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Summary

Wireless sensor networks (WSNs), comprising a large number of radio-

enabled programmable sensor nodes, have been increasingly deployed in

many important applications to enable users to query the physical world.

However, since WSNs are inherently resource constrained, when several

queries are running simultaneously, existing works on optimization and

execution of a single query are deficient, and multiple query optimization

that enables query sharing is indispensable. Hence, the purpose of this

thesis is to tackle the problem of multiple query optimization in WSNs, to

make the whole network scalable and efficient.

To achieve the energy-efficiency and scalability with the number of

queries in WSN, we propose a Two-Tier Multiple Query Optimization

(TTMQO) scheme. It is light-weight, adaptive with query arrivals / termi-

nations, and supports both aggregation and data acquisition queries. The

first tier adopts a cost-based approach to rewrite queries into an optimized

set to share the commonality and reduce redundancy among queries. In

the second tier, in-network optimization is conducted to efficiently deliver

query results by taking advantage of the broadcast nature of the radio

channel and sharing the sensor readings among multiple queries over space

and time in a distributed manner. Both tiers eliminate the redundancies

incurred for similar queries, though in different ways, and their marriage
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can utilize their advantages while avoiding their respective disadvantages.

To further enhance the scalability in terms of number of sensor nodes

and improve the reliability and energy efficiency, we then identify the im-

portance of an infrastructure with multiple base stations. To minimize the

total data communication cost among the sensors, it is critical to intelli-

gently allocate queries among base stations to leverage query sharing. We

first examine the query allocation problem in a static context, where all the

queries are known in advance. Here, we approximate the problem of allo-

cating queries to K base stations as a Max-K-Cut problem, and adapt an

existing solution to our context. In addition, considering the complexity

of Max-K-Cut solution, we propose a semi-greedy allocation framework,

which consists of a greedy allocation phase and an iterative refinement

phase. We also investigate dynamic environments with frequent query ar-

rivals and terminations and propose adaptive query insertion and migration

algorithms.

Recently, mobile sensors have been developed and increasingly deployed

to support various applications. Thus, besides optimizing multiple queries

in static WSNs, we also investigate how multiple data acquisition queries

can be answered quickly in sparse mobile sensor networks. Because of the

sparseness and mobility, the number of sensors is limited, the connection

is intermittent and the topology is unpredictable. To effectively handle

the above challenges, we design distributed schemes in which the exploited

mobile sensors strategically relocate themselves to proper locations to col-

laboratively facilitate efficient query processing and enable sharing over

space and time. In addition, the most appropriate scheme is selected to

adapt to the environment.
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We have implemented the above approaches and conducted extensive

experimental studies, which demonstrate the efficiency and effectiveness

of these approaches. We believe that our research in optimizing multiple

queries for WSNs significantly contributes to promoting WSN applications.
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Chapter 1

Introduction

In this chapter, we will describe the background of wireless sensor networks,

give a general overview of query processing techniques in the current litera-

ture, and present the rationale of our study on multiple query optimization

in wireless sensor networks.

1.1 Background

1.1.1 Wireless Sensor Networks (WSNs)

Recent advances in microelectronics have led to the development of mi-

cro sensors and the reduction of their size and cost, enabling the large

deployment of such sensing devices. Each sensor node has one or more

such sensors to sense the environment, a microprocessor to process user

requests and sensory data, some memory to store data sensors sensed, a

short range communication component such as radio to communicate with

other sensors, and a power supply component to provide the energy so

that sensor node can operate by itself. Being equipped with these data
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acquisition, computation, storage and communication capacities, most of

sensor nodes today (still or mobile) have programmable ability so that

application-specific tasks can be built-in and collaboration protocols be-

tween sensor nodes are also possible. A Wireless Sensor Network (WSN) is

a distributed system that comprises a large number of these sensor nodes.

Since sensor nodes are small, inexpensive, low power and programmable,

they make it possible to sense information at previously unobtainable res-

olutions, and thus WSNs are very attractive to a large variety of applica-

tions [111, 6, 47, 71, 105, 57]. They can be used in resource-limited and

harsh environments, such as earthquake areas, ecological contamination

sites, or military battlegrounds. They can also be deployed in everyday-life

environments, such as smart home environment, intelligent museum/zoo,

warehouse/port, industry plants or road. They have the ability to collect

many types of physical measurements, such as temperature, light, humid-

ity, movement, seismic and noise. In this way, their deployment enables

us to monitor and query the physical world anywhere, anytime. Hence,

WSNs are expected to greatly improve our understanding of the world, en-

rich the Cyber-Physical infrastructure and provide our life with tremendous

convenience.

However, these sensor nodes are inherently resource constrained due

to the small size and low price constraints of sensor nodes. Take the UC

Berkeley mica2 Mote that we have played with for example: it has a 7 Mhz

processor, a 38.6Kbps radio with∼100 foot range, 4KB of RAM and 512KB

flash, runs on AA batteries and uses ∼15 mA in active power consumption.

As a result, these sensor nodes have brought about a large number of chal-

lenges [125, 6]. Firstly, the microprocessor at each sensor node has limited
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computation capacity, and hence complicated processing cannot be done at

the sensor node. Secondly, the memory of sensor nodes available for pro-

gramming and data is small, and thus cannot store the code for complex

programs and large datasets. Thirdly, sensor nodes are communicating

with each other using short range wireless radio, which usually has limited

bandwidth of wireless links and results in constrained and unstable commu-

nication. Fourthly, most current sensor nodes are powered by batteries and

have limited supply of energy, and therefore it is critical to conserve energy.

Lastly, but by no means least, there is uncertainty in sensor readings. It

is hard to guarantee that the hardware of sensor nodes is 100% accurate;

and both the sensing technology and radio technology are affected by the

environment, e.g., unpredictable variations, noise and the weather condi-

tions. Thus, a large number of readings from a group of sensors over some

duration are often of interest other than single-sensor-single-time readings.

From the above, we can see that the WSN can be very promising, but

due to the resource constraint, its various challenges and the complex phys-

ical environment it is closely coupled to, special attention should be paid

to ensure its applicability. To provide better data fidelity and robustness,

a large number of sensor nodes are often densely scattered in a sensor field,

as shown in Figure 1.1. Due to the short wireless communication ranges,

data are typically routed back to the sink in a multi-hop way. Sinks com-

municate with the base station via Internet, satellites and cable etc. For

simplicity, as the sink communicates with the base station directly, we

shall use the term base station to refer to both the sink and base station.

Special protocols are proposed to form the network topology, so that each

node has at least one route to the base station/sink. Several related issues
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are broadly addressed and investigated in different WSN research commu-

nities, for instance, synchronization [94, 100, 127], energy efficient data

routing [39, 42, 109] and clustering [129, 126].

Figure 1.1: Components of sensor networks

1.1.2 Query Processing in WSNs

To ease the deployment of WSN applications, researchers have proposed

techniques to treat the WSN as a database [125, 25, 34], which provides a

good logical abstraction for sensor data management. A database oriented

approach brings with it several advantages. First, it provides users with

ease. Users can issue declarative queries based on the logical view of the

data held inside the sensor networks, without having to worry about the

actual implementation details of the operations on the physical network,

such as storage, networking, link status, etc. Second, it provides the users

with flexibility. Without reprogramming the sensor nodes as traditional

approach does, users have the ability to dynamically submit queries to

acquire different information with time from the WSN. Thirdly, it provides
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the WSN with the opportunity for better performance. Query optimization

techniques can be applied to optimize the network operations. Lastly, it

provides the system with better availability and scalability. It has enabled

the WSN to handle several tasks simultaneously. More specifically, with

just one application such as TinyDB [69] built in the WSN, multiple users

can deploy or change their interests by submitting different concurrent

queries, and all of the queries can be answered at the same time.

In database oriented approach, a WSN works in the following way:

(a). A user submits a query to the base station of the whole network to

request the data he or she is interested, which could be either the

basic sensory data or the more advanced processed sensory data;

(b). The base station generates the query plan and propagates the query

to the sensor nodes in the network;

(c). After sensor nodes receive the query, they sense the environment to

collect the required data, process the data according to the query

specification, and collaborate with other sensors to transmit the pro-

cessed data back to the base station;

(d). The base station post-processes all the data received from individual

sensors and then produces the answer to the user who issues the

query.

Considering the special characteristics and hardware constraints of the

WSNs, we can see that steps (b) and (c) are where the main challenges

lie, in the whole process during which a WSN fulfills its task. It is, there-

fore, of critical importance to have effective and efficient query processing

techniques for steps (b) and (c).
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Some query processing systems for WSNs, such as, Cougar [125, 25],

and TinyDB [68, 69], have been developed. These pioneer works establish

the foundation of sensory data management and query processing. They

define the query languages for WSNs, discuss the basic issues of sensor

queries, and provide some solutions to query processing.

Besides these efforts on query processing systems in general, as we can

see in more detail in Section 2.2, a large number of studies have focused

more specifically on various aspects of sensor query processing techniques.

Some studies focus on the design of routing protocols, trying to propose an

energy-efficient protocol on sensor networks [63, 92]. Much work has been

done on how to intelligently store data inside network and answer queries

outside or inside the network efficiently [81, 27]. Many other studies have

been conducted on in-network query processing techniques [97, 4], to reduce

the amount of sensory data that needs to be sent to the base station and

produce the query answers as soon as possible. For approximate queries,

both model-driven and non model-driven techniques on sensory data have

also been widely studied [26, 91], to save the energy and bandwidth while

satisfying users’ requirements to improve the overall performance in wire-

less sensor networks. In addition, several adaptive techniques have been

proposed to adjust query strategies and optimize query plans over time

[7, 24].

1.2 Motivation

In real life, there are many scenarios where we should allow multiple users

to pose their queries to the system, and these queries run concurrently.

In the multi-query situation, in order for the system to scale effectively
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and efficiently with the number of simultaneous queries, special efforts are

required to enable query sharing over the common operations and limited

resources. We call this problem as Multiple Query Optimization(MQO).

1.2.1 Multiple Query Optimization (MQO) in large-

scale WSNs

Since WSNs are extremely resource-constrained, MQO that enables query

sharing is indispensable to make the whole network scalable and efficient.

As aforementioned, existing works have mostly focused on the optimization

and execution of a single long-running query. Consequently, when multi-

ple queries are running simultaneously in a sensor network, they cannot

benefit from each other by sharing their data acquisition, computation and

communication cost. Moreover, running multiple queries in such an unco-

operative manner will lead to bandwidth contention and even data loss as a

result of transmission collisions (which may in turn require retransmission).

A good MQO scheme for WSNs should have the following set of desired

properties:

• Scalability. As the popularity and importance of WSNs grow, so

does the size of the sensor network and the number of users that are

interested in the sensory data. Being able to work well for sensor

networks with a large number of nodes and support a large number

of queries is of critical importance to improve WSN’s fidelity and

availability.

• Energy-efficiency. Moore’s law suggests that the memory density

and processor speed will continue to grow at an exponential rate, so
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we can predict that sensor networks will continue to be bandwidth

and energy limited in the foreseeable future. Thus, it is of fundamen-

tal importance to have energy-efficient scheme for sensor nodes.

• Adaptivity. In WSN applications, queries are likely to be long-

running continuous ones, and they may arrive and leave at any time.

A good MQO scheme should be able to continuously adapt query

plans to current query workload and network condition, so that these

plans can always be optimal or near optimal over time.

• Simplicity. Sensor nodes have limited processing power, small stor-

age space and limited bandwidth, which restrict the types of data

processing algorithms that can be deployed, intermediate results that

can be stored, and the size and rate of the data that can be commu-

nicated. In order to be applicable, the MQO scheme should be light

weight.

However, the MQO techniques in traditional databases are not appli-

cable to WSNs, due to different semantics of queries, different objective

through optimization and the resource constraints of each sensor node.

While the studies on MQO in stream databases deal with the problem of

processing multiple queries efficiently at the base station, they do not tackle

the problem of collecting sensory data out of the WSNs [70, 16, 48, 49].

Thus the real challenge in MQO in sensor networks remains unsolved.

There are only a few studies addressing the problem of MQO in WSNs.

In Fjords architecture [66] proposed by Madden et. al. and more recently

the SwissQM project [76] at ETH Zurich, a single merged query was gen-

erated to pull data from the network for all user queries. Although the
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above all-to-one mapping approaches are able to eliminate redundant data

access among queries, due to the semantics of continuous queries, they

either seriously suffer from fetching unnecessary data or resort to provide

only approximate answers by relaxing the sampling period restrictions. We

believe more careful study on the relationships of queries will provide more

aggressive reduction on the data that need to be fetched from the network,

without sacrificing the accuracy of the answers.

The Cougar project recognized the importance of energy-efficient data

dissemination and query processing in the presence of multiple continuous

aggregation queries [25, 108]. Unfortunately, the complexity of dynamic

programming algorithms made it hardly practical for large-scale WSNs.

Moreover, the authors’ focus was on data, and they did not explicitly de-

scribe how to optimize multiple queries. Later, several algorithms were pro-

posed to optimize multiple region-based aggregation queries, which could

further be classified as equivalence class approach [110, 107] and partial

aggregation sharing approach [28]. However, the above approaches are not

general enough. They only tackle region based aggregation queries. This

is quite limited, ignores many other types of queries, and is far from being

enough to satisfy the wide applications of WSNs. Moreover, they are all

constrained to a tree-structure data dissemination paradigm, while a more

flexible structure such as directed acyclic graph can be more advantageous

to facilitate sharing among queries.

A more careful introduction of these projects and all other up to date

related works together with comparison with our approaches appear in

section 2.5.
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1.2.2 MQO in Mobile Sensor Networks(MSNs)

With the advances of technology, more powerful sensors integrated with

mobility functionality have been developed [90, 75, 112]. The mobility of

sensors effectively extends the sensors’ coverage, by moving around to sense

a larger area than its sensing range. This makes it attractive to deploy a

small number of mobile sensors to monitor a large region which would have

required a large-scale WSN comprising the first generation static sensors.

Moreover, with the ability to freely move to desired locations, mobile sen-

sors can contribute flexible network topology, react to the events of the

environment and adapt to the changes in the missions. Thus, Mobile Sen-

sor Networks (MSNs) comprising such mobile sensors have been increas-

ingly adopted to support applications in surveillance, reconnaissance, and

disaster rescue [40, 132, 56, 9, 96, 64].

In this thesis, we investigate MSNs that are sparse. MSNs are likely

to be sparse because of two reasons: mobile sensors are more expensive

compared to stationary sensors and the mobility of sensors increases their

coverage [61], so it may not be wise to densely deploy a large number of

them; moreover, dense MSNs can become sparse due to node failures caused

by environmental hazards or even intentional damages (e.g. by adversaries

in the battlefield).

In the context of sparse MSNs, the number of sensors is limited, the

locations of mobile sensors are not fixed or known to each other, and the

connectivity among sensor nodes may not exist. This makes it very chal-

lenging to discover the network topology, handle intermittent connection,

coordinate distributed query processing, and facilitate query sharing. Thus,

an intelligent MQO scheme is crucial in order to provide timely response
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for data acquisition queries from the base station.

The desired MQO scheme for sparse MSNs should take into considera-

tion of the following opportunities and factors:

• It should take good advantage of the mobility of sensor nodes. Mo-

bility gives the sensors the freedom to move to any desired location,

and thus it is possible for them to form a dedicated routing structure

to facilitate query processing.

• It has to consider the balance between centralized and decentral-

ized control. In a sparse MSN, a purely centralized approach (the

base station coordinates the whole network) is not feasible, while

a purely decentralized approach (every mobile sensor independently

processes queries relying on pure local information without any cen-

tralized planning) might not be sufficient.

• It should exploit the connected and encountered sensors and make

them intelligently collaborate in order to gradually improve the query

processing on the way. To achieve this, distributed coordination and

synchronization algorithms are required to deal with the problems

caused by the intermittent connections, to effectively handle various

encountering and disconnecting events.

• It should enable multiple queries to cooperatively share the precious

available resources over space and time. Blind competition among

queries has to be avoided, and adaptive sharing in the process of

distributed decision making is desired.

Several studies have been carried out for data collection using mobile

elements in sparse WSNs or mobile Ad-Hoc networks (MANETs) [87, 132,
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38]. In these works, the focus is on general data collection and the time

taken to deliver specific information is not critical. Our problem differs

from them because data delivery in our system is driven by queries, and

we have to minimize the time the sensors take to process these queries.

There also exist some works on multi-task allocation and path planning

for cooperating UAVs, to minimize the task completion time [43, 12, 8].

However, these works do not consider the opportunity that we will exploit

in this thesis, that is, some mobile sensors could be relocated to certain

locations to relay information for others, to further reduce the query pro-

cessing time.

1.3 Contributions

First, we summarize the major research contributions in this thesis. The

objective of our research is to propose MQO techniques for WSNs, both

for large-scale static WSNs and sparse mobile WSNs, in order to sup-

port the environmental monitoring and surveillance for a large area. Only

with MQO techniques, the limited resources can be effectively utilized and

shared to fulfill the potential of WSNs. In order to achieve this objective,

our research is mainly divided into three parts.

The first part of the thesis focuses on processing multiple queries that

are distributed to a particular base station, aiming to minimize the en-

ergy consumption inside the static WSN. We design a Two-Tier Multiple

Query Optimization scheme, which is light-weight, adaptive to query ar-

rivals/terminations, and supports both aggregation and data acquisition

queries. More specifically, we address the following aspects.
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1. We examine the cost model of query processing inside the MSN, and

provide realistic cost estimation to guide the optimization process.

2. We design efficient and effective cost-based query rewriting algo-

rithms for the base station tier, so that the abundant resources at

the base station can be utilized and the redundant data requests that

might be pushed to the wireless sensor nodes can be eliminated and

filtered. Our algorithms are adaptive in the sense that queries can

arrive and leave at any time, and our scheme is able to adjust to the

changes automatically.

3. We propose several intelligent in-network optimization approaches,

to reduce message transmissions and hence to save the total amount

of energy consumption. To make it scalable to the number of sensor

nodes, we adopt a distributed method where every sensor makes de-

cision by itself instead of a centralized method where a central server

computes and decides everything.

4. We evaluate the above algorithms and approaches that run at the base

station and inside the sensor network, tune the necessary parameters

and investigate their performance.

The second part of the thesis deals with the problem of performing mul-

tiple query optimization within a static WSN with multiple base stations,

aiming to minimize the total communication cost among sensor nodes. To

the best of our knowledge, this is the first piece of work to study this

problem. For a large-scale sensor network, it is necessary and beneficial to

have multiple base stations in the network. Firstly, it provides the sensor

network with better scalability. The limited radio range of sensor nodes



14

leads in multi-hop routing, where the nodes nearer to the base station need

to relay the messages for other nodes and hence become the bottleneck

[69, 103]. Using multiple base stations can alleviate this problem. Sec-

ondly, it provides the sensor network with better reliability and efficiency

[77]. The communication among sensor nodes are prone to failures, due to

collision, node failure and environmental noise etc. With more base sta-

tions in the network, the average number of hops each data travels is fewer,

and correspondingly the reliability and efficiency of the data transmission

is better. Lastly, it extends the lifetime of the sensor network. The sensor

nodes nearer to the base stations are likely to have higher load and the en-

ergy consumption there is faster than other nodes; with more bases station,

the burden of nodes nearer to each base station can be relieved. Hence,

to improve the scalability, efficiency and reliability of WSNs, we also make

contributions in the following aspects.

1. We investigate an architecture where multiple base stations are uti-

lized instead of a single base station, to relieve the burden of nodes

nearer the base station and enhance the scalability of the whole net-

work.

2. We design several similarity-aware query allocation schemes for region-

based aggregation queries. These schemes intelligently put each query

to an appropriate base station, so that multiple queries running at

each base station can largely benefit from each other with underly-

ing MQO schemes while each query is allocated to the base station

incurring the least communication cost. We investigate the query

allocation problem both in a static context where all the queries are

known in advance and in dynamic environments with frequent query
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arrivals and terminations.

3. We introduce adaptive query migration strategies to improve the

query allocation on the fly, in accord with the changing patterns of

the queries and the underlying wireless link.

4. We conduct an extensive performance study to evaluate the effective-

ness of the above techniques in minimizing the communication cost

of a large-scale WSN.

The third part of the thesis tackles the multiple query optimization

problem in the context of sparse mobile wireless sensor networks (MSNs).

We explore it as our third challenge in our thesis, because MSNs bring

about attractive opportunities for applications while they are inherent with

different challenges from its static peers. Posed by the challenges from

mobility and sparseness, the problem of provide fast response to multiple

data acquisition queries is handled as follows:

1. We propose distributed strategies in which the exploited mobile sen-

sors strategically relocate themselves to proper locations to collabo-

ratively facilitate efficient query processing and enable sharing over

space and time.

2. We design intelligent algorithms to deal with the problems caused

by intermittent connections and unpredictable topology, by means

of effectively handling various encountering and disconnecting events

among mobile sensors.

3. We define a a parameter Coverage Ratio(CR), which reflects the

sparseness of the network in respect to the number of queries, to guide

the system to adaptively make a sound decision over the strategies.
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4. We perform extensive simulation study to evaluate the proposed strate-

gies.

The works in this thesis have resulted in a number of publications, more

specifically, [118], [115] and [116], [117] and [119], and [113].

With the MQO techniques described in this thesis, the WSN should

be able to reach a new level. Firstly, it should scale well to the number

of concurrently running queries, and hence many users can access the net-

work satisfactorily. Also, since the query sharing is enabled among similar

queries and common work of several queries can be done only once, much

unnecessary acquisition, computation, communication and retransmission

due to collision can be avoided and hence the energy consumption of the

whole network may be largely reduced. Moreover, with the introduction

of multiple base stations and query allocation algorithms, the scalability

of the sensor network should be largely extended, and the utility of the

sensor network should be much better realized. Finally, in the applica-

tions where wireless sensor nodes are mobile and sparsely deployed, since

our optimization strategies can effectively handle the challenges caused by

intermittent connections, intelligently exploit the encountered sensor node

and adaptively enable sharing among queries, the network should provide

users with satisfactory data access despite of the mobility and sparseness.

Hence, with our MQO techniques, many applications can be expected to

be promoted by adopting wireless sensor networks.
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1.4 Thesis Organization

Hereby, we outline the organization of this thesis. The rest of the thesis

contains 5 chapters.

In Chapter 2, we introduce the background knowledge on WSNs and

some fundamentals employed in our proposed schemes, followed by a survey

on the related works.

Chapter 3 presents our solution, TTMQO, to efficiently process multiple

queries that are running on a particular base station. TTMQO utilizes

the base station to intelligently rewrite the queries to reduce redundancy,

and then conducts in-network optimization to further enable query sharing

among space and time in a distributed manner. Our experimental results

indicate that our proposed TTMQO scheme offers significant performance

improvements over the traditional single query optimization technique, in

terms of both communication cost and scalability.

We then present our work on optimizing multiple queries in an in-

frastructure with multiple base stations in Chapter 4. The objective is

to minimize the total data communication cost among the sensors, by

intelligently allocating queries among base stations. We propose several

similarity-aware query allocation schemes, both for static context and dy-

namic environment. Comprehensive experiments are conducted to show

that our proposed schemes can effectively exploit the sharing among queries

and greatly reduce the communication cost.

In Chapter 5, we tackle the problem of multiple query optimization in

sparse mobile sensor networks. To provide fast response for data acqui-

sition queries, several strategies are designed to exploit and share limited

resources while dealing with the intermittent connections and unpredictable
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topology. In addition, the most appropriate strategy is selected to adapt

to the environment. Extensive performance studies show the effectiveness

of our proposed strategies.

Finally, Chapter 6 concludes this thesis and discusses some directions

for future work.
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Chapter 2

Background and Related

Works

In this chapter, we first introduce preliminaries and some fundamental

overlay structures of wireless sensor networks, which are employed in our

proposed schemes or some closely related works. Then, we focus on some

related works. More specifically, we first present some representative stud-

ies conducted on important issues in single query processing over WSNs.

Then, we review the most closely related works on multiple query opti-

mization.

2.1 Background

2.1.1 Preliminaries

Queries. Two major types of queries are commonly used over WSNs: one-

shot queries and continuous queries. In a one-shot query, sensors report

their current data only once, and the observer gets a snapshot of current
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state of sensor networks. One-shot queries are typically critical in latency,

and the data need to be reported efficiently along the whole path. Our

MQO work in sparse MSN, which will be presented in detail in Chapter

5 of this thesis, is processing this type of one-shot queries. In contrast,

continuous queries require sensors to produce and report data periodically.

As many sensor applications are interested in monitoring an environment

over a long period of time, continuous queries are more frequently used.

Our MQO works in WSN, which will be presented in detail in Chapters 3

and 4, are focusing on continuous queries.

To provide a declarative interface to observers, SQL-style query syntax

is mostly used in current sensor network systems [125, 67, 69]. TinyDB

defines queries [69] as in Figure 2.1:

SELECT {agg(expression), attributes}
FROM {sensors}
WHERE {predicates}
EPOCH DURATION {time interval}

Figure 2.1: Query format

The SELECT, FROM, and WHERE clauses are three fundamental

clauses in a query. The SELECT clause specifies the observer-interested

attributes or aggregates of sensor data, the FROM clause specifies the dis-

tributed relation of sensor type, and the WHERE clause specifies filters on

sensor data. The EPOCH DURATION clause indicates the rate of sam-

pling respectively. In continuous queries, sensor data can be viewed as a

table with a single column per sensor type, and new tuples are appended

to the tables when they arrive at the base station.

If a query is requesting the original sensory data, i.e., attribute specified

in the SELECT clause, it is denoted as data acquisition query. On the other
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hand, if a query is requesting the aggregates of sensor data, it is denoted

as data aggregation query.

Energy. Power consumption is the major consideration of designing

sensor network protocols. Hence, it is important to understand the energy

consumption of various operations of sensors, to optimize the design of

routing protocols and query processing strategies.

