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Abstract. We introduce a new variant of membrane systems where the rules
are directly assigned to membranes (and not to the regions as this is usually
observed in the area of membrane systems) and, moreover, every membrane
carries an energy value that can be changed during a computation by objects
passing through the membrane. For the application of rules leading from one
configuration of the system to the succeeding configuration we consider a se-
quential model and do not use the model of maximal parallelism. The result of
a successful computation is considered to be the distribution of energy values
carried by the membranes. We will show that for such systems using a kind of
priority relation on the rules we already obtain universal computational power.
When omitting the priority relation, we obtain a characterization of the family
of Parikh sets generated by context-free matrix grammars (with λ−rules).

1 Introduction

In 1998 Gheorghe Păun introduced membrane systems (in [11]) as distributed and parallel
computing devices that were abstracted from the biological functioning of living cells.
For motivations and examples as well as for further details we refer to [12]; for recent
developments in the area of P systems see [15].

Considering the energy balancing of processes in a cell first was investigated in [13]
and then in [4]. There the energies of all rules to be used in a given step in a membrane
are summed up; if the total amount of energies is positive ([13]) or within a given range
([4]), then this multiset of rules can be applied if it is maximal with this property.

We here take another approach. In contrast to most models of P systems where the
evolution rules are placed within a region, in this paper we consider membrane systems
where the rules are directly assigned to the membranes (as already done in [6]) and have
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to be applied in a sequential way (for sequential variants of P systems see, e.g., [2] and
[3]). Moreover, each membrane carries an energy value. As long as the energy value of
a membrane is positive, by a rule application, singleton objects can be rewritten while
passing through membranes, thereby consuming or producing energy that is added to or
subtracted from the energy value of the respective membrane. We also consider a kind
of priority relation on the rules assigned to the membranes by choosing the one first that
changes the energy value of the membrane under consideration in a maximal way. The
result of a successful computation is stored in the final energy values of the membranes.

In the following section we first give some preliminary definitions and recall some
notions and results for register machines and matrix grammars, the computation models
we use for proving the results elaborated in this paper; in the third section we introduce
P systems with unit rules and energy assigned to membranes followed by an example.
In the fourth section we show that when using a kind of priority among the rules, the
introduced systems can simulate register machines quite easily, which proves their universal
computational power. A characterization of MAT λ is obtained when omitting the priority
relation. A short summary and an outlook to future research conclude the paper.

2 Preliminary Definitions

The set of non-negative integers is denoted by N. An alphabet V is a finite non-empty
set of abstract symbols. Given V , the free monoid generated by V under the operation of
concatenation is denoted by V ∗; the empty string is denoted by λ, and V ∗ \{λ} is denoted
by V +. A multiset over V is represented as string over V (and any of its permutations).
By |x| we denote the length of the word x over V as well as the number of elements in the
multiset represented by x.

For more details on formal language theory we refer to [14].

2.1 Register Machines

When considering multisets of symbols, register machines provide a simple universal com-
putational model (see [10] for some original definitions and, e.g., [5], [7] for definitions like
those we use here).

An n-register machine is a construct M = (n, P, i, h), where:

• n is the number of registers,

• P is a set of labelled instructions of the form j : (op (r) , k, l), where op (r) is an
operation on register r of M , j, k, l are labels from the set Lab (M) (which numbers
the instructions in a one-to-one manner),

• i is the initial label, and

• h is the final label.

The machine is capable of the following instructions:

(A (r) , k, l) : Add one to the contents of register r and proceed to instruction k or to
instruction l (in the deterministic variants usually considered in the literature we
demand k = l).
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(S (r) , k, l) : If register r is not empty, then subtract one from its contents and go to
instruction k, otherwise proceed to instruction l.

Halt : Stop the machine. This additional instruction can only be assigned to the final
label h.

In their deterministic variant, such n-register machines can be used to compute any
partial recursive function f : Nα → Nβ; starting with (n1, ..., nα) ∈ Nα in registers 1 to
α, M has computed f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final label h with registers
1 to β containing r1 to rβ. If the final label cannot be reached, f (n1, ..., nα) remains
undefined.

