microbiota composition of faeces from CD patients  

The composition of faecal microbiota of CD patients treated and untreated with a GFD and 

healthy controls was characterized by using oligonucleotide probes targeting the main 

bacterial groups colonizing the human gut (Figure 2; Table 1). The three groups of children 



 5

under study were matched by age considering the variability of the composition of human 

microbiota during the first years of life. Total Gram-positive bacterial populations were the 

highest in healthy controls and the lowest in untreated CD patients, while it reached 

intermediate values in treated CD. These differences were statistically significant (P=0.004) 

between untreated CD patients and controls (Figure 2A). Gram-positive bacterial levels did 

not normalize completely after a long-term GFD in treated CD patients, although the 

differences did not reach statistical significance (P=0.203) when compared with controls. 

Total Gram-negative bacteria reached similar values (ranging from 27.5 to 32.7 %) in faeces 

from the three population groups (P = 0.323-0.650; Figure 2A). The ratio of total Gram-

positive to Gram-negative bacteria was the highest in healthy controls and significantly 

reduced in treated CD patients (P = 0.045) and even more in untreated CD patients (P = 

0.006). 

 

Specific microbiota composition of faeces from CD patients  

 The specific group and species composition of the faecal microbiota of CD patients with 

untreated and treated CD and healthy controls are shown in Table 1. The highest differences 

in the relative abundance of specific bacterial groups were found between untreated CD 

patients and healthy controls, while treated CD patients generally showed intermediate 

values. Bifidobacterium proportions were significantly lower in untreated CD patients than in 

healthy controls (P = 0.009), while treated CD patients displayed intermediate values. 

Similarly, the relative abundance of bacteria belonging to C. histolyticum, C.  lituseburense 

and F. prausnitzii groups proved to be significantly lower in untreated CD patients than in 

healthy subjects (P = 0.031, P = 0.024 and P = 0.045, respectively), whereas treated  CD 

patients showed intermediate values. The Bacteroides-Prevotella group proportions were 

significantly more abundant in untreated CD patients than in healthy controls (P = 0.033). 
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Escherichia coli, Staphylococcus, Lactobacillus-Enterococcus and sulphate-reducing bacteria 

reached similar proportions in the three groups of children regardless of their health status. 

 

Immunoglobulin A coating specific bacterial groups in faeces from CD patients  

Of the total bacteria, the percentage of IgA coating Bacteroides-Prevotella group was 

significantly higher in healthy patients than in untreated CD patients (P = 0.014) and treated 

CD patients (P = 0.019). A 10.93% (6.13-20.13) of Bacteroides-Prevotella group from 

healthy patients was IgA-coated, while a 4.24% (4.68-6.54) and a 4.97% (0.88-8.34) was 

IgA-coated in untreated and treated CD patients, respectively. Accordingly, within the 

Bacteroides-Prevotella population, the percentage which was coated with IgA was 

significantly higher in healthy controls (69.02%; 40.54-81.61) than in untreated CD (P = 

0.033) (25.42%; 7.09-55.09), while no differences were detected with treated CD patients. No 

differences were found in the proportion of IgA coating the Bifidobacterium group between 

CD patients and healthy controls. The percentage of IgA-coated Bifidobacterium was higher 

(P < 0.05) than that of IgA-coated Bacteroides-Prevotella in all groups of children. 

 

DISCUSSION 

This study has characterized faecal microbiology and immunoglobulin-associated features in 

active and non-active stages of CD in children and in age-matched controls with an aim to 

furthering our understanding of the interplay between the gut microbiota and the host 

defences in this disorder. Immunoglobulin secretions constitute a primary line of defence of 

the mucosal surface against noxious antigens and pathogens, and contribute to the intestinal 

homeostasis preventing clinical inflammation. The colon predominantly harbours IgA-

secreting plasma cells (90%); moreover, 4% cells secrete IgG and 6% cells secrete IgM. A 

considerable percentage of faecal bacteria was coated with IgA (14.71%) in healthy 
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individuals, whereas a lower bacterial percentage was coated with IgG and IgM, and a similar 

trend was observed in CD patients, as reported in other subjects [13. Significantly lower 

levels of IgA-coated bacteria were detected in faecal samples of untreated and treated CD 

patients when compared to healthy controls. It can be speculate that these results could reflect 

the existence of a barrier defect in CD patients, which fails to stabilise the gut microbiota and 

prevent the host from the invasion of harmful antigens and pathogens. In addition, treated CD 

patients showed lower levels of IgG and IgM coated bacteria. In contrast, IBD patients 

displayed a higher percentage of immunoglobulin-coated faecal bacteria in active disease and 

shortly after remission, supporting the concept that the mucosal tolerance to the gut 

microbiota is deregulated in these patients [5].   

