
On a Vehicle Routing Problem with
Customer Costs and Multi Depots

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften

der Technischen Universität Dresden

von

Dipl. Math (FH) Franziska Theurich geb. Heinicke

geboren am 25.07.1987 in Altenburg

Tag der Einreichung: 7. Juli 2022

Gutachter: Prof. Dr. Andreas Fischer, Technische Universität Dresden
Prof. Dr. Thomas Kalinowski, Hochschule Mittweida

Tag der Verteidigung: 9. Dezember 2022

Danksagung

Schon Goethe soll gesagt haben, dass sich wahre Dankbarkeit nicht mit Worten
ausdrücken lässt. Trotzdem möchte ich an dieser Stelle den Personen, ohne deren
Anregungen und Unterstützung diese Promotionsschrift nicht zustande gekommen
wäre, meinen besonderen Dank aussprechen.
Zunächst möchte ich meinen wissenschaftlichen Betreuern, Herrn Prof. Andreas

Fischer und Herrn Dr. Guntram Scheithauer, dafür danken, dass sie meinem The-
menvorschlag von Beginn an interessiert gegenüberstanden und mir die Möglichkeit
gegeben haben, neben dem Beruf zu promovieren. Ihre vielfachen konstruktiven
Anregungen und die fachlichen Diskussionen haben meinen Blick auf den mathe-
matischen Teil des Themas gelenkt und damit sehr zum Gelingen der Arbeit beige-
tragen. Auÿerdem möchte ich Herrn Dr. Guntram Scheithauer für die zahlreichen
Korrekturvorschläge danken.
Mein Dank gilt auch Herrn Prof. Peter Tittmann für die Betreuung im koopera-

tiven Verfahren mit der Hochschule Mittweida und Herrn Prof. Thomas Kalinowski
für sein Interesse am Thema und inspirierende Gespräche.
In besonderem Maÿe möchte ich meiner Kollegin Dr. Ute Gläser vom Fraunhofer

IVI für ihre konstruktive Kritik und die zahlreichen Verbesserungsvorschläge danken.
Sie stand mir � gerade auch in der �nalen Phase der Promotion � stets mit ihrem
Rat zur Seite. Mein Dank gilt auch meinen Kollegen am Fraunhofer IVI, vor allem
Axel Simroth, der mich auf die Idee zur Promotion gebracht hat, sowie Denise
Holfeld und Maximilian Rosner für ihre Rücksichtnahme und die freundschaftlichen
Ermunterungen.
Schlieÿlich möchte ich meinem Ehemann Jörg Theurich für den Rückhalt und die

vielen kinderfreien Sonntage in den letzten Jahren danken.

i

Contents

1. Introduction 1

2. Background and Literature Review 7

2.1. Graph Theory . 7
2.2. (Mixed-Integer) Linear Programming 11
2.3. Overview of Solution Methods for Vehicle Routing Problems 15

2.3.1. Formulations as Mixed-Integer Linear Program 15
2.3.2. Heuristics and Local Search Approaches 17
2.3.3. Exact Solution Approaches . 17

2.4. Railway Maintenance Planning . 22

3. The Vehicle Routing Problem with Customer Costs 29

3.1. Problem Data and Variables . 29
3.2. The Non-Linear Partition and Permutation Model (PP) 33
3.3. Extensions of the VRPCC . 34

4. Formulations as Mixed-Integer Linear Program 37

4.1. A Basic Formulation (R1T1) . 38
4.2. Improvements of the Time Constraints 40

4.2.1. Another Splitting of the Start Times (R1T2) 40
4.2.2. Two-Index Variables for the Start Times (R1T3) 42
4.2.3. Binary Variables for Start Days (R1T4) and (R1T5) 46

4.3. Route Constraints with Two-Index Variables 48
4.3.1. Application of MTZ-Constraints (R2a) 49
4.3.2. A Flow Formulation of the MTZ-Constraints (R2b) 50
4.3.3. Binary Route Assignment (R2c) 51
4.3.4. Integer Route Assignment (R2d) 52

4.4. Computational Results . 54
4.4.1. Comparison of Time Formulations 55
4.4.2. Comparison of Route models 59

4.5. Conclusion . 62

5. Heuristics 65

5.1. Greedy Heuristics . 66
5.1.1. Nearest Neighbor Heuristic . 67
5.1.2. Most-Expensive Neighbor Heuristic 69
5.1.3. Cost-Balanced Neighbor Heuristic 71

iii

Contents

5.1.4. Best-of-Greedy Algorithm . 79
5.2. Rollout Algorithm . 79
5.3. Local Search Algorithms . 81
5.4. Computational Results . 83

5.4.1. Comparison of Greedy Heuristics 86
5.4.2. Rollout Algorithm . 91
5.4.3. Local Search Algorithms . 95

5.5. Conclusion . 97

6. Two Branch-and-Bound Algorithms for the Partition and Permuta-

tion Model 99

6.1. General Principles of the Branch-and-Bound Method 99
6.2. Lower Bounds . 102

6.2.1. Lower Bounds for Customer Costs 103
6.2.2. Lower Bounds for Travel Costs 121

6.3. Two Branching Strategies . 124
6.3.1. Branching Strategy Append 124
6.3.2. Branching Strategy Include 131

6.4. Computational Results . 138
6.4.1. Comparison of Lower Bounds 139
6.4.2. Comparison of the Branch-and-Bound Algorithms 149

6.5. Conclusion . 161

7. Summary and Outlook 163

Bibliography 166

List of Figures 178

List of Tables 181

Appendices 185

A. Benchmarks 187

B. Algorithm Pseudocodes 193

iv

Nomenclature

Acronyms

LP linear program

MILP mixed-integer linear program

TSP traveling salesman problem

VRP vehicle routing problem

CVRP capacitated vehicle routing problem

VRPTW vehicle routing problem with time windows

VRPCC vehicle routing problem with customer costs

MST minimal spanning tree

BPP bin packing problem

De�nitions

⌊x⌋ rounding to the largest integer less than or equal to x

⌈x⌉ rounding to the smallest integer greather than or equal to x

⌊x⌉ rounding to the nearest integer, which is ⌊x+ 1
2
⌋

Variables

N set of jobs N = {1, 2, . . . , n}
M set of vehicles M = {1, 2, . . . ,m}
Ns set of start depots Ns = {sk| k ∈ M}
Nz set of end depots Nz = {zk| k ∈ M}
Na set of all jobs and depots

gc(S) customer costs of a solution S

gd(S) travel costs of a solution S

g(S) total costs of a solution S computed as g(S) := gc(S) + gd(S)

ci customer cost coe�cient of job i

ai working duration of job i

dij costs for travelling from job i to job j

rij time for travelling from job i to job j

ti = (tdi , t
m
i) tuple of start day and minute of job i

u working shift length

ui latest start minute of job i at any day

v

1. Introduction

The vehicle routing problem is a widely used approach in transportation planning
to schedule deliveries. Roughly speaking, routes are de�ned to serve the demands
of customers by a �eet. One of its �rst known applications was related to a truck
dispatching problem investigated in [37], which aims in routing m gasoline delivery
trucks between a bulk terminal and n gasoline stations that have to be supplied.
Thereby, the gasoline stations have a certain demand for fuel and the trucks a limited
capacity to load fuel. In Figure 1.1, the problem is illustrated.

Figure 1.1.: The gasoline truck dispatching problem.

The resulting optimization problem is called capacitated vehicle routing problem.
The gasoline stations are the customers i ∈ {1, 2, ..., n} and each customer has a
demand qi. The trucks are the vehicles k ∈ {1, 2, ...,m}, each with a given capacity
Qk. The bulk terminal is the depot represented by 0. Between each two customers
inclusive the depot i, j ∈ {0, 1, 2, ..., n}, a journey is computed in advance to deter-
mine the costs cij for traveling from customer i to customer j, which could be, e.g.,
proportional to the distance. Then, a feasible solution of the capacitated vehicle
routing problem is a set of routes for the vehicles such that all customers are deliv-
ered by one stop of one vehicle according to their demands and the capacities of the
vehicles are not exceeded. The aim is to �nd a feasible solution with minimal total
travel costs. Several solution approaches for this optimization problem have been
developed. For a comprehensive overview compare, e.g., [143].
In real-world transportation planning, there are often further requirements for the

1

1. Introduction

solutions like time windows for delivery, daily tra�c consideration or unknown cus-
tomer demands. For this reason, several variants of the vehicle routing problem have
been de�ned over time. Based on the respective application, additional constraints
were added or the objective function was adapted, for example:

� In the vehicle routing problem with time windows, each customer must be
delivered during a customer-speci�c time window, see, e.g., [47, 132]. Then,
not only the costs to travel from customer to customer must be known, but
also the time for traveling and the time for delivery. With it, for each job the
service start time can be determined dependent on the de�ned routes.

� For urban transportation, it can be useful to consider daily tra�c congestion
to ensure compliance with the customers time windows. For this purpose,
the vehicle routing problem with time-dependent travel costs and times was
developed, as shown, e.g., in [88, 114].

� In some applications, a customer can be delivered in more than one stop which
leads to a split delivery vehicle routing problem as investigated, e.g., in [4].

� To compute robust schedules for real-world application, the stochastic nature
of customer demands or travel times can be taken into account, see, e.g.,
[65, 99] or [26, 138], respectively.

� Transportation problems, where goods are transported between pickup and
delivery points, are represented by the class of vehicle routing problems with
pickup and delivery. An overview of related problems is given in [121]. The
relation of pick-up and delivery is either paired, which means that a good
is transported from one customer to another as investigated, e.g., in [45], or
unpaired, which means that a good is picked up by a customer and can be
delivered to any customer with a delivery demand, compare, e.g., [43].

� Recently, energy minimization vehicle routing problems as introduced, e.g.,
in [56], are becoming more important. There, the objective is to minimize
the total energy consumption of the �eet where the energy consumption to
travel from customer i to customer j, with i, j ∈ {0, 1, 2, ..., n}, depends on
the weight of the truck during the trip.