A deterministic n-register machine can also analyse an input (n1, ..., nα) ∈ Nα in
registers 1 to α, which is recognized if the register machine finally stops by the halt
instruction with all its registers being empty. If the machine does not halt, the analysis
was not successful.

In their non-deterministic variant, n-register machines can compute any recursively
enumerable set of non-negative integers (or of vectors of non-negative integers). Starting
with all registers being empty, we consider a computation of the n-register machine to be
successful, if it halts with the result being contained in the first (β) register(s) and with
all other registers being empty.

The results proved in [5] (based on the results established in [10]) as well as in [7] and
[8] immediately lead to the following results:

Proposition 1 For any partial recursive function f : Nα → Nβ there exists a determin-
istic (max{α, β}+ 2)-register machine M computing f in such a way that, when starting
with (n1, ..., nα) ∈ Nα in registers 1 to α, M has computed f (n1, ..., nα) = (r1, ..., rβ) if it
halts in the final label h with registers 1 to β containing r1 to rβ, and all other registers
being empty; if the final label cannot be reached, f (n1, ..., nα) remains undefined.

The following two corollaries are immediate consequences of the preceding proposition
(by taking α = 0 and β = 0, respectively):

Corollary 2 For any recursively enumerable set L ⊆ Nβ of vectors of non-negative
integers there exists a non-deterministic (β + 2)-register machine M generating L in such
a way that, when starting with all registers 1 to β+2 being empty, M non-deterministically
computes and halts with ni in registers i, 1 ≤ i ≤ β, and registers β + 1 and β + 2 being
empty if and only if (n1, ..., nβ) ∈ L.

Corollary 3 For any recursively enumerable set L ⊆ Nα of vectors of non-negative
integers there exists a deterministic (α + 2)-register machine M accepting L in such a way
that M halts with all registers being empty if and only if M starts with some (n1, ..., nα) ∈ L
in registers 1 to α and the registers α + 1 to α + 2 being empty.

2.2 Matrix Grammars

A context-free matrix grammar (without appearance checking) is a construct

G = (N,T, S,M)
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where N and T are sets of non-terminal and terminal symbols, respectively, with N∩T = ∅,
S ∈ N is the start symbol, M is a finite set of matrices, M = {mi | 1 ≤ i ≤ n}, where the
matrices mi are sequences of the form mi = (mi,1, . . . ,mi,ni), ni ≥ 1, 1 ≤ i ≤ n, and the
mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n, are context-free productions over (N, T ).

For mi = (mi,1, . . . , mi,ni) and v, w ∈ (N ∪ T )∗ we define v =⇒mi w if and only if there
are w0, w1, . . . , wni ∈ (N ∪ T )∗ such that w0 = v, wni = w, and for each j, 1 ≤ j ≤ ni, wj

is the result of the application of mi,j to wj−1.
The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T )∗ , mij ∈ M for 1 ≤ j ≤ k, k ≥ 1
}

.

According to the definitions given in [1], the last matrix can already finish with a
terminal word without having applied the whole sequence of productions.

The family of languages generated by matrix grammars without appearance checking
is denoted by MAT λ. It is known that PsCF ⊂ PsMAT λ ⊂ PsRE. Further details
about matrix grammars can be found in [1] and in [14].

3 P Systems with Unit Rules and Energy Assigned
to Membranes

In this section we define the new model of membrane systems introduced in this paper.

