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Abstract. The present paper proposes a method for the eval-
uation of soil evaporation, using soil moisture estimations
based on radar satellite measurements. We present firstly an
approach for the estimation and monitoring of soil moisture
in a semi-arid region in North Africa, using ENVISAT ASAR
images, over two types of vegetation covers. The first map-
ping process is dedicated solely to the monitoring of moisture
variability related to rainfall events, over areas in the “non-
irrigated olive tree” class of land use. The developed ap-
proach is based on a simple linear relationship between soil
moisture and the backscattered radar signal normalised at a
reference incidence angle. The second process is proposed
over wheat fields, using an analysis of moisture variability
due to both rainfall and irrigation. A semi-empirical model,
based on the water-cloud model for vegetation correction, is
used to retrieve soil moisture from the radar signal. Mois-
ture mapping is carried out over wheat fields, showing high
variability between irrigated and non-irrigated wheat covers.
This analysis is based on a large database, including both
ENVISAT ASAR and simultaneously acquired ground-truth
measurements (moisture, vegetation, roughness), during the
2008–2009 vegetation cycle. Finally, a semi-empirical ap-
proach is proposed in order to relate surface moisture to the
difference between soil evaporation and the climate demand,
as defined by the potential evaporation. Mapping of the soil
evaporation is proposed.

Correspondence to: M. Zribi
(mehrez.zribi@ird.fr)

1 Introduction

Soil moisture is a key parameter, influencing the manner in
which rainwater is shared between the phenomena of evap-
otranspiration, infiltration and runoff (Engman, 1991; Beven
and Fisher, 1996; Koster et al., 2004). In the case of semi-
arid and arid regions, this parameter is particularly impor-
tant for irrigation management (Bastiaanssen et al., 2000).
In order to optimise and protect water resources, which are
often very limited, an accurate estimation of the soil’s water
content is needed, in order to determine the expected evap-
otranspiration flux. Considerable efforts are thus devoted to
improving the evaluation of evapotranspiration, and to un-
derstanding its relationship with the vegetation cover and the
soil’s water content (Simonneaux et al., 2007). Soil evapora-
tion estimations are essential in these regions, which are gen-
erally characterised by a dispersed vegetation cover associ-
ated with a strong contribution to the surface flux, following
rainfall events in particular. Knowledge of the soil evapora-
tion also allows the volume of water available for vegetation
to be estimated. Several theoretical and experimental studies
have already been published, dealing with the use of surface
moisture for the estimation of evaporation. In the case of
the land surface models, for example, the soil surface mois-
ture is often considered to be the upper boundary condition
(Bernard et al., 1986; Saux-Picart et al., 2009). These mod-
els require different parameterisations, and in particular the
hydraulic conductivity or diffusivity between the surface and
deeper layers. The difficulty in characterizing these parame-
ters makes such approaches complex to use under operational
conditions, or in regions with limited ground-truth measure-
ments. The second type of approach relates the surface mois-
ture estimation to the difference between soil evaporation and
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climatic demand. Various empirical relationships, relating
the soil resistance to the surface soil moisture, have been pro-
posed (Chanzy, 1991; Mahfouf and Noilhan, 1991; Chanzy
and Bruckler, 1993; Simonneaux et al., 2009). Chanzy and
Bruckler (1993) proposed an empirical model linking soil
evaporation to soil moisture and climate demand, for differ-
ent types of soil texture.

Concerning soil moisture estimation, over the last twenty
years, radar remote sensing has demonstrated its strong po-
tential (Ulaby et al., 1996; Moran et al., 2000; Le Hégarat-
Mascle et al., 2002; Wagner et al., 2007). Using SAR ob-
servations, soil moisture can be estimated with a high spatial
resolution, which is not the case with other types of remote
sensing measurement (Jackson et al., 1996; Baup et al., 2007;
Rahman et al., 2008).

The backscattered radar signal over bare soil strongly de-
pends on soil moisture and surface roughness (Zribi et al.,
2007; Baghdadi et al., 2007). In the case of sparse veg-
etation, the return signal depends both on the vegetation’s
backscattering characteristics, and on the attenuation it intro-
duces to backscattering from the soil (Bindlish et al., 2001;
Le Hégarat-Mascle et al., 2002). For bare soils, various
theoretical and empirical approaches have been developed
(Fung et al., 1992; Oh et al., 1992; Dubois et al., 1995;
Zribi and Dechambre, 2002; Baghdadi et al., 2006; Thoma et
al., 2008). Among these, the “linear approach” linking sur-
face soil moisture to calibrated and validated SAR (Synthetic
Aperture Radar) measurements (SIRC, ERS, RADARSAT,
ASAR, TerraSAR-X, ... is widely used (Quesney et al., 2000;
Zribi et al., 2007; Paris et al., 2010). The backscattered
contribution from the vegetation is determined using phys-
ical or empirical models (Ulaby et al., 1986; Magagi and
Kerr, 1997; Wigneron et al., 1999). Because of the high spa-
tial variability of soil moisture in the studied region, result-
ing from variable convective phenomena causing the rain-
fall to be strongly localized in small areas, and as a conse-
quence of the presence of a large fraction of irrigated areas,
we propose a methodology in which soil moisture is esti-
mated from SAR radar data. Our approach in this study is
based on ASAR/ENVISAT radar data, acquired simultane-
ously with in situ measurements of surface parameters (mois-
ture, roughness and vegetation). Two methodologies are pro-
posed to map soil moisture over non-irrigated olive groves
and wheat fields. Moisture estimations over olive groves are
based, in particular, on a change-detection approach using
ASAR/ENVISAT data, developed for the Sahel (Zribi et al.,
2007). The methodology was broken down into several suc-
cessive steps: (1) normalisation of radar data to one inci-
dence angle equal to 20◦, (2) for each cell, estimation of the
areas with a low vegetation density, (3) elimination of sur-
face roughness by subtracting the radar data recorded during
the dry season from that used for the soil moisture determi-
nation, (4) retrieval of soil moisture, by inverting a linear re-
lationship between the processed signals and the soil mois-
ture. Moisture estimations over wheat fields are based on the