As it can be seen from the various examples, many papers have been written on the
subject of vehicle routing in recent decades. Moreover, several (taxonomic) reviews
have been published. An overview about existing literature is given, for example, in
[46, 94, 137].
Beside transportation, another interesting application of the vehicle routing prob-

lem is the scheduling of geographically distributed maintenance works such as those
for railway infrastructure [151]. Railway infrastructures consists of thousands of
kilometers of railway track, which in turn consists of rails, sleepers, fasteners and
ballast. Each component has to be in a suitable condition to ensure a safe and

2

reliable track service. Regular maintenance is therefore required, usually planned
several months in advance to coordinate maintenance with railway operations. For
this purpose, it must be de�ned in advance when maintenance is required. However,
failures can occur unexpectedly. Reasons for such unforeseen defects can be, for
example, severe weather like heavy rain or material defects in a track component re-
sulting, e.g., from the manufacturing process, transportation or installation. These
unexpected failures are maintained by corrective maintenance activities. Dependent
on the severity of the failure, it can be necessary to reduce the top speed on the
track section in order to avoid safety risks or a too fast deterioration [153]. For fatal
failures, it can even be necessary to close the track section. The resulting limitations
on railway service lead to penalty costs for the maintenance operator. These must
be paid until the track is repaired and the restrictions are removed. By scheduling
the maintenance tasks, these penalty costs can be reduced by resolving correspond-
ing maintenance tasks earlier. However, this may in return lead to increased costs
for travel of maintenance machine and crew.

Topic of this Thesis

This thesis introduces and studies the novel vehicle routing problem with customer
costs (VRPCC) which is developed for the short-term planning of corrective main-
tenance jobs. Each job is characterized by its working duration, time and costs for
traveling to other jobs, and a customer cost coe�cient. The latter is a penalty for
speed restrictions caused by worse track condition. These penalties have to be paid
each day until the job is completed. The jobs have to be visited and maintained
by a �eet of maintenance machines with its crew. It is assumed that the �eet is
homogeneous, which means that all maintenance machines are equal, but each ma-
chine may have another start and end depot. A solution of the VRPCC is a set
of routes, one for each machine, such that each job belongs to exactly one route.
Based on these routes, for each job a start time is computed taking into account that
maintenance is only possible during eight-hour working shifts in the night, but that
the maintenance machine can be driven to the next maintenance location outside
the working shifts. The objective function of the VRPCC is the sum of travel costs
and customer costs, where the latter are computed for each job by the product of
its start day and its customer cost coe�cient.

The aim of this thesis is to develop and investigate solution approaches for this
novel vehicle routing problem. In detail, several mixed-integer linear programs are
formulated for the VRPCC. It turned out that the resulting problems are signi�-
cantly harder to solve because of the customer costs. Therefore, the application of
the branch-and-bound approach to the VRPCC is comprehensively exploited and
studied. For this purpose, several novel lower bounds for the customer cost part of
the objective function are developed and analyzed; and special branching strategies
are designed that allow the usage of this new lower bounds.

Furthermore, construction heuristics and local search algorithms are designed to
obtain feasible and more cost-e�cient solutions for the VRPCC.

3

1. Introduction

Outline

In Chapter 2, �rstly, a brief introduction to graph theory is given and some problems
on graphs, for example the vehicle routing problem, are formulated. Secondly, since
optimization problems such as the vehicle routing problem and its variants are often
formulated as a linear program with integrality constraints, linear programming is
introduced and some common solution techniques for mixed-integer linear programs
are presented. Thirdly, the application of these solution techniques to several vehicle
routing problems is investigated. And �nally, a review of literature regarding railway
maintenance planning is presented.

In Chapter 3, a detailed description of the VRPCC is given that leads to a non-
linear partition and permutation model. In this model, a feasible solution is de�ned
by a set of permutations that represent the routes of the vehicles. For this purpose,
the set of jobs is partitioned into subsets to allocate the jobs to routes. Then, a
route is a permutation of such a subset that represents the order to process the jobs.
Dependent on the job order, the start times of the jobs are computed taking into
account that working is only possible in the night. The objective function is de�ned
by the sum of the travel costs between consecutive processed jobs and the customer
costs that depend on the start times of the jobs.

In Chapter 4, several formulations of the VRPCC as mixed-integer linear program
are given. The chapter starts with a basic model, which is derived from a common
formulation for the vehicle routing problem with time windows as presented in [143].
This model uses three-index binary variables to de�ne the routes of the maintenance
vehicles and two time variables, a start day and a start minute on the start day,
to de�ne the start times of the jobs. After that, several alternatives to formulate
time constraints are provided. Furthermore, several variants to formulate route
constraints by two-index binary variables are shown. Finally, the presented mixed-
integer linear programs are compared in terms of computational time for solving
them with the commercial solver CPLEX.

Chapter 5 provides some heuristics to achieve a feasible solution for the VRPCC:
Firstly, some greedy heuristics are developed that build-up a schedule job by job
appending in each iteration one job at the end of one route. Due to its low compu-
tational e�ort, these heuristics are applied in a rollout algorithm as introduced in
[16]. Additionally, a local search algorithm is presented where iteratively improved
solutions are searched. Finally, the heuristics and algorithms are compared in terms
of solution quality.

In Chapter 6, the application of the branch-and-bound method to the non-linear
formulation of the VRPCC is shown. For this purpose, two branching strategies
were designed. Furthermore, suitable lower bounds for the two cost terms of the
VRPCC are required: For the new customer cost part of the objective function,
new bounds are developed. And for the travel cost part, known lower bounds from
the traveling salesman problem are applied. Finally, computational experiments are
made to investigate which branching strategy and which two lower bounds, one for
each of the two cost parts, lead to the best performance. Furthermore, the branch-

4

and-bound algorithms are compared with applying CPLEX to a mixed-integer linear
program of the VRPCC and also with heuristics.
In Chapter 7, this thesis is concluded by a summary of the most important con-

tributions and an outlook concerning further research.

As an outcome of my research in collaboration with colleagues, four papers have
already been published concerning the VRPCC or its variant with a single mainte-
nance machine:

� F. Heinicke, A. Simroth, G. Scheithauer, and A. Fischer. A railway mainte-
nance scheduling problem with customer costs. EURO Journal on Transporta-
tion and Logistics, 4:113�137, 2015 TEST

[Chapter 4]

� F. Heinicke, A. Simroth, R. Tadei, and M. Baldi. Job order assignment at
optimal costs in railway maintenance. In ICORES 2013 - Proceedings of the
2nd International Conference on Operations Research and Enterprise Systems,
pages 304�309, 2013 TEST

[Chapter 5.1]

� F. Heinicke and A. Simroth. Application of simulated annealing to railway
routine maintenance scheduling. In Proceedings of the 14th International Con-
ference on Civil, Structure and Environmental Engineering Computers. Civil-
Comp Press, 2013 TEST

[Chapter 5.3]

� F. Theurich, A. Fischer, and G. Scheithauer. A branch-and-bound approach
for a vehicle routing problem with customer costs. EURO Journal on Compu-
tational Optimization, 9:100003, 2021 TEST

[Chapter 6]

5

2. Background and Literature

Review

In this section, at �rst, some basic notations of graph theory graphs and related
optimization problems are introduced. After that, (mixed-integer) linear program-
ming is de�ned and some general solution methods for it are brie�y introduced.
Hereinafter, the application of integer linear programming and some of its solution
techniques to vehicle routing problems is investigated. Finally, an overview about
literature regarding railway maintenance planning is provided.

2.1. Graph Theory

The VRPCC, and some related problems, can be formulated as a problem in a
graph. Informally, a graph is a set of points which are connected by some edges.
As an example, a road map can be represented by a graph where cities are vertices
and highways are edges. A mathematical de�nition of a graph is provided below
in De�nition 2.1. Hereinafter, some further required de�nitions are given needed to
introduce some problems in graphs, e.g., the vehicle routing problem. A detailed
introduction into graph theory can be found, e.g., in [80, 90, 141].

De�nition 2.1. An (undirected) graph G = (V,E) consists of a �nite and non-
empty set of vertices V = {1, 2, . . . , n} and a set of edges E ⊆ {{i, j}| i, j ∈ V }
where an edge e = {i, j} ∈ E connects two vertices i, j ∈ V . The vertices i, j ∈ V

are named adjacent if an edge {i, j} ∈ E exists; and the edge {i, j} ∈ E is incident
to vertices i and j. The degree of a vertex is the number of edges that are incident
to it.

De�nition 2.2. A complete graph is a graph where each vertex is connected to each
other vertex. Consequently, E = {{i, j}| i, j ∈ V, i ̸= j} and each vertex has degree
n− 1.

A graph G′ = (V ′, E ′) is a subgraph of graph G = (V,E), if V ′ ⊂ V and E ′ ⊂ E.

De�nition 2.3. A weighted graph G = (V,E,w) is a graph where each edge is asso-
ciated with a weight de�ned by a weight function w : E → R. A weighted complete
graph can be represented by a weight matrix W = (wij)i,j∈V with wij = w({i, j}).

7

2. Background and Literature Review

12

3

4 5

6
7

89

(a) A graph G.

12

3

4 5

6
7

89

(b) A cycle in G.

12

3

4 5

6
7

89

(c) A tree in G.

Figure 2.1.: Examples for a graph, a cycle and a tree.

The weights of a graph G = (V,E,w) satisfy the triangle inequality, if each vertex
triple (i, j, k) of vertices i, j, k ∈ V with {{i, j}, {i, k}, {k, j}} ⊆ E satis�es

w({i, j}) ≤ w({i, k}) + w({k, j}).

Real-life applications like tour planning are often formulated as graph problem.
Then, vertices are geographical points, e.g., customer addresses, and edges represent
travel routes between two addresses. Normally, the weights correspond to driven
distances, needed travel times or costs. If the travel routes between two customers
are computed minimizing, e.g., travel costs, the travel costs will satisfy the triangle
inequality because if the travel costs from customer i to j over k are smallest, then
it is w({i, j}) = w({i, k}) + w({k, j}).

