
1D-Var multilayer assimilation of X-band SAR data into

a detailed snowpack model

Xuan Vu Phan, L Ferro-Famil, Michel Gay, Y Durand, M Dumont, S Morin, S

Allain, Guy D’Urso, A Girard

To cite this version:

Xuan Vu Phan, L Ferro-Famil, Michel Gay, Y Durand, M Dumont, et al.. 1D-Var multilayer
assimilation of X-band SAR data into a detailed snowpack model. The Cryosphere, Copernicus
2014, pp.1975-1987. <10.5194/tc-8-1975-2014>. <hal-01118432>

HAL Id: hal-01118432

https://hal.archives-ouvertes.fr/hal-01118432

Submitted on 19 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract. The structure and physical properties of a snow-

pack and their temporal evolution may be simulated using

meteorological data and a snow metamorphism model. Such

an approach may meet limitations related to potential diver-

gences and accumulated errors, to a limited spatial resolu-

tion, to wind or topography-induced local modulations of

the physical properties of a snow cover, etc. Exogenous data

are then required in order to constrain the simulator and im-

prove its performance over time. Synthetic-aperture radars

(SARs) and, in particular, recent sensors provide reflectivity

maps of snow-covered environments with high temporal and

spatial resolutions. The radiometric properties of a snowpack

measured at sufficiently high carrier frequencies are known

to be tightly related to some of its main physical parame-

ters, like its depth, snow grain size and density. SAR acqui-

sitions may then be used, together with an electromagnetic

backscattering model (EBM) able to simulate the reflectiv-

ity of a snowpack from a set of physical descriptors, in or-

der to constrain a physical snowpack model. In this study,

we introduce a variational data assimilation scheme coupling

TerraSAR-X radiometric data into the snowpack evolution

model Crocus. The physical properties of a snowpack, such

as snow density and optical diameter of each layer, are simu-

lated by Crocus, fed by the local reanalysis of meteorological

data (SAFRAN) at a French Alpine location. These snow-

pack properties are used as inputs of an EBM based on dense

media radiative transfer (DMRT) theory, which simulates

the total backscattering coefficient of a dry snow medium at

X and higher frequency bands. After evaluating the sensi-

tivity of the EBM to snowpack parameters, a 1D-Var data

assimilation scheme is implemented in order to minimize

the discrepancies between EBM simulations and observa-

tions obtained from TerraSAR-X acquisitions by modifying

the physical parameters of the Crocus-simulated snowpack.

The algorithm then re-initializes Crocus with the modified

snowpack physical parameters, allowing it to continue the

simulation of snowpack evolution, with adjustments based

on remote sensing information. This method is evaluated us-

ing multi-temporal TerraSAR-X images acquired over the

specific site of the Argentière glacier (Mont-Blanc massif,

French Alps) to constrain the evolution of Crocus. Results

indicate that X-band SAR data can be taken into account to

modify the evolution of snowpack simulated by Crocus.

1 Introduction

Accurate knowledge of snowpack internal structure is critical

for better understanding the snowpack evolution over time,

and is essential for snow forecasting, water resource moni-

toring and prediction of natural hazards, such as avalanches.

For this purpose, snow metamorphism models, such as Cro-

cus (Brun et al., 1992; Vionnet et al., 2012), are developed in

order to simulate the evolution of snowpack based on mete-

orological variables. These models are currently limited due

to the lack of in situ snow stratigraphic measurements. For

example, in the French Alps, the network of snow and me-

teorological observations contains about 150–180 stations,

which is not enough to adjust a snow model to predict the

state and the spatial variability of snowpack at small scale
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(20m). This limitation results in potential divergences, accu-

mulated errors and limited spatial resolution of the model.

Therefore, exogenous data are crucial in order to constrain

the simulator and improve its performance over time.

On the other hand, the radiometric properties of a snow-

pack measured at high frequencies depend strongly on its

main physical parameters, like its depth, snow grain size and

density. The electromagnetic backscattering model (EBM),

initially developed by Longepe et al. (2009) based on dense

media radiative transfer (DMRT) theory, allows for simula-

tion of the backscattering coefficient σ 0 of dry snow from C

band (5GHz) to Ku band (14GHz). The air–snow, σas, and

snow–ground, σsg (or snow–ice, σsi), interfaces backscatter-

ing components are calculated using the integral equation

model (IEM) developed by Fung and Chen (2004). The snow

permittivity is calculated using the strong fluctuation theory

(SFT) (Stogryn, 1984). The SFT has been tested and veri-

fied in the literature (Wang et al., 2000; Tsang et al., 2007).

It is also used in the DMRT model of multilayer snowpack

developed by Longepe et al. (2009). This model is capable

of simulating the interaction of electromagnetic waves with

a layer of snow based on the physical parameters (thickness,

optical diameter, snow density). The advantage of this model

is the simple implementation and its moderate computation

time, which is crucial in order to run the data assimilation

process, where the electromagnetic model is repeatedly exe-

cuted multiple times. With this model, we can calculate the

total backscattering coefficient σ 0pq for different polarization

channels (p, q =H or V) from the physical features of each
snow layer, the roughness of air–snow and snow–ice inter-

faces, and specific radar illumination (frequency, incidence

angle).

