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Abstract 

The aim of this paper is to discuss the influence of radar frequency on the relationship between 

surface soil moisture and the nature of radar backscatter over bare soils. In an attempt to address this 

issue, the Advanced Integral Equation Model (AIEM) was used to simulate backscatter from soil 

surfaces with various moisture vertical profiles, for three frequency bands: L, C and X. In these 

computations, we investigated the influence of the vertical heterogeneity of soil moisture on the 

characteristics of the backscattered signals. The influence of radar frequency is clearly demonstrated. 

A database produced from Envisat ASAR and TerraSAR-X data, acquired over bare soils with in situ 

measurements of moisture content and ground surface roughness, was used to validate the utility of 

taking the soil moisture heterogeneity into account in the backscatter model. 
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1. Introduction 

Soil moisture plays a key role in hydrological and climatic studies. Considerable efforts have been 

devoted to the study of radar backscatter responses from natural surfaces in active microwave remote 

sensing [1-5]. Electromagnetic analytical backscatter models (Kirchhoff models, the small 

perturbation method, and more recently the Integral Equation Model (IEM, [5]), the AIEM [6], …) 

have been used to estimate soil moisture. However, various experimental measurements have shown 

that their use must be restricted to specific conditions. To reduce the discrepancy between these 

models and real data, various improvements have been made in the description of roughness, for 

example by introducing multi-scale approaches [7-8] and generalized power law spectra [9]. Over 

the past decade, new numerical methods have also made it possible to improve understanding of 

backscatter phenomena [10-11]. 

Simultaneously, various empirical approaches have been proposed, allowing the operational use of 

radar signals for the estimation of soil moisture. In this context, when the soil moisture is between 

approximately 10% and 35%, a linear relationship is often observed between surface moisture and 

the strength of the backscattered signal [12-14]. This is generally considered to be approximately true 

for this range of soil moistures for a given study site. However, this linear relationship is not 

observed for surface backscatter models using surface roughness parameters and a dielectric constant 

corresponding to homogeneous soil. Instead, it is replaced by a relationship that saturates at soil 

moisture values of approximately 25% [1, 5]. 

Soil moisture is often considered to have a homogeneous vertical profile. For studies in the L, C, and 

X frequency bands, empirical and semi-empirical models are often calibrated using soil samples 

collected down to a depth of 5 cm, in which the moisture content is assumed to be homogeneous. In 

recent years, some studies have revealed that using the actual, inhomogeneous soil moisture profile 

can make a significant difference in the results obtained from backscatter models [15-17]. Fung et al. 



[15] have shown that discrepancies greater than 2 dB can occur in backscatter simulations, depending 

on whether the moisture is assumed to be homogeneous or to vary as a function of depth. Le Morvan 

et al. [17] found a limited effect in humid regions, where the soil moisture profile is characterised by 

relatively small variations. In semi-arid regions, the moisture content can vary quite strongly as a 

function of depth, due to the high ambient rate of evaporation and the small number of rainfall events 

[18]. Amri et al. [18] considered the moisture profile to be the primary reason for the observed 

discrepancies between ground-truth soil moisture measurements and remote sensing retrievals, using 

Vienna University's METOP ASCAT inversion approach [19]. Concurrent with these discussions, 

various algorithms based on either physical models, or statistical or empirical analyses, have been 

developed in recent years to estimate soil moisture [20-22]. A variety of global moisture products 

have also been proposed in recent years, using passive and active microwave satellite data (WSC 

ERS, MetOp ASCAT, Aqua AMSR-E, etc.) [23]. It is important to have a clear and precise 

understanding of the quantities estimated with each dataset and inversion technique. In particular, it 

is essential to take into account frequency differences between different datasets and their impact on 

retrieved moisture values. 

The aim of the present paper is to propose an approach based on the AIEM model, in which the 

vertical soil moisture profile is taken into account. In Section 2 we present computations of Fresnel 

coefficients and penetration depth for a heterogeneous vertical soil moisture profile. In Section 3, we 

present AIEM model simulations using the proposed dielectric model, in which the influence of 

frequency is also considered. In Section 4 we propose an approach allowing these simulations to be 

validated using actual radar measurements (Envisat ASAR and TerraSAR-X) over bare soil test 

fields. Finally, conclusions are presented in Section 5. 