 

Fig. 1. Illustration of the studied site.

Cloud water model (Attema et al., 1978), using parameters
estimated empirically from our database.

The present paper is organised as follows: Sect. 2 presents
the data collected from the Kairouan plain region (Tunisia)
under study: the database including satellite and ground-
truth measurements is discussed. In Sect. 3, the proposed
methodology for soil moisture retrieval is described. The de-
rived results, including the validation of soil moisture estima-
tions and mapping, are presented in Sect. 4. The evaluation
of soil evaporation is discussed in Sect. 5. Finally, our con-
clusions are provided in Sect. 6.

2 Site description and ground-truth measurements

2.1 Site description

The Kairouan plain (Leduc et al., 2007) is situated in central
Tunisia (9◦30′ E–10◦15′ E, 35◦ N, 35◦45′ N) (Fig. 1). The
climate in this region is semi-arid, with an average annual
rainfall of approximately 300 mm per year, characterised by
a rainy season lasting from October to May, with the two
rainiest months being October and March. As is generally
the case in semi-arid areas, the rainfall patterns in this area
are highly variable in time and space. The mean temperature
in Kairouan City is 19.2◦C (minimum of 10.7◦C in January
and maximum of 28.6◦C in August). The mean annual po-
tential evapotranspiration (Penman) is close to 1600 mm.

The landscape is mainly flat. The vegetation in this area
is dominated by agriculture (cereals, olive trees, and market
gardens). Crops are various and their rotation is typical of
semi-arid regions. The aquifer of the Kairouan plain repre-
sents the largest basin in central Tunisia. It is fed by the infil-
tration of surface waters during floods in the natural regime,
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Table 1. Characteristics of ENVISAT ASAR and SPOT data used in this study.

Number Pixel size Mode/incidence Polarisation/bands Orbit
angles

ENVISAT ASAR data 24 12.5 m× 12.5 m Alternating polarisation (HH, VV), HH Ascending or descending
Incidence angle: IS1, IS2, IS3

SPOT/HRV 10 10 m× 10 m Incidence angle< 11◦ Four bands –
B1: NIR
B2: Red
B3: Green
B4: MIR

or at the time of dam releases since the construction of the
Sidi Saad and El Haouareb dams. Surface and groundwater
streams are drained into Sebkha Kelbia, a large salt lake.

2.2 Satellite data

2.2.1 Description

In March 2002, the European Space Agency launched the
ENVISAT platform, carrying ASAR in its suite of instru-
ments. Compared with ERS/SAR, this instrument has an
extended measurement capacity, due to its multiple operat-
ing modes (Rosich, 2002). In particular, it has a greatly
improved measurement repetition rate, with less than three
days between two successive images taken at two different
incidence angles, as opposed to a 35-day repeat cycle for
ERS/SAR. In the present study, we chose to use the nar-
row observation mode, which generates high-resolution data
(12.5 m× 12.5 m pixel spacing). Acquisitions were made be-
tween 2008 and 2010, at three different incidence angles (18◦

“IS1”, 23◦ “IS2” and 27◦ “IS3”) in co-polarized, alternat-
ing HH and VV polarization mode. Details of the SAR im-
age characteristics are provided in Table 1. A large number
of SPOT/HRV images was acquired simultaneously with the
radar soundings. SPOT/HRV is a multi-spectral optical sen-
sor, with two bands in the visible domain, one in the near
infrared, and one in the medium infrared. These proved par-
ticularly useful for the mapping of land use and vegetation
dynamics.

2.2.2 Data processing

Radar data

Absolute calibration of the ASAR images was carried out, to
transform the radar signals (digitized values) into a backscat-
tering coefficient (σ ◦). All images were geo-referenced us-
ing a geo-referenced SPOT/HRV image, resulting in an RMS
control point error of about 10 m. The registration error of
the ASAR images was taken into account in selecting Areas
Of Interest (AOI) within each test field.

SPOT data

The SPOT/HRV images were firstly geo-referenced. Radio-
metric and atmospheric corrections were then applied in or-
der to estimate the reflectance of the vegetation canopy. Fi-
nally, for each image, the Normalized Difference Vegetation
Index (NDVI) was estimated. This index, given by the ratio
between the difference between the visible and near-infrared
channels, and the sum of these two channels, is related to the
green vegetation photosynthetic activity (Rouse et al., 1973).