The new generation of synthetic-aperture radar (SAR)

satellite data provides images with metric resolution

and short revisit time. The TerraSAR-X satellite, with

1.477m⇥ 2.44m resolution and revisit time of 11 days,

gives dense information both spatially and temporally on

snowpack evolution. In this study, we propose a new process

which uses these multi-temporal images of TerraSAR-X to

constrain the Crocus model through data assimilation.

Data assimilation has been widely used in meteorological

studies (Courtier et al., 1998; Uppala et al., 2005) and land

surface modeling (Slater and Clark, 2006; De Lannoy et al.,

2010; Toure et al., 2011). Data assimilation using physically

based multilayer models has been initiated in recent stud-

ies, using passive microwave radiance (Toure et al., 2011)

or albedo observations (Dumont et al., 2012). The advan-

tages of the assimilation using SAR images are the quasi-

independence with respect to atmospheric conditions, the

high resolution of analysis, and the sensitivity of SAR re-

sponses to the presence and structure of volumetric medi-

ums. The use of data assimilation on SAR data and mete-

orological models to predict certain physical properties of

snowpack has been developed in the literature (Nagler et al.,

2008; Takala et al., 2011). This study attempts to implement
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Figure 1. Global schematic of the data analysis used in this study.

The inputs of the process are the SAR reflectivities, σ 0 (observa-

tion) and the snowpack stratigraphic profile calculated by Crocus

(guess). The output is the analyzed snowpack profile x that mini-

mizes the cost function.

a data assimilation system which is capable of constraining a

detailed snow metamorphism model at a layer scale (modifi-

cation of the physical properties of each layer) using X-band

SAR data. The assimilation techniques have proven effec-

tive in combining observations and a priori information to

more realistically simulate snowpack conditions (i.e., an a

posteriori state). The a priori information is often referred to

as “guess parameters”, whereas the a posteriori state is called

“the analysis”. The guess parameters in this study are the

physical properties of each snowpack layer simulated using

a snow evolution model. The analysis is obtained by modi-

fying the guess information based on the backscattering co-

efficient obtained from SAR acquisitions, according to the

error statistics of both model and observations. The simu-

lation of snowpack evolution is then continued with the ana-

lysis result. The intermittent assimilation algorithm is carried

out each time a new SAR acquisition is available; therefore

the assimilation is propagated over time, which allows us to

constrain the snowpack simulation using remote sensing ob-

servations. The adjustment made to the snowpack physical

properties is based on error statistics of modeling (Crocus)

and observation (SAR).

This study reports, for the first time, on a new process

based on the DMRT model and on the one-dimensional vari-

ational analysis (1D-Var) to assimilate TerraSAR-X data into

the snow model Crocus. A global schematic of this pro-

cess is presented in Fig. 1. Section 2 introduces the Crocus

snowpack evolution model. Section 3 describes the DMRT

electromagnetic backscattering model. The 1D-Var data as-

similation method is presented in Sect. 4. Section 5 contains

The Cryosphere, 8, 1975–1987, 2014 www.the-cryosphere.net/8/1975/2014/
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the study of simulations and sensitivity of snowpack at X

band. Section 6 presents the first results and discussion of

data assimilation method in the particular case of the Argen-

tière glacier, where the ground beneath the snow consists of

ice.

2 Snowpack model Crocus

Crocus is a one-dimensional numerical model simulating the

thermodynamic balance of energy and mass of a snowpack.

Its main objective is to describe in detail the evolution of in-

ternal snowpack properties based on the description of the

evolution of morphological features of snow grains during

their metamorphism. It takes as inputs meteorological vari-

ables such as air temperature, relative air humidity, wind

speed, solar radiation, long-wave radiation, and amount and

phase of precipitation. In this study within the French Alps,

these meteorological conditions are taken from the SAFRAN

reanalysis, which combines ground-based, radiosondes and

remote sensing (cloudiness) observations with an a pri-

ori estimate of meteorological conditions from a numeri-

cal weather prediction (NWP) model (Durand et al., 1993;

Durand, 2009). SAFRAN meteorological fields, assumed to

be homogeneous for a given mountain range and elevation

in the French Alps region, provide a description of the alti-

tude dependency of meteorological variables. The output of

Crocus includes scalar physical properties of the snowpack

(snow depth, snow water equivalent (SWE), surface temper-

ature, albedo, etc.) along with the internal physical properties

for each layer (density, thickness, optical radius, etc.).

This study uses the latest version of the detailed snow-

pack model Crocus, recently incorporated into the land sur-

face scheme ISBA within the SURFEX interface (Vionnet

et al., 2012). Among other advantages over previous versions

of Crocus, this allows seamless coupling of the snowpack to

the state of the underlying ground.

3 Electromagnetic backscattering model (EBM)

3.1 Main components of the total backscattering

coefficient

The Stokes vector, which contains the incoherent informa-

tion related to the polarization of an electromagnetic wave

(EMW), can be expressed as follows (Ulaby et al., 1981):

g=

2
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4
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,
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(1)

where Eh and Ev represent the horizontal and vertical com-

ponents of the Jones vector on the electric field, and h.i rep-
resents the expectation operator.