2. Analysis of the soil moisture profile 

2.1 Computation of the Fresnel coefficients 



To analyze the influence of a non-uniform vertical soil moisture profile on backscatter simulations, 

we introduce the notion of a multi-layer soil surface, leading to dielectric constant variations as a 

function of depth. We estimated the soil's effective permittivity on the basis of the Fresnel 

coefficients determined for the interfaces between adjacent layers [15]. This effective permittivity is 

used as an input to the AIEM model, through the computation of a global Fresnel coefficient. In this 

study, we consider four layers (0-1 cm, 1-2 cm, 2-3 cm and a deeper layer, extending below 3 cm) 

for soil characterization. This distribution was chosen because, as a consequence of the evaporation 

process, the largest variations are generally observed in the first 3 cm of depth [17]. The coefficients 

R3, R2, R1 and R0 are the Fresnel coefficients at the boundaries among the four layers.  

In the following, we provide an example of the computations used in the case of horizontal 

polarization only. In practice, we found very similar results for horizontal and vertical polarizations. 

The Fresnel reflection coefficient, R0 , between the air and layer 1 (with permittivity 1) is written:  
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where i is the incidence angle. 

The Fresnel coefficient Rn-1 between layer n-1 and layer n (permittivity n) is: 
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in which the angle of transmission n  defined by Snell's Law is given by: 
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The half-space reflection coefficient for a layer of depth dn-1 is written: 
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where 1n  is an attenuation factor depending on the thickness dn of the nth layer, the 

electromagnetic wavelength, 0, and the effective permittivity n : 
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In reality, there are no physical boundaries between the layers, and the soil medium has a continuous 

dielectric profile. To avoid standing wave effects resulting from the assumption of discrete layers, it 

was chosen to use incoherent analysis of the reflections in (4) [15]. The phase terms were thus 

neglected. The corresponding effective permittivity was computed from the retrieved Fresnel 

coefficient Rtot by considering the case for which the incident waves impinge on all layers at normal 

incidence: 
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2.2 Penetration depth computation 

The penetration depth p of the radar wave is defined as the depth at which the power of the incident 

wave ( pP0 ) is reduced by a factor of e, [1, 24-25]. In homogeneous soil, the power pP  transmitted at 

a depth d can be expressed as: 
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 where p,1  is the transmissivity, i.e. the Fresnel power coefficient at the interface between air and 

the soil surface; the exponential factor is the propagation factor in the soil. zk1  is the z component of 

the wave number in soil: 
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 where  is the radian frequency, 0 is the permeability of air, 0 is the absolute permittivity of air,  i 

is the complex relative permittivity of layer i, i is the incidence angle at the air-soil interface, and K 

is the wave number. 

For the case of a multi-layer profile, the power transmitted into nth layers can be calculated using: 
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where di is the thickness of layer i, and i-1,p is the transmissivity of the interface between layers i-1 

and i. 

By assuming that ePP pp /1/ 0   in (9), it follows that the penetration depth p corresponds to the 

depth of layer n, defined by the equality: 
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2.3 Generation of simulated soil moisture profiles 

To analyze radar backscatter from surfaces with a heterogeneous vertical soil moisture profile, we 

simulated six different vertical moisture profiles, representing the influence of variations in soil 

moisture with depth following a rainfall event, as a function of time. Fig. 1 illustrates these six 

profiles, as a function of depth between 0 and 5 cm. The first profile (Prof1) corresponds to 

homogeneous soil with a volumetric moisture content equal to 30%. For the five other profiles, the 

soil moisture can be seen to decrease progressively from its maximum value at 5 cm to a minimum 

value at the surface, as a result of evaporation effects. The last profile (Prof 6) corresponds to nearly 



homogeneous soil moisture characterized by a volumetric moisture content close to 7%. For all 

profiles, we considered the soil moisture to be homogeneous at depths greater than 5 cm. 