A P system with unit rules and energy assigned to membranes of degree d + 1 is a
construct Π of the following form:

Π = (O, µ, e0, ..., ed, w0, ..., wd, R0, ..., Rd) ,

where:

• O is an alphabet of objects;

• µ is a membrane structure (with the membranes labelled by numbers 0, ..., d in a
one-to-one manner);

• e0, ..., ed are the initial energy values assigned to the membranes 0, ..., d;

• w0, ..., wd are multisets over V associated with the regions 0, ..., d of µ;

• R0, ..., Rd are finite sets of unit rules associated with the membranes 0, ..., d, which
are of the form

(α : a,∆e, b)

where α ∈ {in, out}, a, b ∈ O, and |∆e| is the amount of energy that - for ∆e ≥ 0 -
is added to or - for ∆e < 0 - is subtracted from ei (the energy assigned to membrane
i) by the application of the rule.

In a more depictive way, a rule
(in : a, ∆e, b) ,

in Ri can be written in the following form:
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a →
∆e

|
i
b

A rule
(out : a,∆e, b)

in Ri can be written in the following form:

b
∆e

|
i
← a.

Starting from the initial configuration, which consists of µ, e0, ..., ed, and w0, ..., wd, the
system passes from one configuration to another one by non-deterministically choosing one
rule from some Ri and applying it in the following sense (observe that here we consider a
sequential model of applying the rules instead of choosing rules in a maximally parallel way
as it is often required in P systems): applying (in : a,∆e, b) means that an object a (being
in the membrane immediately outside of i) is changed into b while entering membrane
i thereby changing the energy value ei of membrane i by ∆e. On the other hand, the
use of a rule (out : a, ∆e, b) changes object a into b while it passes out from membrane
i changing its energy value by ∆e. Yet the rules are only applicable if the amount ei of
energy assigned to membrane i fulfills the requirement ei +∆e ≥ 0; moreover, we use some
sort of local priorities: if there is more than one applicable rule in membrane i, then one
of the rules with max |∆e| has to be used.

A sequence of transitions is called a computation; it is successful if and only if it halts.
The result of a successful computation is considered to be the distribution of energies
among the membranes (a non-halting computation does not produce a result). If we
consider the energy distribution of the membrane structure as the input to be analysed,
we obtain a model for accepting sets of (vectors of) non-negative integers.

Observe that in this model we do not take into account the environment.

To illustrate the definitions given above, we now elaborate an example of a simple com-
parator.

Example 4 Consider the following system

Π = ({p1, p2}, [0[1]1[2]2]0, 0, e1, e2, p1, ∅, ∅, ∅, R1, R2) ,

where:
R1 = {(in : p1, 0, p1) , (out : p1,−1, p2)} ,
R2 = {(in : p2, 0, p2) , (out : p2,−1, p1)} .

In a more depictive way, the rules of Π can be described in the following way:

p1 →
0

|
1
p1 p2

−1

|
1
← p1 p2 →

0

|
2
p2 p1

−1

|
2
← p2

We start by applying (in : p1, 0, p1) , sending the object p1 into membrane 1 neither chang-
ing the object itself nor the energy value of membrane 1. Using (out : p1,−1, p2) in the
next step, p1 is changed into p2 by passing out again, thereby decreasing e1 by 1. From
here, p2 can cross membrane 2 by (in : p2, 0, p2), from where it goes out again as p1, having
decreased e2 by 1 (application of (out : p2,−1, p1)). As long as both energy values e1 and
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Figure 1: Example Comparator

e2 are positive, this procedure goes on. One cycle of this procedure is illustrated in Figure
1.
Whenever one of the energy values becomes 0, the system halts in one of two possible
configurations (see figure 2):

• e1 ≤ e2 : The energy value of membrane 1 was initially greater than or equal to the
energy value of membrane 2. Hence the system halts (after e1 ∗ 4 + 1 steps) when p1

has just entered membrane 1, but cannot pass out again because the use of the rule
(p1, out, p2,−1) would require energy that is not available anymore. This situation
corresponds to the illustration given on the left-hand side of Figure 2.