Figure 2. Main backscattering mechanisms occurring within a

multilayer snowpack obtained from the radiative transfer equation

at first order (Longepe et al., 2009): air–snow reflection (Mas),

volume scattering (Mv) and reflection over the snow–ice interface

(Msi).

For given acquisition conditions, the Stokes vector of ra-

diation scattered by a medium, gs, can be related to the inci-

dent one, gi, by a Stokes matrixM (Lee and Pottier, 2009) as

gs=Mgi, with

M=

2

6

6

4

M11 M12 0 0

M21 M22 0 0

0 0 M33 M34

0 0 M43 M44,

3

7

7

5

(2)

where M11= |σ 0vv|2 and M22= |σ 0hh|
2 represent the

co-polarized backscattering coefficients; M12= |σ 0vh|
2

and M21= |σ 0hv|
2 the cross-polarized backscattering

terms; and M33=Re(σ 0vv σ
0
hh+ |σ 0hv|

2), M44=Re

(σ 0vv σ
0
hh− |σ 0hv|

2), M34= −Im(σ 0vv σ
0
hh− |σ 0hv|

2), and

M43= Im(σ 0vv σ
0
hh+ |σ 0hv|

2) are correlation terms. Due to

the reflection symmetry, the other terms of M are equal to

zero (Lee and Pottier, 2009).

The first-order solution of the radiative transfer (RT) equa-

tion provides the total backscattered information from a

snowpack that consists of a combination of five scattering

mechanisms: reflection at the surface air–snow interface, vol-

ume scattering, volume–ice and ice–volume interactions, and

reflection from the snow–ice interface (Martini et al., 2003).

Due to their small amplitude, the volume–ice and ice–volume

contributions can be neglected (Floricioiu and Rott, 2001).

The illustration of the three other mechanisms is shown in

Fig. 2. The expression of the total polarimetric backscattered

information can be written using the Mueller matrix corre-

sponding to each mechanism:

Msnow =Mas+Mv+Msi. (3)

The air–snow interface (Mas) and snow–ice interface

backscattering (Msi) are modeled using the IEM introduced

by Fung and Chen (2004), whereas the volume contribu-

tion (Mv) is calculated using the vector radiative transfer

equation.

www.the-cryosphere.net/8/1975/2014/ The Cryosphere, 8, 1975–1987, 2014
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3.2 Air–snow interface backscattering

The matrixMas represents the second-order polarimetric re-

sponse backscattered by the air–snow interface. Its elements

can be calculated from the air–snow interface roughness

parameters, i.e., its correlation function w(x) and its root-

mean-square (rms) height σh, the incidence angle ✓0 and the

emitted EM wave frequency f using the IEM (Fung and

Chen, 2004). According to the IEM, the reflectivity may be

expressed as

σ 0pq =
k20

4⇡
exp

⇣

−2k20σ
2
h cos

2 ✓0

⌘

1
X

n=1
|In

pq |2
W n (2k0 sin✓0,0)

n!
, (4)

where p and q are equal to h or v, indicating a horizontal

or vertical polarization, and k0=
2⇡ f

c
represents the wave

number. The detailed mathematical expressions of the sur-

face spectrum W(k) and the Fresnel reflection/transmission

factor |In
pq | can be found in Fung and Chen (2004).

3.3 Snow volume backscattering

The volume backscatteringMv depends on various scattering

mechanisms occurring during the propagation through a mul-

tilayer snowpack, which can be categorized into four types:

(1) transmission between two layers, (2) attenuation by the

snow particles, (3) scattering and (4) coherent recombin-

ation. The amplitude of each mechanism depends largely on

the dielectric properties of the snowpack medium. Therefore

the permittivity of each layer, which characterizes its dielec-

tric properties, needs to be calculated first.

3.3.1 Dry snow permittivity

Dry snow is considered to be a dense and heterogeneous

medium with strongly variable physical properties. There-

fore the variance of permittivity across a snow layer is rel-

atively high. The SFT, introduced by Stogryn (1984), can

model the permittivity of such a medium by using the effec-

tive permittivity (✏eff) that takes into account the scattering

effects among ice particles at high frequencies. The expres-

sion of ✏eff using the SFT is as follows (Huining et al., 1999):

✏eff = ✏g+ j ·
4

3
δ✏g · k30 ·

p
✏g · L3, (5)

where j is the imaginary unit; ✏g and δ✏g are the quasi-

static permittivity and its variance; k0 is the wave number;

and L = 0.85D/3 is the correlation length, with D being the

snow optical diameter.