A remarkable reduction in Gram-positive bacterial populations was characteristic of the 

active phase of the disease while its abundance was partially restored in patients under a 

GFD. In addition, a reduction in the ratio of Gram-positive to Gram-negative bacteria was 

found in the patients regardless of the phase of the disorder. The levels of total Gram-positive 

bacteria were also lower in duodenal biopsies of patients with active and inactive CD than in 

controls, while the proportions of total Gram-negative bacteria were over-represented 

particularly in biopsies of active CD patients [12]. Therefore, the results obtained first in 

biopsies and now in faeces from children of the same age confirm similar structural changes 

in the composition of the gut microbiota associated with CD. The reductions in beneficial 

Gram-positive bacteria could favour the residence and interactions of harmful Gram-negative 

bacteria within the mucosal surface of CD patients, thereby contributing to loss of gluten 

tolerance. Antigenic structures of Gram-negative bacteria such as flagellins and 

lipopolysaccharides have been related to the inflammatory responses and pathogenesis of 

IBD [14]. Shifts in the intestinal microbiota, characterized by increases in pro-inflammatory 
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Gram-negative bacteria, have also been shown to aggravate murine colitis via activation of 

acute inflammation through Toll-like receptor signalling [15].  

Of the specific bacterial groups analysed, the Bifidobacterium population was significantly 

reduced in faecal samples of untreated CD patients as compared with controls. 

Bifidobacterium populations significantly decreased or slightly decreased in faeces of IBD 

patients, as detected by cultural techniques and real time PCR, respectively [16]. The benefits 

obtained by administering some Bifidobacterium strains as part of probiotic mixtures or 

symbiotics (probiotics combined with prebiotics) in ulcerative colitis and pouchitis also 

support the notion that this bacterial group is relevant to IBD [17]. C. histolyticum, C. 

lituseburense and F. prausnitzii groups were present in higher proportions in healthy 

individuals than in CD patients; particularly, the abundance of C. histolyticum followed a 

similar trend to that found in biopsy specimens although the differences were not significant 

[12]. C. coccoides and C. leptum groups were lower in faeces of Crohn's disease and 

ulcerative colitis patients when determined by real-time PCR [16]. A depletion of F. 

prausnitzii population in faecal mucus of active Crohn's disease, but not in ulcerative colitis, 

has also been detected [18]. Comparative analysis of biopsy and faecal samples of IBD 

patients, based on genomic-library sequencing analysis, also showed reductions in Firmicutes 

belonging to the class Clostridia in active and in remission Crohn's disease patients as 

compared to healthy or ulcerative colitis groups [19, 20]. Although some studies are 

controversial, it appears that the presence of certain Clostridium groups and F. prausnitzii is 

deficient in luminal or mucosa-associated microbiotas of Crohn's disease and probably of CD 

patients too. These components of the microbiota are producers of butyrate, which is an 

important energy source for colonocytes and exerts anti-inflammatory effects, for instance by 

inhibiting the lipopolysaccharide-induced cytokine response [19]. In contrast, the 

Bacteroides-Prevotella group was found in higher proportions in untreated CD patients than 
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in controls, as previously detected in duodenal biopsy specimens [12]. Associations between 

the phylum Bacteroidetes and Crohn’s disease were revealed by comparative bacteriological 

analysis of biopsy specimens of Crohn’s disease and ulcerative colitis patients by denaturing 

gradient gel electrophoresis (DGGE) [17]. Similar comparative analyses of the mucosal-

associated microbiota by genomic-library sequencing of 16S rRNA genes showed increases 

in Proteobacteria and Bacteroidetes, particularly in Crohn's disease patients [19]. 