To simplify the scenarios discussed in this study, in agreement with Section 2.1 we consider each 

soil profile to have four layers, with the first from 0 to 1 cm (d1=1 cm), the second from 1 to 2 cm 

(d2=1 cm), the third from 2 to 3 cm (d3=1 cm), and the fourth for all depths below 3 cm.  

Fig. 2 illustrates the results of penetration depth computations based on the proposed four-layer 

distribution, for three frequency bands (L = 1.25 GHz, C = 5.3 GHz, and X = 9.65 GHz), and the six 

simulated moisture profiles. The penetration depth clearly increases as the soil moisture content or 

the radar frequency is decreased. It is also important to note that the assumption 1 of a uniform value 

of 5 cm for the penetration depth is not consistent with the results found in this study. In fact, for the 

range of soil moisture profiles considered in this study, the mean penetration depths are found to be 

approximately 6 cm, 2.2 cm and 1 cm at L, C and X bands, respectively.  

In the following section, we discuss the influence of multi-layer moisture profiles on the radar 

backscatter predicted by AIEM simulations. 

3. AIEM model simulations 

3.1 Comparison between AIEM simulations using four-layer and single-layer configurations 

Fig. 3 compares AIEM simulations derived with two different configurations: (1) a four-layer 

moisture content profile with incorporation of penetration depth and (2) a single layer with 

homogeneous soil moisture equal to the mean value determined for the first 5 cm. The six profiles 

presented in the previous section were used. The backscatter simulations were performed in HH 

polarization at the three frequencies corresponding to the L, C and X bands, with an rms soil height 

equal to 0.6 cm, a correlation length equal to 6 cm, and an exponential correlation function. The 

corresponding texture is composed of about 30% sand, 40% clay and 30% silt. The input moisture 

values were taken to be the mean values computed from simulated moisture profiles for each 

respective layer (0-5 cm, 0-1 cm, 1-2 cm, 2-3 cm, etc.). The dielectric constant of each layer, which 



is a function of the volumetric moisture and texture, was computed using the algorithm proposed by 

Hallikainen et al. [26]. In Figs. 3a, 3b and 3c, corresponding to the three frequencies of interest, the 

coordinates of each point correspond to the simulated signal strengths found for a single layer 

(ordinate axis), and each of the six 4-layer soil moisture simulations (abscissa axis). Errors resulting 

from the use of a single-layer description are clearly small for high and low moisture values, for 

which it can generally be assumed that the soil profile is nearly homogeneous after prolonged 

consistent meteorological condition [17-18]. However, for the other cases corresponding to 

intermediate soil moisture content, the discrepancy between the simulated signal strengths can be 

greater than 2 dB. 

The rms error for the two types of simulation (4-layer AIEM model simulations and AIEM 

simulations with homogeneous conditions) is 0.97 dB at L band, 1.3 dB at C band and 1.3 dB at X 

band. 

3.2 Relationship between soil moisture and simulated radar backscatter 

Fig. 4 shows the relationships between soil moisture and simulated radar backscatter at a 20° angle 

of incidence at the three frequencies: 1.25 GHz (Fig. 4a), 5.3 GHz (Fig. 4b) and 9.65 GHz (Fig. 4c), 

for the same six simulated profiles. Each point in this figure corresponds to the AIEM-computed 

value, corresponding to one simulated profile. Three sets of simulations are associated with each of 

these figures: the first (Case 1) consists of AIEM four-layer simulations for each of the three 

frequencies as a function of soil moisture estimated between the surface and a penetration depth  

with variable moisture content; the second (Case 2) corresponds to simulations using a four layer 

model as a function of soil moisture content estimated as an average over the first 5 cm in depth; and 

the third (Case 3) corresponds to AIEM simulations made for a single-layer soil moisture profile 

estimated as an average over the first 5 cm in depth. 