3.3.2 Transmission between two layers

The snowpack consists of layers with different physical prop-

erties. Therefore the model needs to take into account the

energy loss due to transmission between two layers. With

the assumption of a smooth interface between two layers, the

Fresnel transmission can be used. It is expressed through a

matrix as follows (Ulaby et al., 1981):

Tk(k−1) =
✏k−1
✏k

2

6

6

6

6

4

∣

∣

∣
tvvk(k−1)

∣

∣

∣

2
0 0 0
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∣
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5

(6)

where k is the layer number and k − 1 is the layer above

it,

∣

∣

∣t
pp

k(k−1)

∣

∣

∣

2
represents the Fresnel transmission coefficients

of the pp channel, and gk(k−1) and hk(k−1) are the terms
of Mueller matrix related to the co-polarized correlation

(Longepe et al., 2009):

gk(k−1) =
cos✓k−1
cos✓k

Re
⇣

tvvk(k−1)t
hh⇤
k(k−1)

⌘

(7)

hk(k−1) =
cos✓k−1
cos✓k

Im
⇣

tvvk(k−1)t
hh⇤
k(k−1)

⌘

.

3.3.3 Attenuation

The particles in a snowpack are generally considered to be

spherical (Floricioiu and Rott, 2001; Koskinen et al., 2010).

Due to the symmetry of the particle shape, the extinction of

a wave propagating through the snowpack is independent of

the polarization and may hence be represented by a scalar

coefficient. The extinction is composed of an absorption and

a scattering term:

e = a+ s. (8)

It can also be computed through the effective permittivity ✏eff
(Huining et al., 1999):

e = 2k0Im
(p

✏eff
)

. (9)

The attenuation matrix represents the gradual loss in EMW

intensity while penetrating through a multilayer snowpack,

composed of layers with different physical properties. It

takes into account the energy loss by absorption and scat-

tering mechanisms based on the extinction coefficient e and

thickness d of the layer, as well as the loss by transmission

effect while an EM propagates through different layers:

Attdown(k) =

k
Y

i=1

exp

 

−
 ied

i

cos✓i

!

Ti(i−1), (10)

Attup(k) =

k
Y

i=1

T(i−1)i exp

 

−
 ied

i

cos✓i

!

. (11)

Attdown is the intensity loss (attenuation) when propagat-

ing from the surface to layer k, whereas Attup represents

the intensity loss from layer k to the surface. The exponen-

tial factor, which takes into account the gradual loss of en-

ergy throughout the layer, is deduced from the basic radia-

tive transfer equation dI = I e dr , where r = d/cos ✓ and I

is the EMW intensity.
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Figure 3. Test of EBM simulations on X-band, HH polarization for

varying snow depth and optical diameter: snow density 250 kgm−3,
optical diameter 0.2–1mm, and snow depth 30–400 cm. The glacier

roughness is fixed at σsi= 0.9 cm and lsi= 8.6 cm.

3.3.4 Scattering by the particles

The phase matrix Pk , under the hypothesis of spherical par-

ticles, has the form shown in Eq. (2), where the cross-

polarization terms P12 and P21, which correspond to σhv and

σvh, are equal to 0. In the backscattering case, with the as-

sumption of spherical particles, the SFT phase matrix can be

simplified to Pk = 3s
8⇡
I4, where I4 is the (4⇥ 4) identity ma-

trix (Tsang et al., 2007). The assumption of spherical parti-

cles can simplify the modeling problem; however, it prevents

the simulations of the backscattering coefficient over cross-

polarization channels (HV and VH).

3.3.5 Calculation of the volume backscattering

Considering a snowpack made of n distinct layers, where

✓k is the incidence angle and dk is the thickness of layer k

(Fig. 2), the total contribution of the volume backscattering

mechanismMv can be written as follows:

Mv = 4⇡ cos✓0

n
X

k=1
Attup(k − 1)T(k−1)k

·
1− exp

⇣

− 2k
e d

k

cos✓k

⌘

2k
e

PkTk(k−1)Attdown(k − 1). (12)

3.4 Snow–ice interface backscattering

The backscattering Msi of the snow–ice interface is com-

puted as

Msi = cos✓0Attup(n)
R(✓n)

cos✓n

Attdown(n), (13)

where R(✓n) represents the contribution of the snow–ice in-

terface backscattering and can be determined using the IEM.
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Figure 4. Test of EBM simulations on X-band, HH polarization for

varying snow depth and density: snow density 200–600 kgm−3, op-
tical diameter 1mm, and snow depth 30–400 cm. The glacier rough-

ness is fixed at σsi= 0.9 cm and lsi= 8.6 cm.

3.5 Sensitivity of the EBM to snowpack parameters

In order to assess the sensitivity of the EBM outputs with re-

spect to the different properties of a snowpack, a set of simu-

lations were run for various snowpack structures. A random

data set was generated corresponding to a snow height vary-

ing from 30 to 400 cm (SWE from 75 to 1000mm with snow

density set at 250 kgm−3). Measurements of the roughness
parameters of air–snow interface and snow–ice interface are

not available; therefore, empirical values for the correlation

length l and the rms height σ from Oh et al. (1992) have been

used. The values of σas= 0.4 cm and las= 8.4 cm, equivalent
to a slightly rough surface, are used for the air–snow inter-

face; however σsi= 0.9 cm and lsi= 8.6 cm, corresponding to
a rough surface, are chosen for the snow–ice interface due to

the characteristics of ice beneath the snowpack over the study

area.