2.3 Ground truth measurements

Ground-truth measurements were carried out over different
test fields, simultaneously to different satellite acquisitions.
Ten test fields were selected for these measurements, to rep-
resent different types of land use: wheat fields (P4 – 2 ha, P6
– 1.5 ha, P7 – 6 ha, P9 – 3 ha and Pst2 – 2 ha), non-irrigated
olive groves (P4bis – 6 ha), P10 – 2 ha, P12 – 6 ha), and bare
soils (P5 – 2.5 ha). The studied site is characterised by the
reduced size of most fields.

2.3.1 Surface moisture

Moisture measurements were taken simultaneously with the
satellite acquisitions. The in situ collection of soil was ex-
tremely important in this experiment, as it was needed to val-
idate the soil moisture retrieval algorithm. For each field,
we made approximately twenty measurements, distributed
over each field, at the time of each satellite acquisition. The
distance between two successive measurement points was
approximately 20 m. These were made using a handheld
Thetaprobe, and by means of gravimetric measurements at
depths between 0 and 5 cm. Thetaprobe measurements are
calibrated with gravimetric measurements. Table 2 illustrates
moisture values over field tests during different ground cam-
paigns.
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Table 2. Gravimetric volumetric soil moisture measurements (%) over test fields.

Field P4 P4bis P6 P7 P9 P10 P12 Pst2

23 December – 6.26 6.11 7.23 6.3 5.78 5.9 –
16 January 31.65 23.68 16.4 32.04 18.62 17.7 17.56 –
21 January 40.43 36.15 34.77 39.64 33.75 28.34 28.57 –
31 January 28.65 21.17 18.91 29.7 18.07 14.55 18.8 –
6 February 21.38 18.63 18.28 20.67 14.86 12 – 17.56
18 February 15.61 14.97 14.57 16.98 13.2 12.15 11.5 16.35
25 February 14.07 14.1 12.96 15.97 11.5 10.94 8.43 –
4 March 20.57 11.2 8.98 24.85 11.75 – – 20

Table 3. Roughness Rms height (cm) measurements.

Field P4 P4bis P6 P7 P9 P10 P12

24 March 0.8 2.5 0.8 0.6 0.7 1.5 1.6

2.3.2 Soil roughness

Roughness measurements were made using a pin profiler (to-
tal length of 1 m, and resolution of 2 cm). In order to guar-
antee suitable precision in the roughness computations, ap-
proximately 10 profiles were recorded for each field. As the
surface height profile is considered to be ergodic and station-
ary, we can compute the correlation function for each profile
(Zribi et al., 1997), and derive two statistical parameters: the
rms height (vertical scale of roughness), and the correlation
length (l) which represents the horizontal scale over which
similar roughness conditions are detected. The rms height
values are approximately equal to 0.7 cm for wheat fields,
and are generally greater than 1.5 cm for olive groves, as il-
lustrated in Table 3.

2.3.3 Vegetation covers

In order to characterise the vegetation covers, we consid-
ered three types of measurement. For the non-irrigated olive
groves, we measured the distances between trees and the size
of the trees in a large number of test fields. Distance between
olive trees is of approximately 20 m, and the mean projected
surface area of an adult olive tree, is approximately 16 m2

(Fig. 2).
In the case of wheat fields, we implemented two types of

measurement:

Leaf Area Index data

The Leaf Area Index (LAI) is defined as the total one-sided
area of leaf tissue per unit ground surface area. Accord-
ing to this definition, the LAI is a dimensionless quantity

 

Fig. 2. View of a typical non-irrigated olive tree field.

characterizing the canopy of an ecosystem. During the
2008/2009 agricultural season, the LAI was derived from
hemispherical digital photography based on analysis of the
canopy gap fraction (Duchemin et al., 2008). These mea-
surements were applied to each wheat field, on different days
during the vegetation season. Irrigated wheat fields are gen-
erally characterised by a higher LAI than non-irrigated wheat
fields. Before the end of March, the highest observed LAI
was approximately 2. At the end of April we observed the
highest vegetation density, with its maximum generally lying
in the interval (4–6). Table 4 illustrates measurement values
over wheat test fields.

Vegetation water content (VWC) data

The VWC was measured several times in five fields during
the 2009 vegetation cycle (Table 4). For each field, mea-
surements were made at three locations, each having a 1 m2

surface area. The above ground biomass was removed, and
wet and dry weights were used to compute the VWC. A mean
value was computed from the three measurements.

Hydrol. Earth Syst. Sci., 15, 345–358, 2011 www.hydrol-earth-syst-sci.net/15/345/2011/
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Table 4. Leaf Area Index and vegetation water content measurement.