• e1 > e2 : In case the energy value of membrane 2 in the initial configuration was
greater than the one of membrane 1, the system now stops (after e2 ∗ 4 + 3 steps)
because the energy of membrane 2 is already consumed. Hence, p2 cannot leave
membrane 2 anymore, which is illustrated on the right-hand side of Figure 2.

p1

0 e′2

e1 ≤ e2

e′1
p2

0

e1 > e2

Figure 2: Possible end configurations for the comparator

4 Results

Theorem 5 Each partial recursive function f : Nα → Nβ can be computed by a P
system with unit rules and energy assigned to membranes with (at most) max{α, β} + 3
membranes.
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Proof. Consider a (deterministic) register machine M = (m,P, i, h) with m registers,
where m = max{α, β}+ 2 (according to the result stated in Proposition 1). Now let P be
a program which computes the function f such that the initial instruction has the label 1
and the halting instruction has the label n.

The input values x1, ..., xα are expected to be in the first α registers and the output
values from f (x1, ..., xα) are expected to be in registers 1 to β at the end of a successful
computation. Moreover, without loss of generality, we may assume that at the beginning
of a computation all the registers except eventually the registers 1 to α contain zero.

We construct the P system

Π = (O, µ, e0, .., em, w0, ..., wm, R0, ..., Rm) ,

where:
O = {pj , p̃j |1 ≤ j ≤ n, j ∈ Lab(M)} ,
µ = [0[1]1...[α]α...[m]m]0,
ei = xi, for 1 ≤ i ≤ α,

0, for α + 1 ≤ i ≤ m,
w0 = p1,
wi = λ for 1 ≤ i ≤ m,
Ri = {(in : pj , 1, p̃j), (out : p̃j , 0, pk)|j : (A (i) , k, k) ∈ P}

∪ {(in : pj , 0, p̃j), (out : p̃j ,−1, pk), (out : p̃j , 0, pl)|
j : (S (i) , k, l) ∈ P}, for 1 ≤ i ≤ m.

r r r r r r
1 α α + 1 m

0
p1

x1 xα 0 0
0

Figure 3: Initial configuration of Π

The contents of register i, 1 ≤ i ≤ m, is represented by the energy value ei of membrane
i. The membrane structure of Π and the initial distribution of energies are illustrated in
figure 3.

The sets of rules Ri depend on the instructions of P ; in more detail, the simulation
works as follows:

1. Each add-instruction j : (A (i) , k, k) ∈ P, 1 ≤ i ≤ m is simulated in two steps by
using the unit rules

pj →
1

|
i
p̃j and pl

0

|
i
← p̃j .

2. Each conditional subtract-instruction j : (S (i) , k, l) ∈ P is simulated in two steps
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by the following unit rules:

pj →
0

|
i
p̃j and

pk

−1

|
i
← p̃j or pl

0

|
i
← p̃j

The condition of priority guarantees that (out : p̃j ,−1, pk) is applied as long as ei

has a positive value. Only if in the current configuration ei = 0, i.e., register i is
empty, the rule (out : p̃j , 0, pl) can be used.

It follows from the description given above that after each simulation of an instruction
each energy value ei equals the contents of register i, 1 ≤ i ≤ m. Hence, after having
simulated the instruction Halt and halting the system by just doing nothing with the
halting symbol pn anymore, the energy values e1, .., em equal the output of the program
P. The only object remaining within the system is the final label pn in region 0.

The following corollaries are immediate consequences of Theorem 5 by taking β = 0
and α = 0, respectively.

Corollary 6 Let L ⊆ Nα, α ≥ 1, be a recursively enumerable set of (vectors of) non-
negative integers. Then L can be accepted by a P system with unit rules and energy
assigned to membranes with (at most) α + 3 membranes.

Proof (sketch). As the input is already contained in the system as the distribution of energy
values assigned to the membranes 1 to α, we can immediately start the (α + 2)−register
machine from Corollary 3. Hence, we define

Πacc = (O,µ, e0, .., eα+2, w0, ..., wα+2, R0, ..., Rα+2) ,

where:
O = {pj , p̃j |1 ≤ j ≤ n, j ∈ Lab(M)} ,
µ = [0[1]1...[α]α[α+1]α+1[α+2]α+2]0,

ei = xi, for 1 ≤ i ≤ α,
0, for i ∈ {α + 1, α + 2} ,

w0 = p1,
wi = λ, for 1 ≤ i ≤ α + 2,
Ri = {(in : pj , 1, p̃j), (out : p̃j , 0, pk)|j : (A (i) , k, k) ∈ P}

∪ {(in : pj , 0, p̃j), (out : p̃j ,−1, pk), (out : p̃j , 0, pl)|
j : (S (i) , k, l) ∈ P}, for 1 ≤ i ≤ m.