De�nition 2.4. A path is a vertex sequence P = (v1, v2, . . . , vk) such that no
vertex is repeated, thus vp ̸= vq for 1 ≤ p ̸= q ≤ k, and two consecutive vertices
are connected by an edge, thus {vp−1, vp} ∈ E for 2 ≤ p ≤ k. A cycle is a vertex
sequence C = (v1, v2, . . . , vk, v1), such that (v1, v2, . . . , vk) is a path and {vk, v1} ∈ E.
A graph is connected, if for each pair of vertices i, j ∈ V with i ̸= j, a path from i

to j can be constructed. A graph is acyclic, if it does not contain a cycle.

De�nition 2.5. A tree is a connected, acyclic graph. A tour or Hamiltonian cycle

in a connected graph is a cycle C = (v1, v2, . . . , vn, v1) through all vertices of V .

Example To illustrate some of the above de�nitions, three example are provided
in Figure 2.1:

� Sub�gure 2.1(a) shows a graph G with vertex set V = {1, 2, . . . , 9} and edge
set E = {{1, 2}, {1, 3}, {1, 9}, {2, 3}, {2, 5}, {2, 8}, . . . , {7, 9}}.

� Sub�gure 2.1(b) shows a cycle C = (3, 1, 9, 5, 4, 3) in G.

� Sub�gure 2.1(c) shows a tree in G.

Note that G does not contain a tour because vertex 7 is not connected by two edges
to G.

8

2.1. Graph Theory

It is known that in trees and cycles the number of edges is indicated by the number
of vertices, see, e.g., [80, 90, 141].

Proposition 2.1. Let G = (V,E) be a connected graph with |V | = n vertices. Then,

any tree of G containing all vertices of V has n− 1 edges and any tour in G has n

edges.

After introducing several fundamental graph theoretical de�nitions, some graph
problems can be presented. Let G = (V,E,w) be a connected, weighted graph.

A Minimum-Weight Spanning Tree (MST) of G is a subgraph T = (V,E ′, w) such
that T is a tree, containing all n vertices, of minimum weight

W (T) =
∑
e∈E′

w(e).

The Traveling Salesman Problem (TSP) is to �nd a tour C = (v1, v2, . . . , vn, v1)
through all vertices of minimum weight

W (C) =
n−1∑
i=1

w({vi, vi+1}) + w({vn, v1}).

Vehicle Routing Problems (VRP) are combinatorial optimization problems that
aim to �nd a set of routes in a graph. Let G = (V,E,w) be a connected, weighted
graph. Further, let one vertex d ∈ V be the depot and let M = {1, 2, . . . ,m} be a
�eet of vehicles. A solution of a VRP is a set of cycles C = {C1, C2, . . . Cm} in G
such that each vertex i ∈ V \{d} belongs to exactly one cycle and that the start and
end vertex of each cycle is the depot d. In the context of the VRP, the cycles are
called routes. Several variants of the VRP are de�ned by adding more constraints.
Often, the objective is to �nd routes of minimal total weight

W ({C1, C2, . . . Cm}) =
m∑
k=1

W (Ck).

A comprehensive overview about VRP variants can be found in, e.g., [38, 143, 144].
The two most common VRP variants are shortly introduced:
In the Capacitated Vehicle Routing Problem (CVRP), each vertex i ∈ V is a�icted

with a demand qi and each vehicle with a capacity Q. Then, for each vehicle the
total demand of the associated vertices must not exceed the capacity, which implies∑

i∈Ck
qi ≤ Q for each k ∈ M . The objective is either to minimize the total number

of needed vehicles to serve all demands or to minimize the total weight of all routes.
A detailed analysis of the CVRP can be found, e.g., in [143].
In the Vehicle Routing Problem with Time Windows (VRPTW), each vertex i ∈ V

is a�icted with a time window [ai, bi] and a service time si. Further, for each edge
{i, j} ∈ E, a travel time rij ≥ 0 is given. The aim is to �nd routes such that each

9

2. Background and Literature Review

12

3

4 5

6
7

89

(a) A minimal spanning tree

of G.

12

3

4 5

6
7

89

(b) A solution of the travel-

ling salesman problem in G.

12

3

4 5

6
7

89d

(c) A solution of a vehicle

routing problem with two ve-

hicles in G.

Figure 2.2.: Examples for the minimal spanning tree problem, the traveling salesman

problem and a vehicle routing problem.

vertex is visited inside the time window. For this purpose, for each vertex i ∈ V \{d}
with predecessor pi in the corresponding route, the visit time ti has to be computed
based on the routes such that ti ≥ tpi + spi + rpii and ai ≤ ti ≤ bi. The objective is
to minimize the total weight of all routes. A nice introduction into the VRPTW is
given in [47]. One interesting variant is the Vehicle Routing Problem with Soft Time
Windows (VRPSTW), where visiting customers outside the time windows leads to
additional costs which have to be minimized, as investigated, e.g., in [52, 135].

Example To illustrate some of the above de�nitions, Figure 2.2 shows an MST, an
optimal tour and a solution of a VRP. For this purpose, let G be a complete graph
with vertex set V = {1, 2, . . . , 9} and weight matrix

W =



0.0 18.0 29.1 31.9 25.2 26.7 25.3 18.4 15.3
18.0 0.0 13.5 22.8 22.4 29.5 36.1 33.5 17.2
29.1 13.5 0.0 13.6 19.1 28.4 39.4 40.4 20.6
31.9 22.8 13.6 0.0 10.0 18.7 32.1 36.7 17.9
25.2 22.4 19.1 10.0 0.0 9.4 22.2 26.9 10.0
26.7 29.5 28.4 18.7 9.4 0.0 14.1 21.6 13.2
25.3 36.1 39.4 32.1 22.2 14.1 0.0 10.8 19.4
18.4 33.5 40.4 36.7 26.9 21.6 10.8 0.0 20.0
15.3 17.2 20.6 17.9 10.0 13.2 19.4 20.0 0.0


obtained from the Euclidean distance of the vertices embedded into R2 as shown in
Figure 2.2. Then,

� Sub�gure 2.2(a) shows an MST of G with total weight 96.7.

� Sub�gure 2.2(b) shows a tour of minimal weight in G which is a solution of
the TSP on G. The total weight amounts to 127.8.

� Sub�gure 2.2(c) shows a solution of the following VRP: Let V = {1, 2, . . . , 8}
be the vertex set and let vertex 9 be the depot for two machines. In addition,
each route must contain not more than six jobs. With this constraint, the
shown two routes have minimal total weight which is 136.1.

10

2.2. (Mixed-Integer) Linear Programming

2.2. (Mixed-Integer) Linear Programming

Optimization problems like the TSP or a VRP can also be modeled as mixed-
integer linear programs. This subsection introduces the concept of linear programs
and mixed-integer linear programs. For a detailed investigation, see for example
[90, 116, 148, 149].

De�nition 2.6. For a matrix A ∈ Rm×n, and two vectors b ∈ Rm and c ∈ Rn,
a linear program (LP) is to �nd a vector x∗ ∈ Rn such that Ax∗ ≤ b and c⊤x∗ is
minimal (or maximal). Thereby, x is the vector of decision variables and Ax ≤ b is
a set of linear constraints. A vector x ∈ Rn with Ax ≤ b is a feasible solution and
x∗ is called an (optimal) solution of the LP. The objective function is given by c⊤x

and c⊤x∗ = min{c⊤x|Ax ≤ b, x ∈ Rn} is the optimal value of the linear program.

Minimizing the linear objective function c⊤x is equal to shifting the hyperplane
{x| c⊤x = 0} in direction of the vector −c until the boundary of the polyhedron is
attained. Due to this, an optimal solution, if it exists, always belongs to a face of
the polyhedron P = {x ∈ Rn|Ax ≤ b}. This is shown, e.g., in [90, Corollary 3.4].
Consequently, at least one optimal solution is a vertex of the polyhedron. But it is
also possible, that an LP does not have an optimal value for two reasons:

� If the constraints contradict each other, the set of feasible solutions is empty.
Then, the LP is infeasible and no solution exists.

� If the set of feasible solutions is unbounded in the direction of −c, the objective
value is also unbounded and no solution can be attained.

The fact, that the optimal value, if it exists, is always attained in a vertex of P ,
is exploited by the simplex algorithm [90, 148], which is the most common way to
solve an LP. The main idea of the simplex algorithm is to go from vertex to vertex
until no further improvement is possible.

−3 −2 −1 1 2 3 4 5 6

−2

−1

1

2

3

4

x1

x2

min −x1−2x2

such that x1 + x2 ≤ 3

x1 − x2 ≤ 2

−11x1 − 2x2 ≤ 1

x1, x2 ∈ R

Figure 2.3.: Illustration of a linear program.

In Figure 2.3, the geometrical interpretation of an LP is illustrated in R2. Three
constraints bound a two-dimensional polyhedron, which is highlighted by light blue.

11

2. Background and Literature Review

To �nd an optimal solution, the line −x1 − 2x2 = 0, which is drawn red, is moved
in direction (1

2) until the boundary of the polygon is attained in point (−7
9
, 34

9
)⊤,

which is shown by a red dot. The optimal value is −61
9
.

From each LP, a dual problem can be derived. For example, the LP

zLP = min{c⊤x|Ax ≤ b, x ≥ 0, x ∈ Rn},

has the dual problem

wLP = max{b⊤y|A⊤y ≤ c, y ≤ 0, y ∈ Rm}.

Then, for two vectors x and y feasible to the primal and dual problem, respectively,
it is true that

c⊤x ≥ zLP ≥ wLP ≥ b⊤y.

This fact is known as weak duality, as proposed based on a primal maximization
problem, e.g., in [116, Proposition 2.2]. Consequently, the dual problem gives lower
bounds for the primal problem. Further, if an LP is neither unbounded nor infeasible,
its objective value and the objective value of its dual problem are equal which
is known as the strong duality theorem, compare, e.g., [116, Theorem 2.4]. For
problems with a large number of constraints and a small number of decision variables,
it can be easier to solve the dual problem by means of the simplex algorithm which
provides at the same time a solution of the primal problem. Further, optimality of a
feasible primal solution x can be shown by comparing c⊤x with wLP which is useful
for some solution methods.

De�nition 2.7. An integer linear program (ILP) is a linear program with the ad-
ditional constraint x ∈ Zn. The set of feasible solutions for the ILP is

I(P) = P ∩ Zn = {x ∈ Zn|Ax ≤ b}.