Field P4 P6 P7 P9 Pst2

LAI VWC LAI VWC LAI VWC LAI VWC LAI VWC
(kg/m2) (kg/m2) (kg/m2) (kg/m2) (kg/m2)

21 January – – – 0.01 – –
2 February 0.55 – 0.030 – 0.074 – 0.045 – 0.19 –
18 February 0.64 0.38 0.59 0.160 0.80 0.670 0.04 0.08 0.33 0.532
4 March 0.70 – 0.37 – 0.46 – 0.1 – 0.55 –
24 March 2.17 0.913 1.37 0.705 1.71 1.15 0.93 0.313 1.62 0.689
30 April 1.48 0.726 3.70 0.738 2.33 0.722 0.52 0.585 3.21 –

Land use

Land use validation was carried out in March 2009, with dif-
ferent fields being selected from the studied region (more
than 150 fields) with two parts, a first one for the identifi-
cation of empirical NDVI limits between different types of
vegetation classes, and a second one for the validation of our
approach to land use classification.

Land use mapping is based on a decision tree, using three
types of satellite data: four SPOT images, SRTM data and
finally two radar images. We established eight classes of
land use: non-irrigated olive trees, irrigated olive trees, ir-
rigated winter vegetables, irrigated summer vegetables, bare
soils, urban areas, mountainous areas, water cover and ar-
eas of coastal salt flats “sebkhas”. In the case of vegetables,
as previously mentioned, we considered two classes, one for
winter and the other for summer. We used empirical NDVI
thresholds with the images acquired at the end of Decem-
ber 2008 (NDVI> 0.4) and during July 2009 (NDVI> 0.3).
In fact, during these two periods, only irrigated vegetables
presented a high NDVI. For the wheat classes (irrigated or
non-irrigated), we made our analysis on two different dates,
the first at the beginning of the cycle (in December 2008),
and the second at the end of the vegetation development pe-
riod (April 2009). The distinction between irrigated and non-
irrigated wheat is based on a NDVI threshold equal to 0.5,
since the irrigated class has a higher NDVI. Irrigated and
non-irrigated olive trees are separated using a K-mean ap-
proach, based on a single optical SPOT image. The DTM
provided by the Shuttle Radar Topography Mission (SRTM,
http://srtm.usgs.gov/) allowed certain zones to be eliminated
from our land use analysis. We excluded mountainous areas
with an altitude greater than 300 m. We also identified water
cover and urban classes. Validation of these remotely sensed
classifications, based on ground verification over more than
100 fields with different types of land uses, reveals an ac-
curacy of around 94%. Figure 3 illustrates the results of
our land use mapping for the 2008–2009 season. The non-
irrigated olive tree class covers 43% of the studied site, and
the wheat class corresponds to 12% of the surface area of the
studied site.

Fig. 3. Illustration of land use conditions during the 2008–2009
vegetation season.

3 Methodology of soil moisture estimation

Our approach to soil moisture estimation and mapping is car-
ried out on two types of land use: Non-irrigated olive groves
and wheat fields, which represent the two most important
land use classes.

3.1 Soil moisture estimation over non-irrigated olive
groves

Introduction

For the purposes of surface soil moisture estimation, we used
the IS1, IS2, IS3 configurations, corresponding to low in-
cidence angles of less than 30◦. The aim of this approach
was to limit the influence of vegetation and soil roughness,
thereby increasing the accuracy of the moisture estimations.

The signal received from the non-irrigated olive groves can
be written as the incoherent sum of two contributions (bare
soil and vegetation cover), weighted by their respective per-
centages of terrain coverage. Using the estimated distance

www.hydrol-earth-syst-sci.net/15/345/2011/ Hydrol. Earth Syst. Sci., 15, 345–358, 2011
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between olive trees of approximately 20 m, and the mean
projected surface area of an adult olive tree, i.e. approxi-
mately 16 m2, we derive for different incidence angles lower
than 30◦ a value between 4% and 10% for vegetation frac-
tion. We propose to use the approach proposed by Zribi et
al. (2007), detailed in introduction, and applied over disperse
vegetation cove. The radar signal could be modelled with a
linear relationship between radar signal and moisture, as:

σ 0
total ≈ α (veg) × Mv + g (Roughness, veg) (1)

Whereα is related to vegetation fraction and to the attenua-
tion due to the olive tree characteristics.

g is a function of soil roughness and vegetation cover ef-
fects on radar signal.

Mv is volumetric soil moisture.
The inversion process is based on three successive steps:

Normalisation of the radar signals to an incidence angle
of 20◦

Normalisation of the ASAR data is based on the interpre-
tation of radar signal data, for different incidence angles,
recorded over large olive tree AOIs. These areas are selected
to be in the olive tree class, and only those radar images
recorded on very dry dates are considered, in order to elimi-
nate noise contributed by soil moisture effects. The angular
dependence of backscattering coefficient is modelled with a
mathematical function (Baghdadi et al., 2001) written as:

σ 0
= a cos (θ)b (2)

We retrieveb respectively equal to 5.5 and 6.3 for HH and
VV polarisation.

Roughness and vegetation effect reduction

In order to limit roughness and vegetation effects, we con-
sider a change-detection approach (Wagner et al., 1999;
Moran et al., 2000; Zribi et al., 2007). We computed the dif-
ference between each raw data image and a reference image
taken under dry conditions at the beginning of the vegeta-
tion season (21 December 2008), with a moisture content of
approximately 5% over the studied site without spatial vari-
ations.