These results lead to three conclusions. First, a nearly linear relationship is found, as shown in Fig. 4, 

between the soil moisture estimated at a depth average over top 5 cm and the AIEM multi-layer 



model (Case 2), for soil moistures between 7% and 30%. This linear relationship is not consistent 

with physical backscatter models for which homogeneous soil moisture conditions are assumed, as 

shown by various theoretical studies [1, 5] and our own simulations (Case 3). Using physical 

analytical models, a logarithmic relationship is generally retrieved, which tends to saturate at soil 

moisture values greater than 25%. Single-layer model simulations (Case 3) show that the signals are 

over-estimated at intermediate values of soil moisture. This result is validated by almost all 

experimental studies [13, 20]. 

Second, we observe that the L-band frequency has the smallest discrepancies between different 

model simulations (Case 1, Case 2 and Case 3). This result is also consistent with other experimental 

and theoretical results, showing that there is a smaller discrepancy between the real data and model 

simulations at L band [27]. This behavior is partially due to the fact that L band has the greatest 

penetration depth, which is close to the 5 cm reference depth for medium moisture values, as shown 

in Fig. 2. The X-band frequency has the largest difference between cases. This implies that at X band 

there is a high risk of errors being introduced through the use of theoretical backscatter models  if 

soil moisture heterogeneities are not taken into account in the dielectric constant estimation. Finally, 

the results based on theoretical models indicate that significant discrepancies can exist with a linear 

relationship often assumed in empirical inversion techniques at C and X bands. This effect could 

have significant impact on soil moisture retrieval for large vertical gradient in soil moisture, such as 

those observed under certain specific meteorological conditions, for example under high evaporation 

conditions. In fact, most empirical approaches (e.g. change detection methodology and/or a simple 

relationship between data and ground measurements) use a linear relationship for the soil moisture 

estimation consistent with Case2 simulations, as opposed to other methods based on physical 

backscatter models, which often assume the soil moisture conditions to be homogeneous (Case 3). 

The consistency observed between the empirical relationships and Case 2 can be explained by the 

fact that the latter scenario produces almost the same conditions as an empirical approach based on 



radar simulations in which the actual soil heterogeneity is taken into account. Under these conditions, 

the estimated value of the soil moisture content estimated as an average over the first 5 cm in depth is 

taken as the second variable in the empirical relationship. 

4. Experimental discussions 

4.1 Experimental data base 

a) Study site 

Our study area is located in central Tunisia (9°23’−10°17’E, 35°10’−35°55’N). The climate in this 

region is semi-arid, with an average annual rainfall of approximately 300 mm/year, characterized by 

a rainy season lasting from October to May, with the two rainiest months on average being October 

and March. As is generally the case in semi-arid areas, the rainfall patterns in this area are highly 

variable in time and space. The landscape is mainly flat, and the vegetation is dominated by 

agricultural production (cereal grains, olive groves, fruit trees, and market gardens). 

 b) Satellite database 

Radar measurements were acquired with two sensors, Envisat ASAR (C-band, 5.6 cm) and 

TerraSAR-X (X-band, 3.1 cm). In the case of the ASAR data, the 'narrow mode' corresponding to 

high resolution data (pixel spacing 12.5 m x 12.5 m) was chosen. The ASAR data was acquired over 

the study site using the configurations described in Table 1. Two TerraSAR-X images were acquired 

at high incidence angle (35◦), at HH polarization and a ground pixel spacing of 1 m (Table 1). 

Following radiometric calibration of the radar images, they were geo-referenced using a SPOT/HRV 

optical image. The registration error of the ASAR and TerraSAR-X images is taken into account by 

selecting areas of interest (AOI) within each training site and removing two pixels corresponding to 

the limits defined by the GPS control points. Finally, the mean radar signals were estimated over the 

test fields for all of the measurement dates used in this analysis. 

c) Ground truth measurements 



The field campaigns described in this study were performed in three bare training fields (F1, F2 and 

F3). Concurrent with the radar measurements, ground-truth measurements of soil roughness, 

moisture content, bulk density, and texture were made on the three test fields. The last three variables 

are needed to estimate the soil's dielectric constant.  

Soil moisture: 

Soil moisture measurements were performed to estimate soil moisture profiles within the top 5 cm 

(0-1 cm, 1-2 cm, 2-5 cm), using a gravimetric method with more than ten samples per field. These 

samples were collected using metallic cylinders of different length (1 cm and 3 cm), to retrieve 

volumetric soil moisture, the product of the moisture content and the soil density.  