Madden et al. [69] conducted a study on the power utilization of major

operations on Mica motes (a type of sensors designed in Berkeley) run-

ning TinyDB. The study shows that transmitting and processing consume

the majority of energy. Processing consumes a large percentage of en-

ergy as the processor is always on in sensing, processing, and transmitting

modes. However, in snoozing model, when both the processor and radio

are idle, the energy cost decreases significantly. According to this study,

to be energy-efficient, sensor networks should try to minimize the number

of communication and sensing operations, so that the processor and radio

can be idle for as long as possible. We take advantage of the above results

when designing our approaches in Chapters 3 and 4.

Then, we introduce how to quantify the cost of message transmission.

LEACH [39] gives a simple but recognized model on energy cost of sensor

communication. To transmit a k -bit message a distance d, the energy cost

of sender is:

ETx(k, d) = Eelec ∗ k + εamp ∗ k ∗ d2 (2.1)

where Eelec is the coefficient of running the transmitter or receiver circuit,

and εamp is the coefficient of amplifying the signal so that the data can be

received by the sensors with a distance d from the sender. To receive the
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message, the energy cost of receiver is:

ERx(k) = Eelec ∗ k (2.2)

We adopt this model in this thesis, as reflected in section 3.3.2.

2.1.2 Overview of TinyDB

Since TinyDB [69] is one of the most popular query processing systems

for sensor networks, we choose to base our multiple query optimization

scheme on it. TinyDB is an application developed on top of TinyOS, an

event-driven operating system developed for sensor networks [3]. TinyOS

and TinyDB are designed for sensor nodes that have limited resources (e.g.,

8K bytes of program memory, 512 bytes of RAM for Crossbow Motes).

The TinyOS applications are implemented using a language called NesC,

which is an extension to C. A sensor network has tens to hundreds of such

stationary resource-constraint sensor nodes and a base station that acts as

the central server and user interface.

TinyDB emphasizes on optimizing every single query [68]. Upon the

arrival of a query, TinyDB parses the query and optimizes it by ordering

sampling and predicates into a cost effective sequence. TinyDB then prop-

agates the query into the network level by level down through flooding,

during which a routing tree with the base station as root is constructed.

After a sensor node has sampled the data at a scheduled time, it processes

the data locally and may forward the data up to its parent, until the reaches

the base station. For queries over constant attributes, a Semantic Routing

Tree is utilized to direct the queries only to the nodes with the results

instead of using flooding, thus saving the costs of propagation, execution
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and result dissemination. For aggregation queries, detailed energy-efficient

techniques such as communication scheduling and snooping have been pro-

posed in TAG [67].

Although multiple queries can run simultaneously in TinyDB, it does

not emphasize multiple query optimization. For example, although the

Semantic Routing Trees are shared among multiple queries, sample acqui-

sition is not. Thus, if two queries need a data reading even within a few

milliseconds of each other, the sensor node will still acquire that reading

twice. Moreover, there is no effort to optimize communication scheduling

between queries, i.e. the message transmissions of one query are scheduled

independently from another query. Our TTMQO scheme in Chapter 3

addresses the multiple query optimization issues not addressed in TinyDB.

2.2 Query Processing in WSN

In the recent years, there have seen a large amount of work in query process-

ing techniques over sensor networks. Among them, in-network aggregation,

data-centric storage systems, approximate techniques and adaptive tech-

niques are the focuses in which many approaches have been proposed. In

this section, we summarize and discuss these important studies conducted

on query processing over sensor networks.

2.2.1 In-Network Aggregation Approaches

As data transmission between sensor nodes consumes more power than

local processing, it would be very attractive if the volume of data trans-

mitted could be reduced by local processing. In-network aggregation can
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significantly reduce the data transmitted throughout the network by com-

puting partial aggregate results at intermediate nodes. Five categories of

energy-efficient in-network aggregation approaches are proposed in exist-

ing studies: cluster-based, chain-based, tree-based, multi-path-based and

hybrid method.

Cluster-based approach is particularly useful for data collection in large

sensor networks that require scalability to hundreds or thousands of nodes.

LEACH[39] is a classic cluster-based energy-efficient protocol designed for

sensor networks with continuous data delivery mechanism, with a fixed

base station at a far distance. Cluster heads are elected by randomized

rotation; member nodes use TDMA to send their data to the local cluster-

head, cluster-heads aggregate the data from each sensor and then send

this information to the observer node. By combining or aggregating the

collected data at cluster heads, LEACH significantly reduces the amount

of information to be transmitted. However, LEACH is not suitable for

event-driven models, observer-initiated models as well as for mobile sen-

sors. HEED [129] is an improvement on LEACH. It does not require node

synchronization; moreover, it selects cluster heads according to the residual

energy and node proximity to its neighbors or node degree, so that both

energy and communication cost are considered.

A chain-based approach PEGASIS is proposed in [59]. A greedy TSP

algorithm is used to construct a chain among the sensor nodes, and each

node will receive from and transmit to a close neighbor. By exploiting the

chain structure, further scheduling can be conducted so that most of nodes

can be in sleep mode as long as they are not the senders or receivers at that

time, and lifetime of the system can be significantly improved over cluster-
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based approach. However, there are the following three main deficiencies.

Firstly, the constraints of the logical chain make the nodes join in the

chain in the later time expend more energy than required. Firstly, the

constraints of the logical chain result in more energy expending for the

nodes joining in the chain in the later time. Secondly, the latency will be

large in constructing the chain and collecting the data through the chain,

due to its linear property. Thirdly, it is prone to incomplete answers, for

every link must be functioning in order that an integrated answer can arrive

at the base station.

Tree-based approach is used in many sensor network systems such as

TAG [67], Cougar [25], TinyDB [69], and PEDAP [101]. A spanning tree

is constructed according to link quality [67, 69], query workload[25], node’s

energy level and communication cost between nodes[101], to relay and ag-

gregate data from leaves to the root. To keep the spinning tree robust to

the change in sensor networks, each sensor monitors the quality of links

to its parent and neighbors. Whenever a sensor detects that the link to

its parent deteriorates to some extend, it switches to a new parent with

better link quality [131]. The advantage of tree-based approach is that the

aggregation is computed in a straightforward way, with minimal commu-

nication cost. However, as the lost message drops the aggregation from

the entire subtree, tree-based approach cannot guarantee the accuracy of

aggregation, especially in high communication failure scenarios.

Ring topology is typically used in multi-path-based aggregation ap-

proaches [21, 78], in which sensors are divided into levels according to their

hop count from the sink node. Sensors aggregate the data they receive

from sensors in the upper level and broadcast the aggregate data to multi-
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ple sensors in the next lower level, which are closer to the sink node. The

ring-based multi-path topology significantly increases robustness because

each reading is accounted for in many paths to the sink node. However,

it also has some drawbacks: 1) For those duplicate sensitive aggregations,

special techniques are required to avoid duplicate-counting; 2) Some dupli-

cations near to the edge are unnecessary, as the lost of message may not

affect the accuracy of the overall aggregate result greatly.

Tributary-Delta [74] provides a hybrid method, which combines the

advantages of tree-based and multi-path-based approaches by running them

simultaneously in different parts of the network (Figure 2.2). This hybrid

method is based on the observation that message losses close to the base

station affect the accuracy of final results more than those close to the edge

sensors. For this reason, tributary-delta uses tree-based topology at edge

sensors, and uses multi-path-based topology at sensors close to the sink

node.

Figure 2.2: Topology in Tributary-Delta [74]

Tributary-delta [74] also presents an adaption approach for adjusting

the balance between tree-based and multi-path-based aggregation topology

in response to the changes of network conditions. It achieves a good trade
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off between energy-efficiency and accuracy, by dynamically adjusting the

aggregation topology (shrink or expand the delta region) to the current

message lost rate. Tributary-delta provides two strategies to shrink or

expand the delta region according to the percentage of nodes that should

contribute to the aggregated results.

The topology adaptive techniques used by tributary-delta are suitable

for the aggregation over the whole network. If queries are focused on some

region located at the edge of network, when the network conditions change

in this region, tributary-delta techniques will not be functional because

they only consider the effect to the aggregation results on change of the

whole network and ignore the change of some outlying regions.

2.2.2 Data-Centric Storage Mechanisms

In this thesis we are mainly dealing with the system architecture where

the sensor network is composed of base station, sink and sensors. To get

a full picture of how queries are being processed in the context of sensor

networks, in this section, we present some techniques in peer-to-peer sensor

networks.

Without a base station in sensor networks, sensed data is stored in-

side the network, which we call in-network storage. In-network storage

techniques can be classified into two classes: local storage (LS) and data-

centric storage (DCS). In LS, event information is stored locally at the

detecting node upon detection of an event; queries are flooded to all nodes.

This storage mechanism also works for the system architecture where there

is base station. In DCS, after an event is detected the data are stored by

name within the sensor networks; queries are directed to the node that
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stores events of that name. In this way, query flooding is avoided, and the

data only need to be aggregated once for multiple queries, which save a lot

of communication cost at the query phase.

DCS is proposed by Ratnasamy et al. in Berkeley [81]. The authors

develop GHT, a Geographic Hash Table system, that hashes events named

with keys into geographic coordinates, and uses GPSR [44] to route the

data to be stored at the sensor node geographically nearest the hash of its

key as a key-value pair. This original GHT has been extended in [83] to

hash to regions rather than to locations, to provide more robust service

while requiring less accurate location information of sensors.

Much work especially in the domain of indexing has been done to effi-

ciently support more complex queries, such as range query, historical data

query inside DCS. DIFS [37] uses a multi-rooted quad-tree to index the

spatial domain. Each child can have l parents, and each parent covers l

times the area but indexes only 1/lth of the attribute value range of the

child, and hence load balancing is achieved. A modified GHT is used to

find an index node. Quad-tree is also used in DIMENSIONS [32] to sup-

port multi-resolution summarization, which is one generalization of DIFS.

In many applications, data collected by a node may only be needed by

other nodes that are nearby the data-originating node. In order to reduce

unnecessary network traffic, this calls for hashing to locations that respect

geographic proximity, and DIM satisfies such property [55]. The key of DIM

is a clever construction of a locality-preserving mapping between the mul-

tidimensional attribute space and the spatial domain of sensors, in which

data with values close to one another are hashed to locations nearby. It

indexes multidimensional data with the help of zone tree, as in a k-d tree,
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and each zone is uniquely identified by the path from the root to the zone.

Fractional Cascading further improves DIM by explicitly placing the index

for information close to where the information was generated [34]. It could

be said as a combination of LS and DCS. Each node stores its own infor-

mation locally, but also store information about data available elsewhere

in the network, but in such as a way that a sensor knows only a ”fraction”

of the information from distant parts of the network, in an exponentially

decaying fashion by distance. No nodes play a special role, thus avoiding

the hot spot problems inherent with tree structure indexing as well, at the

cost of some information duplication.

2.2.3 Approximate Techniques

Approximate techniques are important because they help to save a large

amount of unnecessary communication while guaranteeing the accuracy

and latency of query processing.

The sensory data gathered from neighbor nodes and those collected

from the same node over certain time have strong similarity, which help to

achieve high compression rate. The statistics on certain nodes can help to

predicate the value without transmitting the sensory data. Beside these,

uncertainty is an inherent property of sensory data. Study on these impre-

cise data with quality guarantee is also important because it affects query

accuracy and communication cost greatly.

Compression Techniques

Approximate query processing techniques, such as histograms, wavelets,

and linear regression, have been widely studied in database community.
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However, these compression techniques need to be modified when they are

applied to sensor networks, in which sensors are limited in computation

ability and approximation is performed in-network. Here, we mainly focus

on the compression techniques done within the sensor network, not the

techniques that purely compress data over data streams at the base station.

Deligiannakis et al. [23] proposed a new technique for compressing

multiple streams containing historical data from each sensor. It exploits

correlation and redundancy among multiple measurements on the same

sensor. The basic idea of this algorithm is to let each sensor extract and

maintain a series of values called base signal as the approximate representa-

tion from real measurements, which capture prominent features of recorded

data and are updated according to newly arrived data. Newly collected

data are divided into several intervals, each of which is then mapped to

the base signals to calculate the correlations. By recording the correlations

and base signals, data are represented in a more compressed way. This

algorithm is based on the observation that the values of the collected mea-

surements have similar patterns over time, or that different measurements

are naturally correlated.

SPASS, a Sharing and PAtitioning of Stream Spectrum protocol, was

introduced in [7]. The main idea in SPASS is exploiting the similarity in

the spectrum of nearby sensors, merging the spectra of sensors in the same

group into one global spectrum, and transmitting one partition of the global

spectrum by each sensor to the central sensor database. The spectrum is

the range/distribution of values read by that sensor, and is collected by

summary manager. Although continuous coordination between nodes are

required, SPASS protocol can significantly reduce the per-sensor power
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consumption by transmitting less data, and processing at the server side.

Shrivastava et al. [89] proposed q-digest, a distributed data summariza-

tion technique for approximate queries, and extended the class of queries

(e.g., median) that can be answered inside the sensor network using lim-

ited memory. By accurately preserving information about high frequency

values while compressing information about low frequency values, q-digest

significantly saves bandwidth and power for both random and correlated

data.

Lazaridis and Mehrotra [51] proposed an optimal on-line algorithm for

constructing a piecewise constant approximate (PCA) of a time series which

guarantees that the compressed representation satisfies an error bound.

They also designed a sensor-side prediction algorithm with error guaran-

tees, which is used to estimate the value of a time series ahead of time for

some real-time applications. They combined the compression and predic-

tion in a unified framework that avoids duplicates.

Prediction Techniques

TAG [67] provided a prediction technique, called snooping, which allows

nodes to locally suppress local aggregate values by listening to the data

reported by the neighbors and exploiting the semantics of aggregate func-

tions. This technique can be applied to monotonic and exemplary aggre-

gation such as MIN, TOP-K, etc, since a sensor can simply decide whether

a particular local result may appear in the final result at the top of the

network. However, snooping technique cannot be extended to some queries

such as COUNT, SUM etc.

Deshpande et al. [26] proposed a model-driven data acquisition method
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called BBQ which help provide answers by introducing approximations with

probabilistic confidences. The models are used to optimize the acquisition

of sensor readings by acquiring data only when the estimates made by the

model are not sufficiently accurate to answer the query with acceptable

confidence. The optimization concerns two factors: the statistical benefits

of acquiring a reading and the system costs associated with wireless sensor

systems. BBQ can help identify sensors that provide faulty data, and can

extrapolate the values of missing sensors or sensor readings. When a par-

ticular link is not available during the execution, the topology model will be

updated accordingly. To process “SELECT *” queries for sensor networks

more efficiently, the authors further proposed an approximate technique

called Ken [19]. Ken maintained a pair of predictive models (Gaussian

Distribution) of each node’s sensors, with one copy residing at the node

and the other at the base station, and adopted a “push-based” approach to

update the model at the base station. As data was routed towards base sta-

tion, spatial correlations were further exploited by building disjoint-cliques

models using greedy heuristic algorithm while optimal solution is proven

to be NP-hard.

Model-driven approach presented above is effective in saving energy by

avoiding acquiring data from sensors whose readings could be predicted

or are unlikely to be in the result. However, it may be prohibitively ex-

pensive to answer complex queries with model-driven approach. A series

of PROSPECTOR algorithms were proposed in [91] to optimize Top-K

queries, by using samples of past sensor readings kept in the base station.

Basically, the TAG [67] structure was assumed for routing. To reduce the

numbers of messages intermediate level nodes need to transmit up, the tech-
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nique local filtering was proposed. Correspondingly, to evaluate whether

the result generated was acceptable, some additional readings were acquired

and passed up to prove that others were in the top k, which was called proof.

The problem of optimizing approximate top-k queries was thus formulated

as a linear program, which complemented sampling well and was able to

encode energy constraints, topology, and local filtering and proofs.

Y. Kotidis introduced the idea of snapshot queries, just requiring data

from representatives to give an approximate answer to save energy [46].

Instead of forming a global model of the sensor network as BBQ [26], this

framework captures localized correlations to build a local model. Each Ni

maintains a data cache to maintain the values of the measurements of its

neighbors, through snooping. Representatives are locally elected; Ni is said

to be the representative of Nj if the difference between Nj’s data value and

Ni’s estimated value for Nj is less than a predefined threshold. With the

time series of neighbor’s measurements, representatives are able to predict

the current value and trend of neighbor’s data, and hence significantly

reduce the number of nodes to participate in the query. Moreover, with

each sensor knowing about the data about their neighbors, for node failure,

we can always find a node whose collected measurements is similar to the

failed one to represent for it, and hence robustness is also guaranteed.

Quality Guarantees

Considine et al. [21] proposed a robust and scalable method for comput-

ing duplicate-sensitive aggregations across faulty sensor networks. This

method combines duplicate insensitive FM sketches with multi-path rout-

ing techniques to produce accurate approximations to those duplicate-
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sensitive aggregations such as SUM, COUNT etc., with low communica-

tion and computation overhead. It uses ring-based multi-path aggregation

topology. The aggregate epoch is divided into a series of rounds, one for

each level. In each round, the nodes at the corresponding level broadcast

their sketches, and the nodes at the next level receive these sketches and

combine them with their own sketches. In this way, the sink gets the final

aggregate result from the sketches of its neighbors.

An energy-efficient spatiotemporal region queries processing scheme was

introduced in [20]. since it is not practical to have a sensor node in each

point of the monitored region, a query is satisfied as long as the query result

is above a confidence threshold ct. A sensor’s coverage is correspondingly

defined as the area around the node in which the confidence of the sensor

is above the threshold for every point in the area. They used a two-phase

query processing approach. In the first step, they forwarded the query to

the center of the queried region using greedy algorithms. In the second

step, approximate query was processed inside the region and query result

would be collected and sent back to the query initializer. By exploiting

the redundancy among the sensors, they proposed two techniques to do

approximate query processing: EFM and MSM. EFM is an energy-aware

parallel flooding, where a node decides whether it participates based on its

energy level and the status of its neighbors-open, skip or send; MSM is a

depth-first method, which uses the completion of the query itself as a guide

to traverse the region’s nodes.

Sharaf et al. [88] proposed two novel solutions to balance the energy

efficiency and quality of aggregate data in tree-based sensor networks. By

assigning each sensor with a group id, they managed to construct the rout-
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ing tree in such a way that the sensors need to transmit belong to the same

subtree. With the introduction of a TOLERANCE clause, they imposed

a hierarchy of output filters on the TAG/Cougar routing tree to suppress

some data inside the network and hence achieved the reduction in the size

and number of data messages sent to the central base station.

Uncertainty Management

Link failures and packet losses are very common in sensor networks because

of environmental inference, packet delivery collisions, and low signal-to-

noise ratios [131]. Fault sensors might also generate imprecise data. All

these factors affect the degree of uncertainty between the query result and

the actual data values. Uncertainty management is necessary to place more

confidence in answers to the queries.

Cheng and Prabhakar [18] presented a framework to represent uncer-

tainty of sensory data. They proposed a kind of probabilistic threshold

queries, which require answers to have probabilities higher than a certain

threshold value. The probabilistic threshold query can be used to eliminate

data with small probability contributing to the final answer, providing a

more precise mechanism in handing uncertainty. They also studied the

techniques for evaluating queries under different details of uncertainty, and

investigated the tradeoff between data uncertainty, answer accuracy and

computation costs.

Lazaridis and Mehrotra [52] specified answer qualify requirements to

queries, and showed that how the query evaluation system may do the

minimal amount of work to meet these requirements. In [52], set-based

uncertainty and value-based uncertainty are used to quantify data quality.
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They proposed an energy-efficient processing technique for qualify-aware

relational queries. Lazaridis and Mehrotra’s work shows that if queries are

willing to tolerate some loss of accuracy in the results they obtain from the

system, then it is possible to drastically reduce the cost of query evaluation.

2.3 MQO in Traditional Databases

Since MQO is a classic problem in traditional databases and has been

studied for many years, it is worthwhile to learn some techniques from tra-

ditional databases that may be adapted to our new environment. Generally

speaking, as query optimization in traditional databases is shown to be NP-

complete, the problem of multiple query optimization is also NP-complete

[84]. Therefore, MQO is mostly studied using heuristics or probabilistic

techniques, by exploiting the commonalities between queries. For example,

Sellis proposed two heuristics in [85]: interleaved execution to make queries

benefit from the intermediate result from others, and A* algorithm to pro-

gressively search for the expressions that can be shared with the highest

probability.

More recently, some more theoretical approaches have been proposed

for determining common sub-expressions from multiple queries. Chen et al.

designed AND/OR DAG to convert the common subexpressions of queries

into the common edges in the DAG [15]. However, AND/OR graphs specify

an evaluation order, so some potential optimization choices are not consid-

ered. Moreover, the worst case complexity is proportional to the square of

the number of nodes in the DAG, and hence it is quite costly to construct

the AND/OR graphs. To conquer these weaknesses, Roy et al. proposed

Multigraph in [82]. Being a unique, non-producural representation of mul-
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tiple queries, Multigraph is not only suitable for identical and subsumption

situations, but also for overlap situation. It also requires less time and

space than AND/OR DAG. Using a multigraph requires much less time

and space to process common subexpressions, and is adopted for MQO in

mobile databases as well [72].

These approaches are meant for exploiting the commonalities of the

queries from the same application. As the world-wide communication is

more and more popular, inter-application sharing has also been studied.

Manegold et al. designed an inter-application multi-query optimizer [73],

which detected the commonalities among individually optimized queries

from different applications and re-used previously computed intermediate

results, by translating SQL queires into MIL programs and shrinking their

Dependency Graph.

Although there have been abundant studies in MQO for traditional

databases, all the above techniques are not directly applicable to WSNs,

mainly due to the following three reasons:

1. WSN is a resource-constrained environment. With limited compu-

tational capacity and storage, sensor nodes cannot do complicated

computation and data manipulation as the servers do in a traditional

database. Besides, sensor nodes are connected by unstable wireless

links, different from the stable wired LAN the traditional database

resides in.

2. With data being ready to be processed, traditional MQO focuses on

optimizing the physical level at the server to reduce its the compu-

tation and disk access, but the logical level optimization at the base

station server is critical in our case in order to reduce the resource
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consumption of wireless sensor nodes.

3. The queries for WSNs have different semantics, with one more “di-

mension” specified by the EPOCH DURATION clause, and hence the

optimization strategies will be more challenging. In addition, with

EPOCH DURATION clause, WSN queries are continuous queries

which request data periodically for a long time, instead of one-time

request in traditional databases.

2.4 MQO in Stream Databases

Nowadays, with the rapid increase of the number of internet users and

applications, new information is coming as fast as a stream. To provide the

users with real-time information they are interested in, continuous queries

are popular in the context of stream databases. Since queries in WSNs are

also continuous queries, we review, in this section, the studies on MQO in

stream databases to see how they are dealing with the periodical needs of

data from different queries.

Considering data are coming as a stream, unbounded, a general ap-

proach applied is to treat the data that come during a specific period of

time as a unit (or called“window” to use a more technical term) and process

the whole unit of data together. Because a query is generally composed

of several operators, such as join, selection (whose conditions are called

predicates), aggregation, we examine previous studies according to their

emphasis on different operators.

Join, as one costly operator, is often optimized together with selec-

tions. Several studies have been done to share the selection (predicate
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evaluation) in the presence of joins. In the project of NiagaraCQ [16], they

represented queries as expression signature, and grouped the queries with

similar signatures together. As long as the set of tuples flowing into that

operator in both queries is always the same, two queries can share an op-

erator. However, the sharing is limited: although it may be possible to

share an initial selection, any operators which follow that selection must

be replicated across all queries, which is quite costly. In [70], Madden et

al. proposed a continuously adaptive optimization strategy to enable more

sharing. They represented each query operator as one bit and annotated

each tuple in the stream a bitmap and hence naturally used the linage

of the tuple to explore the sharing adaptively. However, with each tuple

travelled in the optimizer annotated separately, redundant annotation still

exists. Most recently, TULIP project in [48] enabled sharing while reducing

unnecessary work by adopting more precise check.

Stream aggregation, as one important operator that can give users a

summarized view, has gained much attention recently. Arasu et al. [10]

explored the problem of shared processing aggregates with varying non-

periodic windows. Unfortunately, periodical sharing cannot be exploited,

and on-demand results cannot be used for other queries as well. Being

aware of the problem, Krishnamurthy et al. proposed on-the-fly sharing

for stream aggregation in [49]. By identifying the common fragments of

data results for multiple queries, much aggregation sharing can be enabled

across time and space. This approach focuses on data, and hence is less

constrained by query set and makes possible sharing among queries more

general.

The MQO in stream database deals with processing continuous queries,
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where streaming data has already been available at the base station. Bear-

ing in mind the whole process of query processing in WSNs as described

in Section 5.3.1, MQO in stream databases can be considered as a sub-

problem of MQO in WSNs, that is, the part after the sensory data has

been fetched to the base station. However, since MQO in stream databases

does not deal with the problem of deciding which set of data to be collected

at the required frequency from resource-constrained distributed-deployed

sensor nodes, where the main challenge of MQO in WSNs lies, many special

investigations to optimize queries inside the sensor networks are needed.

2.5 MQO in WSNs

MQO in WSNs is a relatively new research issue, and there are only a

few studies mentioning MQO in WSNs. In the following, we examine all

the up-to-date studies, classified by the strategies the optimization adopts:

base station query rewriting and in-network result sharing.

2.5.1 Query Rewriting at the Base Station

As the base station is the interface of query processing, it has a global pic-

ture of all input queries. In addition, it has far more abundant resources

and capabilities than sensor nodes. Therefore, it is very attractive to lever-

age the resources of base station to pre-process the queries before they are

sent to the sensor nodes. As a result, several existing MQO works are

focusing on query merging at the base station [66, 60, 76, 102, 130].

Madden et al. introduced the Fjords [66] architecture for the man-

agement of multiple queries. In this architecture, multiple queries over
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the same set of data sources were put in a single Fjord, and thus it al-

lowed the base station to combine multiple queries into a single plan, and

explicitly handled operators with multiple inputs and outputs using group-

ing technique provided in NiagaraCQ [16]. However, this is not necessarily

energy-efficient for sensor nodes by putting all queries into one single Fjord.