Nevertheless, a recent study reported that B. fragilis and B. vulgatus were found at lower 

levels in faeces of IBD patients when compared to those of healthy controls [16].  

As Bacteroides and Bifidobacterium seem to be possible relevant bacterial groups to CD, 

specific percentages of IgA coating these two bacterial groups were also determined. 

Interestingly, the proportions of IgA-coated Bacteroides-Prevotella were higher in healthy 

individuals than in treated and untreated CD patients, suggesting an increased defensive 

response of the gut mucosal immune system to this bacterial group in healthy children than in 

CD patients. The combination of an increased proportion of Bacteroides-Prevotella group in 

faecal samples of CD patients together with a weaker defensive IgA response could explain 

the recurrent relationship found between Bacteroides and inflamed gut mucosa in CD [12, 

21], although more direct evidence is needed to confirm this hypothesis. A higher percentage 

of IgA-coated Bifidobacterium than IgA-coated Bacteroides-Prevotella was detected in all 

groups of children, similarly to other studies [5]. This could be a consequence of an increased 

interaction between the gut mucosal immune system and this bacterial group [5], which 

contributes to mucosal tolerance towards high gut Bifidobacterium concentrations.  

 

CONCLUSIONS 

This study confirms that in CD patients there is an alteration in the type of faecal 

immunoglobulin-coated bacteria that is associated with a shift in the structure of the 
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microbiota. In particular, increases in the relative abundance of Bacteroides-Prevotella group 

are paralleled to reductions in the IgA coating this group, which could suggest a reduction of 

of the host defences against this bacterial group. However, the possible clinical consequences 

of these finding are still unknown and their elucidation would require further investigations.  

 

METHODS 

Subjects 

Altogether 62 children were included in the study: 24 untreated CD patients (mean age 5.5 

years, range 2.1-12.0 years) on a normal-gluten containing diet, showing clinical symptoms 

and signs of the disease, positive CD serology markers (anti-gliadin antibodies and anti-

transglutaminase antibodies) and signs of severe enteropathy by duodenal biopsy examination 

classified as type 3 according to Marsh classification of CD; 18 treated CD patients (mean 

age 5.5 years, range 1.0-12.3 years) on a gluten-free diet for at least 2 years, without 

symptoms of the disease, showing negative CD serology markers and normal mucosa 

architecture; and 20 healthy children (mean age 5.3 years, range 1.8-10.8 years) without 

known gluten intolerance.  

None of the children were treated with antibiotics at least 1 month before to the faecal 

sampling. The study was conducted in accordance with the ethical rules of the Helsinki 

Declaration (Hong Kong revision, September 1989), following the EEC Good Clinical 

Practice guidelines (document 111/3976/88 of July 1990) and current Spanish law, which 

regulates clinical research in humans (Royal Decree 561/1993 regarding clinical trials). 

Children were enrolled in the study after written informed consent obtained from their 

parents.  
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Faecal sample preparation  

Faeces from the three groups of children were collected in sterile plastic boxes, frozen 

immediately after collection at -20 ºC, and stored until analysed. Faeces were diluted 1: 10 

(w/v) in PBS (pH 7.2) and homogenized in a Lab Blender 400 stomacher (Seward Medical 

London, UK) for 5 min. After low-speed centrifugation (2,000 g, 2 min), the supernatant was 

collected. For bacterial quantification, cells were fixed by adding 4% paraformaldehyde 

solution (Sigma, St Louis, MO) and incubated overnight at 4 ºC. After fixation, bacteria were 

washed twice in PBS by centrifugation (13,400 g for 5 min). Finally, cell pellets were 

suspended in a PBS/ethanol mixture (1:1) and stored at −80 °C until analyzed as previously 

described [12].  