On each date, measurements were performed for each of the three tested fields. Fig. 5 illustrates 

various volumetric soil moisture profiles measured during the experimental campaigns. It can be 

clearly seen that the hypothesis of a uniform soil moisture profile is valid only for large values of soil 

moisture. In most other cases, the soil moisture is found to increase with increasing depth. We 

observed more than 10% difference in volumetric moisture between the first layer (0-1cm) and the 

third (2-5 cm) layer. 

Soil Texture: For each test field, several soil samples were taken and processed in the laboratory. 

Only small differences in texture were found among the three fields, and the mean values were 39% 

for sand, 41% for clay and 20% for silt (Table 2). 

Soil Roughness: Soil roughness measurements were made using a pin profiler, with a total length of 

1 m and a resolution of 2 cm. In order to improve the accuracy of the roughness computations, 

approximately ten profiles were recorded for each field. Since the surface height profile is considered 

to be ergodic and stationary, we can compute an exponential correlation function for each profile and 

derive two statistical parameters: the rms surface height (vertical scale of roughness) and the 

correlation length (l). The rms height ranged between 1.1 and 1.9 cm, and the correlation length 

ranged between 3.8 and 6.1 cm, as shown in Table 2. 



 

4.2 Comparison between AIEM simulations and measured radar signals 

Fig. 6 compares simulations performed using the AIEM model (multi-layer and single-layer 

configurations) with the real radar data acquired by Envisat ASAR (Fig. 6a) and TerraSAR-X (Fig. 

6b). As a consequence of the large range of incidence angles over which Envisat ASAR data is 

collected (from IS1 to IS5) and the large variations in ground soil moisture, this data is characterized 

by a greater range of values than that obtained with TerraSAR, using a fixed angle of incidence. As 

also observed in other studies [17, 26], the single-layer AIEM simulations were found to 

underestimate the measured radar data, characterized by a bias and an rms error, respectively, of 1.4 

dB and 2.2 dB for C band, and 2.8 dB and 2.7 dB for X band. The multi-layer simulations provided 

improved results, with good agreement between simulations and real data for C and X bands. The 

bias and RMSE were 0.5 dB and 1.3 dB, respectively, for C band, and 0.8 dB and 1.0 dB, 

respectively, for X band. These results have also revealed some of the limitations of the AIEM 

model, as has already been demonstrated by [11], from comparison with results determined with the 

NMM3D technique. 

5. Conclusions 

In this paper, we illustrate the influence of moisture profile heterogeneities on the backscattered radar 

signal. The AIEM multi-layer model is shown to produce different results from the AIEM single 

layer model, in the case of heterogeneous profiles, in particular those having a moderate level of soil 

moisture. A clearly linear relationship was established between the multi-layer model and the 

moisture estimates taken at a depth of 5 cm, in the three frequency bands of interest (L, C and X). 

This linear relationship between the multi-layer model and the moisture content becomes non-linear 

for soil moisture estimates made at the penetration depth, as well as for simulations of homogeneous 

conditions. Linear behavior is generally observed in real data. Relationships between moisture and 

backscatter simulations were observed as a function of frequency and moisture heterogeneity. The 



least significant influence of moisture profile heterogeneities was found at L band. This is due to the 

fact that that the L-band penetration depth is approximately 5 cm for medium moisture levels, 

whereas the penetration depth for the C and X bands is around 1 cm. A large difference for the 5 cm 

volumetric soil moisture exists if the moisture profile is heterogeneous. 

Analysis of radar data measured by Envisat ASAR and TerraSAR-X in C and X bands confirms our 

theoretical results, with the rms error between simulations and data being improved to 1.3 dB and 1.0 

dB for the multi-layer model, as opposed to 2.2 dB and 2.7 dB for the single-layer model, in C and X 

bands, respectively. These results confirm the significant influence of soil moisture heterogeneities 

on the strength of radar backscatter. They also highlight the sensitivity of inversion techniques and 

the dependence of the accuracy of retrieved soil moisture on the assumed moisture profile and the 

radar frequency, the latter being directly related to the penetration depth of radar waves. 
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Figure and Table captions: 

Figure 1: Simulated soil moisture profiles showing temporal and vertical variations in soil moisture, 

from Prof1 to Prof6. 