In the case of the olive groves, we observed very small
variations during the vegetation cycle, due in particular to
the olive trees being evergreen. We thus consider, as an initial
hypothesis, that the vegetation has an approximately constant
effect on the radar signal.

If we now consider a reference image, with a roughnessR1
and moisture contentMv1 and a data image with a roughness
R and moisture contentMv,

1σ 0
total = α(Mv − Mv1) + g(veg, R) − g(veg, R1) (3)

As for surface roughness, the olive groves generally have a
tillage corresponding to ploughed soil with an rms height

of around 1.5–3 cm, as shown in ground measurements.
Only small variations could be observed after rainfall events.
However, the soil is ploughed at different times during the
year, which induces low variations on rms heights. For such
roughness levels the backscattered radar signals are nearly
saturated (Fung, 1994; Zribi et al., 1997). The subtraction of
a reference image is therefore sufficient to considerably re-
duce the influence of roughness in the observed pixels, even
for cases where there are small differences in roughness be-
tween the two images. We can thus simplify the above ex-
pression to:

1 σ 0
total ≈ α (Mv − Mv1) + ε (4)

Relationship between moisture and processed radar
signals

Figure 4 illustrates the linear relationship found between a
part of ground surface moisture measurements and radar sig-
nals over different test fields. Each point corresponds to a
set of two measurements (ground-truth measurement, radar
signal) recorded for different test fields. A strong correlation
can be seen between the two types of data, for HH and VV
polarisations, with a correlation coefficientR2 equal to 0.67
and 0.53 respectively. The measured moisture contents range
between 5% and 22%.

3.2 Moisture estimation over wheat fields

Introduction

Following an estimation of soil moisture related to precipi-
tation effects, carried out over non-irrigated olive groves, we
propose a second methodology over wheat fields. Because
of limited fields scale (generally lower than 2ha), and high
spatial variability of moisture between irrigated and non-
irrigated wheat fields, we need to realize moisture estimation
in higher spatial resolution.

In this case, the inversion algorithm is based on two steps:

Vegetation correction

In order to estimate the soil moisture over fields covered by
vegetation, we first need to eliminate the vegetation’s influ-
ence on the backscattered radar signal. We propose to use the
water-cloud model developed by Attema and Ulab (1978).
For an incidence angleθ , the backscatter coefficient is repre-
sented in the water cloud model by the expression:

σ 0
= σ 0

canopy + σ 0
canopy+ soil + τ2 σ 0

soil (5)

whereτ2 is the two-way vegetation transmissivity. The first
term represents scattering due to the vegetation; the second
term is linked to multiple scattering effects, and the third
term represents the soil scattering attenuated by the vegeta-
tion cover. The second term can be neglected in the case of
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Fig. 4. Processed ENVISAT ASAR signals (in decibels) versus
measured volumetric moisture over olive tree fields,(a) HH polar-
ization,(b) VV polarization.

wheat scattering (Ulaby et al., 1986). Expression Eq. (5) can
thus be simplified to:

σ 0
= σ 0

canopy + τ2 σ 0
soil (6)

with

τ2
= exp (−2 B . VWC . secθ) (7)

and

σ 0
canopy = A . VWC . cosθ

(

1 − τ2
)

(8)

where VWC is the vegetation water content (kg/m2).
A and B are parameters which depend on the type of

canopy. This formulation represents a first-order solution
for the radiative transfer equation through a weak medium,
where multiple scattering is neglected.

The database is divided into three sets: the first of these
contains measurements acquired just before the vegetation
starts to develop: from the end of December until the end of
January, the soils are bare with no vegetation cover on the
wheat fields. This set is used to estimate the backscattering
contribution from bare soil. A second set is used to estimate
the parameters of the radiative transfer model (A andB). Fi-
nally, a third set is used for model validation.

Relationship between soil moisture and bare soil radar
signals

For bare soil backscattering, we consider a simple relation-
ship between moisture and radar signal.

σ 0
soil (θ) = β (θ) exp (γ . Mv) (9)

Whereβ is dependent on roughness and incidence angle, and
γ corresponds to the slope of the moisture expressed as a
function of the logarithm (dB) of the processed radar signal.

The slopeγ is estimated using the first of the aforemen-
tioned database sets.

After sowing, the farmers do not till the soil again before
harvesting. Our roughness ground measurements indicated
the presence of smooth soils with an rms height approxi-
mately between 0.6 and 0.8 cm. It is reasonable to assume
that for some wheat fields roughness could have a small de-
crease throughout our period of inversion. IEM simulations
show approximately a 2 dB decrease of backscattering co-
efficient, at low incidence angles, for surfaces with a rms
height going from 0.8 cm to 0.6 cm (Zribi and Dechambre,
2002). Our hypothesis of a constant meanβ value for all
wheat fields during period of inversion could then introduce
a supplementary maximum error in volumetric moisture es-
timation of about 3% due to±1 dB error in roughness effect.