A mixed-integer linear program (MILP) is a linear program where some decision
variables xi, i ∈ T ⊆ {1, 2, . . . , n}, have to be integer.
The linear programming relaxation (LP relaxation) is a linear program that results
from removing the integrality constraints of a (mixed-) integer linear program.

Note that in case of an LP where the objective function c⊤x is minimized (or maxi-
mized), the LP relaxation provides a lower bound (or upper bound) because relaxing
the integrality constraints enlarges the set of feasible solutions.

Example In Figure 2.4, the polyhedron P of the LP relaxation is highlighted by
the light blue area between the boundary constraints. The feasible solutions of the
ILP are the blue dots. The red line shows, where the optimal value of the ILP is
attained.

12

2.2. (Mixed-Integer) Linear Programming

−3 −2 −1 1 2 3 4 5 6

−2

−1

1

2

3

4

x1

x2

min −x1−2x2

such that x1 + x2 ≤ 3

x1 − x2 ≤ 2

−11x1 − 2x2 ≤ 1

x1, x2 ∈ Z

Figure 2.4.: Illustration of an integer linear program.

Due to the integrality constraints, the optimal value is not necessarily attained in a
vertex of the polyhedron P = {x ∈ Rn|Ax ≤ b} because often the vertices of P are
fractional as in the example provided in Figure 2.4. One possibility to solve an ILP
(or MILP) is the cutting plane method, see, e.g., [90], where fractional vertices of the
polyhedron are cut o�: For this purpose, an optimal solution over P is computed. If
the obtained solution satis�es all integrality constraints, it solves also the ILP and
the algorithm terminates. Otherwise, additional valid inequalities are added to cut
o� the obtained solution. With it, a new polyhedron P ′ ⊂ P with I(P ′) = I(P) is
created. Then, with replacing P by P ′, the steps solving and cutting are repeated
until the obtained solution satis�es all integrality constraints. It was shown that
the cutting plane algorithm �nds, if exists, an optimal solution for a ILP after a
�nite number of cuts, compare for example [116, Theorem 3.8]. But, the number
of cuts required to attain an optimal solution can be large and pure cutting plane
algorithms are rarely used to solve ILPs or MILPs.

Example For the ILP shown in Figure 2.4, solving the LP relaxation leads to the
solution (−7

9
, 34

9
)⊤ which is not an integer solution. With the constraint x2 ≤ 3, a

valid inequality for the ILP is found that cuts o� the solution of the LP relaxation.
The solution of the LP relaxation with this additional constraint is (0

3) which is an
integer solution. Consequently, it is also an optimal solution of the original ILP and
the algorithm terminates. The objective value is −6.

Another strategy to solve an ILP is branch-and-bound, as described in Chapter 6 or,
e.g., in [116]. The main idea is to successively break up the set of feasible solutions
into certain subsets and to discard subsets that cannot contain an optimal solution.
In the following, one possibility of a branch-and-bound method for ILPs, where
an objective function is minimized, is introduced. At �rst, an upper bound for
the optimal value of the ILP is computed, e.g., the objective value of an arbitrary
feasible solution, or the upper bound is set su�ciently large. Then, the algorithm
is initialized with the ILP as �rst subproblem. In each step, one not yet analyzed
subproblem is analyzed as follows:

� Solve the LP relaxation of the subproblem.

13

2. Background and Literature Review

� If the obtained value is not smaller than the upper bound, an optimal solution
cannot belong to the set of feasible solutions. Consequently, the subproblem
is removed and the next subproblem is selected.

� Otherwise and if this solution satis�es all integrality constraints, a better fea-
sible solution of the ILP is found. Update the upper bound by the obtained
value and store the solution. Select the next subproblem.

� Otherwise, if the obtained solution does not satisfy all integrality constraints,
select one variable that has a fractional value and create two new subproblems.
For the �rst new subproblem, add the constraint that the chosen variable has
to be larger than the rounded up value. And for the second new subproblem,
add the constraint that the chosen variable has to be less than the rounded
down value. Select the next subproblem.

The algorithm terminates, when all subproblems are analyzed. Note that, in contrast
to the cutting plane method, the added constraints must not be valid.

Example Solving an ILP with the branch-and-bound method is demonstrated
based on the example shown in Figure 2.4. Firstly, an upper bound is computed:
For this purpose, an arbitrary feasible solution can be used, for example (0

0), and
the upper bound is set to its objective value which is zero. The �rst analyzed sub-
problem, which is the LP relaxation, leads to the non-integer solution (−7

9
, 34

9
)⊤ with

optimal value −61
9
which is smaller than the current upper bound. Consequently,

branching is necessary, for example on variable x1. Then, two new subproblems are
generated: ILP2 with the additional constraint x1 ≥ 0 and ILP3 with the additional
constraint x1 ≤ −1. Let ILP2 be the second analyzed subproblem. A solution of the
LP relaxation of ILP2 is (0

3). Its objective value is −6 and with it below the upper
bound. Further, this solution satisfy the integrality constraints. Consequently, (0

3)
is the best solution so far and −6 is the new upper bound. New subproblems are
not generated. It remains to analyze subproblem ILP3. Obviously, ILP3 is infeasible
because no feasible solution with x1 ≤ −1 exists. Hence, the algorithm terminates
because all subproblems are analyzed. The obtained optimal solution is (0

3) and the
optimal value is −6.

Another possibility to obtain lower bounds for a branch-and-bound application is
the usage of Lagrangean relaxations as introduced, e.g., in [90]. Assuming an ILP

zLP = min{c⊤x|Ax ≤ b, A′x ≤ b′, x ∈ Zn}
where the problem without constraints A′x ≤ b′ can be e�ciently solved. Then, the
Lagrangean relaxation is given by

LR(λ) = min{c⊤x− λ⊤(b′ − A′x)|Ax ≤ b, x ∈ Zn},
which is a lower bound for zLP for each λ ≥ 0. Consequently, max{LR(λ)|λ ≥ 0}
is the best lower bound which might be tighter than the bound obtained from the
LP relaxation.

14

2.3. Overview of Solution Methods for Vehicle Routing Problems

There are two common extensions of the branch-and-bound approach: branch-
and-cut and branch-and-price. The branch-and-cut method is a combination of
branch-and-bound and cutting plane method, see for example [106, 120]. In this
solution approach, initially some constraints are relaxed to obtain a problem that
can be solved easier, e.g., the integrality constraints. To compute tight bounds
for the branch-and-bound approach, valid constraints are successively added to the
subproblem until a feasible solution is obtained or no further violated constraints
can be detected. Also commercial solvers for MILPs like CPLEX apply a branch-
and-cut algorithm [76]. The subproblems are LPs which are often solved with a
simplex algorithm. If some variables of the obtained solution are fractional, cuts are
added to �nd an integer solution. If this approach fails, the branch-and-cut algo-
rithm implemented in CPLEX branches on a fractional variable to generate two new
subproblems. More precisely, 14 types of cuts are added, for example mixed-integer
rounding cuts obtained by changing the coe�cients of integer variables and the con-
stant in a constraint, or generalized upper bound cover cuts, where it is claimed
that at most one of a set of binary variables can be one in a solution.
The branch-and-price method combines branch-and-bound and column genera-

tion, compare, e.g,. [75, 130]. This solution method is applied to problems with
a large number of variables from which the most will be zero in an optimal solu-
tion. Then, initially only a small part of the variables is taken into account, which
results in tighter LP relaxation bounds. By means of its dual problem, it can be
proven whether the obtained solution is also optimal for the problem with all vari-
ables. Otherwise, further variables have to be considered. A detailed description of
applying the branch-and-price method to solve VRPs is given in Section 2.3.3.

2.3. Overview of Solution Methods for Vehicle

Routing Problems

In this section, an overview about common solution techniques to solve a VRP is
presented. At �rst, a review about the formulation of VRPs as MILP is given.
After that, some heuristics to solve VRPs approximately are listed. Finally, exact
solution methods are investigated. A deeper insight in the VRP and its variants can
be found, e.g., in [62, 95, 143, 144].

2.3.1. Formulations as Mixed-Integer Linear Program

The core of VRPs is the de�nition of routes such that each customer is visited
exactly once and that each vehicle starts and ends in a depot. For this purpose,
there are mainly three approaches:

� In two-index vehicle �ow formulations, binary variables xij de�ne whether
customer i ∈ V is the predecessor of customer j ∈ V in any route. The depot

15

2. Background and Literature Review

is visited |M |-times, compare, e.g., [143, p. 12 (VRP1)], or |M | − 1 copies of
the depot are generated, as shown, e.g., in [40, 95].

� In three-index vehicle �ow formulations, binary variables xk
ij de�ne whether

vehicle k ∈ M travels from customer i ∈ V to customer j ∈ V , compare,
e.g., [143, p. 15 (VRP4)]. The advantage of this formulation is that vehicle-
dependent constraints or costs can be integrated easily. However, the number
of variables increases to |M ||V |2.

� In set partitioning formulations, binary variables θr de�ne whether route r ∈ Ω
is selected or not where Ω is the set of feasible routes, see, e.g., [143, p. 21
(VRP8)]. To ensure that each customer is visited once, binary variables air
denotes whether customer i ∈ V belongs to route r ∈ Ω. Note, that it is
not practicable to generate all feasible routes because the size of Ω increases
exponentially with |V |. Instead, this formulation is mainly used to solve a VRP
with the branch-and-price method as shown later in Section 2.3.3. Thereby,
initially a small set of feasible routes Ω′ is generated and promising routes are
added iteratively until an optimal solution is found.