The results of EBM simulations are plotted vs. SWE in

Figs. 3 and 4. In Fig. 3, snow density is fixed at 250 kgm−3,
while the optical diameter is varied from 0.2 to 1mm. The

backscattering contribution at the air–snow interface, being

inferior to −40 dB, is not represented here. As the SWE in-
creases, the volume backscattering coefficient becomes more

important until it reaches a value comparable to the snow–ice

interface backscattering. The vertical dispersion of the vol-

ume backscattering represents the sensitivity of the EBM to

optical diameter. Lowest values correspond to an optical di-

ameter of 0.2mm, whereas the highest ones correspond to an

optical diameter of 1mm.

In Fig. 4, where the optical diameter is fixed at 1mm and

snow density varies from 200 to 600 kgm−3, the vertical dis-
persion of the volume backscattering represents the sensitiv-

ity of the EBM to snow density. By comparing Figs. 3 and 4,

we can observe that the EBM is strongly sensitive to the op-

tical diameter and moderately sensitive to the snow density.

www.the-cryosphere.net/8/1975/2014/ The Cryosphere, 8, 1975–1987, 2014
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Many studies have been carried out on the retrieval of dif-

ferent snowpack properties from SAR data, such as snow

water equivalent (Shi and Dozier, 2000), liquid water con-

tent (Shi et al., 1993), and wet snow mapping (Nagler and

Rott, 2000). In general, these studies concentrate on invert-

ing the EBM, which enables the retrieval of such snowpack

properties. For a multilayer snowpack, the number of ob-

servations, i.e., the number of SAR backscattering coeffi-

cients, is much smaller than the number of unknown vari-

ables, i.e., the snow properties of each layer. Classical es-

timation approaches based on the use of an inverse problem

would not be viable. Instead, in our study, an adjoint operator

of the direct EBM is developed to be used in a data assimila-

tion scheme.

4 1D-Var data assimilation

4.1 Introduction to data assimilation

The aim of variational assimilation is to integrate observa-

tional data with guess variables through the use of an obser-

vation operator. The method concentrates on searching for

a solution that minimizes simultaneously the distance be-

tween observations and simulation results and the distance

between initial guess variables and the analyzed variables.

A schematic of this process is presented in Fig. 1. The out-

puts of the EBM described in the previous section, such as

backscattering coefficient at HH and VV polarizations, are

used as elements of the observation operator Hebm(x):

Hebm(x) = vec(Msnow) , (14)

where x represents the set of variables describing the snow-

pack properties (here, density and optical diameter for each

snow layer).

The 1D-Var algorithm is based on the minimization of a

cost function J (x), defined as

J (x) =
(

x − xg

)t
B−1 (

x − xg

)

+ (yobs−Hebm(x))t R−1 (yobs−Hebm(x)) , (15)

where x is called the state vector, which can be modified af-

ter each iteration of the minimization, and xg is the initial

guess of the state vector and remains constant during the

whole process. Therefore, kx − xgk2 serves as a distance
between the modified profile and the starting point. The ob-

served polarimetric response, yobs, contains calibrated val-

ues of the backscattering coefficients σ 0 for different polari-

metric channels. Therefore, ky − Hebm(x)k2 represents the
distance between simulated and observed radiometric quan-

tities. The process also requires the estimation of the error

covariance matrix of observations/simulations (R) and of the

guess error covariance matrix (B).

4.2 Adjoint operator and minimization algorithm

In order to minimize the cost function J , one needs to calcu-

late its gradient:

rJ (x) =2B−1 (
x − xg

)

− 2rHt
ebm(x)R−1 (yobs−Hebm(x)) . (16)

If the model is denoted Hebm :B!R, where B and R

are the domain of definition of x and y, then the function

rHt
ebm satisfying 8x, y, hrHt

ebm y, xiB = hy, rHebmxiR
is the adjoint operator of Hebm. In our case, due to the

complexity of the EBM, an analytical solution of the gradi-

ent is time consuming and unreliable. Therefore, numerical

differentiation has been used to calculate the adjoint model.

Once the adjoint operator is developed, the minimization

of J can be achieved using a gradient descent algorithm.

Each iteration consists of modifying the vector x according

to the Newton method until J is converged to its minimum:

xn+1 = xn −

⇣

r2J (xn)
⌘−1

rJ (xn) , (17)

where r2J (xn) is the gradient of second order (Hessian) of

J :

r2J = 2B−1+ 2rHt
ebmR

−1rHebm. (18)

4.3 Estimation of error covariance matrices

With preset air–snow interface and snow–ice interface

parameters, the original model input vector x = [xCrocus
xair–snow xsnow–ice]t may be reduced to the Crocus variables
consisting in density and optical diameter for each snow

layer:

x = [xCrocus]= [D1,D2, . . . ,Dn,⇢1,⇢2, . . . ,⇢n]
t , (19)

where Di and ⇢i are respectively the optical diameter and

the density of the ith layer of the snowpack. This means that

the analysis process does not modify directly the thickness of

each layer; however this parameter can be changed indirectly

in the subsequent simulations by Crocus. At the first iteration

of the algorithm, x is equal to xg, given by the Crocus snow

profile.