In this way, although it can eliminate the redundant data acquisition and

transmission among multiple queries, to satisfy all queries in the Fjord, it

has to define the query conditions of the single merged query to be the loos-

est of all the query conditions, while the sampling period to be the Great

Common Divisor of all the query sampling periods. This results in unnec-

essary data transmission and energy consumption, and it is sometimes even

impractical because bandwidth-constrained sensor nodes could not afford

such huge amount of data transmission. In particular, if the sampling pe-

riods of any two queries are relative prime, the sampling period of merged

query will be 1, which is certainly undesirable. More recently, a similar ap-

proach was designed by Muller et al. [76], where a universal network query

was formed to represent all user queries. However, to make the merged

universal query affordable, the authors introduced a tolerant error in the

sampling period up to some ε to relax the sampling period restrictions.

Different from the above two pieces of work, in our approach that will be

described in detail in Chapter 3, we use a many-to-many mapping instead

of all-to-one mapping to make it much more flexible and energy-efficient,

without sacrificing the accuracy of the answers.

Tabu search was employed to find an optimal merge order for a set

of region-based data acquisition queries in an optimization scheme called

TAMPA [102]. The set of neighbors was mapped from the set of adjacent
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merging orders, and the gain function was derived from the cost difference

between two queries that before merge and after merge. With the outputted

merge order, the final set of queries was computed. Similar to our base

station query rewriting, it is a many-to-many merging. However, Tabu

search approach here is far more computationally complicated than ours.

Moreover, apart from being able to support more types of queries, our

approach is also adaptive to changing query set, while TAMPA is not.

One query aggregation framework, which focused on snapshot data

acquisition queries with geographical information, was proposed in [130].

Since it was for snapshot queries, it focused more on reducing the query dis-

semination cost than the data delivery cost. After eliminating the queries

which could be answered by the cached data, the base station would merge

the remained queries to aggregated queries according to weighted overlap-

ping zone, and assign one access node for each aggregated query. Then,

each designated access node would analyze the corresponding aggregated

query, decompose it and act as the local sink to locally process it. However,

the framework is not applicable in our context, because different challenge

lies in query merging for continuous queries.

In the above, all the query rewriting is actually query merging, and

most recently, a query decomposition method has been proposed [60] for

data acquisition queries. The authors proposed a cost model to estimate

the similarity among queries, and designed an iteration based algorithm

to rewrite the queries. In each iteration, a pair of queries with maximum

similarity was chosen to be rewritten into two parts: one intermediate view

for the shared part, and one new query for the remained difference for

each original query. With a final integration, the answer for the original



43

query could be obtained. In this way, result sharing was achieved through

shared intermediate views. However, although the view construction and

query splitting worked well for MQO in traditional database systems, it

is impractical for large-scale WSN. The resource constrained sensor nodes

can only support a limited number of queries, and the increased number

of queries as a result of splitting is worsening the situation. In addition, it

will also incur more query dissemination messages, and engage the sensor

nodes for longer time in the query/data message forwarding.

2.5.2 In-network Result Sharing among Sensor Nodes

Since the sensor nodes are suffering from bandwidth constraints and en-

ergy deficiency, it is critical to efficiently reduce the communication cost

through query result sharing among sensor nodes. In this section, we re-

view the distributed algorithms that are endeavoring to conduct in-network

optimization among multiple queries.

The Cougar project recognized the importance of energy-efficient data

dissemination and query processing in the presence of multiple continuous

aggregation queries [25, 108]. They first examined the problem of selecting

an optimal data dissemination tree to serve a set of queries [25], where they

illustrated the importance by example, identified the challenge but without

a concrete algorithm. Then, given a data dissemination tree, they proposed

a hybrid push-pull model to minimize the number of messages for a given

query workload [108]. There, each sensor node dynamically decides to

actively push the data to some selected nodes (materialized views) towards

the base station, or to reluctantly wait for the base station to pull the

data when queries are executed, according to the query frequency and
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sensor data update frequency. More specifically, dynamic programming

was applied to draw an appropriate line in the data dissemination tree to

divide the push-pull groups. However, due to the complexity of dynamic

programming algorithms, it was hardly practical for a large-scale WSN.

Moreover, their focus was on data, and they did not explicitly describe

how to optimize multiple queries.

Later, a group of algorithms were proposed to optimize multiple region-

based aggregation queries issued to the base station, which could further be

classified as equivalence class approach [110, 107] and partial aggregation

sharing approach [28, 120].

Instead of dealing with every single sensor as a data source, N. Trigoni

et al. introduced the idea of Equivalence Class (EC) to reduce the complex-

ity of the MQO problem in [110]. Moreover, they employed result encoding

techniques that adopted linear reduction to send the basis instead of the

full range of values to upper levels, and thus sent a minimum amount of

data required to evaluate the corresponding queries. However, the routing

is done separately for different EC, and hence no further optimization is al-

lowed among different ECs in [110]. Being aware of this problem, they more

recently improved their own scheme in [107], by integrating the routing to-

gether with the aggregation. In this case, more sharing can be exploited

by enabling the aggregation wherever possible to reduce the message size.

However, both the above two approaches do not support well the scenar-

ios in which queries can be dynamically added in or cancelled. Because

EC’s representation is closely related to the number and distribution of

queries, upon the update of query set, all representation of queries have to

be consequently reconstructed with large overhead.
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Emekci et al. designed a partial aggregation sharing paradigm [28].

More specifically, they classify edges in the query tree that intersect with

query bounding boxes into the incoming edges and the outing edges, ac-

cording to the flow of data aggregation. In this way, by treating the query

bounding box as a black box, the final answer of a query can be obtained

simply by subtracting the sum of the incoming partial aggregate values

from the sum of the outgoing partial aggregate values. This approach was

shown to efficiently reduce the communication cost than the approach that

treated each overlap region as a separate group. However, it did not con-

sider further partial aggregate merging opportunity in the network, and

a fixed routing construction could not adapt to the query set to further

enable sharing as well. An enhancement was done by Xie et al. in [120].

There, the query-based partial aggregate was revised into equivalence-class

based partial aggregate, and further in-network merging at intermediate

nodes was introduced to reduce the communication cost. Also, a fusion

degree was defined to guide the routing path construction to be adaptive

to the query set, to make good use of the proposed in-network merging.

However, all the above approaches are not general enough. They only

tackle region based aggregation queries, while more types of queries need

to be covered and optimized, including, for example, other types of ag-

gregation queries (e.g., value-based aggregation queries) and data acquisi-

tion queries. Moreover, they all adopt a tree-structure data dissemination

paradigm. On the other hand, the Directed Acyclic Graph adopted by our

in-network optimization tier (that will be presented in Chapter 3), can be

more advantageous to benefit from the broadcast nature of wireless com-

munication.



46

So far, there have also been other works aiming to share query re-

sults among multiple queries in WSNs, although in different contexts. In

the similarity-aware query processing techniques proposed by Xia et al.

[114], to enable the sharing among similar ad-hoc queries, query results

were cached to benefit future queries in data-centric storage sensor net-

works. However, it is different from our work where results are shared

among concurrent long-running continuous queries. In another project in

Duke University, Silberstein et al. exploited the combination of multicast

technique and in-network aggregation to optimize many-to-many aggrega-

tions to achieve efficient in-network control of sensors [93]. Again, their

in-network control application context is different from our query-driven

data collection context.
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Chapter 3

Two-Tier Multiple Query

Optimization for WSNs

3.1 Introduction

Wireless Sensor Networks (WSNs) have been widely deployed in many ap-

plications [47, 71, 105]. As sensor nodes are quite resource-constrained

(with limited processing capacity, storage, bandwidth and power), to bet-

ter realize the potential of WSNs, several query processing techniques have

been specially designed to collect and process the information in an efficient

way [124, 93, 103, 24]. Most of the works study how a single query can be

optimized.

However, it is often necessary to process multiple user queries simulta-

neously. Consider a traffic monitoring application as an example. Here,

traffic officers may pose their continuous queries to obtain events of speed-

ing, the traffic jam events, or the rough log of traffic in some area for further

study. Many drivers may want to know the road traffic conditions some-

where between their current position and the destination, so that they can
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decide which road to take to save time. At different times of the day, the

number of drivers interested in the traffic conditions in different regions

may vary tremendously. Hence, in this scenario, it is not an ideal solution

to have all sensors provide continuous streams of their gathered data to sat-

isfy the possible interests. On-demand traffic monitoring of wireless sensor

network is necessary. The sensor database approach, which is adopted in

this thesis, enables the sensor network to concurrently handle multiple user

requests through running multiple queries.

In the multi-query situation, sharing of common operations among dif-

ferent queries could dramatically minimize the query processing cost. Un-

fortunately, most existing work has focused on the optimization and execu-

tion of a single long-running query. Consequently, when multiple queries are

running simultaneously in a sensor network, they cannot benefit from each

other by sharing their data acquisition, computation and communication

cost. Moreover, running multiple queries in such an uncooperative manner

will lead to bandwidth contention and even data loss as a result of trans-

mission collisions (which may in turn require retransmission). Thus, in the

resource constrained sensor network, it is critical to perform multi-query

optimization in order to share the limited communication and computa-

tional resources.

In this chapter, we focus on a typical WSN which comprises a number of

sensors and a single base station. We propose a Two-Tier Multiple Query

Optimization (TTMQO) scheme to minimize the number of radio messages

and the average transmission time in the sensor network. TTMQO is light-

weight, adaptive to query arrivals/terminations, and supports both data

aggregation and data acquisition queries which are defined in Figure 2.1
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in Section 2.1.1. To study the effectiveness of the TTMQO scheme, we

implemented it using TinyDB [69] and evaluated it under the TOSSIM

[53] emulator. Our experimental results show that the TTMQO scheme

can provide significant performance improvements, in terms of the cost of

radio transmission and scalability with the number of queries.

The rest of this chapter is organized as follows. In Section 3.2, we give

an overview of our two-tier optimization scheme. Then, Sections 3.3 and

3.4 present each tier in detail. In Section 3.6, we discuss the methodology

and results of our experimental study. Finally, we summarize this chapter

in Section 3.7.

3.2 Two-tier multiple query optimization

Since sensor nodes are resource-constrained, we endeavor to design a light-

weight but effective scheme to support multiple queries running inside a

wireless sensor network. In this section, we will first introduce and discuss

our two-tier optimization philosophy, and then give an overview of the

proposed optimization strategy.

The base station is the interface of WSNs. Users send queries to the

base station and get query results from the base station. Moreover, the base

station is usually much more powerful than sensor nodes, with abundant

processing, disk, and memory capacity. Thus, we use the base station as a

filter to reduce duplicate data access to the sensor network and as a screen

to hide the query dynamics from the sensor network as much as possible.

The objective here should be to save the energy at sensor side instead of

minimizing the response time or computation cost at the base station.

Therefore, our scheme should address the following two sub-problems:
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• base station optimization: Given a set of queries Q that have been

submitted to the base station, optimize them into a new query set Q’

to be injected into the wireless sensor network, such that the redun-

dant requests among various queries in Q can be most eliminated.

The optimal situation is that data results requested by queries in Q’

will be just enough to answer all the queries in Q, and the same data

needed for various queries in Q will be acquired only once from the

network by queries in Q’.

• in-network optimization: Given the set of queries Q’ that has been

injected into the wireless sensor network, the sensor nodes collect and

disseminate the result data intelligently to minimize the number of

messages, and hence achieve bandwidth and energy efficiency. The

ideal situation is that each sensor node just sends data only once to

satisfy all the queries that need the data.

Figure 3.1: The System Architecture of Two-Tier Optimization in WSN.

Figure 3.1 shows the system architecture of our TTMQO scheme. In
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our first-tier optimization performed at the base station, we adopt a cost-

based approach to heuristically rewrite user queries into “synthetic” queries

before injecting them into the sensor network, such that duplicate data

requests from original queries can be eliminated as much as possible while

guaranteeing the correctness of semantics of all queries. The optimization

is also adaptive to query dynamics in that the set of running synthetic

queries is continuously being updated by the arrival of new queries as well

as the termination of existing queries. After the sensor network returns

results for the synthetic queries, corresponding results for user queries can

be easily obtained through mapping and calculation.

Our second-tier optimization is done inside the wireless sensor network.

The main idea is to focus on the data required by all (synthetic) queries

during specific time interval, and design a good DAG over the sensor nodes

with the base station as the sink point to gather the queried data. Our

algorithm further reduces the number of radio messages and saves the en-

ergy of sensor nodes in three ways. First, it schedules the communication

among queries as a whole, which enables the combination of several query

transmissions if these queries need data at the same time. Second, our

algorithm dynamically determines the route to disseminate the query re-

sults, which enables data aggregation as soon as possible and involves fewer

nodes. Finally, it tries to acquire and transmit the data to satisfy multiple

queries if they need the same data, by taking advantage of the broadcast

nature of the radio channel.
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3.3 Base station optimization algorithm

As our base station optimization algorithm is based on query rewriting,

we propose a cost model to measure the benefit of the rewriting. Then we

propose a heuristic query insertion algorithm, which is guided by the cost

model, to optimize the synthetic query set for each new incoming query.

Finally, we look at how to re-optimize the synthetic queries when a query

terminates.

3.3.1 Basic data structures

Let us first introduce some basic data structures of our user queries and

synthetic queries. We store each user query in the form of 〈qid, attribute list

|agg list, predicate list, epoch duration, qid′〉 in a query table. qid is the

unique identifier of the query. The attribute list field contains the list of

attributes that a data acquisition query qid retrieves from the wireless sen-

sor network. agg list is a list of 〈operator, attribute〉 that an aggregation

query qid acquires. We note that for a single query, either attribute list

or agg list will be empty. predicate list is a list of 〈attribute,min, max〉.
The qid′ field is used by our algorithm to denote which synthetic query this

query qid has been rewritten into.

As for a synthetic query, besides the above fields, a few more fields are

used. (a) A count field is associated with the epoch duration field as well as

each entry in the various lists (attribute list, agg list and predicate list),

which denotes the number of user queries that require that piece of data.

This is to facilitate the maintenance of the synthetic query when user

queries terminate. (b) A from list field contains the user queries which

the synthetic query is responsible for. (c) A flag field denotes the current
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status of this synthetic query. (d) A benefit field indicates the benefit that

can be gained by the synthetic query (in comparison to processing the in-

dividual user queries). It is worthy to note that all these enhanced fields

of the synthetic query are stored in the base station to help with query

rewriting and further mapping and calculation, and they are not contained

in the query propagation message.

3.3.2 Benefit estimation

Cost model. Moore’s law suggests that the memory density and processor

speed will continue to grow at an exponential rate. Thus, we expect sensor

networks to continue to be bandwidth and energy limited. Since radio

transmission is the most energy intensive operation a node performs, we

use the cost of radio transmission as our performance metric.

Radio messages consist of query result transmission messages, query

propagation and abortion messages, and periodical network maintenance

messages. For continuous queries, result transmission messages dominate,

so we only count the result message transmission in our cost model. How-

ever, to be realistic, we do include the effect of other radio message trans-

mission into the cost of radio transmission in the experimental study.

For a query qi, assume the length of its result message is len(qi). The

transmission cost of a result message from one node to another can be

estimated as Cstart +Ctrans · len(qi), where Cstart is the transmission startup

cost and Ctrans is the transmission cost of each unit of data. To measure

the average transmission cost incurred by qi for each unit of time, we have

to estimate the number of per-unit time transmissions incurred by qi, which

is related to the number of result messages generated by the sensors as well
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as the number of hops required to forward the messages back to the base

station.

First, we look at the per-unit time number of result messages generated

by a set of sensor nodes Nk, which is denoted as result(qi, Nk). At the

end of each epoch of qi, one result message would be generated by a sensor

node whose readings satisfy the predicates of qi. Therefore, we have

result(qi, Nk) =
sel(qi, Nk) · |Nk|

epochi

(3.1)

where sel(qi, Nk) is the selectivity of the query predicates over Nk, which

is equal to the percentage of sensor nodes in Nk whose readings can satisfy

the query predicates, epochi is the epoch length of qi.

Second, the forwarding hops of the result messages are determined by

the message source nodes’ location at the data routing tree. If a message

is generated by a sensor located at the first level of the routing tree, then

only one hop is required to forward the message to the base station. If the

source is at the second level, then two hops are required and so on. Based

on Eq. (3.1), the number of message transmission incurred by qi can be

estimated as

trans(qi) =
max depth∑

k=1

result(qi, Nk) · k (3.2)

where Nk is the set of sensor nodes at the kth level of the routing tree and

max depth is the maximum depth of the routing tree. Note that messages

may be retransmitted due to transmission failures, such as collisions. Here

we assume the number of retransmissions is proportional to trans(qi) and

can be omitted in our cost model because only relative value is necessary to

guide our query rewriting. Again, retransmission messages are dealt with
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in our experimental study.

Eq. (3.2) provides an accurate estimation for acquisition queries where

no in-network aggregation occurs. For aggregation queries, an internal

node at the data routing path can forward aggregation values instead of

the original detail values to reduce the number of message transmissions.

Hence the actual number of transmissions would be a value within the

range of [result(qi, N), trans(qi)], where N is the whole set of sensors in

the network. The lower bound value happens if each node that receives a

result message also generates a result itself and can aggregate the received

result with its own result, while the upper bound value occurs when no

in-network aggregation can be performed at all. Unfortunately, there is

no straightforward way to estimate this actual value. That is because the

places where in-network aggregation occurs is hard to predict unless we

make much stronger assumptions, which is undesirable. In this chapter, we

just use the lower bound value. As we will see soon, this is conservative in

that an aggregation query is integrated with an acquisition query only if

it is guaranteed to be beneficial. Cost estimation is also not necessary for

the integration of two aggregation queries.

Now we can compute the cost of a query cost(qi) as

cost(qi) = trans(qi) · (Cstart + Ctrans · len(qi)) (3.3)

Benefit estimation. If we integrate two queries q1 and q2 into one

synthetic query q12, to ensure correctness, all the data requested by q1 and

q2 must be requested by q12. In other words, the data requested by q12

is a superset of the data requested by q1 and q2. Semantic correctness

constraints must be considered as well.
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If q1 and q2 are aggregation queries (and hence q12). In order to derive

results for both q1 and q2 from the result of q12, the two queries must have

the same predicates. Hence, the integration of two aggregation queries in

this way is guaranteed to be beneficial and hence we do not need to estimate

their benefit.

For other integrations, we have to estimate their benefits. After inte-

gration, the requested attributes and predicates of q12 will be the union of

those of q1 and q2, while the epoch duration should be the GCD(Greatest

Common Divisor) of epoch1 and epoch2. We can estimate the cost of

q12 by using Eq. (3.3). The benefit of the integration is estimated as

benefit(q1, q2) = cost(q1) + cost(q2)− cost(q12).

Statistics. To compute our cost function, we have to maintain some

statistics. We use the reciprocal of the data rate of the sensor nodes (given

by the sensor specifications) as the value of Ctrans, while we periodically

measure the actual average transmission startup time and use it as Cstart.

Another value to be estimated is sel(qi, Nk). To do so, at each level of

the routing tree, we can maintain the data distribution, which is an inde-

pendent problem studied in other literatures, such as [26]. In practice, to

save maintenance cost, one can maintain one data distribution for multiple

levels and assume the data distributions among these levels are identical.

Since our focus is on multiple query optimization, in our experiments, we

only use one distribution for all the levels, which actually biases against

our techniques.
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3.3.3 Greedy query insertion algorithm

Given a new query qi that arrives at the base station and a list of cur-

rently running synthetic queries Qsyn, our greedy query insertion algo-

rithm (shown in Algorithm 1) works as follows. If there is no synthetic

query available, we directly add qi in the synthetic query list. Otherwise,

it searches for the most beneficial synthetic query qid to rewrite with this

qi to produce a new synthetic query (lines 5–12). If qid covers qi (line 13),

the newly added user query qi will not have any effect on the workload in

the sensor network. Otherwise, Integrate(qid, qi) is called to update the

most beneficial query qid into a new synthetic query. To identify that qi is

covered by qid(as shown in line 6), we design the Beneficial(qi, qj) function

to return the benefit ratio instead of the original benefit(qi, qj) defined in

Section 3.3.2. More specifically, we divide the computed benefit(qi, qj) by

cost(qij). If there is no synthetic query that can be rewritten with the query

qi so that there are benefits, qi is added into the synthetic query list. Upon

the termination of the algorithm, if the synthetic query list is changed,

corresponding query abortion and injection operations will be invoked to

complete the whole process.

It is possible that synthetic queries can further benefit from the newly

integrated synthetic query. Below shows a simple example to illustrate the

situation:

q1:select light where 280<light<600 epoch duration 2

q2:select light where 100<light<300 epoch duration 4

q3:select light where 150<light<500 epoch duration 4

For simplicity we assume all the sensor readings are satisfying uniform

distribution and the value of (Cstart + Ctrans ∗ len(qi)) for any qi is equal to
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Algorithm 1: Greedy Query Insertion Algorithm

Input: one query qi, the current running SynQueryList Qsyn

Output: A new running SynQueryList Qsyn

if Qsyn == NULL then1

Qsyn.add(sqid); qi.qid
′ ← sqid; UpdateCount(qi, sqid, 1);2

else3

qj ← Qsyn.next; max ← 0; id ← 0;4

while qj != NULL do5

BenefitRate ← Beneficial(qi, qj);6

if BenefitRate > max then7

max ← BenefitRate; id ← j;8

end9

if max == 1 then break;10

qj ← qj.next;11

end12

if max == 1 then13

qi.qid
′ ← qid; UpdateCount(qi, qid, 1);14

else if max > 0 then15

Integrate(qid, qi); Insert(qid, Qsyn);16

else17

Qsyn.add(sqid); qi.qid
′ ← sqid; UpdateCount(qi, sqid, 1);18

end19

end20

1. Then we can compute:

benefit(q1, q2) = d∗( sel(p1)
epoch1

+ sel(p2)
epoch2

− sel(p1∪p2)
GCD(epoch1,epoch2)

)= d
L
∗(320

2
+ 200

4
− 500

2
) <

0, where L is the value range of light attribute and d is the average depth

of a node in the routing tree (i.e. d =
∑

k Nk · k/|N |). Under this situation,

q1 and q2 will not be integrated, and both of them are directly added into

the synthetic query list as q′1 and q′2.

When q3 is admitted, benefit(q1, q3) = d
L
∗ (320

2
+ 350

4
− 350

2
) < 0, no

integration with q1’.

benefit(q2, q3) = d
L
∗ (200

4
+ 350

4
− 400

4
) > 0, so we integrate q3 with q′2:

q′′2 :select light where 100<light<500 epoch duration 4

If we evaluate q′′2 against synthetic query q′1, benefit(q1, q2) = d
L
∗ (320

2
+
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400
4
− 500

2
) > 0,

so q′1 can benefit from new q′′2 . The resulting query is :

q′′1 : select light where 100<light<600 epoch duration 2

Hence, we need a more aggressive solution to remove the redundant

data requests among user queries. To achieve this, after Integrate(qid, qi)

in line 16 in Algorithm 1 has updated the synthetic query qid into a new

one, we iteratively exploit further benefit by rewriting qid with the current

running synthetic querylist by calling Insert(qid, Qsyn).

The Beneficial function first identifies whether two queries are rewritable

based on semantic correctness constraints, and then computes the benefit

ratio. The Integrate function modifies the synthetic query qid so that all

the data requested by qi will be requested by the new qid; it is also respon-

sible for changing the values of the enhanced fields of the synthetic queries

shown in section 3.3.1. The modification of the count fields upon insertion

and termination is accomplished by an UpdateCount procedure, with a flag

to differentiate increment or deduction.

3.3.4 Adaptive query termination algorithm

To handle dynamic workloads where user queries may join or leave dy-

namically, we introduce a parameter α to adjust our query termination

algorithm according to the property of application workload.

As shown in Algorithm 2, when the user terminates a query q, based on

the information kept at q.qid′, it can easily get the synthetic query it was

written into, which is denoted as sqold. Query q eliminates its contribution

in the synthetic query sqold by UpdateCount. If the count of some field

has been decreased to 0, it means that this query is the only query that
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Algorithm 2: Adaptive Query Termination Algorithm

Input: one query q, the current running QueryList Qsyn

Output: A new running QueryList Qsyn

Find the synquery sqold that q has been written into;1

UpdateCount(q, sqold, 0);2

Remove q.qid from sqold.fromlist;3

if some count in sqold has decreased to 0 then4

if cost(q) > sqold.benefit ∗ α then5

for All query qi in sqold.fromlist do6

Insert (qi,Qsyn);7

end8

end9

end10

requires sqold to request some specific data. The termination of this query

may trigger the reconstruction of the synthetic queries.

We hide the effect of termination of query q from the sensor network by

keeping the old synthetic query sqold unchanged, if the following condition

is satisfied:

|sqold.benefit− sqold.benefit′|
sqold.benefit

≤ α

where sqold.benefit′ is the new benefit value of sqold after the removal of q.

Since cost(q) is equal to sqold.benefit− sqold.benefit′ according to Section

3.1.2, the condition can also be represented as: cost(q) <= sqold.benefit∗α

(line 5). If such condition is not satisfied, we re-insert the remaining user

queries contained in sqold in the same way as the newly arrival queries

(lines 6-7). α is a system parameter to tune the aggressiveness of query

rewriting upon query termination. A good α value can avoid frequent

query abortion and injection to the sensor network, which are also costly

operations, without incurring too much extra data communication.

Moreover, when there are considerable similarity between queries, it is

very likely that the query insertion and termination can be handled at the
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base station, without affecting the sensor network.

3.4 In-network Optimization Algorithm

From the above analysis, we can see that the base station optimization is

able to exploit the similarity among queries and eliminate the redundancy

among queries through greedy query rewriting. It can also effectively hide

query dynamics from the sensor side if the dynamics of the query does not

affect the data set requested by the running queries. However, the base

station optimization does not support sharing of the commonality among

queries at the finest granularity. Since every query from the base station

has the same meaning for each sensor node all the time, the base station

optimization is a “all-or-nothing” approach. Moreover, base station opti-

mization cannot take advantage of the special properties of sensor nodes,

such as the broadcast nature of sensor radio transmission. Hence, we have

our second-tier optimization inside the wireless sensor network, called in-

network optimization, where sensors make local decisions by themselves

and behave adaptively to the query workload with time.