In several variants of VRPs, not only the order to visit the customers has to be
known, but also the times when servicing a customer starts. Then, additional con-
straints are necessary to determine correct start times. For this purpose, let rij be
the travel time from customer i to customer j with i, j ∈ V ∪ {d} (including the
service time si on customer i ∈ V). To ensure correctly de�ned start times, the most
common formulation is based on a big-M term, see for example [40, 83, 108, 127].
In detail, the time constraints with a big-M term can be formulated as

tj +M(1− xij) ≥ ti + rij

where ti is the visit time on customer i ∈ V and M is su�ciently large, compare
[143, p. 158 (VRPTW)]. Then, only if xij is equal to one, the start time of customer
j must be larger than the sum of the start time of customer i and the time required
for visiting customer i and traveling to customer j.
An alternative formulation is presented by [109, 146]: To avoid the big-M term,

two-index time variables tij are introduced which are equal to the start time of
customer i if and only if xij = 1. Then, constraints∑

i∈V
tji ≥

∑
i∈V

(tij + rijxij)

ensure that customer j ∈ V is not visited before the vehicle has traveled from the
predecessor of job j to job j itself.

16

2.3. Overview of Solution Methods for Vehicle Routing Problems

2.3.2. Heuristics and Local Search Approaches

In this subsection, the most common heuristics and local search approaches for VRPs
are listed. Due to the fact that there exists a wide range of di�erent VRP variants,
mainly heuristics regarding to VRPs which are similar to the investigated VRPCC
are taken into account. These are namely the VRPTW or other in some way time-
dependent VRPs. An overview about existing heuristic solution procedures can be
found, e.g., in [21, 47, 96, 136].
The �rst heuristics developed for VRPs are the savings heuristic [29], the sweep

algorithms [60] and the generalized assignment heuristic [54], which are often used
as inspiration to develop heuristics for the VRPTW.
One of the �rst papers dealing with heuristics for the VRPTW is [132]. There, the

objective is to minimize a weighted sum of travel costs and schedule time. Common
heuristics to solve the CVRP are adapted in order to consider time windows and to
minimize waiting times. In detail, the presented heuristics are a savings heuristic
with restricted waiting time, a time-oriented nearest neighbor heuristic, an insertion
heuristic and a time-oriented sweep heuristic. The comprehensive analysis of [132]
showed that the insertion heuristic led to the best heuristic solutions. The authors
also proved that these heuristics have a worst-case ratio not better than Ω(n) for
an instance with n customers, see [131]. Similar heuristics are presented, e.g., in
[7, 9, 21, 110].
In more recent papers, heuristics are used to initialize some kind of local search

like improvement heuristics, simulated annealing or tabu search, compare, e.g., [22,
52, 59, 135, 138]. An overview about common neighborhood structures for VRPs
can be found in [7, 21]. Also genetic or memetic algorithms are applied to VRPs,
see, e.g., [127, 136, 139].

2.3.3. Exact Solution Approaches

The most common exact solution methods are branch-and-bound or the further
developed variants branch-and-cut and branch-and-price. An overview can be found,
e.g., in [13].

Application of Branch-and-Bound and Branch-and-Cut Methods

Several branch-and-bound and branch-and-cut algorithms were developed for the
VRP and its variants. They di�er mainly in the branching strategy and the applied
lower bounds to prune on nodes that did not contain an optimal solution. For an
overview of their application to the CVRP, see, e.g., [143].
The most common approach to create new branches is to include or exclude edges

of the underlying graph:

� Often, branching is done on a binary variable that describes, whether the jobs
i and j are visited consecutively which implies that edge {i, j} ∈ E is used
by a route, see, e.g., [44, 97]. In doing so, one variable, which is fractional in

17

2. Background and Literature Review

the current node is selected and two new branches are generated: One branch
where the variable is set to zero, which means the edge is excluded, and one
branch where the variable is one, which means the edge belongs in each case
to one route.

� A similar approach is to add edges to a list of included or excluded edges as
shown, e.g., in [2, 98, 142]. More precisely, if bounds for subproblems are
not computed by the LP relaxation but, e.g., by relaxing subtour elimination
constraints, the solutions of the subproblems are integer solutions but can
contain infeasible routes which can be avoided by excluding an edge in further
analyzed branches.

Another approach for the CVRP is to branch on sets of �ow-variables for the capacity
constraints, as shown in [8, 12].
For certain problem formulations, special branching strategies were de�ned. For

example, in [107] a model for the time-dependent TSP is described where binary
variables are de�ned to allocate jobs to a position in the route. In each branching
step, a city is selected which is not allocated to a position. Then, for each open
position of the route, a branch is created where the city is placed on this position.
In [89], branching leads to a successive construction of the route. Each node in the

search tree has a set of �xed routes, a partial route and a set of customers forbidden
to be the next one in the partial route. To create two new branches, a customer i is
selected that does not belong to any route or to the set of forbidden customer. For
the �rst created branch, customer i is appended to the partial route and the set of
forbidden customers is emptied. And for the second created branch, customer i is
forbidden to be the next visited customer and added to the corresponding set. If no
customer i is found because each not yet visited customer is forbidden, the partial
route is �xed, the set of forbidden customers is emptied and a new partial route is
started.

For the most problems, the objective is to minimize the travel costs. The following
methods are applied to obtain lower bounds for this objective:

� A popular lower bound is derived by relaxing subtour elimination constraints
which leads, if for each vehicle an own depot is de�ned, to an assignment
problem, see, e.g., [2].

� Further common bounds result from relaxing the degree constraints, which
ensure that each job is visited exactly once. Then, a lower bound can be
obtained from a minimum spanning tree or similar problems which can be e�-
ciently computed. To obtain tighter lower bounds, the Lagrangean technique
is applied, as shown, e.g., in [28, 58, 74], where the lower bound is iteratively
improved by updating Lagrange multipliers for the relaxed degree constraints.

� For the VRPTW, a Lagrangean relaxation can be applied where the constraint
that each customer has to be visited exactly once is omitted. Then, lower

18

2.3. Overview of Solution Methods for Vehicle Routing Problems

bounds are computed solving a shortest path problem with time windows and
capacity constraint, which permits to visit customers more than once. For this
purpose, dynamic programming is applied, see, e.g., [82, 87].

� Also the LP relaxation of the MILP formulation can be used as lower bound,
as shown, e.g., in [44]. To tighten the LP relaxation, several valid inequalities
can be added. An application of such a branch-and-cut method can be found
for example in [4, 12, 36].

For speci�c problems, speci�c lower bounds were developed. For example in [107] a
lower bound for a TSP with time-dependent costs is provided where the constraint
to visit each city is relaxed. In [142], a branch-and-bound method for a VRP with
backhauls is presented where a special Lagrangian lower bound is applied.

Application of Column Generation with the Branch-and-Price Method

A widely used solution technique for VRPs is the branch-and-price method, which
is a combination of column generation and the branch-and-bound method. In this
paragraph, it is shown how branch-and-price can be applied to VRPs. After that,
various branch-and-price methods for VRPs are presented. Finally, it is discussed
why the branch-and-price method is not used for the VRPCC in this thesis.
As mentioned above, VRPs can be formulated by a set partition model. Then,

a solution of the CVRP is a selection of m routes, such that each route does not
exceed the capacity constraint and each vertex belongs to at least one selected route,
see, e.g., [143, p. 21 (VRP8)]. For each route, one binary variable is used to de�ne
whether the route is selected or not. There will be a lot of feasible routes, but most
of them are not selected and the corresponding variables are zero. Consequently,
an optimal solution remains optimal even if not selected routes are removed from
the set of feasible routes. For this reason, not all feasible routes must be generated
at the beginning, but only a small selection. For this set of routes, the problem
�Select at most m routes with minimal costs, such that each vertex belongs to at
least one route� is solved. In detail, the dual problem of its LP relaxation is solved
because with help of the dual variables, new routes can be generated that may
reduce the costs of the solution. Then, the problem is solved again with an enlarged
set of routes. These two steps are repeated until no more routes can be found
that can improve the current solution. This approach is called column generation
method, because new columns of the matrix of the LP are generated by adding
new decision variables, which are in case of the CVRP new routes. Note that the
column generation method solves only an LP. To obtain a solution of the CVRP, it
has been integrated into a branch-and-bound method, which leads to a branch-and-
price algorithm.
As detailed explored in [49], applying column generation and branch-and-price to

VRPs works as follows: Let V be the vertex set of the customers, which has to be
served by m machines, and let d ∈ V be the depot. Further, let Ω = {r1, r2, . . .}
be the set of all feasible routes of the VRP with route rk having costs ck. Further,

19

2. Background and Literature Review

aik denotes how often vertex i is visited by route rk. With the decision variable θk,
that de�nes how often route rk is selected, the VRP can be formulated as

(MP(Ω)) min
∑
rk∈Ω

ckθk

s.t.
∑
rk∈Ω

aikθk ≥ 1 i ∈ V \ {d},∑
rk∈Ω

θk ≤ m,

θk ∈ N rk ∈ Ω.

The formulation (MP(Ω)) has a better LP relaxation than the common MILP to
model VRPs. But the set of feasible routes Ω is very large. Thus, by means of
branch-and-price it is aimed to �nd an optimal solution for the master problem
(MP(Ω)) with help of a subset of feasible routes Ω′ ⊂ Ω.
In the branch-and-price algorithm, in each search tree node an LP relaxation

of (MP(Ω′)) is solved which will be denoted as (LMP(Ω′)). Clearly, a solution of
(LMP(Ω′)) does not have to be optimal for (LMP(Ω)) since not all feasible routes
are considered. But applying the theorem of strong duality, see [116, Theorem 2.4],
optimality can be shown by considering the dual problem of (LMP(Ω)) which is

(DMP(Ω)) max
∑

i∈V \{d}
λi +mλ0 (2.1)

s.t.
∑

i∈V \{d}
aikλi + λ0 ≤ ck rk ∈ Ω, (2.2)

λ0 ≤ 0, λi ≥ 0 i ∈ V \ {d}. (2.3)

Let λ∗ be an optimal solution of (DMP(Ω′)). Since in the dual problem the objective
function is independent from the set of routes Ω, λ∗ is also optimal for (DMP(Ω)),
if it can be shown that constraint (2.2) is valid for each feasible route rk ∈ Ω. For
this purpose, the column generation problem

min{ck − aikλi − λ0| rk ∈ Ω} (2.4)

has to be solved. A route with ck − aikλi − λ0 < 0 leads to a violation of constraint
(2.2) and has to be added to Ω′. Note, such a route is called a route with negative
reduced costs.
To �nd routes with negative reduced costs, the column generation problem (2.4)

is reformulated. Let the binary variable xij be one, if and only if customer i is
the predecessor of customer j in the route. Consequently, ck =

∑
i,j∈V cijxij and

aik =
∑

j∈V xij. With it, the column generation problem (2.4) of any dual solution
λ can also be formulated as

20

2.3. Overview of Solution Methods for Vehicle Routing Problems

(CGP(λ)) min
∑
i,j∈V

xij(cij − λi),

s.t.
∑
j∈V

xij −
∑
j∈V

xji = 0 i ∈ V \ {d},∑
j∈V

xdj = 1,∑
i∈V

xid = 1,∑
j∈V

xij ≤ 1 i ∈ V \ {d},

xij ∈ {0, 1} i, j ∈ V ,

and further restrictions from the underlying VRP.