The covariance matrix B, which represents the error of the

guess profile, i.e., of the Crocus simulation, is a (2 n ⇥ 2 n)

definite positive matrix. Each element of B is computed as

Bi,j = σi · σj · γij , (20)

where σi and σj represent the standard deviation of the errors

on xi and xj , which have been experimentally estimated to

0.3mm and 65 kgm−3, respectively, for optical diameter and

snow density.

The coefficient γij represents the correlation between er-

rors on xi and xj and is modeled as

γij = βe−↵1hij , (21)
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where1hij is the distance in centimeters between layer i and

layer j . The values of ↵ and β depend on different types of

correlations and can be split into three cases:

– correlation D − D: ↵ = 0.11 and β = 1;

– correlation ⇢ − ⇢: ↵ = 0.13 and β = 1;

– correlation D − ⇢: ↵ = 0.15 and β = 0.66.

These values are issued from an ensemble of slightly per-

turbed Crocus runs, obtained by varying their meteorological

inputs over one winter season. The deviations between these

runs, considered to be elementary perturbations, were then

statistically studied and fitted with the model of Eq. (21) for

each pair of variables.

In this case study, SAR data are only available for the

HH channel; therefore the error covariance matrix R re-

duces to a scalar, deduced from the radiometric uncertainty

of TerraSAR-X (0.5 dB) and the error of the EMB (inferred

from the sensitivity of the EBM). The calculations at several

altitudes over the Argentière glacier gives the average value

of R= 0.03.

4.4 General comments on the chosen analysis process

In general, modeling techniques are used to establish the rela-

tionship between the physical properties of a natural environ-

ment and observations measured by specific equipment (such

as SAR or optical sensors). An inverse approach may then

be developed to characterize the environment using the ob-

servations. However, such problems often require solving an

underdetermined system, with a number of unknown quanti-

ties higher than the number of equations.

In our case, the length of the input state vector x can

reach 100 (in the case of a snowpack with 50 layers, fre-

quently generated by Crocus), whereas the output of the

model only consists of backscattering coefficients corre-

sponding to the polarimetric channels of SAR data. There-

fore the realization of an inverse model is highly impractical.

Data analysis methods, on the other hand, require a vec-

tor of guess variables relatively close to the actual values.

The snowpack variables calculated by Crocus are used as

guess variables in our assimilation scheme. The fundamen-

tal goal is to modify the initial guess variables, while balanc-

ing the errors of the guess variables, modeling and measure-

ments. It should be noted that, as the problem remains under-

determined, the analysis scheme only serves as a method to

improve the initial guess variables using the new observa-

tions from SAR data. The quality of improvement is based

on the estimation of the initial guess vector xg and on the

precision of the EBM.

Table 1. TerraSAR-X acquisition parameters.

Parameter Value

TerraSAR-X products Single-look complex image

Frequency (GHz) 9.65

Channels HH

Incidence angle (◦) 37.9892

Mode Descending

Acquisition dates 6, 17, 28 Jan;

(2009) 8, 19 Feb;

2, 13, 24 March,

Resolution (m) 1.477⇥ 2.44

Calibration gain (dB) 49.6802

5 Sensitivity and simulation of snowpack at X band

5.1 Study site: Argentière glacier

The area of interest covers the Argentière glacier (altitude:

2771m; 45.94628◦ N, 7.00456◦ E). The size of the domain is

approximately 5 km⇥ 6 km. Over the glacier, altitude varies

from 2400 to 3200m, and the snowpack is essentially com-

posed of dry snow.

5.2 Sensitivity of TerraSAR-X data

For this study, TerraSAR-X descending acquisitions over

the region of Chamonix Mont-Blanc, France, from 6 Jan-

uary 2009 to 24 March 2009 are available for continuous as-

similation, with a revisit time of 11 days. Table 1 provides

the main features of TerraSAR-X data sets. Figure 5 shows

the location and a TerraSAR-X image of Argentière glacier

captured on 6 January 2009.

Meteorological forcing data provided by SAFRAN from

2400 to 3000m altitude in steps of 100m elevation on hor-

izontal terrain were used to drive the detailed snowpack

model Crocus throughout the entire season 2008–2009 (start-

ing on 1 August 2008). In order to carry out the compar-

ison between the backscattering coefficients σsim (obtained

from the EBM using Crocus snowpack profile as an input)

and σTSX (obtained from TerraSAR-X reflectivity), the im-

ages were multi-looked to (20m⇥ 20m) wide pixels and a

Frost filter (Frost, 1981) was applied using window size of

5⇥ 5 pixels.

In order to study the sensitivity of TerraSAR-X data to the

changes in snow properties, Fig. 6 shows the comparison of

TerraSAR-X backscattering coefficients (σTSX) on different

dates at the altitudes of 2400, 2700 and 3000m on Argen-

tière glacier. For the period from 6 to 17 January (blue trian-

gles) and from 8 to 19 February (red circles), it can be ob-

served that the sets of comparison values are well below the

equality line, which means the backscattering coefficients de-

creased between successive observations. The opposite effect
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Figure 5. Top panels: location of the TerraSAR-X acquisition in

the French Alps. Bottom panel: a cropped image on the Argentière

glacier area. The approximate positions of different altitudes on the

Argentière glacier: 2400, 2700 and 3000m on the TerraSAR-X im-

ages are indicated. The red line represents the continuous trail on

the glacier where the SAR data will be used in the case study; the

marks on this line delineate each 100m of altitude.

can be noted for the period from 17 January to 8 February

(green crosses). The medium beneath the snowpack consists

of glacier ice, and its roughness can be considered to be con-

stant; therefore these increases and decreases in backscatter-

ing suggest that the σTSX can be related to the modification

of the snow condition. As can be observed in the snow pre-

cipitation chart on the bottom right, the green period has sig-

nificantly more snowfall than the other two periods.