4 Results and discussions of soil moisture estimation

4.1 Moisture estimation over olive trees

Validation of the proposed algorithm

Validation of the proposed algorithm is based on a compari-
son between a second part of ground-truth (gravimetric, and
handheld Thetaprobe) measurements and estimations derived
from ENVISAT ASAR data, for data acquired in 2010 and
moisture conditions ranging from dry to wet, over the tested
olive groves (P4bis, P10, P12). The resulting RMSE is equal
to 3.8% for the HH and 4% for the VV polarisations, as il-
lustrated in Fig. 5. Figure 6 illustrates a good coherence be-
tween soil moisture estimations with HH and VV radar sig-
nals, with an RMSE equal to 2% and bias equal to 1.6%
over tested fields. The accuracy of this outcome demon-
strates the robustness of the proposed algorithm, in spite of
its simplicity. Our decision to develop an inversion algo-
rithm, for olive trees only, considerably reduces the influence
of roughness and vegetation on the soil moisture estimations.
It is thus possible to apply this validated model to each EN-
VISAT ASAR image, to produce soil moisture maps over
fields in the non-irrigated olive tree class.
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Fig. 5. Soil moisture estimations from ENVISAT ASAR data, ex-
pressed as a function of the soil moisture derived from ground-truth
measurements, for fields in the “olive tree” class of land use,(a) HH
polarisation,(b) VV polarisation.

Mapping of soil moisture

In order to eliminate the effects of local terrain hetero-
geneities (due to soil texture, vegetation dispersion hetero-
geneity, discontinuities between fields, etc) in the processed
radar signal, the soil moisture was estimated over large cells
defined by 100× 100 pixel areas (about 1 km2). For each
resulting cell, the soil moisture estimation is applied only if
more than 25% of the cell’s pixels belong to olive groves.
The value of the computed moisture can be then considered
to be representative of the whole cell. To validate these es-
timations, the ground-truth measurements taken within the
same cell are averaged. When the inversion is applied to the
HH and VV radar signals, we observe similar results for both
polarisations. In order to increase the precision of our esti-
mations, we took the mean value of the two polarisations as
the final result in the mapping process. In Fig. 7, soil mois-
ture maps are shown for three different dates. These maps
are directly related to the temporal and spatial variability of
the precipitation over this region. For example, on date 9 De-
cember 2009, dry soil is observed over the full studied site,
with a low moisture content of around 10%. Indeed, no rain-
fall was recorded during the 15 days preceding the acquisi-
tion of this satellite image. In the case of the image taken
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Fig. 6. Inter-comparison between HH and VV radar signal moisture
estimations.

on 11 April 2009, strong spatial variability of the surface
moisture can be observed. In fact, a rainfall event arriving
from the West occurred during the afternoon of 11 April. In
the Eastern part of this image, the soil moisture remained
low. The third image in this figure provides the moisture
map produced one day later, on 12 April, showing gener-
alised rainfall throughout the studied site, associated with a
global increase in soil moisture with a mean value of around
25%. Our approach allows the moisture to be estimated over
approximately 50% of the studied site. It is presented partic-
ularly in the South East, where irrigated agriculture is absent.
The interest of the choice of this class of land use is evident,
since the computed moisture has only a small sensitivity to
roughness and vegetation, both of which are affected by very
limited changes from one year to another. This type of algo-
rithm can thus be applied each year, with no need for it to be
adapted to variations in local conditions.

4.2 Moisture estimation over wheat fields

Validation of moisture estimation

Validation of the proposed algorithm is based on com-
parisons between ground-truth measurements made in test
wheat fields (P4, P6, P7, P9, Pst2) characterised by different
soil moistures, ranging between dry and wet conditions and
different vegetation development states, and estimations de-
rived from ENVISAT ASAR radar signal acquisitions, made
in 2009 and 2010. The results are illustrated in Fig. 8. We
observe more validation points in HH polarisation because of
the use of one ASAR image with just this configuration.

The resulting rms error is equal to 5.3% and 6.4%, in the
respectively HH and VV polarisations. Although this accu-
racy could be considered to be adequate, in the case of irri-
gated fields we often observed a high spatial variation of the
soil’s moisture content. In addition, our measurements were
often carried out within a three hour period before or after the
site was overflown by the satellite. Some differences could
arise due to a high evaporation rate, and in some cases it is
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(a)

(b)

(c)

Fig. 7. Illustration of moisture mapping for an area containing
fields in the “olive tree” class of land use,(a) 11 April 2009,
(b) 12 April 2009,(c) 9 December 2009.
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Fig. 8. Soil moisture estimations from ENVISAT ASAR data, ver-
sus soil moisture derived from ground truth measurements, for dif-
ferent test wheat fields.

possible that our ground-truth measurements were affected
by irrigation which commenced during the satellite measure-
ments. Finally, as discussed in the last section, the hypothesis
of a constant roughness effect could increase the rms error.

Mapping of soil moisture over wheat fields

For the studied site, application of the inversion algorithm
requires some information related to the vegetation’s water
content. For this reason, we developed an approach based
on the interpretation of SPOT satellite optical measurements,
linking VWC to LAI and then to NDVI index estimations.