Then, (CGP(λ)) is an elementary shortest path problem with additional constraints.
This problem can be solved by a label correcting algorithm as presented in [50].
If routes with negative reduced costs are found, they are added to the set of routes

Ω′ and (DMP(Ω′)) is solved again. Otherwise, the obtained solution is also optimal
for (DMP(Ω)) and an optimal solution θ∗ of (LMP(Ω)) can be deduced. Then, if
not all variables θ∗k are integers, branching is necessary to obtain an integer solution.
As mentioned in [49], it is not recommendable to branch on the binary variables θk.
Indeed, branching is performed at an edge (i, j) which is fractional included by the
routes selected by θ∗. Two subproblems are generated, one where the edge cannot
belong to the solution and one where the edge is enforced in the solution. The latter
is equal to excluding all edges (i, k) with k ̸= j and (k, j) with k ̸= i, which implies
that the only remaining possibility to visit customer j is via visiting customer i
directly before. Furthermore, subproblems can be generated by branching on the
�eet size constraint, if the sum of route selection variables θk is fractional. Then, for
one branch the number of vehicles is restricted by the rounded down current sum
value and for a second branch it is claimed that the number of selected routes is not
less than the rounded up current sum value.
Applications of the branch-and-price method to VRPTWs and CVRPs can be

found, e.g., in [127, 129, 134] and [11, 56, 122], respectively. For the VRPSTW,
where service costs have to be paid if time windows are not hold, applications of the
branch-and-price method are provided in [134, 138]. Then, the elementary shortest
path problem to obtain routes with negative reduced costs is time-dependent. To
solve a multi-depot VRP with capacity and route length constraints, a branch-and-
price method is developed in [32]. Since multiple depots have to be considered, for
each of them a subproblem has to be solved to �nd routes with negative reduced
costs. VRPTWs with time-dependent travel times are considered, e.g., in [34, 100].
In this thesis, the branch-and-price method is not applied to the VRPCC for two

reasons: Firstly, the branch-and-price method is mainly applied to VRPTW, where
only a small part of all possible routes is feasible with respect to the time windows.
In the last years, some successful applications of branch-and-price to the CVRP were

21

2. Background and Literature Review

developed, see, e.g., [56, 122]. In contrast, in the VRPCC routes must not meet time
windows or capacity constraints, which would reduce the number of feasible routes.
Furthermore, because each vehicle has its own start and end depot, more routes are
possible. Secondly, the objective function of the VRPCC is a sum of travel costs
and time-dependent customer costs. Consequently, also the cost function in the
column generation problem will be time-dependent. It is expected that this leads
to a column generation problem which is harder to solve.

2.4. Railway Maintenance Planning

Maintenance of railway infrastructure is essential to ensure a safe and reliable rail-
way service. In the last decade, I was involved in several research projects dealing
with the improvement of railway infrastructure maintenance: ACEM-Rail [78], IN-
FRALERT [79] and In2Smart [31]. In these projects, new measurements systems,
inspection techniques and data analysis tools were developed to obtain detailed
information about the current track condition on the one hand and to predict the
future development of the track condition on the other hand. Furthermore, decision-
support tools for maintenance planning have been developed that bene�t from this
new information.
Railway maintenance management is complex. Because of that, it is separated

into several planning steps with di�erent planning horizon and level of detail. The
resulting planning problems can be distinguished into three levels, compare for ex-
ample [79, 102]:

� strategic (long-term) planning, which enfolds, e.g., determining the budget
for maintenance activities, identi�cation of target quality standards and key
performance indicators or the de�nition of maintenance and renewal policies;

� tactical (mid-term) planning, which enfolds, e.g., scheduling of large and com-
plex maintenance tasks and renewal projects;

� operational (short-term) planning, which enfolds, e.g., daily planning and
scheduling of unexpected occurring failures.

In the following, the planning of maintenance activities or tasks will be addressed.
Most papers deal with maintenance activity planning on a tactical level, where pro-
cessing of a maintenance task usually requires several days or weeks. The resulting
scheduling problems are focused on assigning (larger) maintenance activities to time
intervals like days or weeks and to maintenance crews and/or machines. If di�erent
kinds of maintenance tasks are planned together, it has to be considered that main-
tenance crews have di�erent skills and can only process appropriate maintenance
actions. The maintenance tasks correspond to a certain track section or segment.
Accordingly, crew and machines have to be moved from tasks to tasks which takes
time and causes costs. For the movement of crews and machines, the term traveling
is used. There are some papers, where traveling is neglected because travel times are

22

2.4. Railway Maintenance Planning

small compared to the time intervals for planning, e.g., [24, 66]. In other papers, con-
straints are applied that consider travel time between two consecutive maintenance
actions to ensure a realizable maintenance plan, see, e.g., [17, 113, 119, 145, 147].
For scheduling problems with a larger time horizon, often the future development
of the infrastructure deterioration is integrated. Thereby, deterioration models are
either deterministic, see, e.g., [66, 113, 119, 145], or stochastic, for example [152] or,
for a road infrastructure, [84].

Maintenance Scheduling with Time-Space Network

Some research is done on maintenance planning problems, where (among others)
travel costs have to be minimized. One common approach is based on time-space
networks, see, e.g., [20, 63, 101, 124]. In a time-space network, vertices are de-
�ned by the location of a maintenance task and a certain time interval. Directed
edges, or arcs, between vertices describe a possible activity like working or travel-
ing considering the time required for maintenance. For example, assuming a set of
maintenance tasks that have to be scheduled to weeks. Then, for each maintenance
activity and each possible week to start the maintenance activity, a vertex is de-
�ned. The outgoing arcs link the maintenance activity to possible successors in the
schedule considering the working duration. For example, if a maintenance task has
a duration of two weeks, the outgoing arcs link the maintenance task to other tasks
where the start time is two weeks later. Further, a source and a sink are de�ned
that represent the start and end of the schedule. In such a time-space network, a
schedule is described by one �ow per maintenance crew where the vertices of a �ow
provide the maintenance taks and the start week.

As an example consider [124], where a time-space network is constructed on a
weekly base. Two types of arcs are de�ned: travel arcs for traveling from one lo-
cation to the next within one week and working arcs for performing a project on
a location over several weeks. In this time-space network, �ows are de�ned such
that for each project one working arc is selected. The objective is to minimize a
weighted sum of travel costs and penalties for violated soft constraints like compli-
ance with time windows of projects, mutually exclusive constraints and precedence
constraints. A similar approach can be found in [63], where also idle times between
projects are taken into account. Additionally, an alternative non-linear formulation
as job scheduling problem is given, which consists of allocating maintenance activi-
ties to teams and de�ning start times for the maintenance activities. Two solution
variants for this formulation are suggested: applying a commercial solver for con-
straint programming and using a genetic algorithm. Concluding, it is stated that
the job scheduling formulation is closer to the real problem, but was more di�cult to
solve than the time-space model which was observed in preliminary computational
tests.

If the time required for maintenance varies considerably from job to job, it can
be di�cult to �nd a suitable discretization of the time horizon for the time-space
network. One possibility to overcome this obstacle is to merge jobs to larger projects.

23

2. Background and Literature Review

For example, in [123], beside a time-space network model for larger projects, a VRP
is presented in order to merge small jobs to larger projects that can be allocated to
one or more weeks. The aim is to �nd a set of projects, each represented by one
route, with minimal total number of required weeks which is equal to minimize the
idle times of the projects if they are planned on a weekly base. Thereby, several
additional constraints like required crew skills, mutually exclusion of jobs or project
duration constraints are considered. The planning horizon amounts to one year
and more than 2300 jobs have to be merged into projects. Due to the resulting
complexity, a solution for this problem is computed by local search.

Maintenance Scheduling as Vehicle Routing

The review of literature has shown that maintenance scheduling problems can also
be formulated as VRPs, compare for example [125, 151]. In doing so, the main-
tenance tasks are not assigned to time intervals and crew/machine, but for each
crew/machine, a route is constructed with the maintenance tasks to be processed.
It should be mentioned that this approach is rarely used.
In [151], maintenance jobs are represented by vertices in a graph. Thereby, each

job equals to maintaining a track segment of a non-negligible length. Consequently,
the direction in which a job is executed has to be considered. For this purpose,
between two vertices four edges are constructed: one for each direction combina-
tion. Several side constraints are considered in the resulting VRP: periodicity of
jobs, preferred or forbidden time windows for execution, mutually exclusion of jobs
which cannot be performed simultaneously or precedence constraints. The objective
is to minimize a sum of travel costs, penalties for not performed jobs and penalties
for violated constraints. Due to the periodicity of the jobs, a rolling horizon is used
to decompose the problem into separate subproblems. However, the resulting sub-
problems are still too large to solve them exactly. Because of that, the subproblems
are solved using a heuristic: Important jobs are scheduled by applying a commercial
solver to the underlying MILP. After that, the remaining jobs are inserted heuristi-
cally. Finally, a local search procedure is applied to improve the obtained solution.
A scheduling problem for maintenance of railway signals is investigated in [125],

where some tasks cannot be handled by a single crew member. The problem is
formulated as VRPTW with multiple depots and synchronization constraints where
the latter ensure that tasks requiring two crew members are visited by two crew
members simultaneously. The aim of the resulting VRPTW is to de�ne one route
per crew member and day such that the total travel costs are minimal. Since the
planning horizon is large and up to 1000 maintenance tasks have to be planned, the
problem is solved heuristically. Thereby, the two major steps are �rstly, the cluster-
ing of maintenance tasks into a set of tasks that can be performed by a crew member
and secondly, the scheduling of each cluster taking into account dependencies be-
tween the schedules of the di�erent crew members resulting from the simultaneous
processing of some tasks.
Scheduling of larger track maintenance activities can also be formulated as an arc

24

2.4. Railway Maintenance Planning

routing problem, since the direction of track maintenance can have a major impact
on travel costs. In [133], a track maintenance scheduling problem is introduced
as capacitated arc routing problem which is transformed into a CVRP. In both
problems, the objective is to �nd a set of routes where travel costs and the cost of
hired maintenance sta� are minimal, while ensuring that each route does not exceed
a certain time limit and that each maintenance activity belongs to a route.