Figure 6. Comparison of TerraSAR-X reflectivities between two

different dates of winter season 2008–2009 at the altitudes of 2400,

2700 and 3000m on Argentière glacier. The small graph on the

bottom right shows the snow precipitation level for each period of

comparison.

Figure 7. TerraSAR-X reflectivity plotted as function of optical

thickness derived from Crocus output. Each point corresponds to

a date of acquisition TerraSAR-X.

5.3 Simulation of Crocus snowpack data

The intrinsic parameters of a snowpack needed for EBM sim-

ulations are simulated by Crocus, which consist of a num-

ber of snow layers, their density, optical diameter, and thick-

ness. These quantities are used as inputs for the simulation of

the volume backscattering mechanism. The relation between

open-loop (i.e., without assimilation) Crocus data and the

TerraSAR-X reflectivity for different altitudes over the Ar-

gentière glacier is shown in Fig. 7. The optical thickness (⌧ )

is the product of snow depth and the extinction coefficient

(Tsang et al., 2007). In the case of multilayer snowpack, it is

defined as

⌧ =

n
X

k=1

k
e d

k, (22)
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Figure 8. Implementation of SAR data assimilation in the Crocus

temporal simulation of a snowpack.

where the extinction coefficient e is calculated using Eq. (9)

and d the thickness of the snow layer.

It can be observed that the snowpack stratigraphy provided

by Crocus may be used to separate TerraSAR-X reflectivity

at different altitudes. Figure 7 also indicates the sensitivity of

the reflectivity to volume-related snow parameters.

6 Evaluation of the process and discussions

Crocus snow stratigraphic profiles were computed for

seven different altitudes over the Argentière glacier, from

2400 to 3000m. The level of liquid water content per volume

(LWCv) at the times and locations of analysis is 0%; there-

fore the condition of dry snow is satisfied. Figure 5 shows the

approximate locations of each study area on the glacier.

Figure 8 presents the implementation of the SAR data as-

similation process into Crocus. The top part of the figure

shows the Crocus simulation of snowpack without assimi-

lation of SAR data. At instant t , Crocus simulates the snow

stratigraphic profile from the previous state of snowpack (in-

stant t − 1) and the meteorological data hourly provided from

SAFRAN. The time lag between instant t and instant t − 1 is

therefore one hour. We call this simulation “open loop”. The

bottom part of the figure shows the implementation of data

assimilation into the execution of Crocus. Every 11 days,

a TerraSAR-X acquisition is used to modify the snowpack

stratigraphic profile of Crocus through an assimilation pro-

cess. The snow profile before assimilation is called “guess”,

and the analyzed snow profile after assimilation is called “as-

similated”. Consequently, at the date of the first TerraSAR-X

acquisition (6 January 2009), open-loop and guess profiles

are identical. Once this first SAR acquisition is assimilated

into Crocus, guess and assimilated profiles differ. This mod-

ification permits the constrainment of a physical snowpack

simulation using external information acquired at different

dates.

Table 2. Comparisons of RMSE (dB) between simulated

(σsnow= H(x)) and measured (σTSX) reflectivities for different

types of profiles.

Date x = open loop x = guess x = assimilated

6 Jan 3.6256 3.6256 3.2697

17 Jan 3.1677 3.3645 3.1302

28 Jan 3.4697 3.5326 3.3718

8 Feb 3.4649 3.3619 1.8071

19 Feb 3.3708 2.6463 1.2729

2 Mar 3.6877 1.7992 1.2276

13 Mar 3.7383 1.2482 1.0652

24 Mar 3.1840 0.6757 0.4370

Figure 9 shows the results of simulation and analysis

using the TerraSAR-X time series from 6 January to

24 March 2009. The reflectivity on the glacier crevasse area

(2600m elevation) has a very high standard deviation due to

the cracks and has therefore been masked. The red line cor-

responds to the TerraSAR-X reflectivities along the glacier,

whereas the cyan diamond shape indicates the EBM simula-

tions for the Crocus open-loop profiles. The blue triangles in-

dicate the EBM simulation of the guess profiles. These guess

profiles are in turn modified by the assimilation process to

become the assimilated profiles. The EBM simulations of

the assimilated profiles are shown in green circles. The as-

similated profile is used to reinitialize Crocus for the next

iteration, which then produces the guess profile for the next

assimilation when a new SAR acquisition is available.