3.4.1 Sharing Over Time

Consider two queries q1 and q2, whose only difference is their epoch dura-

tions. If the epoch duration of one query can be divided by that of the

other (such as 2048ms and 4096ms), these two queries can be integrated

into one according to the base station algorithm in Section 3.3.2 and thus

the common result transmissions are shared. Otherwise (such as 4096ms

and 6144ms), these two queries are sent into the network as two indepen-
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dent queries because we are not be able to construct a beneficial synthetic

query by using the greatest common divisor of the two epoch durations.

However, in this case, half of the data requested by q2 are also requested

by q1, which can be saved if we can schedule these two queries properly.

Based on the above observation, we exploit more sharing by scheduling

the data acquisition and transmission of all queries in a whole. After a

new query is propagated to the network, we (re)set the node’s clock to

fire at the GCD (Greatest Common Divisor) of the epoch durations of all

the queries. The epoch start time for the new query on a sensor node

is set to be divisible by the epoch duration (the smallest allowed epoch

duration is 2048ms, and we assume that every epoch duration is divisible

by it). In this way, the latency of the first epoch may be longer; however,

for a continuous query, this extra latency for the first epoch is acceptable.

On the other hand, by introducing such a little delay, various queries that

have the same epoch duration will start sampling at the same time in every

epoch, and hence can share sample acquisition. More specifically, when the

clock is fired at time t, if there exists any qi such that t mod qi.epoch = 0,

a shared data acquisition is conducted for all such qis.

Since queries are injected into the network one by one, the sample rate

of sensors may be reconsidered after every new query comes or a query

has been stopped. But it is worthy to note that dynamically injecting new

query or stopping a query at running time does not require any changes on

other current running queries.
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3.4.2 Sharing Over Space

After the sample rate has been set at each node, data will be retrieved

periodically and transmitted out of the network to the base station. During

the query result collection, we use the following optimization heuristics to

aggressively share data over space. Each sensor node dynamically selects a

route (parent) that is aware of the query space; in the meanwhile, it tries

to take advantage of the broadcast nature of the radio channel to satisfy

multiple queries in one message.

In TinyDB, a parent node is associated for each node based on the

link quality [33], and hence a fixed routing tree is constructed, which is

ignorant of the query space. In our scheme, we focus on the data that are

required by queries during specific time interval. We let the source sensor

node multicast/unicast the data along a DAG (Directed Acyclic Graph)

with the base station as the sink point, and dynamically form the routing

trees for various queries at the same time. The scheme works as follows:

Query Propagation Phase. Queries are flooded throughout the net-

work from the base station. For a value-based query, flooding is necessary,

because the accurate set of sensors that have data for the query are not

pre-known to the base station and the set of sensor nodes can vary with

time as well. Moreover, the query propagation cost occurs once per sensor

query, which is comparatively negligible compared to result collection cost

for continuous queries. If the query is a region-based query or a node-id

based query, the set of answer nodes are known in advance, flooding is not

necessary here, and some more efficient techniques such as SRT [69] and

location-based routing [20] have been proposed. Here, we let every sen-

sor to decide where to propagate to based on its local information about
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neighbors.

When the query is propagated from node x at level i to level i + 1,

node x checks whether it has the data the query retrieves, and piggybacks

this information down. In the meanwhile, the DAG is formed by having an

edge from every node to each of its upper level neighbors (If the network is

too dense and not all neighbors can be maintained, preference is given to

the neighbors that also have query result to transmit). If the data at node

x do not satisfy any query, x switches into sleep mode and will wake up

after a predefined time. When it wakes up, if it finds that its current data

satisfies a query, it sends a one-hop broadcast message so that its lower

level neighbors would consider the node as an option to relay its data.

Result Collection Phase. When the data of a sensor node satisfy

the predicates of any query that is triggered at the current time, the node

will pack the data and select routes to forward them. Data acquisition

queries and aggregation queries are processed independently, and hence

the way they can share their common data in the network is different.

For data aggregation queries, in-network aggregation at internal nodes is

applied and each aggregation operator (such as MAX) is processed with

a result message. Thus, one data message can be packed to share among

all of the queries whose partial aggregation value are the same. For data

acquisition queries, the sensor node generates a result message that contains

the requesting attributes of all the queries whose predicates are satisfied. In

this way, the message transmission can be shared among multiple queries,

and would be further forwarded all the way along until the base station.

After the result messages are generated, each sensor node dynamically

chooses a parent for each message based on local information. To intelli-
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gently select a route to transmit data, each node keeps a list of its neigh-

bors as what is done in TinyDB, but we also maintain the information

about whether its upper level neighbor has data for each query, which was

achieved through piggyback mentioned above. When a node x at level k

has result messages for one or more queries, it checks whether there is a

neighbor node at level k − 1 that also has data for these queries. Neigh-

bors with data for more queries have higher priority to be chosen. Ties are

broken by favoring those nodes with more stable link with x. In this case,

unicast message is sent to the chosen neighbor node to further forward or

aggregate. Otherwise, if multiple neighbors are chosen (each is responsible

for forwarding message for a subset of queries), one multicast message is

required to send out the message to all these neighbors.

When an upper level node y receives a multicast message and it is

one of the destinations of the multicast message, from the packet header,

it identifies the set of queries that the message is for. It may perform

necessary processing on the message (e.g. aggregate with its own data

for aggregation query) and choose an upper level neighbor to forward the

message. This procedure repeats until the message reaches the base station.

Discussion. In real applications, sensor readings are often spatially

and temporally correlated, and hence the set of sensor nodes that have

data retrieved by a query are likely to be spatially connected and temporally

stable. When a node has a result message for a set of queries, it is very

likely that one of its neighbors would also have one for those queries. Under

the dynamic route selection strategy, such result transmission cost can be

shared among queries. This is especially beneficial for data aggregation

queries, whose common partial aggregation will continue to be aggregated
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with other partial data at the upper level nodes to further reduce the radio

transmission.

By using one result message r(q′) to answer multiple queries (such as q1,

q2), the length of a shared message len(q′) may be larger than either len(q1)

or len(q2). However, len(q′) <= len(q1) + len(q2) (many common fields in

result of messages of q1 and q2 are in fact shared in r(q′), hence here the “=”

will never be reached). Even assume the “=” is reached, according to the

cost function studied in Section 3.1.2, Cstart can at least be saved by result

message sharing. Hence, here saving on the number of result transmission

messages are guaranteed to achieve the saving on transmission cost. As for

more accurate relationship, we study them in the experiment section with

realistic parameters set in TOSSIM [53]. In the example shown in Figure

3.2, which illustrates our in-network optimization, we do not especially give

parameters to show the performance gain in terms of result transmission

cost.

From the above, we can see that much data transmission and energy

can be saved by enabling sensor nodes to make intelligent local decisions:

a sensor node only needs to transmit its data once to answer all the data

acquisition queries; in-network aggregation is conducted sooner for data

aggregation queries; the nodes that have no data to transmit can operate

in a sleep mode to save energy.

In Figure 3.2, we illustrate the algorithm by a simple example. If two

nodes are connected with lines, it means that they are within the commu-

nication range of each other. The dark solid lines denote the routing tree

in TinyDB. Suppose D, E, F, G, H are queried by data acquisition query

qi, and B, D, G, H are queried by data acquisition query qj, and both
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Figure 3.2: An example illustrating in-network Optimization

queries need data at time t. Using TinyDB, to answer qi, all nodes will

be involved. To answer qj, nodes D, G, H will conduct sample acquisition

again and intermediate nodes will relay their data twice. Hence, in total,

8 sensor nodes are involved, and 12+9=21 radio messages are transmitted.

Using our DAG, G will choose D instead of C to relay for both qi and qj,

and hence nodes C and A can be instructed to sleep. The data messages

from nodes D, G and H can be transmitted only once to answer both of

queries. Thus, a total of 6 sensor nodes are involved and 4+9=13 radio

messages are transmitted.

For data aggregation queries, even more messages and energy can be

saved. By dynamically choosing node D as the parent of node G, the

aggregation for data at node G that is supposed to be done at base station

is done sooner at D. Moreover, the aggregation from nodes G, H and D can

be shared at D among qi and qj. Thus, even node B still needs to send one

aggregated message representing qi and qj respectively due to the further
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aggregation of data at E and F for qi and data at B for qj at B, only 7 out

of 14 messages will be transmitted in total.

3.5 Discussion

Let q1 and q2 be two queries such that the epoch duration of q1 is larger

than that of q2. Generally, base station optimization cannot effectively

rewrite them to eliminate the redundancy among them under the following

two cases.

1. The epoch duration of q1 cannot be divided by that of q2. In this case,

there does not exist a beneficial synthetic query which integrates q1

and q2 under the constraint that its epoch duration must be the

greatest common divisor of epoch durations of q1 and q2. So even

though q1 and q2 request data from the same set of sensor nodes, due

to the constraint of epoch duration, both queries must be injected

into the sensor network.

2. The epoch duration of q1 can be divided by that of q2, but the selec-

tivity of q2.predicate list is so much smaller than the selectivity of

q1.predicate list that it will retrieve more unnecessary data than the

common data that could be shared if integrating these two queries

together.

On the other hand, in addition to the larger result message size incurred

to enable sharing among multiple queries, our in-network optimization can-

not effectively share the data required by two queries at the same time

stamp under the following cases:
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1. The queries are aggregation queries with different predicates. To

guarantee semantic correctness, the node will process and transmit

sensory data for each query separately.

2. One query is an aggregation query and the other is a data acquisi-

tion query, even if their epoch duration and predicates are the same.

Without base station optimization, the base station is acting as a pure

interface without processing the query, and it is expecting the net-

work to do the aggregation and return the final answer, and the base

station will not derive the answer for the aggregation query based on

the results from other queries.

3. Both of them are data acquisition queries, but their predicates are

different. Our in-network optimization algorithm dynamically designs

the route to disseminate the query result, where the sensors without

required data are less likely to be chosen to rely data for others, so

that it affects as few nodes as possible and idle nodes may be put

into sleep to save energy. However, in this way, it is possible that the

same data will be forwarded by different node for different query, and

hence the sharing of results are not in the finest grain.

From the above discussion, we can see that the base station optimization

and in-network optimization are both similar and complementary to each

other. Both of them can avoid the duplicate transmission of the same data

for several data acquisition queries, although the base station optimization

is somewhat more constrained by the epoch duration while the in-network

optimization will result in a bigger result message size. In base station

optimization, an aggregation query can benefit from both data acquisi-

tion queries or other aggregation queries; while in in-network optimization,
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aggregation queries can only benefit among themselves with semantic cor-

rectness guarantee.

It is beneficial to apply in-network optimization after base station op-

timization. According to the complementary property, we can see that: by

applying base station optimization first, the situations where in-network

optimization is less effective can be partly eliminated and the size of re-

sult messages can be reduced as well; on the other hand, in-network opti-

mization can enable the sharing among the queries where they cannot be

rewritten in an effective way by base station optimization.

3.6 Experimental evaluation

3.6.1 Methodology

We have implemented our TTMQO scheme on top of TinyDB, the most

popular query processing system for sensor networks. In our experiments,

we used the packet-level TOSSIM 1 [53], an emulator for TinyOS-based

sensor networks. For most of the system parameters, we use the default

settings in TOSSIM, such as the message transmission speed, sensor reading

size etc.

Our base station optimization consists of around 3,000 lines of java code;

in-network optimization adds 2,200 lines of NesC code. The footprint size of

our final image installed in the ROM of a node is 68KB (64KB for original

TinyDB). It uses 4205 bytes RAM compared to the original 2846 bytes,

including our increment of 256 bytes heap to 512 bytes to better support

multiple queries. With rapid advances in memory technology, larger RAM

1The version of TOSSIM we adopt comes with the TinyOS package distribution
TinyOS-1.1.10.
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is easy to be achieved.

We assume that the sensor nodes are deployed uniformly in a n×n two-

dimensional grid, with the base station node 0 at the upper left corner. The

radio transmission radius is set to be 50 feet, while the grid spacing is 20

feet. In this work, we assume a lossless communication environment in

which each node could transmit data to sensor nodes that are within its

radio range. As a reference, we use the following strategy as the baseline

for comparison: each query is optimized by TinyDB, and multiple queries

that have been sent to the base station are all injected into the network to

run concurrently without multi-query optimization.

As we have discussed in Section 3.3.2, the cost of radio transmission is

our performance metric to minimize energy and bandwidth in the sensor

network. The cost function there actually tries to measure the transmission

time of the result messages. To be realistic, we count in the transmission

time of all radio messages, which comprise result transmission messages,

query propagation and abortion messages, network maintenance messages

and retransmission messages due to transmission failure. More specifically,

we report the average transmission time in our figures, which measures the

average percentage of transmission time spent on each node for all running

queries over the simulation time. The longer a node spends on waiting

for the channel to be free, sending the message, and retransmitting due to

collisions, the longer the transmission time will be.

3.6.2 Impact of optimization tiers

In this section, we study the performance gain we can achieve with each

optimization tier, and verifies the similar and complementary relationship
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between them against static workloads.

Referring to the Bisque benchmark [65], we construct three static work-

loads as shown in Figure 3.3. The WORKLOADA is designed to focus on

the (common) savings that can be achieved by both the base station opti-

mization and in-network optimization; the WORKLOADB is used to show

the complementary of in-network optimization to base station optimization;

the WORKLOADC is designed to test the mutual complementary of these

two optimizations. And all workloads can also evaluate the effectiveness of

our two-tier multiple query optimization scheme.

Due to TOSSIM’s inherent constraint in multihop routing, if the query

needs data too frequently or too many queries are running in the sensor

network, much data would be lost on the way. In order to make a fair

comparison between our scheme and the baseline, we set the number of

queries in each workload as 8, so that messages will not be dropped due

to congestion and/or overflow of the communication queue. The biggest

EPOCH DURATION specified in the workload is 20480ms (20s in binary

time), and we set our simulation time as 3000s. Each query can be executed

more than 150 rounds, which is sufficient to get stable performance results.

From the results in Figure 3.4, we can see that our optimization algo-

rithms behave as what we have expected. For WORKLOADA, the base

station optimization and in-network optimization algorithm are both sup-

posed to eliminate the redundant data requests for similar queries, though

in different ways. Compared with base station optimization, in-network

optimization can more progressively share data requested over time and

space, but it cannot enable aggregation queries to benefit from data ac-

quisition queries in addition to its larger message size to support multiple
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WORKLOADA:
SELECT temp EPOCH DURATION 10240

SELECT MIN(light) EPOCH DURATION 20480

SELECT MAX(temp) EPOCH DURATION 8192

SELECT nodeid,light,temp EPOCH DURATION 10240

SELECT MAX(temp) EPOCH DURATION 4096

SELECT nodeid,temp WHERE temp>700 EPOCH DURATION 20480

SELECT nodeid,light WHERE nodeid<10 EPOCH DURATION 8192

SELECT nodeid,light WHERE nodeid<15 EPOCH DURATION 8192

WORKLOADB:
SELECT temp EPOCH DURATION 8192

SELECT MIN(light) EPOCH DURATION 20480

SELECT MAX(temp) EPOCH DURATION 6144

SELECT nodeid,light,temp EPOCH DURATION 10240

SELECT MAX(temp) EPOCH DURATION 4096

SELECT nodeid,temp WHERE temp>700 EPOCH DURATION 20480

SELECT nodeid,light WHERE nodeid<7 EPOCH DURATION 6144

SELECT nodeid,light WHERE nodeid<15 EPOCH DURATION 12288

WORKLOADC:
SELECT temp EPOCH DURATION 8192

SELECT MIN(light) WHERE nodeid<15 EPOCH DURATION 20480

SELECT nodeid,light EPOCH DURATION 12288

SELECT nodeid,light,temp EPOCH DURATION 10240

SELECT nodeid,temp EPOCH DURATION 20480

SELECT nodeid,light WHERE nodeid<7 EPOCH DURATION 6144

SELECT MAX(temp) WHERE nodeid<15 epoch duration 8192

SELECT MAX(temp) WHERE nodeid<15 AND WHERE nodeid>8
EPOCH DURATION 10240

Figure 3.3: Static query workloads

queries. The average transmission time by the two tiers shown are quite

similar, and have both been significantly reduced by up to around 61% and

75% compared with that of the baseline when the number of nodes is 16

and 64 respectively.

As designed, WORKLOADB plays more on epoch duration to make the

in-network optimization more effective than base station optimization. As

shown in Figure 3.4, the average transmission time under in-network opti-

mization is considerably smaller than that under base station optimization.

Interestingly, the percentage of improvements by in-network optimization
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Figure 3.4: Average Transmission Time

is much bigger in the network with 64 nodes than 16 nodes, compared

with that of base station optimization.Since the number of radio messages

for aggregation queries will not increase with network size while that for

data acquisition queries will be proportional to the network size, the num-

ber of radio messages under in-network optimization grows much slower

than that under the base station optimization, and consequently the per-
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centage of improvement on number of radio messages increases faster. As

we analyzed in Section 3.3.2, the average transmission time increases with

the number of radio messages, and thus the percentage of improvement on

average transmission time increases faster.

The results under WORKLOADC (see Figure 3.4) show that the two-

tier multiple query optimization performs much better than applying in-

network optimization or base station optimization separately. It shows

that the two tiers are mutually complementary, and it is beneficial to ap-

ply in-network optimization after base station optimization. In-network

optimization does not support the similarity sharing among aggregation

queries and data acquisition queries, but base station optimization can

support it in the finest granularity. By applying base station optimization

first, the aggregation queries whose answers can be derived from data ac-

quisition queries are suppressed from injecting into the sensor network, so

the in-network optimization will not face the problem of doing extra work

to answer these aggregation queries; Moreover, with the common sharing

that can be achieved both by base station optimization and in-network op-

timization enabled at the base station, the in-network message size will not

be unnecessarily enlarged; on the other hand, the in-network optimization

can effectively handle the situation where the queries cannot be effectively

rewritten by base station optimization due to epoch duration constraint.

It is also interesting to note that: when the number of nodes is 16, base

station optimization is more effective than in-network optimization; while

the contrary is true when the number of nodes has increased to 64. This

is due to the same reason that applies to the scenario where there is fast

increase in the percentage of improvement by in-network optimization as
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network size grows which we have explained above. Our two-tier optimiza-

tion scheme is shown to improve up to 82% in terms of the transmission

time, which implies that it can save much bandwidth and energy.

3.6.3 Performance under adaptive workloads

We evaluate the TTMQO scheme against various adaptive workloads. First,

we evaluate the scalability of our TTMQO scheme with the number of

queries and study the effect of parameter α with a model of queries that

randomly select attributes (nodeid,light,temp), aggregations (MAX, MIN),

predicates and epoch durations (from shortest 8092ms to longest 24576ms,

all divisible by 4096ms). We keep the average arrival frequency at 40s per

query, but we vary the average duration so that the average concurrent

running queries is changing. A set of workload is complete after the ter-

mination of 500 queries. We use benefit ratio to represent the percentage

of cost savings in Figure 3.5(a). Though we do not study skewed query

workload, we expect the similarity to be greater among such workload, and

the benefit can be even bigger.

Given random queries, as we can see in Figure 3.5(a), the benefit ratio

increases significantly from around 32% to 82% as the number of currently

running queries increases from 8 to 48. Comparing with the effect of num-

ber of concurrently running queries, the parameter α has less effect on

the benefit ratio. As shown in Figure 3.5(b) , when there are 8 simulta-

neous queries, the most benefit is obtained when α=0.6, which validates

our analysis of Section 3.1.4. When α is too small, the significantly over-

lapped remaining queries may be forced to rewrite with other synthetic

queries which may incur less benefit than original old synthetic query; on
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Figure 3.5: The performance against various parameter α

the other hand, when α is too big, unnecessary data fetched for previously-

existed queries may incur so much overhead that it is better to rewrite the

remaining queries.
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Figure 3.5(c) shows that our scheme can scale pretty well with the

number of concurrently running queries. The average number of synthetic

queries running in the sensor network is less than 4 even when the number of

concurrently running queries reaches 48. When the number of queries grows

from 8 to 12, the average number of synthetic queries increases slightly.

However, after the number of concurrently running queries is sufficient, such

as 12 in Figure 3.5(c) given the random query sets, the average number of

synthetic queries decreases instead. With sufficient queries, the probability

that a piece of data is requested by multiple queries is higher, more savings

are achieved by writing these queries into one synthetic query. As the value

of α increases, the average number of synthetic queries slightly decreases,

because bigger value of α favors keeping the old single synthetic query

instead of rewriting the remained queries into a new synthetic query set

whose number is generally bigger than 1.
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Next, we further evaluate our TTMQO scheme against workloads with
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various specific properties. More specifically, different composition of aggre-

gation and data acquisition queries with predicates of different selectivity

is utilized. In this experiment, average transmission time is computed until

500 queries have terminated and the number of concurrent queries is 8; data

acquisition queries retrieve all the attributes; aggregation queries request

for MAX(light); selectivity of predicates = 0.6 means that one of the at-

tributes (nodeid, light, temp) is randomly specified in the query predicate

with a range coverage as 0.6. Figure 3.6 shows that the percentage of trans-

mission time savings grows with selectivity of predicates for all workloads,

because there is higher probability that similar data can be shared among

multiple queries when queries request more data, which also shows that

similarity among queries with same epoch duration or different epoch du-

rations are all exploited, and much savings are introduced by our TTMQO

scheme. More carefully, we can see that the percentage of transmission

time savings for data acquisition queries is generally higher than that of

data aggregation queries. When the selectivity of predicates is 1, 8 data

acquisition queries with the same epoch duration achieves around 89.7%

message savings, which is even more significant than the theoretical value

87.5%, because less result message transmission required by TTMQO in-

curs less transmission failure and radio message retransmission. And, it is

interesting to note that with 100% aggregation queries, there is a sharp per-

formance improvement when the selectivity of predicates reaches 1. This

is because two data aggregation queries with different predicates are pro-

cessed separately due to semantic correctness constraints as discussed in

section 3.1.2, and only in-network optimization scheme can reduce the num-

ber of messages by selecting proper routes to enable aggregation as soon
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as possible and sharing data among queries when the value of their partial

aggregation is the same. This is also the reason why the performance gain

under 100% aggregation query increases quite rapid as the selectivity of

predicates increases.

3.7 Summary

In this chapter, we have proposed a two-tier multiple query optimization

scheme (TTMQO) to enable similar queries to share both communication

and computational resources in the sensor network. It is a light-weight and

general scheme, and supports both data acquisition queries and aggregation

queries. We conducted intelligent optimizations at each tier which fully take

the advantage of unique strength of that tier, and studied the relationships

between the two tier optimizations. Our experimental results showed that

the TTMQO scheme can provide significant performance improvements,

with lower cost of radio transmission (average transmission time), and can

scale well with the number of concurrently running queries.
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Chapter 4

Query Allocation in WSNs

with Multiple Base Stations

4.1 Introduction

In the previous chapters, we have seen several techniques being developed to

efficiently utilize resources in WSNs, such as energy-efficient processing [39,

63, 92], in-network aggregation [125, 74, 93], approximate query processing

[103, 26, 91] and multiple query optimization [110, 28, 118]. All these works

focus on WSNs with a single base station.

However, for a large scale sensor network, it is necessary and beneficial

to have multiple base stations. Firstly, it provides the sensor network with

better coverage and scalability. The limited radio range of sensor nodes

leads to multi-hop routing, where the nodes nearer to the base station

need to relay the messages for other nodes and hence become the bottleneck

[69, 103]. Using multiple base stations can alleviate this problem. Secondly,

multiple base stations provide the sensor network with better reliability

[77]. The communication among sensor nodes are prone to failures, due to
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collision, node failure and environmental noise etc. With more base stations

in the network, the average number of hops each datum travels is fewer, and

correspondingly the reliability of the data transmission is better. Lastly, it

extends the life time of the sensor network. The sensor nodes nearer to the

base stations are likely to have higher load and the energy consumption

there is greater than other nodes; with more base stations, the burden of

nodes nearer to each base station can be relieved.

In this chapter, we study how to perform multi-query optimization

within a WSN with multiple base stations. We assume that, once the

queries are sent out to the WSN, the WSN can exploit the sharing of

data communication among queries from the same base station to mini-

mize the communication cost by using the existing approaches [110, 28] or

our TTMQO approach presented in Chapter 3. Within this context, the al-

location of queries to the base stations plays a critical role as it determines

how much sharing can be exploited by the WSN.

To the best of our knowledge, this is the first piece of work to study

how queries should be allocated to multiple base stations to minimize the

total communication cost among sensor nodes. More specifically, we pro-

pose several similarity-aware query allocation algorithms to leverage the

sharing among region-based aggregation queries. In a static environment

where all the queries are known apriori, we approximate the problem of

allocating queries to K base stations as a Max-K-Cut problem, and adapt

a classical solution that uses Semidefinite Programming (SDP) relaxation

to solve it [31]. In addition, to reduce the complexity of Max-K-Cut solu-

tion, we also propose a two-phase semi-greedy allocation framework which

consists of a greedy allocation phase and an iterative refinement phase. In
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many real systems, new queries may arrive and existing queries may termi-

nate. This calls for adaptive query allocation techniques. To this end, we

adopt incremental query insertion algorithms, which can quickly allocate

a newly inserted query to an appropriate base station. We also introduce

query migration strategies to adaptively re-allocate some existing queries

to dynamically improve the query allocation on the fly. We conducted an

extensive performance study and our results show that our techniques are

effective in minimizing the communication cost of a large-scale WSN.

The rest of this chapter is organized as follows. In Section 4.2, we

formulate our query allocation problem and point out the challenges to solve

the problem. Then, we study the static query allocation problem in Section

4.3. To deal with dynamic query insertion and termination, in Section

4.4, our incremental insertion and adaptive query migration algorithms are

proposed. In Section 4.5, we present our experimental results. We review

some related work in Section 4.6, and finally, we conclude the paper in

Section 4.7.

4.2 Problem Formulation

Consider a large scale sensor network that comprises K base stations and

hundreds of (say N) sensor nodes. The base stations are powerful ma-

chines, with abundant processing, storage, and memory capacity and can

be recharged easily. On the other hand, the sensor nodes are resource con-

strained, with limited processing capacity, storage, bandwidth and power.