Figure 2: Penetration depth as a function of soil moisture and radar frequency. 

Figure 3. Inter-comparison between 4-layer AIEM model simulations and AIEM simulations with 

homogeneous conditions (for the first 5 cm): a) L band, b) C band, c) X band. 

Figure 4. Illustration of the relationship between soil moisture and backscattering coefficients 

simulated with the AIEM models for different configurations (Case1: 4-layer AIEM model as a 

function of moisture estimated down to the penetration depth, Case2: 4-layer AIEM model as a 

function of moisture estimated over the first 5 cm, Case3: single-layer AIEM model as a function of 

moisture measured over the first 5 cm, (a) L band, (b) C band, (c) X band. 

Figure 5: Soil moisture contents measured in situ, in the three training fields. 

Figure 6: Inter-comparisons between AIEM simulations (using 4-layer and single-layer versions), 

and real radar data from Envisat ASAR (a) and TerraSAR-X (b) 

Table 1: Envisat ASAR and TerraSAR-X acquisition details 

Table2: Ground measurement details for the three test fields 



 

Figure 1: Simulated soil moisture profiles showing temporal and vertical variations in soil moisture, 

from Prof1 to Prof6. 
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Figure 2: Penetration depth as a function of soil moisture and radar frequency. 
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(c) 

Figure 3. Inter-comparison between 4-layer AIEM model simulations and AIEM simulations with 

homogeneous conditions (for the first 5 cm): a) L band, b) C band, c) X band. 
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(c) 

Figure 4. Illustration of the relationship between soil moisture and backscattering coefficients 

simulated with the AIEM models for different configurations (Case1: 4-layer AIEM model as a 

function of moisture estimated down to the penetration depth, Case2: 4-layer AIEM model as a 

function of moisture estimated over the first 5 cm, Case3: single-layer AIEM model as a function of 

moisture measured over the first 5 cm, (a) L band, (b) C band, (c) X band. 
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Figure 5: Soil moisture contents measured in situ, in the three training fields. 
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Figure 6: Inter-comparisons between AIEM simulations (using 4-layer and single-layer versions), 

and real radar data from Envisat ASAR (a) and TerraSAR-X (b) 

 

  

-16 

-14 

-12 

-10 

-8 

-6 

-4 

-2 

0 

-16 -14 -12 -10 -8 -6 -4 -2 0 

E
n

iv
is

a
t 

A
S

A
R

 d
a

ta
 (

d
B

) 

AIEM simulations (dB) 

4-layer simulations  

1 layer simulations 

-16 

-14 

-12 

-10 

-8 

-6 

-4 

-2 

0 

-16 -14 -12 -10 -8 -6 -4 -2 0 

T
e

rr
a

S
A

R
-X

 d
a

ta
 (

d
B

) 

AIEM simulations (dB) 

4-layer simulations 

1 layer simulations 



 

Sensor Acquisition 
date 

Pixel size configuration 

Envisat ASAR 08/03/2012 12.5 m X 12.5 m IS2 (20°) 
Envisat ASAR 09/03/2012 12.5 m X 12.5 m IS5 (41°) 
Envisat ASAR 14/03/2012 12.5 m X 12.5 m IS1 (15°) 
Envisat ASAR 25/03/2012 12.5 m X 12.5 m IS2 (21°) 
TerraSAR-X 14/03/2012 1 m X 1 m 35 ° 
TerraSAR-X 25/03/2012 1 m X 1 m 35 ° 
Table 1: Envisat ASAR and TerraSAR-X acquisition details 
 
 
Field Rms height (cm) Correlation length 

(cm) 
Texture 
Sand, clay, silt 

F1 1.6 6.1 38%, 40%, 22% 
F2 1.1 4.2 43%, 41%, 16% 
F3 1.9 3.8 35%, 43%, 22% 
Table2: Ground measurement details for the three test fields 

 

 

 

 