The membrane structure of Πacc together with the initial energy values of the mem-
branes can also be seen in figure 4.

Thus the main emphasis again lies on the simulation of a register machine, which is
done in the same way as in the proof of Theorem 5. As the rules are applied in a sequential
manner, in any moment of time, there is only one symbol present in the system.

Corollary 7 Let L ⊆ Nβ be a recursively enumerable set of (vectors of) non-negative
integers. Then L can be generated by a P system with unit rules and energy assigned to
membranes with (at most) β + 3 membranes.
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r r r

p1

1 α α + 1 α + 2

0

x1 xα 0 0
0

Figure 4: Initial configuration of Πacc

Proof (sketch). In the same way as in the proof of Theorem 5 the P system Π was
constructed in order to simulate the (deterministic) register machine from Proposition 1,
we now construct a P system Π′ which simulates the non-deterministic register machine
from Corollary 2 and in that way non-deterministically generates a representation of any
vector from the given language L by the corresponding energy values e1 to eβ. Hence, let
us define

Πgen = (O,µ, e0, .., eβ+2, w0, ..., wβ+2, R0, ..., Rβ+2) ,

where:

O = {pj , p̃j |1 ≤ j ≤ n, j ∈ Lab(M)} ,
µ = [0 [1 ]1...[β ]β[β+1 ]β+1[β+2 ]β+2 ]0,
ei = 0, for 0 ≤ i ≤ β + 2,
w0 = p1,
wi = λ, for 1 ≤ i ≤ β + 2,
Ri = {(in : pj , 1, p̃j), (out : p̃j , 0, pk), (out : p̃j , 0, pl)|

j : (A (i) , k, l) ∈ P}
∪ {(in : pj , 0, p̃j), (out : p̃j ,−1, pk), (out : p̃j , 0, pl)|

j : (S (i) , k, l) ∈ P}, for 1 ≤ i ≤ β + 2.

r r r

p1

1 β β + 1 β + 2

0

0 0 0 0
0

Figure 5: Initial configuration of Πgen

The membrane structure of Πgen is depicted in figure 5. R0, ..., Rβ+2 are constructed in a
similar way as in the proof of Theorem 5, except that now in the non-deterministic case
we also have to consider add-instructions of the form j : (A (i) , k, l) with k 6= l.

On the other hand, when omitting the priority feature, we do not get systems with
universal computational power. In the following, PsPE∗(unit) denotes the family of
Parikh vectors generated by P systems with unit rules and energy assigned to membranes
without priorities and with an arbitrary number of membranes. The following two lemmas
prove that

PsPE∗(unit) = PsMAT λ,
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i.e., we get a characterization of PsMAT λ by the new family PsPE∗(unit) introduced in
this paper.

Lemma 8 PsPE∗(unit) ⊇ PsMAT λ.

Proof. Let G = (N,T, S, M) be a matrix grammar with λ−rules with every matrix
being of the form mi = (mi,1, . . . ,mi,ni), 1 ≤ i ≤ n, where mi,j = Ai,j → wi,j,1....wi,j,ni,j .
Without loss of generality, we may assume that ni,j ≤ 2. Then we can construct a P
system Π simulating G in the following way:

We label the skin membrane by 0 and for all elements Bi in N ∪T we take a membrane
labelled by i, 1 ≤ i ≤ m, where m = card(N ∪ T ) and m′ = card(T ); moreover, we define
a bijective function index : {1, ..., m} → N ∪ T such that the terminal symbols have the
indices 1 to m′ and the start symbol S has the label m. Initially every membrane has the
energy value 0, i.e., ej = 0 for 0 ≤ j ≤ m. The initial configuration of Π can also be seen
in figure 6.