Thus, we focus on conserving the resources of sensor nodes. More specifi-

cally, we focus on minimizing the communication cost among sensor nodes,

instead of that among base stations which is comparatively negligible.
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To exploit the sharing among queries, one solution is to tightly inte-

grate our query allocation work with a specific multiple query optimization

scheme that runs at each base station, such as [118, 110]. This means the

query allocation scheme has to be aware of the cost models used by the spe-

cific multi-query optimization scheme at each base station. In this chapter,

to be general, we adopt a more flexible approach. To guide query alloca-

tion, we exploit the inherent sharing among queries without knowledge of

the specific underlying multiple query optimization scheme.

4.2.1 Problem Statement

Our query allocation problem is defined as follows. Suppose there are K

base stations and currently M queries are running in the sensor network

of size N . For a query qi running exclusively at a specific base station

bj, a number of radio messages will be transmitted to retrieve the sensory

data to the base station. We refer to the number of radio messages as the

communication cost. Let cij denote the communication cost incurred by

a query qi at base station bj. We further denote the query set allocated

to base station bj as Qj, and the amount of sharing (redundant requests)

among these queries as Sj. Then the objective of the query allocation

problem is to minimize the communication cost among sensor nodes in

order to answer the queries. More formally, the objective function can be

expressed as:

minimize
K∑

j=1

(
∑

qi∈Qj

cij − Sj)

If the multiple query optimization scheme at each base station does not

exist, i.e., Sj = 0,∀j = 1...K, the above optimal query allocation is easy to

achieve in linear time. To minimize
∑K

j=1

∑
qj∈Qj

cij, we could just allocate
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each query qi to the base station bj that incurs the smallest cij. That is,

qi ∈ Qj, if cij = min(ci1, ci2, ..., ciK)

However, since multiple query optimization will be used at each base

station, the introduction of Sj makes the query allocation very challenging.

To get the optimal allocation, we need to get the optimal balance between

minimizing

∑K
j=1

∑
qj∈Qj

cij and maximizing
∑K

j=1 Sj.

4.2.2 System Model

As we mentioned in Chapter 2, WSN queries are often classified as data ac-

quisition queries and data aggregation queries. For data acquisition queries,

intermediate nodes relay the result data for the nodes that are further from

the base station. Without packet merging, the cost of transmitting data

at a specific sensor node to a specific base station is equal to the number

of hops between them. Under this case, the optimal solution for our query

allocation problem is to split each query into several sub-queries according

to the Voronoi Graph of the base stations, and assigns each sub-query to

the base station whose Voronoi Region covers that sub-query. Hence, due

to lack of research challenge, here we will not study the query allocation

problem for data acquisition queries.

Thus, in this chapter, we adopt the following assumptions and simpli-

fications of the system model.

First, we focus on region-based aggregation queries, such as SUM, MAX

and AVG. More specifically, they belong to the category of distributive and

algebraic aggregation queries, as defined in [67]. A Query region denotes
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the geographical area of interest for the query. Thus, a region-based query

specifies a fixed set of nodes that are involved in the query and hence

simplifies the cost estimation and sharing estimation. Our method can be

generalized to other queries as long as the sharing among queries can be

estimated, e.g., by semantics exploration or maintaining a statistical model

such as [26]. As it is an independent problem, we do not study it in this

thesis. Also, in this chapter we assume one query region per query. If

a user is interested in distant clusters of nodes, each of the clusters will

be specified by a query region respectively, and correspondingly multiple

queries will be issued.

Second, for each base station, a routing infrastructure (a routing tree

or a routing Directed Acyclic Graph (DAG)) rooted at the base station is

constructed. Each such routing infrastructure only involves those sensor

nodes that are necessary to process the queries allocated to the correspond-

ing base station.

Third, in-network aggregation [118, 110] with multi-query optimization

is performed in the routing infrastructure.

Finally, it is assumed that there is a controller which maintains the

query allocation information for all the base stations and optimizes the

allocation of queries. Such a controller-based architecture is often used

in load management within locally distributed systems which are under

centralized administrations [121].

With the above assumptions, we can compute the cost function as fol-

lows. cij is computed by counting the number of sensors involved in pro-

cessing query qi (including those in the query region and those used to relay

the message to the base station). This is because each sensor node only



87

has to send (or relay) one message (due to in-network aggregation).

To estimate the value of Sj, we keep bitmap mj of size N maintained for

base station bj, whose default values are zero. If a sensor node x is queried

by qi, where qi ∈ Qj, we check the value of mj[x]. If it is 0, we set it to 1.

Otherwise, some other queries have already requested data from a sensor

node x at base station bj, and this cost is shared and correspondingly we

add 1 to Sj.

Note that, if different parts of the network have different reliability in

transmission, a weight factor should be assigned to each queried node to

represent its reliability during the computation of cij and Sj.

Figure 4.1: A scenario with multiple base stations and queries

Figure 4.1 shows an example of how the query cost c and sharing S are

computed in our model. Each of the small circles denotes one sensor, while

each rectangular region represents one query and each triangle denotes a



88

base station. For an aggregation query qi assigned to a particular base

station bj, cij is computed as the sum of the area size of the query region

and the extra cost incurred by relaying the aggregated result back to the

base station. For example, as illustrated in Figure 4.1, q1 covers 25 sensors

and its minimal distance to b1 is 5, we denote c11 as 30. Similarly, c12 = 28.

If both q1 and q3 are allocated to b1, the regions E5 and E7 can be shared,

hence S1 = |E5| + |E7|. It is worth noting that when q1, q2 and q3 are all

allocated to b1, since E7 has been shared twice, S1 = |E3| + |E5| + |E6| +
2 ∗ |E7|.

As a side note, since the objective is to minimize the resource consump-

tion of the sensor nodes and the communication cost among base stations is

negligible, one straightforward idea is to let the sensor nodes perform par-

tial aggregation and leave the final aggregation to the base stations, instead

of performing the whole calculation within the sensor network. To realize

this approach, one can simply divide the network into non-overlapping re-

gions (e.g., according to the voronoi graph for the base stations) and get

each base station to take care of the region that is closest to it. Then, each

aggregation query is divided into sub-queries based on the partitioning of

the sensor network, and each sub-query is sent to its respective base station

and correspondingly to its relevant sub-region. Finally, the partially aggre-

gated results for sub-queries are further aggregated through communication

among base stations to get the final result of the original aggregation query,

without consuming energy among sensor nodes. From the above, we can see

that partitioning approach forces the sharing within the subregions among

different queries, and thus it maximizes
∑K

j=1 Sj. However, this partitioning

approach is suboptimal for aggregation queries discussed in this chapter.
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This is because partitioning a query may reduce the opportunities of in-

network aggregation for the query and introduce extra cost incurred by

relaying the partially aggregated results back to the base stations. Again,

take q1 in Figure 4.1 for example. If q1 is partitioned, the relaying cost for

both b1 and b2 cannot be avoided, and hence the total cost to execute q1

will be 25+5+3=33, which is larger than the cost of allocating q1 to either

b1 or b2. Hence, the partitioning approach would result in a plan whose

cost is higher than the similarity-aware non-partitioning approach and it is

not ideal. The detailed performance of the partitioning approach is shown

in Section 4.5.

4.3 Static Query Allocation

In this section, we examine the problem where all the queries are known

beforehand, and they will be executed in a static context. That is, a set of

queries need to be allocated to base stations, and there is no termination of

existing queries and insertion of new queries. In this context, base stations

can cooperate to generate a good query allocation plan based on the infor-

mation from all the queries, with less consideration of the time complexity

and flexibility.

4.3.1 Max-K-Cut approximation

From Section 4.2, it can be seen that, to minimize the communication cost

among sensor nodes, the queries should be allocated to achieve the follow-

ings. First, similar queries should be assigned to the same base station so

that overlapping data need not be transmitted multiple times. This can
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reduce the energy consumption. Second, each query should be assigned

to the base station that incurs the least communication cost. In other

words, we could restate the problem as avoiding the following allocation

as much as possible. First, similar queries are allocated onto different base

stations. Second, a query is assigned to a base station that results in high

communication cost.

To achieve both goals, we approximate the query allocation problem as

a classical Max-K-Cut problem as follows.

An undirected graph G = (V, E, W) is constructed such that each

vertex vi represents either a base station or a query. There is one edge eij

between each pair of vertices vi and vj. The weight of an edge eij is given

by wij:

wij =





cij if vi ∈ Q and vj ∈ B;

−sij if vi ∈ Q and vj ∈ Q;

∞ if vi ∈ B and vj ∈ B.

where cij denotes the cost of executing query qi on base station bj, sij

denotes the amount of common requests between query qi and qj, Q denotes

the set of queries and B denotes the set of base stations.

The query allocation problem can then be expressed as a Max-K-Cut

problem. That is, we partition V into K (the number of base stations)

subsets, with each vertex allocated to exactly one subset. Formally, a

partition P: P1, P2,...PK defines an edge cut: EC = {eij|vi ∈ Pl ∧ vj ∈
Pr ∧ l 6= r ∧ 1 ≤ l, r ≤ K}. The Max-K-Cut problem is:

maximize w(p) =
∑

eij∈EC

wij

One can see that, in the Max-K-Cut solution, if the value of cij is high,
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then edge eij is very likely to be in EC and hence qi is unlikely to be

allocated to bj.

We use −sij instead of sij to denote the edge weight between two queries

so that more similar queries will less likely be separated into different par-

titions. In addition, if both qi and qj are assigned to the same base station

bk, the cost of the common data sij is counted both in wik and wjk. Since

the sharing among the queries can be exploited by the sensor network, this

over-counts the actual cost. By setting wij as −sij, the over-counted cost

can be eliminated.

Finally, the edge weight of each pair of base stations is set to ∞, and

hence different base stations are cut into different partitions.

SDP-K-Cut

Max Cut is a well-known NP hard problem, and Max-K-Cut is even more

complicated. According to [11], there can be no polynomial-time approxi-

mation scheme for Max-K-cut, for any k >= 2, unless P = NP. Goemans

and Williamson [36] significantly improved the approximation rate from 0.5

to 0.878 for Max Cut problem by using SemiDefinite Programming (SDP)

as a relaxation. In [31], Frieze and Jerrum extended the work to solve the

Max-K-Cut problem, and achieves the expected approximation rate of αK ,

where αK−(1−K−1) ∼ 2K−2lnK. We apply the algorithm in [31] to solve

our problem and denote the algorithm as SDP-K-Cut.

SDP-K-Cut is in fact a randomized heuristic algorithm using semidef-

inite programming relaxation that produces a K-partition which is on av-

erage provably better than the one produced by oblivious random parti-

tion. The challenge lies in how to model the variables which take one of
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K values. This is done by allowing yi to be one of K vectors a1, a2, ..., aK

defined as follows: take an equilateral simplex ΣK in RK−1 with vertices

b1, b2, ..., bK . Let cK =
∑K

i=1
bi

K
be the centroid of ΣK and let ai = bi−cK for

1 ≤ i ≤ K, with scaled Σk so that |ai| = 1 for 1 ≤ i ≤ K. By proving that

ai · aj = −1/(K − 1) for i 6= j, the Max-K-Cut problem can be formulated

as follows:

IPK : maximize K−1
K

∑
i<j wij(1− yi · yj)

subject to yj ∈ {a1, a2, ..., aK}, ∀j.

By replacing yi by vi, where vi can now be any vector in Sn−1 so that

there are more freedom to partition the space, the max-K-cut problem can

be relaxed into a semidefinite programming problem:

SDPK : maximize K−1
K

∑
i<j wij(1− vi · vj)

subject to vj ∈ Sn−1, ∀j
vi · vj ≥ −1

K−1
, ∀i 6= j.

The K partitions can now be obtained after the following two steps:

1. Solve the problem SDPk to obtain vectors v1, v2, ..., vn ∈ Sn−1

2. Choose K random vectors z1, z2, ..., zK . Partition V into P1, P2, ..., PK

according to which of z1, z2, ..., zk is closest to each vj. That is,

Pi = {j : vj · zi ≥ vj · zi′ , for all i′ 6= i}, for 1 ≤ i ≤ K
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Implementation of SDP-K-Cut

To implement the SDP-K-Cut algorithm, the challenge lies in solving the

problem SDPK (Step 1). We adopt the convex programming form of SDPK

and use the SDPT3 [104], a solver for semidefinite-quadratic-linear pro-

gramming developed by Toh et. al to obtain the result vectors.

More specifically, we denote xij = vi · vj, and hence the SDPK problem

can be represented as:

CPK : minimize
∑

i<j wij ∗ xij

subject to xjj = 1, ∀j
xij ≥ −1

K−1
, ∀i 6= j.

Due to the constraint xij ≥ −1
K−1

for i 6= j instead of normal constraint

xij > 0, we need to solve another linear programming problem together

with the semidefinite programming problem. Since X is symmetric, we set

|V | ∗ |V − 1|/2 linear constraints to especially deal with the situation for

off-diagonal. Then, we can use SDPT3 to solve this problem. After we get

result xij, since X is a symmetric positive semidefinite matrix, we can get

vectors v by Cholesky factorization.

4.3.2 Semi-Greedy Allocation Framework

The above Max-K-Cut approximation is not ideal. Firstly, the high com-

plexity of SDP-K-Cut solution in terms of time and space makes it im-

practical to be deployed if the number of queries to be allocated is huge.

Secondly, although Max-K-Cut approximation well captures the general

trend of the query allocation as can be seen from Section 4.3.1, it actually

slightly biases towards assigning similar queries to the same base station.
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This is because its underlying weighted graph representation is not suf-

ficient to reflect the detailed dependencies among different edge weights,

and thus cannot detect the same overlap that is recorded by several edge

weights. For example, if some set of data is shared by three queries, and

these three queries are all allocated to the same base station, by adding

together all the weights of all the edges in the partition, the cost of the

set of data will be deducted by three times with Max-K-Cut model while

actually only two times should be deducted.

Hence, in this section, we will introduce a semi-greedy allocation frame-

work for the static query allocation problem. The framework comprises

two phases: Greedy Insertion and Iterative Refinement. The main idea is

to make greedy local decisions to generate an initial query allocation plan,

followed by a refinement step to iteratively adjust the whole plan.

Greedy Insertion

Firstly, we heuristically order the batch of queries before they are inserted

in the sensor network one by one. The logic behind is: for the queries

that are inserted earlier, we emphasize more on minimizing their own cost

(less on maximizing the sharing) , while those that are inserted later, we

take more advantage of their sharing with the earlier ones. We study the

following two orderings:

• Area: Queries are ordered in descending order of the areas of their

query regions. Hence, “BIG” queries are inserted first.

In this way, queries with bigger regions will have the opportunity to be

allocated to their smallest-cost base stations; smaller queries that are

inserted later are more likely to benefit from such “big queries” since
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the probability of finding an existing query that shares overlapping

regions becomes higher.

• Diff : Queries are ordered in descending order of the values of function

diff(qi) = cim− cij, where cij is the cost of the minimum allocation of

qi and cim is the cost of the sub-minimum allocation. More formally,

cij = min(ci1, ci2...ciK), and cim = min(ci1, ...cij−1, cij+1, ...ciK).

The intuition is if the sub-minimum allocation of a query has a much

higher cost than its minimum allocation, it implies that the query

favors one base station much more than the others and hence we

hope to allocate it first to achieve its minimum allocation.

Next, the queries are allocated to the base stations one by one in the

sorted order as follows:

1. Estimate the additional cost acij incurred by qi at bj, which is equal

to cij subtracted by the amount of sharing between qi and the other

queries at bj. This can be easily achieved with the bitmap mj main-

tained for each base station bj as we mentioned in Section 2.

2. Put qi to the bj with the smallest acij.

Here we use the additional cost acij because it reflects not only the

amount of non-sharing region, but also the cost of executing qi at bj by

itself.

Now, we have efficiently generated the initial query allocation plan.

Note that this is only a plan and all queries have not been physically

disseminated into the sensor network. So far, each to-be-inserted query

tries to benefit from the previous queries. However, the previous inserted
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queries cannot benefit from the later inserted ones if they are not allocated

to the same base station, which we call “side effect”. Although the order

heuristics are supposed to relieve this “side effect”, better solutions are

expected.

Iterative Refinement

In this section, we introduce an iterative refinement phase to further opti-

mize the query allocation plan generated by the greedy insertion phase.

Algorithm 3: Iterative Refinement Algorithm

Input: The initial query allocation plan QB[0..M − 1]
Output: The refined query allocation plan QB[0..M − 1]

SmallestCost ← CompCost ();1

while True do2

Count ← 0;3

Changed ← 0;4

while Count < M do5

Qnode ← FindNextQuery (QList);6

/*Qnode =(qid, bid, costdiff);*/

reallocate qqid from bQB[qid] to bbid;7

TmpCost ← CompCost ();8

if costdiff > 0 and TmpCost < SmallestCost then9

SmallestCost ← TmpCost;10

TempQB[0..M-1] ← QB[0..M-1];11

Changed ← 1;12

Count++;13

Remove qqid from QList;14

if Changed == 1 then15

QB[0..M-1] ← TempQB[0..M-1];16

Restore QList to contain all queries;17

else18

QB[0..M-1] ← TempQB[0..M-1];19

Break;20

return QB[0..M-1];21

The algorithm is shown in Algorithm 3. It runs in multiple iterations.
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Within each iteration, it tries to refine the current allocation plan (lines 5-

14). If a plan better than the current one is found, it will restore the current

plan to be the best plan in this iteration and continue the refinement process

by restarting another iteration (lines 15-17), otherwise it will stop as no

more refinement can be found (lines 18-20).

In each iteration, one chance is given for each of the M queries in the

whole query list QList to reallocate itself, and hence it takes M rounds.

As shown in line 6, in each round, the function FindNextQuery (QList)

examines all the choices of reallocating a query in the current QList to

another base station and returns the query qqid whose reallocation results

in the largest cost reduction costdiff . Note that the largest cost reduction

costdiff could be a negative value here. In line 7, we update the bitmaps

of the base stations affected by the reallocation of query qqid, and update

the current allocation plan by setting QB[qid] to bid. Then, in line 8, we

recompute the cost of the current plan QB[0..M-1] and store it in Tmpcost.

If the current plan has a cost smaller than SmallestCost, the cost of the best

plan we have visited, then it caches the current plan at TempQB[0..M-1]

and set SmallestCost as the current cost (lines 9-12). Before we continue

to start the next round to reallocate the next query, we remove the current

query qqid from the QList(lines 14). Note that if extra gain can be fur-

ther achieved through reallocating qqid again after the reallocation of other

queries, it will be exploited in the next iteration.

It is worthy to note that, the algorithm still continues the refinement

(lines 5-14) even if the current cost TmpCost is larger than the one before

the refinement. This is to capture the opportunities where performance

gain can be achieved through the relocation of multiple queries altogether,
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and allows the algorithm to jump out of the local optima.

4.4 Adaptive Query Allocation

In many of the real sensor applications, new users may issue new requests

and existing users’ demands may have been satisfied and their running

queries terminate as well. This calls for incremental algorithms that are

able to adjust to the dynamic context.

4.4.1 Incremental Insertion Algorithm

The SDP-K-Cut solution, which is designed to solve the Max-K-cut prob-

lem for a static graph, is not an incremental algorithm. Upon the insertion

of each query, the SDP-K-Cut algorithm has to recompute from scratch in-

stead of incrementally optimizing the new query set based on the previous

status. Hence, it is computationally impractical to deploy the SDP-K-Cut

in a dynamic context. For our greedy insertion algorithm presented in Sec-

tion 4.3.2, the heuristic ordering is also impractical to be maintained in a

dynamic context, since removing and reinserting the running queries upon

the change of the ordering is too costly.

We choose to modify our greedy insertion algorithm to make it incre-

mental and suitable for dynamic context. More precisely, we just keep the

part that greedily inserts the arrival query into the base station which re-

sults in the smallest additional cost. In this way, our solution is able to

efficiently find the best allocation for the new query, which incurs the least

communication cost inside the sensor network, and does not affect other

running queries.
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4.4.2 Adaptive Migration Algorithm

With our current incremental insertion algorithms, when a query is in-

serted, we just do the best for the newly inserted query, but do not consider

any re-allocation of running queries that already existed in the system to

benefit from the newly inserted query. To deal with this problem and also

to deal with the effect of termination of queries that often happen in real

systems, existing queries may need to be re-allocated if necessary.

We note that migration during running time incurs overhead for the

communication inside the sensor network. Taking the detailed query mes-

sage dissemination mechanism into consideration [69, 118], for a specific

query qi to migrate from base station bj to bk, bj needs to send its query

abort message to the sensor nodes that are within the query region of qi,

which incurs cost cij; similarly, bk needs to send query insert message for qi

at cost cik. That is, a one time cost of (cij +cik) will be incurred for the mi-

gration. If this particular migration improves the cost by ∆c at each epoch,

it takes at least (cij + cik)/∆c epochs for the migration gain to compen-

sate for the migration cost. Also, reallocation of earlier queries later could

create a lot of problems, such as unacceptable delay (by the query user),

timeliness. Therefore, migration needs to consider the trade-off between

the possible gain and the migration overhead.

It is also worthy to note that it is possible to cause temporary result

missing or delay during query migration process if the epoch duration of the

migrated query is less than the time to disseminate query abort and insert

messages due to network congestion etc. For continuous queries, temporary

result missing or delay is generally acceptable, and it can be alleviated by

result interpolation or prediction as well. In case every piece of result data
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is critical and timely delivery is required, this can also be achieved by

instructing the sensors to delay the effect time of query abortion message

until the arrival of the corresponding query insert message. Thus, while

beneficial migration helps to improve the performance of the overall system,

it will not incur severe problems to individual queries, such as unacceptable

delay, timeliness and even starvation.

Below, we present the adaptive query migration techniques, which in-

clude the following two parts:

• A migration detection algorithm detects when it is beneficial to per-

form query migration. It considers the trade-off between migration

gain and its overhead mentioned above.

• A migration algorithm selects which queries to be migrated. Basi-

cally, it greedily selects the most beneficial migrations.

Migration Detection

To detect when to perform the migration, the controller maintains some

information of the current queries at the system. Recall that the controller

maintains bitmap mj (j=0,...,K-1) for base station bj to denote whether

a sensor is involved in the queries from bj. Here, we extend mj to be

a countmap, which denotes the number of queries from bj that request

data from each sensor. Furthermore, the controller also dynamically keeps

a M*K two dimensional matrix a[ ][ ] to record the additional cost of

allocating each query to each base station. For instance, a[i][j] keeps the

additional cost of allocating qi to bj (i.e. the value of cij subtracted by the

sharing between qi and the queries running at bj).

To detect whether a query should be migrated, we associate a pressure
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value pi with each query qi. In general, a higher pi value represents a

higher benefit to migrate query qi. In particular, pi is defined as a[i][bid]−
a[i][j], where bid is the id of the base station that qi is currently allocated

to, and j is the id of another base station bj which satisfies a[i][j] ==

MIN(a[i][0], ..., a[i][bid− 1], a[i][bid + 1], ...a[i][K − 1]). One can note that

pi is essentially the gain (of migrating qi) that can be achieved at each

epoch.

The migration detection algorithm is presented from line 1 to line 11

in Algorithm 4. It considers two factors. First, if the gain of a migration

is high, the migration should tend to be performed. Second, if there is too

frequent query arrival/termination, where the benefit for migration is not

stable, migration should tend to be suppressed to avoid the thrashing effect

and migration overhead.

We provide more details here. If there is a gain through migration (pj

is positive), the algorithm accumulates the gain over the epochs (lines 3-

5). Otherwise, if pj is negative and its accumulated value is positive, it

means that other query insertion/termination has reduced the additional

cost for qj on the current base station or increased the additional cost

for qj to be reinserted into other base stations, during a short period of

time, before qj triggers migration. This suggests that there is frequent

insert/termination of queries in the system to adjust the query allocation

by itself, and hence we discourage migration by resetting the accumulated

value of pj to restart the accumulation and increasing parameter fj to

increase the migration threshold (lines 9-11). When the accumulated value

has reached the adaptive threshold fj ∗ pj, which suggests either the extra

gain in each epoch pj is big and/or the dynamics of queries is not frequent,
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Algorithm 4: Migration Detection Algorithm

Migration detection:
for each data fetching epoch do1

for j=0; j<M; j++ do2

if p[j] > 0 then3

if fj == 0 then fj ← qj .area/p[j];4

Accumulate[j] ← Accumulate[j] + p[j];5

if Accumulate[j] >= p[j] ∗ fj then6

Migrate (); fj=0; Accumulate[j]=0;7

else8

if Accumulate[j] > 0 then9

Accumulate[j] ← 0;10

fj + +;11

Upon New Arrival of Query qi:
for j =0; j<K; j++ do12

a[i][j] = cij ;13

for all (x,y) in qi.area do14

if (x,y) of mj >= 1 then a[i][j] ← a[i][j]-1;15

if a[i][bid]==MIN(a[i][0],...a[i][K-1]) then16

Allocate qi to bbid;17

Update mbid and QB[i] accordingly; Compute p[i];18

for all qj overlaps with qi do19

for all (x,y) in qi.area
⋂

qj .area do20

if QB[j] == bid AND (x, y)ofmbid == 2 then21

a[j][bid] ← a[j][bid]− 1;22

p[j] ← p[j]− 1;23

if QB[j] 6= bid AND (x, y)ofmbid == 1 then24

a[j][bid] ← a[j][bid]− 1;25

Recompute p[j];26

Upon Termination of Query qi:
Update mQB[i] accordingly;27

for all qj overlaps with qi do28

for all (x,y) in qi.area
⋂

qj .area do29

if QB[j] == QB[i] AND (x, y)ofmQB[i] == 1 then30

a[j][QB[i]] ← a[j][QB[i]] + 1;
p[j] ← p[j] + 1;31

if QB[j] 6= QB[i] AND (x, y)ofmQB[i] == 0 then32

a[j][QB[i]] ← a[j][QB[i]] + 1;
Recompute p[j];33

under the assumption that query workload and patterns in the past is

similar to that in the future under most cases, we choose to trigger the

migration (lines 6-7).
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Now we present how to maintain the parameters that are required to

implement the above migration detection algorithm. As shown in Algo-

rithm 4, when a new query qi arrives, we record the additional cost of

allocating it to each base station (lines 12 to 15).