 

Immunoglobulin-coated bacterial analysis 

Bacterial cells from 20 µl of the supernatant obtained after low-speed centrifugation were 

collected (12,000 rpm for 5 min). The pellet was resuspended in 60 µl 1% (w/v) BSA/PBS, 

containing 1% (v/v) FITC-labelled F(ab´)2 antihuman IgA, IgG or IgM (CALTAG 

Laboratories, Burlingame, CA). Another aliquot of each sample was pelleted and 

resuspended in 60 µl 1% (w/v) BSA/PBS and used as control. After 30 min incubation, 

suspensions were washed twice with PBS.  Bacterial pellet was finally resuspended in 500 µl 

PBS and mixed with 20 µl propidium iodine (100mg l
-1

) to label total bacteria before flow 

cytometry detection [5]. To determine the percentage of IgA coating the Bacteroides-

Prevotella and Bifidobacterium groups, the hybridised bacteria were resuspended in 60 µl 1% 

(w/v) BSA/PBS, containing 1% (v/v) FITC-labelled F(ab´)2 antihuman IgA (CALTAG 

Laboratories, Burlingame, CA). After 30 min incubation, suspensions were washed twice 

with cold PBS, stored at 4ºC in the dark and analysed within few hours, as previously 

described [5]. 
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Microbiological analysis by fluorescent in situ hybridisation  

The bacterial groups present in faeces were quantified by fluorescent in situ hybridization 

(FISH) using group-specific probes (MOLBIOL, Berlin, Germany). The specific probes and 

controls used in this study, as well as the hybridization conditions, are shown in Table 2. In 

the case of E. coli a 50ºC hybridization temperature was used. The EUB 338 probe, targeting 

a conserved region within the bacterial domain, was used as a positive control [22] and the 

NON 338 probe was used as a negative control to eliminate background fluorescence [23]. 

Control probes were covalently linked at their 5´end either to indocyanine dye Cy3 or to 

fluorescein isothiocyanate (FITC). Specific cell enumeration was performed by combining 

each of the group-specific FITC-probes with the EUB 338-Cy3 probe as previously described 

[12]. Briefly, fixed cell suspensions were incubated in the hybridization solution (10 mmol l
-1

 

Tris-HCl, 0.9 mol l
-1

 NaCl pH 8.0 and 10% SDS) containing 4 ng µl
-1

 of each fluorescent 

probe at appropriate temperatures, overnight. Then, hybridised cells were pelleted by 

centrifugation (12,000 rpm for 5 min) and resuspended in 500µl PBS solution for flow-

cytometry analysis.  

 

Flow cytometry  

Flow cytometry detections were performed using an EPICS® XL-MCL flow cytometer 

(Beckman Coulter, Florida, USA) as previously described [12]. This instrument is equipped 

with two light scatter detectors that measure forward (FSC) and side scatter (SSC) and 

fluorescence detectors that detect appropriately filtered light at green (FL1, 525 nm) and red-

orange (FL3, 620 nm) wavelengths. The event rate was kept at the lowest setting (200-300 

events per second) to avoid cell coincidence. A total of 15,000 events were recorded in a list 

mode file and analyzed with the System II V.3 software (Beckman Coulter). The proportion 
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of each bacterial group was expressed as a ratio of cells hybridising with the FITC-labelled 

specific probe to cells hybridising with the universal EUB 338-Cy3 probe [12]. Total Gram-

negative bacteria and Gram-positive bacteria were calculated by adding the relative 

proportions (%specific group/EUB) of the corresponding groups. Immunoglobulin-coated 

bacteria was expressed as a ratio of bacterial cells labelled with FITC-labelled F(ab´)2 

antihuman IgA, IgG or IgM to the bacterial cell populations hybridising with either 

propidium iodine, EUB338 probe, Bacteroides-Prevotella group-specific probe or 

Bifidobacterium group-specific probe [5].  

 

 

Statistical analyses 

Statistical analyses were done using the SPSS 11.0 software (SPSS Inc, Chicago, IL, USA). 

Due to non-normal distribution, microbial and immunoglobulin coating bacterial data are 

expressed as medians and ranges (maximum-minimum values). The differences between two 

groups of samples were determined by applying the Mann–Whitney U test. In every case, a 

P-value <0.05 was considered statistically significant. 