r r r
1 m

0
p0

0 0
0

Figure 6: Initial configuration of Π

Before starting the simulation of the matrices, we first have to add an additional step
in order to get em = 1 as well as to have a non-deterministic choice for mi by taking the
unit rules

p0 →
1

|
m

p̃0 as well as pi,1,0

0

|
m
← p̃0

for every 1 ≤ i ≤ m.
For the simulation of mi,j , 1 ≤ j ≤ ni,j , 1 ≤ i ≤ n, we have to take the following rules:

1. pi,j,0 →
0

|
index(Ai,j)

p̃i,j,0 and αi,j−1

−1

|
index(Ai,j)

← p̃i,j,0

where

• αi,j ∈ {pk,1,0|1 ≤ k ≤ n} for wi,j = λ and j = n;

• αi,j = pi,j,1 otherwise.

2. pi,j,1 →
1

|
index(wi,j,1)

p̃i,j,1 and βi,j

0

|
index(wi,j,1)

← p̃i,j,1

where

• βi,j ∈ {pk,1,0|1 ≤ k ≤ n} for |wi,j | = 1 and j = ni,

• βi,j = pi,j+1,0 for |wi,j | = 1 and j < ni,
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• βi,j = pi,j,2 for |wi,j | = 2.

3. pi,j,2 →
1

|
index(wi,j,2)

p̃i,j,2 and γi,j

0

|
index(wi,j,2)

← p̃i,j,2

where

• γi,j ∈ {pk,1,0|1 ≤ k ≤ n} for j = ni,

• γi,j = pi,j+1,0 for j < ni.

4. pf

0

|
index(Ai,j)

← p̃i,j,0

is a kind of “emergency exit” which allows us to finish whenever the current sentential
form is already terminal.

5. To check whether the current sentential form is already terminal (i.e., ei = 0 for
m′ + 1 ≤ j ≤ m) we take the rules

pf →
−1

|
j

p̃f and #
0

|
j
← p̃f for m′ + 1 ≤ j ≤ m.

6. Finally, in case the “emergency exit” was taken too early, we have to make sure that
the system does not halt by adding an infinite loop with the trap symbol # :

# →
0

|
m

# and #
0

|
m
← #

If pf cannot enter any of the membranes m′ + 1 ≤ j ≤ m this means that no non-
terminal symbol occurs any more in the current sentential form of the simulated derivation
in G, hence, it is correct to halt and thus get the result stored in the values of ej , 1 ≤ j ≤
m, which by construction represents the corresponding result obtained by the simulated
derivation in G.

Lemma 9 PsPE∗ (unit) ⊆ PsMAT λ.

Proof. We first construct a matrix grammar which generates a suitable representation
of all configurations reachable from the initial configuration in Π. Eliminating all non-
final configurations from this set of reachable configurations by intersection with regular
languages we obtain the set of halting configurations which immediately allows us to
extract the terminal results by using a projection. As the family of matrix languages is
closed under intersection with regular languages and projections (see [1]) this will prove
the desired inclusion PsPE∗ (unit) ⊆ PsMAT λ.

We first start the construction of a matrix grammar G generating the reachable con-
figurations in Π :

Let

Π = (O, µ, e0, ..., ed, w0, ..., wd, R0, ..., Rd)

be an arbitrary P system with unit rules and energy assigned to membranes (arbitrary
membrane structure, arbitrary number of membranes, arbitrary number of symbols); then
the matrix grammar G = (V, T, M, S) is constructed in the following way:
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Taking D = {0, 1, ..., d} , we first define the mapping σ from the set of all possible
configurations of Π to

(O ×D)∗ {D0} {E0}∗ ... {Dd} {Ed}∗

which for every configuration c of Π yields all its valid representations in such a way that:

• for every a in region i the symbol (a, i) ∈ (O ×D) occurs in the string representation
of c;

• the number of symbols (a, i) occurring in the string representation of c exactly co-
incides with the number of symbols a occurring in region i;

• the second part of the string representation of c is of the form

D0E
e0
0 ...DdE

ed
d

such that ei is the energy value assigned to membrane i in configuration c, 0 ≤ i ≤ d.