Furthermore, the qi will also affect the optimal allocation decision of

other existing queries. First, for another query qj allocated to the same

base station as qi, if the countmap value for a sensor at (x,y) in their

overlapped area is equal to two (line 21), it means that data at (x,y) which

was exclusively requested by qj before is now shared by both qi and qj.

Hence, with qi, the additional cost of qj on its assigned base station bbid

decreases, the probability that other base station is better for qj reduces,

and we correspondingly reduce the pressure value pj.

Second, for a query qj at another base station that overlaps with qi, if

the overlapped area is exclusively requested by qi at base station bbid (line

24), the additional cost of qj on bbid (i.e. a[j][bid]) should be decreased.

However, pj may not increase as a[j][bid] may not be the smallest among all

the a[j][ ] values. Therefore, we recompute pj instead of directly increasing

pj (line 26).

Symmetrically, when existing query qi terminates, the parameters are

adjusted in a similar way, as shown in “Upon Termination of qi” part of

Algorithm 4.

Below, we illustrate by example the process of keeping track of infor-

mation needed for migration detection, such as migration pressure p[ ] and

additional cost matrix a[ ][ ]. As shown in Figure 4.2, suppose queries q1,

q2 and q3 are allocated to base station b2. Now:

1. Query q4 arrives at the system. a[4][1] = 12 + 1 = 13, a[4][2] =
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Figure 4.2: A Scenario to illustrate migration detection algorithm

12 + 12− |E9| = 22, while a[4][1] = MIN(a[4][1], a[4][2]), hence q4 is

assigned to b1, QB[4] = 1 and p[4] = a[4][1]− a[4][2] = −9. Since q4

overlaps with q2, a[2][1] = a[2][1]− |E9|, and p[2] = p[2] + |E9|.

2. Query q2 terminates from the system. q1 overlaps with q2, and their

previous sharing E3 is now exclusively for q1, so a[1][2] = a[1][2]+|E3|,
p[2] = p[2] + |E3|; similarly, for q3, a[3][2] = a[3][2] + |E6|, p[3] =

p[3] + |E6|. For q4, a[4][2] = a[4][2] + |E9| and p[2] = p[2]− |E9|.

Migration Algorithm

Once the above migration detection issues request to perform migration,

the migration algorithm shown in Algorithm 5 will be run. Each round,

through function FindNextQuery as we introduced in Section 4.3.2 we pick
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the query that will result in the largest cost improvement to migrate. It is

worthy to note that the migration here only modifies the query allocation

plan by changing the information kept at the controller, such as countmap

etc, and the intermediate plan is not disseminated into the sensor network.

This migration process repeats until no beneficial query migration exists

any more, and the final migration plan is disseminated into the network.

In this way, local optimum can be achieved.

Algorithm 5: Migration Algorithm

Input: The initial query allocation plan QB[0..M − 1]
Output: The query allocation plan after migration QB[0..M − 1]

while True do1

Qnode ← FindNextQuery (QList);2

if costdiff > 0 then3

migrate qqid from bQB[qid] to bbid;4

/*Through changing the information kept at the

coordinator, such as countmap etc.*/

else5

Break;6

4.5 Experimental Study

In this section, we shall present experimental results to show the perfor-

mance of our schemes. We evaluate the algorithms by varying the number

of base stations and queries, the average size of query regions and the

average query arrival interval.

In the experiments, we assume N sensor nodes are deployed uniformly

in a two-dimensional grid square. For every 100 sensor nodes, there is one

base station at the center. Each query is expressed as a rectangular region

((x1, x2), (y1, y2)), where (x1, y1) is randomly selected from any point in
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the network, and the lengths on the x-axis (x2 − x1) and y-axis (y2 − y1)

satisfy the uniform distribution distribution. We assume lossless commu-

nications among the sensor nodes, to evaluate the actual gain brought by

our similarity-aware query allocation algorithms.

It is worthy to note that our query allocation method is general, and

it is not constrained to distribution of sensors/base stations, the region

shape of the queries and the assumption of lossless communication in the

experiments. Through the cost estimation function, the properties of the

network can be captured and the process of query allocation decision is the

same.

4.5.1 Importance of leveraging query sharing

Firstly, we evaluate the importance of leveraging query sharing. We com-

pare the performance of the following four strategies:

Random: Each query is randomly allocated to a base station.

Nearest : This is a naive strategy that leverages sharing among base

stations upon query allocation. For each query qi, we put it onto its nearest

base station bj, where bj has the smallest minimal distance to the query

region of qi. In this way, since the number of sensors in the query region is

fixed, it suggests that bj also incurs the smallest allocation cost for qi. As

we discussed in Section 4.2.1, this is the best possible allocation without

being aware of the similarity among other queries that have been allocated

to a base station. Although it did not purposely take advantage of the

sharing among queries, fortunately the region-based aggregation queries

whose nearest base station is the same are inherently likely to have overlap

with each other, and hence it inherently leverages query sharing.
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Partition: This is the partitioning approach discussed in the last part

of Section 4.2. The sensor network is partitioned into subregions and each

base station takes care of the subregion that is closest to it. Each query is

partitioned into sub-queries according to the partitioned subregions, and

each sub-query is allocated to its respective base station. In this way, all

the sharing within each subregion can be automatically captured.

Collection: it is a data collection approach, instead of a query-driven

approach. Each sensor sends its raw data to its nearest base station.

Note that even though Random, Nearest and Partition are oblivious

of the query similarity during allocation, queries allocated to the same

base station may still benefit from data sharing through the multiple query

optimization at the base station.
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Figure 4.3: Communication cost over random queries with average
QR=5*5, N=900

As shown in Figure 4.3, Nearest and Partition perform much better

than Random and Collection, in terms of the communication cost (i.e.,

the number of radio messages). Collection scales well with the number of
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queries, but its communication cost is generally much higher than neces-

sary, because it is always fetching all the data from the network to satisfy

possible queries (some of the fetching is not necessary for the current set of

queries) and it cannot take advantage of in-network aggregation to reduce

the transmission cost. Without cooperation among base stations nor cor-

respondingly a good query allocation, Random cannot effectively make use

of the underlying multiple query optimization scheme, and hence its cost

grows linearly with the number of queries, which makes it unattractive for

large scale networks. On the other hand, Nearest and Partition both scale

well with the number of queries and incur low communication cost. From

the above, we can see that it is necessary to leverage query sharing upon

query allocation in large-scale sensor networks.

4.5.2 Performance in the Static Context

In this section, we compare the effectiveness of our similarity-aware strate-

gies (SDP-K-Cut and semi-greedy query allocation algorithms) against the

naive Nearest and Partition, in a static environment. Considering that

SDP-K-Cut is not a scalable approach, our experiments are done in two

parts: the first part is for small-scale scenario, with fewer queries and base

stations, where we examine all the strategies in general; the second part

includes large-scale scenario, where we show the effectiveness of each of the

heuristics/phases in our semi-greedy query allocation algorithms. Each of

the results shown below is the average result after 10 runs.

From the experimental results in Figures 4.4, we observe that neither

Nearest nor Partition always outperforms the other but both strategies

perform worse than our similarity-aware schemes. This is expected be-
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Figure 4.4: Communication Cost over Random Queries in small network

cause both of them excel in one aspect but neglect the other aspect as

explained here: for Nearest strategy, although it minimizes the relaying
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cost of each query and has the tendency to assign similar queries to the

same base station, it does not purposely take advantage of the sharing that

can be exploited among queries; for Partition strategy, on the the other

hand, although it maximizes the sharing among sub-queries, it sacrifices

the benefit of in-network aggregation and introduces considerable relaying

overhead for each partitioned query. Hence, as shown in Figure 4.3 and

4.4, when the number of queries is small (such as 10), Nearest outperforms

Partition, because there is not enough sharing among the limited number

of queries for Partition to counteract the overhead of partitioning. As the

number of queries grows and overlaps among queries increase, Partition’s

strength in enabling sharing among queries is revealed and hence Partition

slowly outperforms Nearest. But when the number of queries continues to

grow, Nearest can benefit more from the inherent overlap among queries

allocated to the same base station. Furthermore, the relaying overhead

of Partition, which is proportional to the number of partitioned queries,

becomes huge. Therefore, Nearest outperforms Partition again.

All the similarity-aware schemes (SDP-K-Cut and our semi-greedy query

allocation algorithms) result in a significant reduction in communication

cost. This suggests that our similarity-aware schemes can all effectively

capture the sharing but avoid the unnecessary overhead. We also observe

that our proposed semi-query allocation algorithms perform nearly as well

as the complicated SDP-K-Cut classical solution. Although our semi-query

allocation algorithms are opportunistic in nature, the performances have re-

vealed their power and value. Comparing Figure 4.4(b) with Figure 4.4(c),

we note that with the same number of queries, queries with larger average

regions are likely to benefit more. This is because there are more over-



111

laps among queries when each query is querying a larger region, and hence

more benefit can be exploited by our similarity-aware query allocation algo-

rithms. Using the same logic, referring to Figure 4.4(a) and Figure 4.4(b),

with the same number of queries and query regions with the same average

size, more gain is achieved when the network size is smaller.
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Figure 4.5 shows the computational time taken to solve the Semidefinite

program in the SDP K-Cut solution. The computational time increases

exponentially when the number of queries increases. As the number of

queries reaches 90, the time to get the partitions is more than 10 minutes,

in a network with 900 sensors (9 base stations). For our semi-greedy query

allocation variants, it takes less than 4ms to compute the greedy query

insertion, and the iterative refinement generally converges fast, which takes

less than 10ms. The negligible overhead of our proposed greedy insertion

also shows its applicability for dynamic environments.

In the above, we have examined all the strategies in general and showed
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Figure 4.6: Effectiveness of greedy query allocation for random queries in
larger scale network

clearly that our semi-greedy query allocation algorithms are nearly as ef-

fective as the complicated and thus unscalable SDP-K-Cut, but at a much

lower cost. In the next part of this section, we will exploit the effectiveness

of each strategy in the semi-greedy allocation algorithms, under larger-scale

scenarios.
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Figure 4.6 shows the effectiveness of each strategy in our semi-greedy

allocation algorithms. As we can see from Figure 4.6(a) to (f), under

various network size, average query region, and number of queries, both

greedy insertion and iterative refinement can exploit the sharing among

queries and thus reducing the communication cost.

The greedy insertion algorithms, no matter with area-based sorting or

diff-based sorting, have considerable improvement over our baselines — the

not-so-bad Nearest and Partition, as we discussed in Section 4.5.1. More

specifically, as shown in Figure 4.6(a) to (c) or Figure 4.6(d) to (f), as the

average query region size increases, the greedy insertion algorithm adopt-

ing area-based sorting tends to outperform the greedy insertion algorithm

adopting diff-based sorting. This does not happen accidently. For random

queries, the lengths of query regions are generated uniformly, and hence

bigger average query region size implies bigger variance among the size

of query regions, and correspondingly the probability is higher that query

area makes a difference.

The iterative refinement is shown to be effective in further refining the

initial query allocation plan and thus reducing the communication cost.

From Figure 4.6, we can see that the amount of improvement for Near-

est is generally more than that for greedy insertion algorithms denoted as

Area and Diff. Compare with the plan generated by our greedy insertion

algorithms, Nearest is further from being an optimal plan and generally

has more room to be improved during the refinement step. Our refinement

algorithm is shown to be able to exploit the room, which reflects its ef-

fectiveness. In the meanwhile, we should keep in mind that the iterative

refinement is not the algorithm that goes through all the searching space
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to get one optimal query allocation plan. Although it makes decreasing

check for the rounds in each iteration and therefore it has the chance to

discover the benefit that can only be found by considering several query

reinsertions together, it limits itself by only making incremental check in

each iteration. Hence, as we can see in Figure 4.6, our greedy insertion

algorithms with refinement generally outperform Nearest with refinement.

4.5.3 Performance in the Dynamic Context

In this section, we evaluate the performance of our adaptive query alloca-

tion schemes — incremental insertion algorithm and migration algorithm,

in the dynamic context where new queries arrive and existing queries ter-

minate.

To evaluate the effectiveness of the incremental insertion algorithm In-

cremental in reducing the communication cost, we compare its performance

against Nearest insertion, Partition insertion and SDP-K-Cut. Since SDP-

K-Cut is only suitable for static scenario, here we only note down the cost

of Incremental after a specific number of queries have been inserted and

running in the network; the same set of queries will then be allocated by

SDP-K-Cut and we compare their cost.

As shown in Figure 4.7, the Incremental performs much better than

Nearest and Partition, and even approaches SDP-K-Cut when the number

of queries is small. By greedily finding the base station that incurs the

smallest additional cost for each newly arrived query, the new query can

effectively take advantage of the sharing with existing queries in the system.

But when the number of queries is bigger, there will be more cases that

previously inserted query cannot benefit from the newly inserted query, and
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hence it is further from being optimal. This is also one of the motivations

for our adaptive migration algorithm.

To evaluate the effectiveness of the adaptive migration algorithm, we

need to evaluate two aspects of it: 1). its ability to improve the current

query allocation; 2). its integration with the incremental insertion algo-

rithm.

We make use of the experimental setup above that is used to test Incre-

mental to test the performance of Algorithm 3. When it is the time point

to note down the cost of Incremental, we run our migration Algorithm 3,

and see the amount of gain in cost we can achieve. At this migration point

here, we temporarily do not take into account the overhead of migration,

and assume it to be amortized with time; otherwise, the gain will always

be below zero, because no query can gain more than its own cost during

the migration point.

Figure 4.8 shows that migration largely bridges the gap between In-



116

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 30  40  50  60  70  80  90

C
os

t

Number of Queries

SDP
Incremental

Migration

(a)Communication Cost

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 30  40  50  60  70  80  90

C
os

t

Number of Queries

SDP
Migration

(b)Number of Migrated Queries

Figure 4.8: Evaluating migration over Random Queries with N=900,
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cremental and SDP-K-Cut. It is essentially one kind of online refinement

strategy. Through greedily exploiting the sharing among all the queries,

much communication cost inside the network can be reduced. In this ex-

periment, our migration algorithm is able to achieve around 70% of the

gain SDP-K-Cut can obtain, at the cost of migrating around 10% of the
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number of queries that SDP-K-Cut needs to migrate.
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Figure 4.9: Evaluating adaptive migration over random queries with
N=900, QR=6*6

Finally, we examine our incremental query insertion algorithm and

adaptive query migration algorithm detection as a whole. Queries arrive

and terminate whenever they want, but the average frequency of arrival

and duration is controlled, and the average number of queries remains the
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same After a set of 300 queries terminates, we note down the total com-

munication cost in the network so far and use the cost of communication

per epoch as the metric to compare different approaches. As shown in Fig-

ure 4.9, when the Average interval of query arrival/termination is low, the

performance gain of Migration+Incremental over Incremental is less than

the situation when the interval is higher (e.g., a comparatively steady en-

vironment). This is because when there is frequent insertion/termination,

migration has less job to do, since incremental insertion itself has high

chance to reduce the migration pressure. From the above, we can see that

migration algorithm can effectively adapt to the frequency of query arrivals

and terminations.

In summary, our extensive experimental results show that all our similarity-

aware query allocation schemes offer significant performance improvement

over the best allocation strategy that fails to take advantage of the inherent

sharing among other queries or overlooks the power of in-network aggrega-

tion, both in static context and adaptive context. Moreover, our proposed

greedy query allocation algorithms perform nearly as well as the complex

SDP-K-Cut classical solution in terms of the communication cost among

sensor nodes, while incurring negligible computational time. Similarly, the

migration strategy is shown to achieve comparable performance with the

approach in which we recompute the query allocation plan using the SDP-

K-Cut solution, but with a much smaller number of migrated queries.

4.6 Related works

As we have seen in Section 2.2.1, aggregation query processing in sensor net-

works has recently attracted much attention from the research community.
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To optimize aggregation query in resource-constrained sensor networks, in-

network aggregation techniques have been extensively investigated to ex-

ploit its ability to reduce the data collection cost within the sensor network.

Take the categorization by the adopted network routing structures for ex-

ample, there are cluster-based [39, 129], chain-based [59], gossip-based [17],

tree-based [125, 69, 103, 24], multi-path-based [21, 78], and hybrid [74, 58],

etc. To satisfy various application needs, these in-network aggregation

techniques proposed range from minimizing-energy-consumption aggrega-

tion [39, 125, 74] to extending-network-lifetime aggregation [103, 123], from

error-bounded approximate aggregation [24, 103] to energy-bounded ap-

proximate aggregation [58].

Other than the above literatures, which focused on the processing of a

single aggregation query, multiple query optimization techniques have also

been studied [110, 118]. With a set of aggregation queries that have ar-

rived at the base station, sharing among different aggregation queries are

achieved through effectively managing the equivalent regions in [110], or

through dynamic in-network aggregation in our TTMQO approach [118].

Our study differs from previous work in that we are dealing with the ag-

gregation query processing problem one level up — we consider the query

allocation among the set of aggregation queries to different base stations,

so that the sharing among these queries can be maximized in the network

and thus the energy consumption of the whole sensor network is minimized.

Query/operator allocation has been studied in both traditional dis-

tributed database systems [14, 30, 62, 99] and, more recently, stream pro-

cessing systems [5, 80, 98, 121, 133]. These optimization algorithms mainly

focused on fine tuning the allocation of queries/operators across the dis-
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tributed servers to balance the load distribution as well as to minimize the

communication cost among the servers. However, the context of this paper

is much different from theirs. Our objective is to minimize the communi-

cation cost inside the sensor network instead of among the base stations.

Moreover, we endeavor to maximize the sharing of the data collection cost

among various queries allocated to the same base station. This is typically

not considered in existing work.

There are also existing works about request distribution among com-

puter clusters [79, 41, 1, 2]. Each request needs a specific part of data for

its answer which can be cached at a server, and thus request sharing in

this setting looks similar to the query sharing in this paper. Apart from

the different application context, their objectives are either to maximize

the throughput or to balance the load distribution among clusters. Fur-

thermore, the message routing scheme within a WSN, which is taken into

consideration in the design of our allocation optimization algorithms, is

much different from that within computer clusters.

This chapter is also related to some other algorithmic literatures. Note

that the query allocation problem can be solved by a two-phase approach:

a query partitioning phase followed by a mapping phase. In the query

partitioning phase, queries can be partitioned into K disjoint sets, so that

the amount of sharing in the K partitions is maximized. In the mapping

phase, it is in fact a complete bipartite mapping problem [22], where K par-

titions are allocated to K base stations so that the weight of the mapping

is minimized. Again, most of the existing work in query partitioning either

balance the partitions [45] or minimize the number or weight of cuts [86].

The latter category is related to our objective, but it suffers from the sim-
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ilar problem as our Max-K-Cut approximation that we have discussed in

Section 4.3.2. Hence, they are not ideal for our case.

4.7 Summary

In this chapter, we have identified the importance of a multi-base-station

infrastructure and a multi-query optimization scheme for large scale sensor

network. Correspondingly, we have introduced and examined the query

allocation problem in such an environment, with the objective to minimize

the total data communication cost among the sensor nodes. We designed

several similarity-aware algorithms to leverage the query sharing through

query allocation. Furthermore, adaptive optimization algorithms were also

proposed to handle the dynamic change of query set. Finally, experimen-

tal results showed that our similarity-aware query allocation schemes can

effectively exploit the sharing among queries and greatly reduce the com-

munication cost.
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Chapter 5

Optimizing Multiple Queries

in Sparse Mobile Sensor

Networks

5.1 Introduction

In the previous chapters, we have focused on the WSNs consisting of the

first generations of sensors that are stationary and battery-powered [111].

As such, to efficiently support large-scale WSNs, we have to rely on multiple

base stations (as we have investigated in Chapter 4).

However, as technology advances, more powerful sensors integrated with

mobility functionality have been developed [90, 75, 112]. This prompted

us to consider deploying a small number of mobile sensors to monitor a

large region which would have required a large-scale WSN. This alterative

strategy is possible because the mobility of sensors effectively extends the

sensors’ coverage, by moving around to sense a larger area than its sensing

range. In addition, because the mobile sensors are not constrained by
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the initial deployment and can be relocated to desirable locations when

necessary, they can contribute flexible network topology, react to the events

in the environment and adapt to the changes in the missions. Thus, WSNs

comprising such mobile sensors, called Mobile Sensor Networks (MSNs),

have been increasingly deployed to support applications in surveillance,

reconnaissance, and disaster rescue [40, 9, 96, 64].

In this chapter, we intend to study how mobile sensors can be exploited

for query processing in a MSN. If all the sensors are connected, the fol-

lowing straightforward solution would be good enough: find a sensor near

the query region, let it move to the query region to collect data, and use

connected nodes to relay the data back to the base station. Therefore, we

focus on a sparse network. It is common that a MSN is sparse because

of the following two reasons: mobile sensors are more expensive compared

to stationary sensors and the mobility of the sensors increases their cover-

age [61], so it may not be wise to densely deploy a large number of them;

moreover, dense MSNs can become sparse due to node failures caused by

environmental hazards or intentional damages (e.g. by adversaries in the

battlefield), or even due to nodes move out of the communication range.

In a sparse MSN when the number of sensors is limited, the connection

between sensors is intermittent and the topology is unpredictable, which

bring several complications in query processing. Thus, to process data

acquisition queries quickly is very challenging. In the context of a sparse

MSN, the straightforward solution mentioned above for densely populated

MSN will not work well, because: 1) when the base station issues a query,

most sensors are not reachable, therefore the base station does not know

which sensor is near the query region and have no way to contact that
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sensor because the network is partitioned; 2) the base station therefore

has to select a sensor among the connected ones to acquire data for the

query; it may take much time for the sensor to move to the query region;

3) after collecting the data from the query region, the sensor may have no

connection to the base station so it cannot send the acquired data directly

back to the base station; it has to move towards the base station; again, it

may need to move a long way before it is connected to the base station; 4)

in addition, since only a small number of sensors may be reachable from

the base station, due to the competition for sensors among queries, some

queries may have to wait long to be served.

Therefore, in this chapter, we endeavor to provide fast response for

multiple data acquisition queries in sparse MSNs. To efficiently process

a single query, we first propose a distributed scheme called bridge to re-

allocate nodes in the run time to form a chain between the query region

and the base station, in order to rapidly relay information [113]. Then,

we introduce distributed schemes in which the mobile sensors can orga-

nize themselves and collaborate to concurrently process multiple queries.

More specifically, we design one strategy Dynamic that dynamically shares

resources among queries, while the processing of each query greedily relo-

cates exploited resources for its own sake as what bridge does. We also

design another strategy called aMST that utilizes an adapted Minimum

Steiner Tree to guide the processing of all queries as a whole to minimize

the average query processing time. In each of the above schemes, we deal

with the various problems caused by intermittent connections. In addition,

we define a parameter Coverage Ratio(CR), which reflects the sparseness

of the network in respect to the number of queries, to guide the system
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to adaptively make a sound decision over the strategies. Our extensive

performance study shows the effectiveness of our proposed strategies.

The rest of the chapter is organized as follows. We describe the system

model, define and analyze the query processing problem in Section 5.2. We

present a greedy solution for a single query in Section 5.3. Various multiple

query processing approaches are presented in Section 5.4. In Section 5.5 we

briefly survey the related works. Results of experimental study are shown

in Section 5.6. We finally conclude the chapter in Section 5.7.

5.2 System Model and Problem Definition

In this section, we present the model of the mobile sensor networks that

we are interested in, and define the problem of multiple data acquisition

query processing.

5.2.1 System Model

The system consists of a stationary base station BS and n mobile sensors

(s1,s2,...,sn) that are sparsely distributed in a large area A. Each mobile

sensor knows the BS’s location and its own location. The mobile sensors

and the BS use wireless technology (such as Wi-Fi) for communication and

there is no direct long-range communication. Two sensors (or the BS and

a sensor) can communicate directly only if the distance between them is

smaller than the wireless technology’s communication range r. The sensors

and the BS essentially form a mobile ad-hoc network (MANET) where

one can communicate with another if they are connected either directly or

through other sensors. Since the sensors’ communication range is limited
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and the sensors are sparse, the network formed by the sensors is not fully

connected, and can even be severely partitioned. The topology of the

network changes with time as the sensors move.

The mobile sensors explore (sense) the big area A by moving in it fol-

lowing a certain mobility pattern. Each sensor node is equipped with a

location positioning device such that they can move geographically as in-

structed. The mobile sensors’ move speed is v. Each sensor senses the

region that it passes by and the sensing speed is a = c ∗ v where c is a

constant determined by the application. A sensor carries the sensed data

and forwards the data to the BS when it is connected to the BS. The BS

continuously analyze these collected data and may detect some possible

events from some locations. To confirm these events, more detailed and

timely information from the suspicious locations is required. It is likely

that multiple events need to be confirmed at the same time. For example,

in an application such as military surveillance, military invasion often takes

place in several threads.

Data Acquisition Query

The BS sometimes proactively issues data acquisition queries to the net-

work. A query specifies a (relatively) small region (within A) whose data

needs to be sensed and fetched as early as possible. Given a query, the mo-

bile sensors shall process the query by going to the query region, sensing the

query region, and sending the sensed data back to the BS. The BS would

like the time from the moment an explicit data acquisition query is issued

to the moment relevant data is received to be as short as possible. This

type of query belongs to the category of one-shot query, as we presented in
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Section 2.1.1.

Note that when data acquisition queries arrive, it is possible that only

a small number of sensors are connected to the BS.

Assumptions

Since our optimization metric is the time the sensors take to process multi-

ple data acquisition queries, for simplicity we in this chapter do not consider

energy consumption. In the class of applications that we are considering,

all the sensors are moving to collect information. The energy spent on

moving will be much more than the energy spent on communication. [75]

shows that when a 0.5 kg UAV (Unmanned Aerial Vehicle) flies horizontally

at a 10-12 m/s speed its minimum energy consumption is 10-25 J(joule).

It is reported in [29] that a normal (Lucent) IEEE802.11 wireless network

card consumes about 1.5 J per second when in active transmission mode.