 

Abbreviations: CD Coeliac disease; Ig Immunoglobulin; HLA Human Leukocyte Antigen; 

FCM Flow cytometry; FISH Fluorescence in situ hybridization; GFD Gluten-free diet; IBD 

Inflammatory bowel disease 
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Figure legends  

 

Figure 1. Immunoglobulin-coated bacteria in faecal samples from untreated (white bars) and 

treated CD patients (grey bars) and healthy controls (black bars) as assessed by FCM. Panel 

A, IgA-coated bacteria; Panel B, IgG-coated bacteria; Panel C, IgM-coated bacteria. Date are 

expressed as a proportion of bacterial cells labelled with FITC-F(ab´)2 antihuman IgA, IgG 

or IgM to total cell population hybridising with propidium iodine. Median values and ranges 

are given. *Significant differences were established at P < 0.050 by applying the Mann-

Whitney U-test 

 

Figure 2. General composition of the faecal microbiota of untreated (white bars) and treated 

CD patients (grey bars) and healthy controls (black bars) as assessed by FISH and FCM. Data 

are expressed as proportions of bacterial cells hybridising with group-specific probes to total 

bacteria hybridising with EUB probe 338. Total Gram-negative bacteria and Gram-positive 

bacteria were calculated by adding the relative proportions of the corresponding groups 

detected by using group-specific probes. Median values and ranges are given. *Significant 

differences were established at P < 0.05 by applying the Mann-Whitney U-test.  
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Table 1. Faecal microbiota composition of untreated and treated CD patients and age-matched healthy 

controls assessed by FISH and FCM. 

 

 

 

1 
Data were expressed as proportions of bacterial cells hybridising with group-specific probes to total bacteria 

hybridising with EUB probe 338.  

* Statistical significant differences were calculated using the Mann-Whitney U- test and established at P < 0.050. 

 

 

 

 

Specific group-probed  cells/EUB-388 cells (%)
1
 

Untreated CD (n=24) Treated CD (n=18) Control (n=20) Microbial groups 

Median Range Median Range Median Range 

Bifidobacterium 7.73 22.08-3.27 9.20 33.82-1.58 12.54 33.68-6.94 

C. histolyticum 5.26 27.61-0.71 9.41 39.60-2.95 11.61 35.69-0.16 

C. lituseburense 3.23 27.24-0.17 4.41 29.85-0.28 6.83 19.56-1.05 

Lactobacillus-Enterococcus 1.94 10.93-0.14 1.12 9.30-0.22 1.76 16.47-0.25 

Staphylococcus 10.36 37.38-0.89 16.49 42.91-0.51 18.04 41.32-0.19 

Bacteroides-Prevotella 3.54 20.85-0.80 2.61 15.07-0.25 2.32 5.53-0.33 

E. coli 5.20 23.42-0.48 6.39 28.77-0.55 7.32 28.26-1.10 

F. prausnitzii 6.03 37.50-1.07 11.09 37.84-2.95 13.88 37.08-2.32 

Sulphate-reducing bacteria 9.58 38.02-2.84 9.82 41.74-2.09 10.02 36.92-2.92 
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Table 2. Oligonucleotide probes and hybridisation conditions used in the analysis of faecal 

bacteria by FISH and FCM 

 

 
 

Hybridisation 
Probe Target Bacterial group 

Sequence 

(5’-3’) Conditions (ºC) 
References 

Eub 338 Domain bacteria GCT GCC TCC CGT AGG AGT 50 [13] 

Non 338 Negative control ACA TCC TAC GGG AGG C 50 [14] 

Bif 164 Bifidobacterium CAT CCG GCA TTA CCA CCC 50 [24] 

Lab 158 Lactobacillus/Enterococcus GGT ATT AGC A(C/T)C TGT TTC CA 45 [25] 

Bac 303 Bacteroides/Prevotella CCA ATG TGG GGG ACC TT 45 [26] 

Ecol 1513 Escherichia coli CAC CGT AGT GCC TCG TCA TCA 50 [27] 

Chis 150 Clostridium histolyticum TTA TGC GGT ATT AAT CT(C/T) CCT TT 50 [28] 

C Lis 135 Clostridium lituseburense GTT ATC CGT GTG TAC AGG G 50 [28] 

FPrau 645 Faecalibacterium prausnitzii CCT CTG CAC TAC TCA AGA AAA AC 50 [29] 

SRB 687 Sulphate-reducing bacteria TAC GGA TTT CAC TCC T 50 [30] 

STA Staphylococcus TCC TCC ATA TCT CTG CGC 50 [31] 
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