Maintenance Scheduling with Time-Dependent Costs

The VRPCC was developed within the European project ACEM-Rail, which is
presented in [78]. In this project, developments were achieved in �ve areas: new
inspection and measurement techniques, models to estimate track defect evolution,
models and algorithms for maintenance planning, management system, and monitor-
ing of executed maintenance. With respect to maintenance planning, two problems
were investigated: one on tactical level and one on operational level. In the tactical
maintenance problem, predicted maintenance activities are allocated to time periods
considering a stochastic demand of resources caused by the uncertain development
of the track condition, see [14, 72]. And the operational planning problem was
developed for scheduling of small tamping tasks by a single tamping team taking
into account that sections that do not meet the track condition requirements cause
penalty costs until they are repaired, see [70, 73]. The reasons for these penalty
costs are that in case of insu�cient track condition, the infrastructure manager can
declare speed limitations for the track, compare, e.g., [3, 117, 153], or the infras-
tructure manager may demand a compensation from the contracted maintenance
companies if this has been agreed in the maintenance contract [64, 118]. This op-
erational planning problem is the origin of the VRPCC with the di�erence that in
the VRPCC several tamping machines are available. Consequently, in the VRPCC,
some maintenance tasks are a�icted with a cost value that have to be paid every
day until maintenance is executed.

In the literature, some papers considering costs for insu�cient track condition can
be found. In [152], costs occur for each day on which the track condition is predicted
to be unsafe. These costs are minimized together with costs for losing lifetime due
to premature maintenance as well as costs for traveling and maintenance. The
corresponding maintenance problem is to assign jobs to days and teams considering
travel times.
In [69], a derailment risk is predicted, which increases if maintenance is executed

later. It is also considered that delayed maintenance can lead to defects and with
it to increased maintenance costs. The analyzed maintenance problem consist of
clustering track sections, that require maintenance, and assigning these clusters to
days in a time horizon of up to one month. Thereby, travel costs are approximated
by the costs to travel to the center of the cluster. The objective is either minimizing
the costs for derailment and maintenance or minimizing the maximal derailment
risk. The problem is solved by a commercial MILP solver.

Also in other maintenance areas, problems occur where delayed maintenance

25

2. Background and Literature Review

causes additional costs: For example, maintenance scheduling problems of o�shore
wind farms often take into account that delayed maintenance leads to a reduc-
tion of the turbine productivity which causes losses in energy production, see, e.g.,
[35, 51, 91]. The resulting problem is a VRP with pickup and delivery, where a
�eet of vessels is routed that bring technicians to platforms and pick them up when
maintenance is completed.

A more general problem with time-dependent costs is the traveling maintainer
problem introduced in [25]. This problem is close to the TSP, but the objective
function is a sum of latency costs. Thereby, the latency of city i equals to the sum
of travel times to reach city i. After introducing the general traveling maintainer
problem, some examples for latency functions of cities are given, e.g., a sum of
time-dependent expected failure costs, maintenance costs and travel costs. Since
the latency functions can be non-linear, it is proposed to apply a genetic algorithm
or particle swarm optimization to solve the traveling maintainer problem.

Maintenance Scheduling and Railway Service

In the so far presented papers, it is assumed that there is a certain amount of track
possession time per time period where the track can be closed for maintenance. But,
recent papers have explored how to coordinate maintenance on railway infrastructure
and train tra�c, either by de�ning possession times for maintenance [81, 103, 104]
or by considering track disturbances directly [18, 19].
In [103, 104], a train schedule is de�ned such that a demand of maintenance

windows is satis�ed. For each train, a set of feasible routes and a range for a
feasible service time is given. Further, for links in the railway network, the demand
of maintenance windows is given by time window options (for example, a single
window of three hours or two windows of two hours), from which one has to be chosen
and scheduled. The resulting optimization problem consists of train scheduling and
de�nition of maintenance windows. Thereby, train scheduling means that for each
train a route and a start time are chosen such that the resulting train schedule is
feasible which means, e.g., that travel and dwell times are considered. And the
de�nition of maintenance windows consists of selecting a maintenance option and
an according set of time periods for each link, such that the demand on maintenance
is satis�ed. Furthermore, in [104] a crew assignment is integrated to ensure that the
time windows for maintenance can be e�ciently used.
Annual track possession scheduling is addressed in [81] for a mining supply chain

rail network. The aim is to de�ne a set of track possession times such that capacity
reduction is minimized, the given demand on track possession is satis�ed and at no
time more resources are required than are available. The problem is formulated as
MILP. Due to the large planning horizon, a iteratively metaheuristic is developed
to obtain a feasible solution. For this purpose, the MILP is split into subproblems
by �xing some of the variables and optimizing over the rest.
In [19], a maintenance rescheduling problem is analyzed which aims to reschedule

maintenance activities of an initial schedule in order to maximize the total through-

26

2.4. Railway Maintenance Planning

put in the planning horizon of one year. The problem is modeled as MILP. To solve
it by a commercial solver for a planning horizon of a year, the number of variables
is reduced by limiting the potential start times of rescheduled jobs and by dividing
the planning horizon to obtain smaller subproblems. Computational experiments on
real world data sets have shown that with this approach a signi�cant improvement
can be achieved.
In [18], start times of maintenance jobs are planned taking into account that

during maintenance (freight) trains cannot pass the track. The objective is to �nd
a schedule such that the total throughput during the planning horizon is maxi-
mal. The resulting optimization problem is modeled as MILP which have to �nd
a) a segmentation of the time horizon in separated time intervals, b) an allocation
of maintenance activities to consecutive time intervals complying release time and
deadline and c) a maximal �ow through the network considering down times of arcs
due to maintenance.

27

3. The Vehicle Routing Problem

with Customer Costs

As explained in detail in the introduction, in this thesis a novel vehicle routing
problem is analyzed that results from operational planning of small maintenance
tasks to correct unexpected failures. Thereby, two kinds of costs need to be consid-
ered: Firstly, travel costs for machinery and crew; and secondly, penalty costs for
an unsafe track condition that have to be paid for each day from failure detection
to maintenance completion. For the latter, customer cost coe�cients are de�ned
for each maintenance activity. The objective function of this problem is de�ned by
the sum of travel costs and time-dependent customer costs. With it, the priority of
customers can be taken into account without losing the sight on travel costs. This
new vehicle routing problem is called vehicle routing problem with customer costs or
shortly VRPCC.
This chapter gives a detailed description of the VRPCC. In detail, Section 3.1

introduced the VRPCC and de�ned the used notation. Because of the technical
background, the customers are named as jobs. Then, Section 3.2 provides a non-
linear partition and permutation model, called (PP), which allows to de�ne each
solution by a partition of the jobs into subsets for each vehicle; and a permutation
of each partition to de�ne the order to visit the jobs. Finally, in Section 3.3 some
extensions of the VRPCC are mentioned.

3.1. Problem Data and Variables

Let N = {1, 2, . . . , n} be a set of jobs that have to be scheduled to a set of vehicles
M = {1, 2, . . . ,m}. Each vehicle k ∈ M has a start point sk and an end point
zk. According to the common terminology, the start and end points will be called
depots. The depot sets are given by Ns := {sk : k ∈ M} and Nz := {zk : k ∈ M}.
Furthermore, let Na := N∪Ns∪Nz be the set of all jobs and depots with cardinality
na := |Na| = n+ 2m. Each job i ∈ Na is characterized by

� its customer cost coe�cient ci,

� its working duration ai,

� the travel costs dij to job j ∈ Na, j ̸= i, and

� the travel time rij to job j ∈ Na, j ̸= i.

29

3. The Vehicle Routing Problem with Customer Costs

All values are assumed to be non-negative integers. Furthermore, it is assumed that

� ai > 0 for all jobs i ∈ N ,

� ask = azk = 0 and csk = czk = 0 for all k ∈ M , and

� both the travel costs and the travel times satisfy the triangle inequality as
described in De�nition 2.3.

De�nition 3.1. A route is an order to visit a set of jobs Nk with a vehicle k. A
route is represented by a permutation Πk(Nk) = (πk

1 , π
k
2 , . . . , π

k
|Nk|) with πk

i ∈ Nk.
Each route starts in the start depot sk of vehicle k, passes the jobs of Nk in the
de�ned order and ends in the end depot zk:

πk
0 := sk 7→ πk

1 7→ πk
2 7→ . . . 7→ πk

|Nk| 7→ πk
|Nk|+1 := zk.

De�nition 3.2. A schedule S := (Nk, Πk(Nk))k∈M is an order to complete a set
of jobs N with a set of vehicles M . It consists of a partition (Nk)k∈M of N into m

non-empty subsets and, for each vehicle k ∈ M , a permutation Πk(Nk) de�ning its
route.

In the following the two parts of the objective function are investigated in detail.
As mentioned previously, the objective function consists of travel costs and time-
dependent customer costs. The travel cost value is computed from the routes as

∑
k∈M

(dskπk
1
+

|Nk|−1∑
i=1

dπk
i π

k
i+1

+ dπk
|Nk|zk

).

And the customer costs are calculated as∑
i∈N

cit
d
i ,

where tdi is the day where job i ∈ N is started. Thus, for each job the start time has
to be determined. For that, a special property of the VRPCC has to be considered:
job execution is only possible during working shifts in the nights with length u, but
traveling from job to job is possible all day long. To model the working shifts, each
day any work can start at minute 0 or later, but has to be �nished at latest when the
working shift ends at minute u. This implies that a job i cannot start if its location
is reached after minute ui := u − ai. In this case, the job must be postponed to the
next day. The working shift length u is naturally bounded by 1440 minutes, i.e., by
24 hours per day. To avoid infeasibility of an instance, the working duration of any
job i ∈ N is bounded by ai ≤ u. For a correct scheduling, the time ti, when the
execution of job i starts, is given as provided in De�nition 3.3.