Although more powerful wireless transmitters may be used, they will be

equipped only on larger UAVs. Clearly, larger UAVs will need much more

energy for flying, or for simply staying in the air. It is also mentioned in

[90] and [112] that a mobile sensor on ground spends much more energy on

motion than on wireless communication when moving around.

Since all the sensors are moving most of the time, they will spend similar

amount of energy no matter how they communicate with each other and

how they move during query processing. For this reason, we believe that:

1) trying to save energy by controlling the communication between the

sensors will not be very helpful; 2) even if controlling the distances sensors

have to travel during query processing may help save some energy, the

savings will be marginal because query processing only happens upon the
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arrival of ad-hoc data acquisition queries.

We will also ignore data transmission time. We believe that in a sparse

MSN, during query processing, the time spent on relocating sensors will be

much longer than that spent on data transmission, so it does not affect our

design of the query processing scheme.

5.2.2 Problem Definition and Analysis

Let us call the sensor that is assigned to sense the query region as the

Scanner. We define the sensed data from the query region as the query

result, and the duration from the moment the query is issued by the BS to

the moment the BS receives the query result as the query processing time.

The problem of multiple data acquisition query optimization is to design

a solution by which the mobile sensors manage to sense the query regions

and send the query result back to the BS with a minimum average query

processing time.

More specifically, for a query qi, its query processing time T i can be

divided into four parts:

• T i
wait: from the time the query is issued by the BS to the moment it

is assigned to a Scanner;

• T i
go: from the time the query is assigned to a Scanner to the moment

the Scanner arrives at the query region;

• T i
scan: the time for sensing the query region;

• T i
return: from the moment Scanner finishes sensing the query region

to the moment the BS receives the sensed data.
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Suppose there are N queries, our goal is to minimize the average query

processing time Tavg:

Tavg =

∑N
i=1(T

i
wait + T i

go + T i
scan + T i

return)

N

Since T i
scan is fixed for a given query region and a sensing speed, we

would like to minimize T i
wait + T i

go + T i
return. T i

wait, T i
go and T i

return can all

be significant in sparse MSNs because: no sensor may be reachable from

the BS to be assigned as a Scanner for the query; the Scanner could be

far away from the query region; after sensing the query region the Scanner

may be disconnected from the BS so it has to move to find a connection to

the BS. We shall reduce all T i
wait, T i

go and T i
return.

5.3 A Greedy Scheme for Single Query Pro-

cessing

In this section, we present our greedy query processing scheme called bridge,

that minimizes the query processing time of a specific query in sparse MSNs.

The main ideas are as follows:

1. assign the sensor that is the nearest to the query region as the Scanner

to acquire data for this query, so that the query location can be sensed

as early as possible. This is to reduce Tgo.

2. relocate some sensors to help connect the Scanner to the BS so that

the Scanner can send the acquired data to the BS without moving

towards the BS. We refer to these sensors as the Routers. This is to

reduce the Treturn component of the query processing time.
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3. gradually improve the query plans by exploiting the encountered sen-

sors during query processing to seek for better Scanner or better

Routers. This is to reduce Tgo and Treturn.

Figure 5.1 uses the processing of a query as an example to illustrate

these ideas. In the figures, the rectangle marked with q is the query region,

the circles marked with s1,...s6 are the sensors, the arrows on the sensors

indicate the sensors’ moving directions, the sensor in dark (e.g. s3 in (b))

is the Scanner, the sensors in gray (e.g. s1, s2 in (b)) are the Routers,

and the ones in white (e.g. s4, s5, s6 in (b)) are not involved in the query

processing. (a) depicts the scenario when the query arises. (b) shows the

initial query plan where s3 is assigned as the Scanner and s1 and s2 are

assigned as the Routers. s3 is assigned as the Scanner because it is the

nearest to the query region among the sensors that are connected to the

BS. (c) depicts the event where s3 encounters s4 and s5. s3 adapts the

initial query plan to a new query plan that is depicted in (d). In the new

query plan, s5 is assigned as the Scanner, s1, s2, s3 and s4 work as Routers.

s5 is selected as the new Scanner because it is nearer to the query region.

s3 and s4 also work as Routers because the existing Routers (s1 and s2) are

not enough to connect the Scanner to the BS. In (e), the Scanner is sensing

the query region and the Routers connect the Scanner with the BS. After

the query is done, as shown in (f), all the participating sensors can move

freely.

To realize the above ideas in a sparse MSNs, the problems caused by

the intermittent connections have to be dealt with. The Greedy solution is

made up of three algorithms, namely Init, Adapt, and Merge. The Init

algorithm (Section 5.3.2) is used by the BS to generate an initial query
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Figure 5.1: An Example illustrating the bridge algorithm.

plan for a query as long as at least one sensor is connected with the BS.

The Adapt algorithm (Section 5.3.3) is used to generate a better query

plan when a sensor participating in the query processing encounters new

neighbors. Since involved sensors may generate different new query plans

when they are disconnected, the Merge algorithm (Section 5.3.4) is used to

merge the different query plans to a new query plan when the disconnected
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sensors get connected again. In addition, after a query is completed, we

need to make sure that all the sensors involved in the query plan finally

know that the query is done so that they can serve other queries or return

to work on their general task. This problem is solved by letting the sensors

keep the information about data acquisition queries (e.g whether a query

is done) and synchronize the information when being connected.

5.3.1 Basics

Before presenting the above algorithms, we will first describe the sensor’s

states, the idea and definition of the RouterPoints, what makes a query

plan, and the execution of a query plan.

Sensor States

In our bridge algorithm, a mobile sensor is always in one of the following

states: Free, Scanner, Router, and Returner. A sensor’s state may change

during the processing of a query because the sensors will adapt the query

plan when they encounter new neighbors.

A sensor is in the Free state if it is not involved in the query processing.

A Free sensor works on the general task of the application, e.g. explore the

application area.

A sensor is in the Scanner state if it is assigned to go to sense the query

region. After being assigned as a Scanner, the sensor moves towards the

query region.

A sensor is in the Router state if its task is to help connect the Scanner

with the BS. A Router sensor will be given an ID (which is independent

from its sensor ID) called the Router-ID. The Router-ID tells the Router
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where it shall move to. We will discuss this further later.

A sensor is in the Returner state if it is carrying the query result and it is

responsible for sending the result to the BS. A Scanner becomes a Returner

when it finishes sensing the query region. A Returner always passes the

query result to the sensor that is the nearest to the known Routers or

the BS. If a Returner cannot find a better Returner, it moves towards the

known Routers or the BS.

After a Returner relays its query result to the BS, all the sensors in-

volved in processing the query will be in Free state.

RouterPoints, Router-ID

Given a query, to connect the Scanner (at query region) and the BS with

a minimum number of Routers, we shall relocate the Routers onto the

straight line between the BS and the query region, and let them maintain

a distance of r from its neighboring Routers. In this way, the number of

Routers, denoted as Nr, is minimized. It is computed as follows:

Nr = dDistance(BS,R)/re − 1 (5.1)

Here r is the sensors’ communication range and Distance(BS,R) mea-

sures the distance between the BS and the query region R. These Nr Router

sensors can build a link on the line between the query region and the BS.

For example, if the distance between the query region and the BS is 2400

meters and the sensors’ communication range is 500 meters, we will need

at least 4 sensors to work as Routers. Figure 5.1 (e) shows the example.

We define the locations that the Routers shall move to as the Router-

Points of the query. Let Line(BS,R) be the line segment between the BS
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and a query region R. There are Nr RouterPoints on the Line(BS,R). We

define RouterPointj as the point on Line(BS,R) whose distance to the

BS is

i ∗Distance(BS,R)/(Nr + 1) (5.2)

In our algorithm, Router-j moves to the RouterPointj on the Line(BS,R).

Note that we do not let Router-j move to the location on Line(BS,R)

whose distance to the BS is j ∗ r. That will make the Router sensor not

able to move around the location because a small movement of Router-j

can make it disconnect from Router-(j − 1) or Router-(j + 1). The ad-

vantage of letting Router-j move to RouterPointj is that it still has some

flexibility to explore the area around the RouterPoint (exploring the whole

area is the sensors’ basic task).

Query Plan

A Query Plan of a query Q(R) is an assignment of a set of sensors to

their roles in the processing of the query. A query plan QP contains the

following information:

• Q(R): the query, which includes the query region information.

• Sensor ID → Scanner: this specifies which sensor shall work as the

Scanner. Later we will use QP.Scanner to refer to it.

• {Sensor ID → Router-j}, 1 ≤ j ≤ Nr: a mapping of sensor IDs to

the Router-IDs. This specifies which sensors shall be Routers. We

will use QP.Router-j to refer to an entry in it. There could be fewer
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than Nr Routers. If no sensor is assigned as Router-j, QP.Router-j

is null.

• The time the query plan is generated.

• The locations of the involved sensors (the Scanner and the Routers)

when the query plan is generated.

Notice that in the query plan we keep the locations of the involved

sensors at the time the query plan is generated. We do this because we

want a sensor having a copy of a query plan to be able to adapt the query

plan to a better query plan when it encounters new neighbors. Note that

the sensors participating in a query plan can get disconnected when they

move to their destinations. When this happens, some cannot get the up-

to-date (location) information of the others. With the information kept in

the query plan, a sensor knows each participant’s destination (indicated by

its role) and its locations at a certain time (the time when the query plan

is generated), so the sensor can estimate when the participant (either con-

nected or disconnected) can reach its destination. A participating sensor

encountering a new neighbor therefore can compare an existing participant

with a new neighbor to see which one can reach the participant’s destina-

tion. This is important for adapting a query plan to better query plans.

We will discuss this further in Section 5.3.3.

Execution of a Query Plan

To execute a query plan, the sensor that computes the query plan simply

disseminates the query plan to all the connected sensors. This is to guaran-

tee the consistency among the query plans at all the connected participants.
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With this consistency guarantee, when two disconnected participants of a

query plan meet, they only need to fetch their local query plans to generate

a new plan.

Upon receiving a query plan, a sensor checks whether it has a role in

the query plan. If yes, it saves a copy of the query plan and sets its state

according to its role in the plan; otherwise it sets itself to the Free state.

The Scanner moves towards the query region. The Routers first compute

their RouterPoints based on the following information: theirs Router-IDs

in the query plan, the locations of the BS, and the query region. They then

move to their RouterPoints.

When the BS issues a query, it will compute an initial query plan based

on the sensors that are currently connected to it, and execute the initial

query plan among the sensors.

After the initial query plan for a query is executed, there are two cases

where new query plans will be generated for the query. The first is when a

participating sensor encounters new Free sensors. The second is when two

sensors having different query plans for the same query meet, this is possible

because two participants serving the same query can get disconnected on

their way to fulfill their respective roles in the query plans. In either case,

if a new query plan is generated, the new query plan will be executed in the

connected sensors so that all the connected sensors follow the new query

plan. If a sensor that had a role in a query plan finds that it does not have

a role in the new query plan, it sets itself to the Free state.
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5.3.2 Init a Query Plan

When the BS issues a new query, it will use the Init algorithm presented

here to generate an initial query plan based on the Free sensors that are

currently connected to it. Init assigns the Free sensor that is the nearest

to the query region as the Scanner and assigns at most Nr Free sensors as

the Routers based on their vicinity to the RouterPoints. The pseudocode

of Init is listed in Algorithm 6.

Algorithm 6: Init

Input: a query Q(R)
Output: a query plan QP for Q(R)
Frees ←the Free sensors that are connected to BS;1

QP.Scanner ← Nearest(Frees,R) ;2

Frees ← Frees− {Scanner};3

Nr ← Ceiling(Distance(BS,R)/r)− 1;4

m ← Min(Nr, |Frees|);5

for j ← 1 to m do6

QP.Routerj ← Nearest(Frees,RPj);7

Frees ← Frees− {Routerj}8

return QP9

5.3.3 Adapt a Query Plan

During the processing of a query, participants of a query plan may en-

counter Free sensors that were not connected. The new neighbors may

help improve the current query plan in several ways. A new neighbor may

be a better Scanner if it is nearer to the query region than the current Scan-

ner is. A new neighbor may work as a Router if the current query plan

has fewer than Nr Routers. Even if the current query plan has enough

Routers, a new neighbor may still help if it is nearer to a RouterPoint than

the current corresponding Router is.
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Algorithm 7: Adapt

Input: a query plan QP
Output: a new query plan
Frees ← the Free sensors that are connected to si;1

Scanner′ ← Nearest(Frees,R);2

if Scanner′ can reach R earlier than QP.Scanner then3

if QP.Scanner is connected then4

Frees ← Frees + {Scanner}5

QP.Scanner ← Scanner′;6

Frees ← Frees− {Scanner′};7

QP ← AdaptRouters(QP,Frees);8

return QP9

In our Greedy query processing solution, the participants of a query

plan always try to find better query plans when they encounter new neigh-

bors. They do it using the Adapt algorithm listed in Algorithm 7. In this

algorithm si denotes the participant sensor that encounters a set of new

neighbors, and QP denotes the query plan that si currently has.

On encountering new neighbors, si finds out all the Free sensors that it

now can reach (line 1). It first checks whether it can find a better Scanner

among the Free sensors (lines 2-7). If there is a better Scanner, si puts the

current Scanner to the Frees set if it is still connected, and then updates

the query plan with the new Scanner.

After that si adapts the Routers with the remaining Free sensors using

the algorithm AdaptRouters which is listed in Algorithm 8. si divides the

RouterPoints into two sets (lines 1-2): the ones for which no Routers are

assigned, and the ones for which there are corresponding Routers in the

query plan. It first assigns Free sensors to the RouterPoints that have no

Routers (lines 3-6). Then it tries to find better Routers for existing Routers

(lines 7-12).



139

Note that when si encounters new neighbors, it is possible that some

other participants of the query plan are disconnected from si. For example,

when there are not enough Routers, the Scanner will get disconnected from

the Routers when it moves to the query region. This kind of disconnection

between the participants of a same query plan has two influences. First,

to make sure that a participant is able to adapt the query plan when

encountering new neighbors, in the query plan we have to keep information

about the locations of the participants when the query plan was generated.

This is explained in Section 5.3.1.

Algorithm 8: AdaptRouters

Input: a query plan QP
Input: a set of Free sensors Frees
Output: a new query plan
EmptyRPs ← {j|j ≤ Nr ∧QP.Routerj = null};1

ExisingRPs ← {j|QP.Routerj 6= null};2

for j in EmptyRPs do3

if Frees is not empty then4

QP.Routerj ← Nearest(Frees,RPj);5

Frees ← Frees− {Routerj};6

for j in ExisingRPs do7

if Frees is not empty then8

Router′j := Nearest(Frees,RPj);9

if Router′j can reach RPj earlier than QP.Routerj then10

QP.Routerj ← Router′j;11

Frees ← Frees− {Routerj};12

return QP13

Second, disconnected participants will not receive the new query plans

that are generated by other participants. In this case, some have the old

query plan while the others have a new query plan. Furthermore, parti-

tioned groups of participants of a query plan may independently adapt the

query plan to new query plans. As a consequence, there can be more than
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Algorithm 9: Merge

Input: two query plans QP1 and QP2
Output: a query plan
if QP1.Scanner 6= QP2.Scanner then1

Scanners ← {QP1.Scanner,QP2.Scanner};2

QP.Scanner ← Nearest(Scanners, R) ;3

if the other Scanner is connected then4

put it to Frees;5

else6

QP.Scanner = QP1.Scanner;7

for Routerj in QP1 do8

if Routerj is connected then9

Frees ← Frees + {Routerj};10

for Routerj in QP2 do11

if Routerj is connected then12

Frees ← Frees + {Routerj};13

for For j ← 1 to Nr do14

if QP1.Routerj 6= null || QP2.Routerj 6= null then15

Routers ← {QP1.Routerj, QP2.Routerj};16

QP.Routerj ← Nearest(Routers, RPj);17

QP ← AdaptRouters(QP,Frees);18

return QP19

one query plan for a query being executed in the sensors. When this hap-

pens, different query plans have to be merged when sensors having different

query plans get connected again.

5.3.4 Merge Query Plans

In our Greedy solution, when two sensors having different query plans meet,

one of them will merge the query plans to a new query plan and execute the

new query plan among the connected sensors. The algorithm for merging

two query plans is called Merge and Algorithm 9 lists its pseudocode.

Let si be the sensor that merges two query plans. In the Merge algo-
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rithm, si first checks whether the two query plans have the same Scanner.

If not, si chooses the one that can arrive at the query region earlier as the

Scanner in the new query plan, and put the other Scanner into the Frees

if it is connected (lines 1-7). Then for all the Routers in the two query

plans, if a Router is connected, si puts it into the Frees set and clears the

corresponding information in the query plan (lines 8-13). After this, all

the available sensors will be in the Frees, and the two input query plans

only contain information about Routers that are currently disconnected.

For each Router slot in the new query plan, if the input query plans have

disconnected Router(s) for it, si picks the one that is the nearer to the

corresponding RouterPoint (lines 14-17). si finally uses the AdaptRouters

algorithm to: (1) assign Free sensors to empty Router slots; (2) find better

Routers for disconnected existing Routers (line 18).

The complexity of the Merge algorithm is O(n ∗ Nr) where n is the

number of sensors that are connected to si (the sensor that merges the

query plans) and Nr is the number of Routers needed in the query plan.

5.4 Multiple Query Processing Strategies

We have done preliminary studies of our proposed bridge scheme. The

results showed its effectiveness in reducing query processing time [113].

Moreover, the idea of relocating some sensors to connect the Scanner with

the base station was shown to be quite advantageous.

In this section, to efficiently process multiple queries, we will present

three strategies building on bridge, i.e., Sequential, Parallel and Dynamic.

In addition, we propose a novel scheme called aMST that relocates sensors

for all queries as a whole to facilitate multiple query processing.
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In optimizing multiple queries, there are two types of sharing that can

be exploited: time sharing and spatial resource sharing. Time sharing is

achieved if multiple queries are being processed concurrently in the network.

Spatial resource sharing is enabled if the computation and communication

resources of sensor nodes are shared among multiple queries.

5.4.1 Naive Strategies

Sequential

As the name suggests, this strategy processes queries sequentially, utilizing

the bridge algorithm for each query. It does not allow time sharing or spa-

tial resource sharing among different queries, because it devotes all spatial

resources for one query at a time. We make it serve as the baseline.

In addition, to minimize the average waiting (queueing) time for each

query, queries are designed to be processed in the ascending order of query

size (shorter scanning time for smaller sized query). It is also worthy to

note that subsequent queries are able to benefit from earlier queries, owing

to topology with better connectivity formed around base station during

earlier query processing.

Parallel

This strategy processes queries in parallel, opportunistically processing as

many queries as possible to maximize time sharing. It specifies a separate

line of router points for each query, as in bridge, without spatial resource

sharing among different queries.

First, we introduce how the query plans are initialized. Basically, Paral-

lel always gives preference to Scanners over Routers, to achieves maximum
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parallelism among queries. After the BS issues N queries (ordered by as-

cending query size as in Sequential), it checks the set of reachable Free

sensors. If the number of Free sensors |Frees| is no less than N , all the

queries will be issued to the mobile sensors right away. More specifically,

to initialize the set of query plans, it first assigns the best Scanner for each

query; it then assigns the remaining Free sensors to satisfy the Router needs

of the first query; if there are still remaining Free sensors, they are assigned

as Routers for the second query, and so on. Otherwise, if |Frees| < N ,

the BS generates query plan for the fist |Frees| queries by assigning one

Free sensor as the Scanner for each query, while the remaining N −|Frees|
queries wait until some new Free sensors become connected with the BS.

Next, we present how to find better query plans. Note the improvement

of a query plan only happens when participants of the query plan encounter

new neighbors, or a neighbor previously participating another query plan

becomes free. If the neighbor is free, the same Adapt algorithm is adopted

as in bridge. If the neighbor is a participant serving the same query, the

Merge algorithm is adopted. Otherwise, as concurrent running queries are

processed independently from each other in Parallel, no further action will

be taken.

5.4.2 Dynamic

In this section, we propose a strategy called Dynamic, which is essentially

an improvement over Parallel, by allowing spatial resource sharing in ad-

dition to time sharing. While each query plan greedily relocates exploited

sensors for its own sake, run-time adaptation is introduced to intelligently

enable queries to dynamically benefit from each other.
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More specifically, Dynamic builds on and extends Parallel with the

following four optimization techniques:

• Intelligent Query Selection. Instead of ordering all the queries

in advance and dispatching the queries based on the order, we select

the query to be dispatched at run time. Each to-be-dispatched query

is strategically chosen as the query whose query region is nearest to

the current available(free) nodes. In this way, the Scanner will be at

an attractive distance from its query region, and thus this minimizes

Tgo. Moreover, with opportunistic router sharing technique which

will be presented later, it also maximizes the chance of sharing among

concurrent processing queries.

• Moderate Parallelism. When the BS initializes query plans, pref-

erence is partially given to routers over scanners, to achieve moder-

ate parallelism among queries. Specifically, when there are connected

Free sensors, BS intelligently selects a query, and call Init algorithm

in bridge to initialize its query plan (i.e., assigning scanner and routers

for the query using the Free sensors, with preference given to scan-

ner over routers). If there are still Free sensors remaining, the above

initialization process continues with another query, until all Free sen-

sors have been assigned or all queries have been initialized. We note

that as the router points nearer to the BS have higher priorities to

be assigned with sensors in Init, the BS can soon reach a large area

through those routers to discover Free sensors. Thus, the remaining

queries are expected to be dispatched without a long waiting time.

In this way, the time sharing is not maximized as in Parallel, but it

can avoid the extensive resource competition among queries in Par-
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allel and perform better in the end in the sparse MSN.

• Aggressive Exploitation. When a participant of a query plan

encounters a new neighbor, even if the new neighbor is serving another

query, we aggressively exploit the connectivity information of this new

neighbor to find possible candidates to improve the query plan. More

specifically, if a free sensor or another participant is reachable through

the new neighbor, Adapt or Merge algorithm is called to generate a

better query plan.

• Opportunistic Router Sharing. A Returner for a query is enabled

to opportunistically utilize the Routers for other queries to facilitate

query result returning. More precisely, the Routers for other queries

can relay query result back to the BS or to a Free sensor that is

nearest to the Routers of the query, as long as the Routers for other

queries do not need to be relocated to help with the relay. As men-

tioned in section 5.2.1, the communication time is negligible, so the

opportunistic router sharing will not affect the processing of the query

the router is serving.

As a result, although a separate set of sensor nodes are assigned

to be the Routers and Scanners for different queries as in Parallel,

adaptive sharing is achieved by relaxing the constraint that a sensor

node acting as Router is exclusive for its respective query. This is to

reduce TReturn.

Figure 5.2 shows an example illustrating the opportunistic router shar-

ing in the Dynamic strategy. The rectangle marked with Q1...Q4 are the

queries, the circles are the sensors, the arrows on the sensors indicate the
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Figure 5.2: Opportunistic Router Sharing in Dynamic.

sensors’ moving directions, and the lines indicate the connectivity among

sensor nodes. The sensors in dark are the Scanners, the sensors in gray are

the Routers, and the ones in white are not involved in the query processing.

S1, S2 and S3 are assigned as Routers for Q1; S7 is Router for Q4. Scanners

S4 and S6 are scanning for the queries they are serving (e.g., Q1 and Q4,

respectively), while the Scanners S5 and S8 are moving towards the queries

they are serving (e.g., Q2 and Q4, respectively).

If S6 now finishes scanning for Q4, it becomes the Returner for Q4.

Only router S7 for Q4 is connected with S6. Without opportunistic router

sharing, S7 will be assigned as the better Returner and move towards the

BS, and T 4
Return will be big. However, with opportunistic router sharing,

Routers S3, S2 and S1 can help to relay the result directly back to the BS,

and thus T 4
Return = 0.
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5.4.3 aMST: an Adapted MST-based Strategy

In this section, we propose a strategy that plans the processing of all queries

as a whole, before dispatching them to the mobile sensor nodes for dis-

tributed processing. The main idea is to design a framework that aims

to maximize the spatial resource sharing among all queries and minimize

the total number of necessary router points, by specifying one router point

to serve multiple queries. We achieve this by casting our problem as the

Minimum Steiner Tree problem, and thus we call our strategy aMST (i.e.,

an adapted MST-based strategy).

This aMST strategy fully allows both time sharing and spatial resource

sharing among queries, and is expected to hugely reduce the average query

processing time.

aMST operates in two phases. In the planning phase, a routing struc-

ture for processing multiple queries is constructed. In the query processing

phase, the queries are processed based on the routing structure. We note

that the processing is challenging as queries are processed in a distributed

and yet related manner, and the set of sensors required to complete the

routing structure are only gradually available as time progresses.

Planning Phase

Recall the well known NP-hard Minimum Steiner Tree (MST) problem:

given a set of points (vertices), interconnect them by a tree that may com-

prise extra intermediate vertices and edges, so that the sum of the lengths

of all edges in the tree is minimized. These new vertices introduced to de-

crease the total length of connection are known as Steiner points or Steiner

vertices.
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The MST provides connections among a set of locations with the min-

imum length, and thus we adapt it as the routing structure sensor nodes

would like to form to serve a set of queries.

First, the BS generates an approximate MST T(V,E) that connects the

BS (the root) and all query regions (i.e., the centers of query regions),

achieving the minimum sum of edge length. This is achieved by utilizing a

Steiner tree solver called GeoSteiner [95].

Then, in order to reduce the number of router points by taking advan-

tage of communication range of a sensor node, we adapt MST T(V,E) into

MST T(V’,E’) and define the routing tree of scanner/router points along

T(V’,E’).

In T(V,E), for a vertex that denotes a query point (i.e., the center of

a query region), a scanner point (it also serves as a router point if it is a

non-leaf scanner point) needs to be assigned to the exact position; for a

vertex that denotes a steiner point, however, it may be reallocated or even

removed. Thus, we adapt MST T(V,E) and define the routing structure of

scanner/router points as follows.