The agreement between TerraSAR-X reflectivity and the

output of the EBM using Crocus simulated profiles can be

observed in Fig. 9, where EBM simulations of assimilated

profiles converge gradually over time toward the TerraSAR-

X backscattering coefficient. The graph corresponding to

2 March 2009 shows that the convergence has been reached

at all altitudes, as EBM simulations of guess and assimilated

profiles are much closer to the TerraSAR-X measurements

than the open-loop profiles.

Table 2 shows a comparison of root-mean-square error

(RMSE) between simulated and measured reflectivities for

different types of profile: open loop, guess and assimilated.

It can be observed that the σsnow values converge gradually

toward the σTSX for the guess and assimilated profiles. At

the last date of acquisition (24 March), the RMSEs for guess

and assimilated profiles are below 1 dB, while the open-loop

profile still gives an RMSE higher than 3 dB.

Figure 10 shows a detailed analysis of the modifications

of the optical diameter and density of each layer due to data

assimilation on 6 January, 8 February and 13 March 2009

at the altitude of 2400m. It can be observed that the assim-

ilation algorithm tends to modify the optical diameter and

density in the deep layers which have a strong influence

on the backscatter intensity and whose slight modification

significantly reduce the discrepancy between TerraSAR-X
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Figure 9. Results of simulation and analysis using eight TerraSAR-X acquisitions performed in winter 2009. σTSX (red) are mean values

obtained from the SAR images over the Argentière glacier (corresponding to the red line of Fig. 5). σsim (blue) represents the output of

simulations using Crocus snowpack variables as inputs. Simulations obtained after data analysis are shown in green. Error bars show the

standard deviation of the measured reflectivities.

observations and Crocus simulations. The speed of the densi-

fication process is therefore faster in the Crocus simulations

with assimilation. The snow profile on 8 February records a

large change in the optical diameter (from 0.4 to 0.8–1.3mm

in the layers from 0 to 100 cm of snow height), which results

in a variation in the simulated backscattering coefficient for

the assimilated profile, which can be observed in Fig. 9 at

2400m. Note that this large increase in the diameter results

in a large discrepancy between open-loop and guess profiles

on 13 March. It can also be noted that there is a difference of

20 cm in total snow depth between the open- and closed-loop

simulations on 13March, which shows that the modifications
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Figure 10. Results of 1D-Var data assimilation from some Crocus profiles, showing changes made by the data assimilation algorithm on

optical diameter (top panels) and snow density (bottom panels) on 6 January (left panels), 8 February (middle panels) and 13 March (right

panels). Note that the assimilation only affects directly the optical diameter and snow density. These direct modifications are injected into

Crocus and propagate through the subsequent simulations, and may then lead to open-loop and assimilated profiles with different snow

heights.

of optical diameter and snow density made by data assimila-

tion also indirectly modify others physical properties of the

Crocus-simulated snowpack.

These results show that we have combined three models

(Crocus, EBM, adjoint model) and the TerraSAR-X data to

constrain spatially and temporally the snowpack evolution.

The use of data assimilation on SAR data to predict cer-

tain physical properties of snowpack has been developed in

Nagler et al. (2008) and Takala et al. (2011). However, it

is the first time that active X-band radar data have not been

used directly to perform an assessment of snowpack proper-

ties but instead used to estimate physical parameters of each

snow layer through a data assimilation algorithm. This algo-

rithm needs to be further validated in the future using in situ

measurements and advanced 3-D imaging techniques (Ferro-

Famil et al., 2012).

7 Conclusions

This study presents a new system using data assimilation and

a multilayer snowpack backscattering model based on the ra-

diative transfer theory to constrain the evolution of a snow-

pack simulated by the snow model Crocus. The proposed

new backscattering model adapted to X-band and higher

frequencies enables a fairly accurate calculation of EMW

losses in each layer of the snowpack. Through the use of 1D-

Var data assimilation based on the linear tangent and adjoint

operator of the EBM, we are able to modify, in a physically

consistent way, the snowpack profiles calculated using the

snowpack evolution model Crocus. This process has been ap-

plied to a time series of TerraSAR-X images and Crocus sim-

ulations during the winter of 2008–2009 over the Argentière

glacier. Results show that SAR data can be taken into account

to efficiently modify the evolution of snowpack simulated by

Crocus. This process can be further developed and used in

real applications such as large-scale snow cover monitoring

or snowpack evolution over a long period of time.

This system, however, does have some limitations, like the

inability to simulate and assimilate under wet snow condi-

tions due to the hypothesis used in the EBM. Another im-

portant hypothesis made in this study concerns the spher-

ical shape of snow grains. On the one hand, this assump-

tion highly simplifies the modeling problem but, on the other

hand, prevents the simulations over cross-polarization chan-

nels (HV and VH). The discussion on how to resolve these

limitations should be addressed in another study on the mod-

eling of electromagnetic waves interactions with a snowpack.

Future studies will concentrate on calibrating the as-

similation process using in situ measurements. Direct field
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measurements of the optical diameter using recently devel-

oped methods (Gallet et al., 2009; Arnaud et al., 2011) allow

for a direct comparison to Crocus output (Morin et al., 2013).

Future developments will also benefit from the recently final-

ized prognostic representation of optical diameter in Crocus

(Carmagnola et al., 2014).
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