Figure 9 illustrates the relationship between measurements
of water content and LAI over different test fields. We ob-
serve a good correlation between the two variables, withR2

equal to 0.61. Therefore, knowledge of the LAI values can
be used to estimate the vegetation’s water content (VWC),
using the following equation:

VWC = 0.46 LAI − 0.004 (10)

For the LAI estimations, we made use of the NDVI veg-
etation index derived from SPOT images acquired during
the full vegetation cycle. We proposed a relationship be-
tween NDVI and LAI estimations for wheat, based on a large
database of ground and SPOT/HRV satellite measurements.
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Fig. 9. Vegetation water content as a function of Leaf Area Index
measured over wheat fields.

This expression is:

NDVI = NDVI∞ +(NDVIsoil−NDVI∞ ) ×e−k LAI (11)

with NDVI∞ = 0.75, NDVIsoil = 0.15 andk =−1.24.
For LAI < 2, we observe an increase in the LAI with

NDVI indices. For higher values of LAI, the estimation be-
comes more complex, with saturation of the NDVI values
resulting in reduced accuracy for the LAI estimations. In or-
der to make reliable estimations of the vegetation moisture
content, allowing accurate vegetation corrections, we ran the
inversions only for the period between January and March,
for which the LAI were still not high (lower than about 1.5).
The expressions for water content estimation could then be
applied with good accuracy. In the case of dense vegetation
cover, it is very difficult to retrieve the soil moisture with
sufficient precision. This is also an intrinsic limitation of the
use of C-band SAR data, since the radar signal is strongly
attenuated by the vegetation.

Our process thus involves, firstly NDVI mapping from
SPOT satellite images, from which the LAI and then vege-
tation water content are deduced over wheat fields. Finally,
after applying corrections for the influence of vegetation, we
derive the soil moisture. All pixels in the wheat class of land
use are considered to be valid candidates for soil moisture es-
timations. However, a radar signal from a minimum number
of neighbouring pixels is required to avoid adding speckle
noise to the results. We thus considered 5× 5 pixel windows
(about 0.4 ha) for the computation of effective radar signals
in the wheat class, which were then used to estimate the soil
moisture. Figure 10 illustrates the resulting soil moisture
maps, computed over wheat fields at different dates. For wet
days corresponding to rainfall events, such as that of 16 Jan-
uary 2009, a high soil moisture value can be observed for all
wheat fields. For dry dates such as 7 March 2009, we observe
different moisture values. Increasing moisture values can be
observed over irrigated fields. On 24 December 2008 date,
non-irrigated wheat fields are found to have soil moisture of
approximately 6%. For irrigated wheat fields, the values are

(a)

(b)

(c)

Fig. 10. Example of moisture mapping over wheat fields on
three different dates:(a) 16 January 2009,(b) 20 Feburary 2009,
(c) 27 March 2009.
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generally higher; even very high moistures (around 40%) can
be observed in some cases. The variability of these moisture
observations is in complete agreement with the land use clas-
sification, distinguished by two classes, i.e. non-irrigated and
irrigated wheat. This type of mapping process, if enhanced
by means of high temporal monitoring, could become a very
useful tool for the regional analysis of irrigation and water
consumption, particularly in semi-arid areas with limited wa-
ter resources.

4.3 Final moisture mapping

Figure 11 provides an illustration of our mapping process in
a small area of our studied region, in 7 March 2009, in which
moisture map computed for non irrigated olive groves and
wheat fields are combined. Differences in moisture level can
be observed between the two classes. The mean moisture
level in the olive groves is approximately equal to 10%, as
opposed to 15% for the wheat class fields. This difference is
not due to irrigation alone, but also to differences in soil tex-
ture (for wheat fields – 45% clay, 26% silt and 39% sand, for
olive groves – 29% clay, 8% silt, and 63% sand). With sandy
soil, surface moisture decreases more rapidly after rainfall
events.

5 Soil evaporation evaluation

5.1 Proposed methodology

As discussed in the introduction, the estimation of soil evap-
oration is essential in arid and semi-arid regions. In fact, for
agriculture with a low density of vegetation cover, the contri-
bution from soil evaporation is significant, particularly after
rainfall events. An accurate estimation of this term thus al-
lows a reliable estimation to be made of the stock of water
available for use by the vegetation. In this section, we pro-
pose a simple approach for the estimation of soil evaporation.

Simonneaux et al. (2009) have proposed an integrating of
the soil evaporation into a semi-empirical FAO evapotranspi-
ration model (Allen et al., 2000), with a soil model repre-
sented with three layers: surface layer, root zone layer and
a deeper layer. They consider the evaporation to be equal
to ETP if surface layer is saturated. In this paper, we pro-
pose a simple approach for relating the soil evaporation to
surface soil moisture (0–5 cm) estimated from radar satellite
measurements. The soil evaporation can be written as:

Es =

(

Mv − Mvi

Mvs − Mvi

)

. ETP (12)

where Es is the soil evaporation, and ETP is the potential
evaporation, which depends on climate demand and can be
estimated using the FAO Penman-Monteith equation (Allen
et al., 1998).

Fig. 11. Example of moisture mapping, showing soil moisture es-
timations for fields in the “olive tree” and “wheat” classes of land
use on 7 March 2009.

Mvi is the minimum soil surface moisture, as measured on
the site. This is estimated from continuous ground thetaprobe
measurements, acquired over a period of two years.