We traverse and adapt T(V,E) in breadth, starting from the root node

(which is the base station). For a specific vertex v and its child vertex v′:

1) if v′ is a query point, a scanner point will be assigned at v′ and a set of

router points will be assigned along the edge Line(v, v′) as in bridge; 2) if

v′ is a Steiner point and |Line(v, v′)| is less than the communication range

r, there are two subcases: (a) if v′ has no siblings, it would be removed and

its children would be treated as the children of v for further processing;

(b) otherwise, if v′ has a sibling, a router point will be assigned at v′; 3)

if v′ is a Steiner point and |Line(v, v′)| is no less than the communication
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Figure 5.3: An example illustrating the aMST Routing Structure.

range r, d|Line(v, v′)|/re − 1 router points will be assigned along the edge

Line(v, v′), with a distance of r for neighboring router points. The last

router point along Line(v, v′) becomes the new steiner point in T(V’,E’),

forming new edges to connect with the children of v′.

An example illustrating the aMST routing structure is shown in Figure

5.3. The rectangle marked with BS is the BS, the rectangles marked with

Q1,...Q4 are the query regions, and the circles are the sensors. Given the

BS and the set of queries, the MST is shown in dotted lines, the adapted

MST T(V’,E’) is shown in dark black lines, and the black dots denote the

generated router points.

A router point serves all the queries located in its subtree. Its role

changes during the query processing. After it finishes relaying data for a

descendent query, it no longer serves that query.
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Query Processing Phase

During query processing time, sensor nodes collaborate intelligently to real-

locate themselves to take part in the router or scanner assignment based on

local neighborhood information and the route tree T(V’,E’). More specif-

ically, privileges are given to scanner points over router points, to further

scanner points over nearer scanner points, to the router points whose sub-

trees have larger number of queries over the other router points, to nearer

router points over further router points. A globalized prioritized RouterList

is kept at each participating sensor node.

In aMST, since a router point serves multiple queries, to efficiently

coordinate the processing of multiple queries, a global query plan for all

queries (QueriesPlan) is maintained at each participating sensors, instead

of multiple individual query plans. QueriesPlan keeps track of the meta

data of queries, the time it is generated, and the assignment details for

router points in prioritized RouterList.

Although the processing of queries are centrally planned as a whole and

a global routing structure is utilized to guide the query processing, queries

are processed in a distributed manner. However, the progress in processing

one query is closely related to that of other queries, due to the global

routing structure. The processing of each query comprises three phases:

Ongoing, Scanning and Returning. Thus, in the following, we illustrate

how the processing of one query advances in respect to the different phases,

together with how it is related to the processing of other queries.

In the Ongoing phase, a query Q is assigned with a Scanner moving

towards its query region, and this assignment information is maintained

in QueriesPlan. Before the Scanner reaches the query region, QueriesPlan
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can be improved in the following cases to reduce the processing time of

queries. (1) As the Scanner moves, when it encounters a new Free neigh-

bor, it adapts the QueriesPlan to be a better one by relocating the new

neighbor as a new Router, or to improve the current Scanners/Routers.

When it encounters a new neighbor participating in the QueriesPlan, it

merges the two QueriesPlans into a better QueriesPlan. For consistency,

this improved local QueriesPlan is then disseminated to all connected sen-

sor nodes participating in the QueriesPlan. We note that, each additional

sensor being assigned as a Router, will benefit all the queries the Router

serves (as defined in the routing structure), in terms of reducing their pro-

cessing time in the Onging/Returning phase. (2) Likewise, when the node

encountering events happen to Scanners of other queries, QueriesPlan will

also be improved. In particular, the Scanner of the query Q may also be re-

placed by a better sensor which is nearer to the query region. This reduces

the processing time in the Ongoing phase of the query Q. (3) In the mean-

while, Routers in the QueriesPlan actively exploit their node encountering

events to improve the QueriesPlan through sensor relocation, in the same

way as Scanners do. The processing phases of each query advances in a

distributed manner, depending on the relocation progress of its respective

Scanner/Routers, which is reflected in QueriesPlan. When the Scanner

of this query finally reaches the query region, this query enters Scanning

phase.

In the Scanning phase, the Scanner moves around in the query region to

sense data. During this period of time, QueriesPlan can be improved upon

the node encountering events in a similar way as in the Ongoing phase,

except that this Scanner in the Scanning phase of the query Q should
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not be relocated. After it finishes scanning, the query Q enters Returning

phase.

In the Returning phase, the query result is relayed along the routing

tree towards the BS (the root). If all the router points between the BS

and the query point are assigned with sensor nodes, the query result can

be directly relayed back to the BS. Otherwise, when the Returner is not

connected to the BS, it consults its local QueriesPlan and actively exploits

connections to relay the query result back towards the BS, although its own

movement may be constrained by the processing status of other queries it

serves. More specifically, when the Returner is currently responsible for

serving other queries, it cannot move away. In this case, the Returner

becomes a Waiter (waiting until the results of all the queries it serves have

been relayed). When the Waiter encounters Free sensors, it chooses the

free sensor that is nearest to the known routers connected to the BS or the

BS, and assigns the selected sensor as the Returner to pass query result

back.

To facilitate the above query processing, each individual sensor node

makes distributed decisions, and much effort has to be spent on dealing

with the problems caused by the intermittent connections. Moreover, the

complexity of roles each participating sensor is associated with complicates

the situation. More specifically, a single participating sensor often serves

multiple queries, and its role for each query changes independently during

the query processing time, and it thus can have multiple different roles

at the same time. For example, at some processing stage, it may be the

Scanner for one query, the Router for another two queries, and the Re-

turner for the fourth query. Thus, additional efforts have to be spent on
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coordinating the participating sensors in QueriesPlan, and on managing

the changing roles of each participating sensor. Overall, it is challenging

to keep the useful information intact while improving the query processing

upon encountering new neighbors. Detailed status check and comparison

are conducted, and a large number of events are carefully dealt with.

5.4.4 Coverage Ratio (CR)

Although the aMST approach requires less number of router points under

the guidance of an adapted MST, the area it exploits for router sensors

is limited to be along the tree. Thus, if the network is very sparse, to

coordinate the router nodes to serve all descendent queries, extraordinary

long waiting time may be incurred for intermediate router nodes before

they can move to transmit data back to the BS. In this case, to process

each query in a proactive way will be a better choice.

Therefore, we define a parameter CR which reflects the sparseness of the

network in respect to the number of queries, to guide the system to make

a sound decision over the strategies that is adaptive to the environment.

More specifically, the sparseness of the network is measured by the sensor

density, i.e., the average number of sensors that are within each sensor’s

communication range in the field. When sensor density decreases, or as the

number of queries increases, the value of CR decreases.

When the CR is very big, the opportunities of conducting effective

sharing among queries can be significantly high; When the CR is very

small, the opportunities of conducting effective sharing among queries can

be miserably low. Under these cases, the performance difference between

Dynamic and aMST is not significant.
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5.5 Related Works

As we can see in previous chapters, in static WSNs, various techniques

have been proposed to organize sensors into logical routing structures to

facilitate data collection and multiple query optimization [25, 107, 93, 118].

Unfortunately, these techniques cannot be applied to sparse MSNs where

the topology of the network is very dynamic and the connection is inter-

mittent.

There are some related works on multi-task allocation and path plan-

ning for cooperating UAVs, to minimize the task completion time. Their

focus is to assign a small number of UAVs from the base station to the

field to accomplish several tightly coupled tasks while accounting for other

factors such as differing UAV capabilities and no-fly zones. Optimization

strategies are designed using market based approach [43] or mixed-integer

linear programming [12, 8]. However, these works do not consider the op-

portunity that we exploit in this Chapter, that is, some mobile sensors

could be relocated to certain locations to relay information for others, to

further reduce the query processing time.

In the CarTel project [40] at MIT, mobile sensors were deployed to

gather and deliver data to a central portal, with variable and intermittent

network connectivity. CarTel’s system model is different from ours. In

CarTel the sensors (cars) communicate with the central portal through

public access points rather than through the ad-hoc networks formed by

the mobile sensors. Consequently, the mobile sensors are free from worrying

about cooperating among themselves in CarTel.

Several studies have been carried out for data collection using mobile

elements in sparse WSNs or mobile Ad-Hoc networks (MANETs) [87, 132,
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38]. The basic idea is to use mobile elements as message carriers. They

collect information from sensors when they are in close range to the sensors,

buffer the information when they move around, and pass the information

to the base station when they become near to the base station. In these

works, the focus is on general data collection and the time a mobile element

takes to deliver specific information is not critical. Our work differs from

them because data delivery in our system is driven by queries, and we have

to minimize the time the sensors take to process these queries.

Mobile sensor relocation is widely adopted in WSNs, to deal with a

coverage hole caused by a sensor failure [112, 122], or to adapt sensor

locations and density in facilitating event detection and monitoring [106,

35]. More recently, self-deployment of sensors is investigated to achieve a

focused coverage around a Point of Interest in [54]. However, in all the

above studies, the sensor networks under consideration are assumed to be

fully connected, and the aim of relocation or self-deployment is to meet a

certain coverage requirement. As mentioned in Section 5.1, the differences

between our work and these works are twofold: we are employing the sensor

relocation in sparse sensor networks; the objective of relocation in our work

is to process data acquisition queries as soon as possible.

5.6 Experimental Study

We use simulation to study the performance of our multiple-query opti-

mization schemes. We compare the proposed schemes aMST and Dynamic

to naive schemes Parallel and Sequential (the baseline).

The simulation model follows the System Model that we describe in

Section 5.2. The system parameters and their values are listed in Table 5.1.
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Table 5.1: Parameter Settings
Parameter Default Value Value Range

FieldWidth 30 km 20-50 km
FieldHeight 30 km
Number of Sensors n 40 20 - 60
Sensor speed v 0.05 km/s 0.01-0.1km/s
Communication range r 5 km 2 - 10 km
QueryWidth 2 km 1 - 5 km
QueryHeight 2 km
Number of Queries numQ 8 4-14

The parameter values are chosen based on the setting used in [50]. This

simulates a reconnaissance system comprising a set of UAVs. The UAVs

move around and sense the area by taking pictures of the places they fly

over; the base station analyzes the collected images and issues explicit

data acquisition queries to the UAVs to fetch detailed information about

suspicious locations to confirm events such as military invasion.

In the experiments, the mobile sensors are placed randomly in the simu-

lated area. They follow the Random WayPoint (RWP) mobility model [13],

which has been widely used to evaluate the Mobile ad hoc network routing

protocols. In the RWP model, each node moves along a zigzag path con-

sisting of straight line segments from one waypoint to the next, where the

location of the waypoints and speed of movements are all chosen randomly

and independently of other nodes. In our settings, query locations are also

distributed randomly in the simulated area. When we generate a new set

of data acquisition queries we always generate a new scenario (placement

of the sensors) so that all the solutions have the same start point. We run

each experiment for 100 sets and take the average processing time.
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Figure 5.4: Performance under default setting

5.6.1 Basic Performance Study

Here we study the performance under the default parameters setting. Fig-

ure 5.4 shows the breakdowns of the average processing times: the time

spent on waiting to be dispatched (Wait), getting to the query location

(Go), scanning the location to fetch data (Scan) and returning the data

back to the base station (Return).

From the results, we can see that Parallel, aMST and Dynamic sig-

nificantly outperform the baseline Sequential. More specifically, Sequential

spends the least time on Go and Return, but huge average Wait time is

incurred, because it devotes all resources to deal with one query at a time.

Comparing with Sequential, another naive scheme Parallel spends more

time in Go and Return than Sequential, because each processing queries

utilizes partial resources of the whole network, but it spends much less

Wait time. Dynamic has considerable improvement over Parallel, in all

components except Scan (the same for all scheme under the same parame-
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ter setting), which demonstrates the effectiveness of Dynamic in adaptively

exploiting sharing among queries on the fly. While aMST takes much less

Go time than Dynamic (although a bit higher than Sequential), a bit higher

Return time than Dynamic, with no Wait time incurred, it clearly performs

the best in the total query processing time. This is because aMST plans

all the query processing as a whole to maximize the sharing among queries.

5.6.2 Effect of Sensors Density

We use the average number of sensors that are within each sensor’s commu-

nication range as the measurement of the sensor density. Three parameters

affect the sensor density: the number of sensors n, FieldWidth that con-

trols the field size, and the sensors’ communication range r. As n or r

increases, the sensor density increases; as FieldWidth increases, the sensor

density decreases. Figure 5.5, Figure 5.6, and Figure 5.7 show the effect

of the three parameters on the solutions’ performance. We have several

observations here.
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1) As the sensor density increases, all schemes perform better. This is

because when sensor density increases, it becomes easier to find a sensor

that is near to each query region to scan, and more sensors are available for

forming route structures, and correspondingly less query processing time is

incurred.

2) Generally, Parallel, Dynamic and aMST are superior over Sequential,

while Dynamic and aMST always considerably outperforms Parallel. Most

of time, aMST clearly outperforms Dynamic, except when the network is

too dense or sparse in respect to the number of queries.

3) As the network changes from very sparse to relatively sparse, the

performance gain of Dynamic and aMST increases accordingly over the

other two schemes, which suggests that our proposed schemes effectively

exploit and share the available resources to reduce average query processing

time.

4) When the number of sensors or the communication range increases

from small to large (sensor density increases from very sparse to very dense)
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Figure 5.7: Effect of field size

in Figure 5.5 and Figure 5.6, the performance gap between aMST and

Dynamic first increases and then decreases. This is explained by CR in

Section 5.4.4. The gap increases first because as sensor density increases

from very sparse to medium, aMST can find more sensors to timely work

at the router points, and it is less likely for a sensor to become a Waiter

and correspondingly this greatly reduces the time of the Return phase.

However, when the sensor density increases from medium to dense, more

sensors are connected and it is more likely that there is enough sensors to

relay information for various queries in Dynamic, so that it is less necessary

to put emphasis on minimizing the number of routers as in aMST.

5) When the field size increases (in Figure 5.7), the gap between the

Sequential and other strategies always increases. This is expected as the

increase in field size not only makes the sensor network more sparse, but

also makes the query location farther from the base station (in the exper-

iments the query regions are randomly generated in the area). When a

data acquisition query is farther from the BS, it takes a longer time for
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Figure 5.8: Effect of Number of Queries

each query to complete and it is more important to enable sharing among

queries over time.

5.6.3 Effect of Number of Queries

Figure 5.8 shows the effect of number of queries on the schemes’ perfor-

mance. As expected, the query processing time of Sequential increases

almost linearly with the number of queries, while other schemes scale much

better. As the number of queries increases, the performance gap between

Dynamic and Parallel increases, because more sharing among queries can

be exploited by Dynamic. We also observe that when the number of queries

increases from small to large, the performance gap between Dynamic and

aMST first increases and then decreases. With the same sensor density, as

the number of queries increases, the value of CR decreases from large to

small. As we have discussed in Section 5.4.4, when the CR is too big or too

small, the opportunities of conducting effective sharing among queries is
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Figure 5.9: Effect of Query Size

significantly high or miserably low, and thus the performance of Dynamic

and aMST will have less difference.

5.6.4 Effect of Query Size

We study the effect of query size on the schemes’ performance by varying

the width of the queries. Figure 5.9 is the plot of the results. As query size

increases, the scanning time for each query increases accordingly. And as we

can see from Figure 5.4, in the context of sparse MSNs, the scanning time is

only taking up a small percentage of the overall query processing time, and

thus the average processing times of all schemes increase slightly as shown

in Figure 5.9. However, Sequential increases much more significantly than

other schemes, because Sequential does not allow queries to share over time.
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Figure 5.10: Effect of move speed

5.6.5 Effect of Sensor Speed

The sensors’ move speed affect a query’s processing time in several ways:

the time that is needed for a sensor to move to a specific location; the scan

speed (since scan speed is a linear function of the move speed); and the

dynamism of the sensor network’s topology. When sensors move faster, it

takes shorter time for a sensor to meet new neighbors.

Figure 5.10 shows the effect of sensors’ move speed on the solutions’

performance. It is clear, and as expected, that as sensors’ move speed

increases by a certain factor, the processing time of each scheme decreases

by the same factor.

5.7 Summary

In this chapter, we considered sparse mobile sensor networks where the con-

nection between sensors is intermittent and the topology is unpredictable.
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In this context, the problem of efficiently processing multiple data acquisi-

tion queries from the base station is very challenging.

We first presented a greedy distributed scheme shown to be effective

in processing a single query, which progressively reallocates sensor nodes

to form a chain to relay query result. Based on the findings on single

query processing, we then explored strategies to concurrently process mul-

tiple queries. More specifically, we proposed one strategy that dynamically

shares resources among queries, while each query processing greedily re-

locates exploited resources for its own sake. We also designed another

strategy that utilizes an adapted Minimum Steiner Tree to guide the pro-

cessing of all queries as a whole to minimize the average query processing

time. In addition, we defined a parameter CR, which reflects the sparseness

of the network in respect to the number of queries, to guide the system to

adaptively make a sound decision over the strategies. Our extensive per-

formance study showed the effectiveness of our proposed strategies, and

demonstrated the necessity of our parameter CR.
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Chapter 6

Conclusion

This chapter concludes this thesis by summarizing our work and contribu-

tions. Some directions for future work are also presented.

6.1 Summary

WSNs have increasingly been deployed in many important applications to

enable users to query the physical world, owing to various nice properties of

sensor nodes. However, the WSNs are inherently resource constrained, and

hence it is critical to utilize the limited resources efficiently when process-

ing the queries. In particular, when multiple queries are running simulta-

neously in wireless sensor networks, the common communication and pro-

cessing should be intelligently shared among one another. Unfortunately,

there is little existing work on this crucial problem, namely, multiple query

optimization. Hence, the purpose of this thesis is to tackle the problem of

multiple query optimization for WSNs (both static and mobile), so that

the utility of the sensor network can be much better realized.

In Chapter 3, we have presented our two-tier multiple query optimiza-
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tion scheme (TTMQO), to minimize the communication cost in static

WSN. The first tier, called base station optimization, adopts a cost-based

approach to rewrite a set of queries into an optimized set by exploiting the

similarity and eliminating the redundancy among the queries in the origi-

nal set. The optimized queries are then injected into the network of sensor

nodes. In the second tier, called in-network optimization, our scheme ef-

ficiently delivers data query results by taking advantage of the broadcast

nature of the radio channel and sharing the sensor readings among multi-

ple similar queries over time and space at a finer granularity. Both tiers

eliminate the redundancies incurred for similar queries, though in differ-

ent ways, and their marriage can utilize their advantages while avoiding

their respective disadvantages. More specifically, base station optimization

tier supports the similarity sharing among aggregation queries and data

acquisition queries, while the in-network optimization tier cannot; on the

other hand, the in-network optimization tier can effectively handle the sit-

uations where the queries cannot be effectively rewritten by base station

optimization due to epoch duration constraint and space granularity con-

straint. Our experimental results have shown that the TTMQO scheme

can provide significant performance improvements, with lower cost of ra-

dio transmission (average transmission time), and can scale well with the

number of concurrently running queries.

In Chapter 4, we have described our work on further enhancing the scal-

ability of static WSN while minimizing communication cost among sensor

nodes. We identified the importance of an infrastructure with multiple

base stations, for better scalability, reliability and energy efficiency. As a

result, it is critical to optimize the allocation of queries among the base



167

stations in order to leverage query sharing. We first examined the query

allocation problem in a static context, where all the queries are known in

advance. Here, we approximated the problem of allocating queries to K

base stations as a Max-K-Cut problem, and adapted an existing solution

to our context. In addition, to reduce the complexity of Max-K-Cut so-

lution, we also proposed a two-phase semi-greedy allocation framework,

which greedily generates the query allocation plan by assigning the heuris-

tically ordered queries one by one in the first phase and then iteratively

refines the allocation plan in the second phase. Then, we investigated

dynamic environments with frequent query arrivals and terminations and

proposed adaptive query insertion and migration algorithms. Finally, ex-

tensive experiments were conducted to evaluate the proposed techniques.

The experimental results showed that our query allocation schemes are

effective in minimizing the communication cost of a large-scale WSN.

In Chapter 5, we have investigated the problem of providing fast re-

sponse for multiple data acquisition queries in sparse mobile sensor net-

works. With a limited number of mobile sensors, the connection between

sensors is intermittent and the topology is unpredictable. To effectively

handle the above challenges, we designed distributed schemes in which

the connected and encountered mobile sensors intelligently relocate them-

selves to proper locations in facilitating query processing through collab-

oration. More specifically, we proposed one strategy called Dynamic that

employs run-time adaption to enable queries to dynamically benefit from

each other, while each concurrently running query greedily relocates ex-

ploited resources for its own sake. This strategy is simple and incremental.

We also designed another more complicated strategy called aMST that
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plans all queries as a whole and utilizes an adapted Minimum Steiner Tree

to guide the query processing to maximize the spatial sharing. Extensive

performance study showed the effectiveness of our proposed strategies in

exploiting and sharing the available sensor resources. Experimental results

also indicated that aMST clearly outperforms Dynamic most of the time,

except when the network is too dense or sparse in respect to the number of

queries. Since Dynamic is one incremental algorithm and yet simpler than

aMST, in addition, we defined a parameter Coverage Ratio(CR), to guide

users/system to make a sound decision that is adaptive to the sparseness

of the network in respect to the number of queries.

In summary, we have made the following contributions.

• We have designed a light-weight two-tier multiple query optimization

scheme, which effectively enables similar queries to share both com-

munication and computational resources in the static sensor network.

Moreover, it is so general a scheme that it is suitable for any static

WSN application as long as the application adopts query-driven data

collection and has a base station. In addition, we have studied for the

first time the possible sharing among different types of queries, aggre-

gation queries and data acquisition queries. This cross-type sharing

method is a great improvement over existing MQO methods that only

exploit commonality among the same type of queries. Overall, the

scheme is of considerable importance because it will promote the ap-

plication of static WSNs to a new level. With better scalability in

terms of number of queries and more efficient usage of resources, the

cost is reduced for each user while the quality of service is better.

• We have successfully tackled the scalability limit problem that is in-
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herent with the typical single base station architecture by proposing

multiple base station architecture. Moreover, results suggested that

the intelligent and adaptive multiple query allocation algorithms can

greatly reduce the network transmission and thus enable the WSN

serve users with a considerably longer duration and better reliability.

• We have ensured timely response for processing multiple data ac-

cess requests in sparsely deployed MSNs. Through simple centralized

planning and adaptive distributed coordination, the exploited mobile

sensors strategically relocate themselves to proper locations to col-

laboratively facilitate efficient query processing and enable sharing

over space and time. These robust and versatile solutions will also

work well in densely deployed MSNs.

6.2 Future Works

This section suggests some research directions as future work, for improving

the performance of multiple queries in both static WSNs and MSNs.

Quality-of-Service Driven MQO. Our current MQO scheme does

not explicitly take into consideration node failures and unreliable wire-

less transmissions that are inherent with WSNs, although retransmission is

modelled in the experimental study. MQO schemes are able to reduce the

number of radio messages, and thus lower the contention of the data pack-

ets and improve the packet delivery ratio. However, with MQO schemes,

since one message may serve several queries, the consequence of such mes-

sage loss or corruption will be worse for the application. To be able to

fulfill the application better while progressively minimizing the communi-
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cation cost in WSNs, it will be interesting to explicitly study MQO under

unreliable transmissions. For example, different transmission priority may

be given to messages with various importance. In fact, many researchers

in networking community have studied extensively on how to achieve satis-

factory performance under unreliable transmissions by paying attention to

quality of service at the same time [128]. Hence quality-of-service driven

MQO can be a promising direction.

Incorporating Ad-hoc Queries. We have not designed a technique

to specifically reduce the number of messages and affected sensor nodes

at query propagation time, where queries are simply flooded throughout

the network from the base station. Since our current work is focusing on

the long running continuous queries in static WSNs, the query propagation

cost is negligible because it only incurs once in the long lifetime of a query.

To extend our MQO scheme to work better for the applications where

there is ad-hoc query, special query propagation techniques are needed to

more progressively minimize energy consumption. If the query is a region-

based query or a node-id based query, the set of answer nodes are known in

advance, and some more efficient techniques such as SRT [69] and location-

based routing [20] have been proposed. However, for a value-based query,

no sound techniques exist because the accurate set of sensors that have

data for the query are not pre-known to the base station and the set of

sensor nodes can vary with time as well. Therefore, more efforts should be

put in the future to design a query propagation algorithm for value-based

query. One possible direction is to construct effective probabilistic models

to predict the data distribution to guide the query propagation process.

MQO for Approximate Queries. Most prior work and our work
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have focused on MQO for exact queries. Since uncertainty is an inherent

property of sensory data, and sensory data often exhibits spatio-temporal

similarities, approximate queries are also widely issued to save a large

amount of unnecessary communication while providing acceptable accu-

racy and reduce cost and latency of query processing. As we can see in

section 2.2.3, numerous approximate techniques have been proposed to ef-

ficiently process a single approximate query.

It is a challenging but important and promising problem to study the

MQO for approximate queries. For example, the definition of approximate

queries can be very flexible, introducing approximate factors such as error-

tolerance with value or latency, guaranteed probabilistic threshold etc. This

gives plenty of freedom to investigate the commonality among queries. In

[76], Muller et al. conducted MQO for approximate queries with error-

tolerant sampling period, which adopted query rewriting method at the

base station. Also, in terms of optimization opportunities, apart from query

rewriting and filtering step at the base station that is relatively constrained

by the granularity, there are huge opportunities for distributed in-network

optimization, by combining query sharing with query result suppression

and prediction.

Introduction of more constraints in MSNs. As the first attempt

on MQO problem in sparse MSNs, this thesis has focused on fast-response

concurrent data acquisition queries for mobile sensor nodes such as fly-

ing UAVs, where no obstacles and other constraints exist except for the

communication limit.

It could have been extended to deal with multiple queries in vehicular

networks, where the road networks should be integrated into the framework.
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In the new setting, the moving route of mobile sensors is constrained by

the roads while the wireless communication among sensors can be either

omnidirectional or directional, and the speed limit of each road can also be

different. Other than the distance, the connection and speed of the road are

also important factors in the optimization problem, which considerably in-

crease the complexity of the MQO problem. However, with the constrained

moving route of sensors, inherent sharing is forced among multiple queries

to some extent, which also brings about opportunities.

Another possible extension is to introduce energy constraints for mobile

sensors. To look into energy-aware MQO optimization in MSNs is also an

interesting direction.
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