In G, we start with an initial matrix

[S → s]

such that s ∈ σ(initial configuration), i.e., is a valid string representation of the initial
configuration in the form defined above.

The unit rules in R0, ..., Rd are simulated in the following way:

• For a rule (in : a, ∆e, b) assigned to membrane i with ∆e ≥ 0 we take the matrix
[
(a, j) → (b, i) , Di → DiE

∆e
i

]
,

where j is the label of the membrane encapsulating membrane i.

• For a rule (in : a, ∆e, b) assigned to membrane i with ∆e < 0 we take the matrix
[
(a, j) → (̃b, i), (Ei → λ, )−∆e (̃b, i) → (b, i)

]
,

where j is the label of the membrane encapsulating membrane i and the notation
(Ei → λ, )n , n > 0, is taken for a sequence of n productions Ei → λ. We should like
to recall the fact that the uniport rule Ei → λ is only applicable if the amount ei of
energy assigned to membrane i fulfills ei + ∆e ≥ 0; hence we may be forced to stop
in the middle of a matrix, because not enough energy is assigned to membrane i.

• For a rule (out : a,∆e, b) assigned to membrane i with ∆e ≥ 0 we take the matrix
[
(a, i) → (b, j) , Di → DiE

∆e
i

]
,

where j is the label of the membrane encapsulating membrane i.

• For a rule (out : a,∆e, b) assigned to membrane i with ∆e < 0 we take the matrix
[
(a, i) → ˜(b, j), (Ei → λ, )−∆e ˜(b, j) → (b, j)

]
,

where j is the label of the membrane encapsulating membrane i.
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After the application of a matrix described above, we obtain a valid string repre-
sentation of the configuration obtained from the previous configuration by applying the
corresponding rule in Π. On the other hand, every string obtained from the (complete)
application of a matrix to a valid string representation of a reachable configuration c is
a valid string representation of the configuration resulting from the application of the
corresponding rule in Π to c.

All the symbols introduced so far are non-terminal symbols. Except for the objects of
the form ˜(b, j) we now introduce the corresponding terminal symbol at for the non-terminal
symbol a and we add the matrices [a → at] .

Hence, in total we have obtained the matrix grammar G = (N,T, S, M) with:
N = {S,Di, Ei | 0 ≤ i ≤ d} ∪

{
(a, i) , (̃a, i)|a ∈ O, 0 ≤ i ≤ d

}
,

T =
{

at | a ∈
(
N −

{ ˜(b, j) | b ∈ O, 0 ≤ j ≤ d
})}

,

M = {[S → s] |s ∈ σ(initial configuration)}
∪ {[

(a, j) → (b, i) , Di → DiE
∆e
i

] | (in : a,∆e, b) ∈ Ri,∆e ≥ 0
}

∪ {
[
(a, j) → (̃b, i), (Ei → λ, )−∆e (̃b, i) → (b, i)

]

| (in : a, ∆e, b) ∈ Ri, ∆e < 0}
∪ {[

(a, i) → (b, j) , Di → DiE
∆e
i

] | (out : a,∆e, b) ∈ Ri, ∆e ≥ 0
}

∪ {
[
(a, i) → ˜(b, j), (Ei → λ, )−∆e ˜(b, j) → (b, j)

]

| (out : a,∆e, b) ∈ Ri,∆e < 0}.
Due to the given construction, for L (G) the following holds:

1. Every element in L (G) represents a reachable configuration of Π.

2. If c is a reachable configuration in Π, then L (G) contains a valid string representation
of c.

Now we construct a regular set R describing the non-halting configurations of Π :
Let n be the total number of symbols (in the multiset sense) occurring in the initial

configuration. Then R = R1 ∪R2 ∪R3 ∪R4 where

• R1 is the (finite) union of all (regular) sets of the form

(O ×D)n1 {(a, i)} (O ×D)n2 {D0} {E0}∗ ... {Dj} {Ej}∗ ... {Dd} {Ed}∗

such that n1 + n2 + 1 = n, (in : a,∆e, b) ∈ Rj , region i contains membrane j, and
∆e ≥ 0;

• R2 is the (finite) union of all (regular) sets of the form

(O ×D)n1 {(a, i)} (O ×D)n2 {D0} {E0}∗ ...

{Dj} {Ej}−∆e {Ej}∗ ... {Dd} {Ed}∗

such that n1 + n2 + 1 = n, (in : a,∆e, b) ∈ Rj , region i contains membrane j, and
∆e < 0;

• R3 is the (finite) union of all (regular) sets of the form

(O ×D)n1 {(a, j)} (O ×D)n2 {D0} {E0}∗ ... {Dj} {Ej}∗ ... {Dd} {Ed}∗

such that n1 + n2 + 1 = n, (out : a,∆e, b) ∈ Rj , and ∆e ≥ 0;
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• R4 is the (finite) union of all (regular) sets of the form

(O ×D)n1 {(a, j)} (O ×D)n2 {D0} {E0}∗ ...

{Dj} {Ej}−∆e {Ej}∗ ... {Dd} {Ed}∗

such that n1 + n2 + 1 = n, (out : a,∆e, b) ∈ Rj , and ∆e < 0.

The set R is a finite union of regular sets, i.e., R is a regular set, too, and it describes
the situations where a rule of Π is still applicable, hence, the non-halting configurations.
Therefore, (N∗ −R) contains a lot of garbage, but also all the strings being a valid repre-
sentation of a reachable configuration must represent a halting configuration.

Finally, let p : N∗ → {ei|1 ≤ i ≤ d}∗ be the projection mapping Ei to ei (i.e., p (Ei) =
ei), 1 ≤ i ≤ d, and erasing all other symbols (p (X) = λ for all X ∈ N − {Ei|1 ≤ i ≤ d}).

In sum, we obtain
L (Π) = p (L (G) ∩ (N∗ −R)) ,

i.e., (in the representation as multisets over T ) L (Π) , the set of Parikh vectors generated
by Π, is the projection of the intersection of a matrix language with a regular set, hence,
due to the closure properties of the family of matrix languages, L (Π) is a matrix language,
too, which observation concludes the proof.

If we now combine the two previous lemmas we get the following characterization of
PsMAT λ:

Theorem 10 PsPE∗(unit) = PsMAT λ.

Due to the construction in Lemma 8 we not only have obtained a characterization
of MAT λ by P systems with unit rules and energy assigned to membranes but also a
normal form for this kind of P systems, i.e., only one symbol moving through a membrane
structure is already sufficient (which of course is the minimal resource needed to obtain
reasonable results).

5 Conclusion

We have investigated P systems with unit rules and energy assigned to membranes, which
obtain universal computational power when using a priority relation on the rules. In that
way, the introduced systems can be used as generating as well as accepting devices for
recursively enumerable sets of (vectors of) non-negative integers. On the other hand, for
P systems with unit rules and energy assigned to membranes without using the priority
relation we rather unexpectedly obtained a characterization of the family of languages
generated by context-free matrix grammars with λ−rules. The results obtained in this
paper are already optimal with respect to the size of the multisets transported through
a membrane, as in this model we use only one object to be present in the system, i.e.,
all the results proved for P systems with unit rules and energy assigned to membranes
have been obtained by using (the minimal number of) only one symbol moving around
the membrane structure. Yet the optimal numbers of membranes necessary for obtaining
computational completeness or for characterizing MAT λ still remain open problems (al-
though we conjecture that the number of membranes needed in the universality results is
already optimal).
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