Mvs is the soil saturation moisture. It is also estimated
from continuous and spot ground measurements, acquired
over a period of two years.

The soil evaporation is assumed to be at its maximum for
saturated soils, with a value equal to the ETP. It is close to
zero for very dry surfaces.

5.2 Application

In this section, we propose to generate a map of the soil evap-
oration, using retrieved soil moisture maps based on the in-
version of ASAR/ENVISAT and ETP data acquired over the
studied site.

Figure 12 illustrates the ETP variations during the 2008–
2009 season, in which we observe a maximum during the
summer season, with values of approximately 15 mm. The
soil evaporation is however very low in this season, as a re-
sult of an absence of rainfall events, with surface soil mois-
ture levels generally close to 0%. During the rainy season,
as shown in Fig. 12, we observe a small number of rainfall
events, followed by an increase in soil moisture. Thetaprobe
continuous measurements show a drying process of the soil
moisture lasting many days.

In the case of olive trees, we apply Expression Eq. (12)
to each pixel of the moisture maps, without taking the veg-
etation cover fraction into account. In fact, soil evaporation
takes place even directly beneath the olive trees. AnMvs
value of 28% is estimated for olive areas.

In the case of wheat fields, the soil evaporation is relevant
only to the fraction without vegetation cover. The vegetation
fraction Fc is estimated using the NDVI index retrieved from
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Fig. 12. Illustration of potential evapotransipration, calculated us-
ing Pennaman Monteith equation, during the agricultural season
2008–2009.

SPOT vegetation data. We apply the relationship proposed
by Er-Raki et al. (2007) over wheat fields in semi-arid areas.
The soil evaporation can then be written as:

Es = (1 − Fc)

(

Mv − Mvi

Mvs − Mvi

)

. ETP (13)

Mvs value of 37% is estimated for wheat fields.
Figure 13 provides an example of soil evaporation map-

ping, on 7 March 2009. Particularly highest evaporation val-
ues can be observed over the olive fields without vegetation
cover. The mean soil moisture over the olive groves is ap-
proximately 12%, and the soil evaporation is therefore ap-
proximately equal to 1.2 mm/day.

6 Conclusions

The objective of this paper was to propose a simple ap-
proach to evaluate soil evaporation using soil moisture re-
trievals from SAR radar measurements. Numerous studies
have been published on the topic of soil moisture estima-
tion over bare soil, or over land with one type of vegetation.
The present study describes an approach for the mapping of
soil moisture over two types of vegetation cover. The first of
these concerns the “non-irrigated olive tree” land use class,
dependent on rainfall events. A relationship is established
between ground-truth measurements and backscattered radar
signals. The proposed inversion approach is based on three
main steps:

– Normalisation of the ENVISAT ASAR data to one inci-
dence angle.

– Reduction of roughness effects through the subtraction
of a reference image corresponding to a dry day.

– Implementation of an empirical relationship, enabling
the soil moisture to be derived from the processed radar
signals.

Fig. 13. Example of soil evaporation mapping over olive tree and
wheat classes of land use on 7 March 2009.

The validation of this approach has been demonstrated to
have good accuracy in terms of moisture estimation. Mois-
ture mapping using this process is shown for several dates,
revealing various temporal and spatial variations, linked only
to rainfall events. This estimation is proposed at a cell resolu-
tion of 100× 100 pixels. The approach developed for fields
in the non-irrigated olive tree class (about 43% of used land)
allows nearly all areas of the studied region to be covered,
from which a quantitative and precise estimation of the spa-
tial variability of soil moisture can de derived.

A second type of moisture estimation is proposed over
wheat fields. The principal objective of this estimation is to
identify a relationship between moisture variability and irri-
gation in the studied region. The methodology developed for
this application is based on two steps:

– Correction for vegetation effects using a simple first-
order radiative transfer model. This correction is
based on the relationships established between vege-
tation water content and optical satellite measurements
(SPOT/HRV data).

– Determination of a linear relationship between ground
moisture measurements and processed bare soil radar
signals.

Good agreement is found between the inversion results and
the ground-truth measurements, with a mean rms error of
about 5.8%. Moisture mapping over wheat fields allows
those fields that are irrigated, and thus characterised by gen-
erally higher moisture values, to be clearly identified, partic-
ularly during dry periods.

Finally, a semi-empirical approach is proposed for the
evaluation and mapping of soil evaporation, using soil mois-
ture estimations derived from radar measurements, and cli-
mate demand defined by potential evaporation. If this map-
ping process were associated with temporal monitoring at a
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high repetition rate, it would make it possible to quantify the
water stock available for the vegetation in rain-fed agricul-
ture, characterised by a dominant non-covered surface, par-
ticularly during frequent periods of drought. In addition to
the vegetation transpiration estimation, it would also allow
the wheat fields’ irrigation requirements to be monitored.
Using ASAR/ENVISAT data, we can propose approximately
one to two such estimations per week. With the arrival of
new sensors, the SENTINEL-1 and RADARSAT constella-
tions in particular, it will be possible to propose nearly daily
estimations of soil evaporation which allows a high potential
of surface moisture assimilation on land surface models.
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