De�nition 3.3. The start time of a job i is de�ned as ti = (tdi , t
m
i), where tdi ∈ N

represents the start day and tmi ≥ 0 the start minute on day tdi .

30

3.1. Problem Data and Variables

The start day tdi is the basis for the calculation of the customer costs. The start
minute is restricted by the working shift, see condition (3.3) below. Since travel time
and working duration are given in minutes, a start time t = (td, tm) is converted
into minutes by the function ξ : N× R → R with

ξ(t) := htd + tm, (3.1)

where h := 1440 are the minutes of a day. A start time pair ti of any job i ∈ N ,
with job pi ∈ N ∪Ns as predecessor in the schedule, has to ful�ll:

ξ(ti) ≥ ξ(tpi) + api + rpii (3.2)

and
0 ≤ tmi ≤ ui. (3.3)

Condition (3.2) ensures that the job i does not start before its predecessor pi is
completed and the vehicle has traveled to job i. By restriction (3.3), the compliance
with the working shift is guaranteed.

Theorem 3.1. If the customer cost function of the objective function is monotoni-

cally increasing, the minimally allowed start times lead to minimal customer costs.

Proof. In case of a monotonically increasing customer cost function, later execution
of a job cannot result in a smaller customer cost value for this job. Furthermore,
since the travel times are constant, a later execution of a job cannot lead to an
earlier execution of its successors and consequently also the customer cost value of
the successors cannot become smaller.

Due to Theorem 3.1 in the following the minimally allowed start times are computed.
Therefore, �rstly the arrival time tai of any job i ∈ N , which is the time in minutes
of reaching the location of job i, is calculated as

tai := ξ(tpi) + api + rpii,

where tpi is the start time of the predecessor which needs to be already computed.
Then, the arrival time has to be converted into a start time (tdi , t

m
i) so that constraint

(3.3) applies. This is achieved by the function ζ : R× N → N× R with

ζ(t, ui) :=

{
(⌊ t

h
⌋, t− ⌊ t

h
⌋h) if t− ⌊ t

h
⌋h ≤ ui,

(⌊ t
h
⌋+ 1, 0) otherwise.

Then, the time pair (td, tm) = ζ(t, ui) is the earliest with ξ((td, tm)) ≥ t that ful�lls
condition (3.3). With it, the earliest possible start times of the jobs can be calculated
based on the schedule S = (Nk,Π

k(Nk))k∈M . The start time of the depots is given
by t0:

tπk
0
:= tsk = t0, k ∈ M.

The earliest possible start times of the jobs are calculated in the order de�ned by
the permutations based on the arrival time as

tπk
i
:= ζ(taπk

i
, uπk

i
) = ζ(ξ(tπk

i−1
) + aπk

i−1
+ rπk

i−1π
k
i
, uπk

i
), i = 1, 2, . . . , |Nk|, k ∈ M.

31

3. The Vehicle Routing Problem with Customer Costs

12

3

4 5

6
7

89

s1

z1

(a) Solution of the VRPCC.

Day 1

Day 2

Day 3

minute
480

1 9 4 5

6 7

8 2 3

(b) Schedule of the solution.

Figure 3.1.: Example for a solution of the vehicle routing problem with customer costs.

i s1 z1 1 2 3 4 5 6 7 8 9

ci 0 0 100 0 0 150 0 150 50 0 100

ai 0 0 120 120 120 180 60 120 240 120 60

travel time rij

s1

tr
av
el
co
st
s
d
ij

- 42 16 40 54 55 45 43 33 20 32

z1 317 - 27 14 14 18 17 28 40 40 15

1 121 202 - 24 38 42 33 35 33 24 20

2 301 101 181 - 18 30 30 39 47 44 23

3 411 101 292 135 - 18 25 37 52 53 27

4 422 135 319 229 137 - 14 25 42 48 24

5 341 127 253 224 192 101 - 13 29 36 14

6 325 209 267 296 285 187 95 - 19 29 18

7 254 301 253 361 394 322 223 142 - 15 26

8 151 305 185 336 405 367 270 217 108 - 27

9 245 108 153 173 207 179 101 132 195 201 -

Table 3.1.: Costs of the example instance.

Example In Figure 3.1, an example for the VRPCC is given. Assuming nine jobs
and two depots located in R2 as shown in Sub�gure 3.1(a). Each job i ∈ {1, 2, . . . , 9}
is drawn by a dot and the color of the dot represents its customer cost coe�cient
where green stands for ci = 0 and red stands for the highest value ci = 150. The
travel costs and times are derived from the Euclidean distance between the jobs.
Further, Table 3.1 provides in the �rst two rows the customer cost coe�cient and
the working duration of each job, and in the rows below the travel costs and times.
For this purpose, this part of Table 3.1 is designed as an upper triangular matrix
that contains the travel times between the jobs and a lower triangular matrix with
the travel costs. All jobs have to be served by one vehicle.
For this instance, an optimal solution is the route shown in Sub�gure 3.1(a).

The corresponding schedule, which describes the start time of each job, is given in
Sub�gure 3.1(b). The y-axis provides the start day and the x-axis the start minute
on that day. The length of the box for a job shows the working duration. As it can

32

3.2. The Non-Linear Partition and Permutation Model (PP)

be seen, on the �rst day, the jobs 1, 9, 4 and 5 are executed. After that, the vehicle
is moved to the next job 6 over the day such that job 6 can be started at the begin
of the working shift of day two. Due to the long working duration of job 7, the jobs
8, 2 and 3 are done on day three.
Note that this route is not optimal regarding travel costs. Some detours are

necessary to visit jobs with higher customer cost coe�cient �rst. It is also not
optimal regarding customer costs. However, the route has a minimal total cost
value of 2221 whereby the travel cost value is 1471 and the customer cost value is
750.
A travel-cost-optimal solution is given by the permutation (1, 8, 7, 6, 9, 5, 4, 3, 2)

with travel costs value 1263; and the permutation (4, 6, 1, 9, 7, 3, 5, 8, 2) is a customer-
cost-optimal route with a total customer cost value of 700.

3.2. The Non-Linear Partition and Permutation

Model (PP)

The VRPCC can be formulated by the following non-linear partition and permuta-
tion model (PP).

(PP) min g(S) = gd(S) + gc(S) (3.4)

s.t. gd(S) :=
∑
k∈M

(dskπk
1
+

|Nk|−1∑
i=1

dπk
i π

k
i+1

+ dπk
|Nk|zk

) (3.5)

gc(S) :=
∑
i∈N

cit
d
i (3.6)

S := (Nk,Π
k(Nk))k∈M

(Nk)k∈M is a partition of N into exactly m non-empty
subsets

Πk(Nk) is a permutation of the elements of Nk, k ∈ M

tπk
0
:= tsk = t0 k ∈ M (3.7)

tπk
i
:= ζ(ta

πk
i
, uπk

i
) = ζ(ξ(tπk

i−1
) + aπk

i−1
+ rπk

i−1π
k
i
, uπk

i
)

i = 1, 2, . . . , |Nk|, k ∈ M

(3.8)

A schedule (Nk,Π
k(Nk))k∈M consists of the assignment of jobs to vehicles and the

orders to visit the jobs. The allocation is stored by means of a partition of the set
N into m non-empty subsets Nk, k ∈ M . For each subset Nk, the permutation
Π(Nk) = (πk

1 , π
k
2 , . . . , π

k
|Nk|) gives the execution order of the corresponding jobs. The

33

3. The Vehicle Routing Problem with Customer Costs

execution order Π(Nk) is also called route k. Note, that there is no constraint to
equally distribute the jobs to the routes. Thus, in a feasible schedule, one route can
contain n − m + 1 jobs and the other routes include only one job. The objective
function g(S), de�ned by equation (3.4), consists of travel costs and time-dependent
customer costs and has to be minimized. The travel costs are calculated based on
the particular order of the jobs, see equation (3.5). To determine the customer cost
value of a schedule with equation (3.6), the minimally allowed start time of each
job has to be determined. For that, the start time of each start depot is set to
t0 by means of equations (3.7). Then, considering the processing order of the jobs
given by the permutation Πk(Nk), the start time of each job i ∈ N can be computed
with equation (3.8). As it can be seen in (3.6), the customer cost value of any job
increases strictly with the start day. Thus, according to Theorem 3.1, minimally
allowed start times lead to the best objective value of a certain schedule.
The main advantage of this model is that the start times are calculated directly

from the schedule. Because of that, this model is the base for designing heuristics
as shown in Chapter 5, and for developing two branch-and-bound algorithms for the
VRPCC, see Chapter 6. Furthermore, this model has low memory requirements: a
solution can be stored in an array of length n+ 2m.
To solve the VRPCC with a commercial optimizer like CPLEX, a collection of

various formulations of the VRPCC as mixed-integer linear program is given in
Chapter 4. There, the start times become decision variables and the routes are
de�ned by binary variables.

3.3. Extensions of the VRPCC

For practical applications, some additional requirements can be made on the sched-
ule. For example, it can be necessary that all jobs have to be completed within a
given time horizon. This further property of the VRPCC is formulated by an upper
bound for the start day: tdi ≤ dmax for each job i ∈ N . An instance can be infeasible,
if dmax is not su�ciently large to enable a scheduling of all jobs. This implies that
no solution exists.

De�nition 3.4. In the time-constrained VRPCC, all jobs have to be served within
a given time horizon dmax. Then, a schedule S is feasible, if tdi ≤ dmax for each job
i ∈ N .

It is also possible, that the maintenance manager demands a plan where the jobs
are distributed evenly among all vehicles.
For some applications, e.g., if there is a restriction that high priority jobs have

to be resolved within a certain time, it can be necessary to de�ne for each job an
individual time windows for its execution. Then, for each job an earliest start time
ei and a latest start time li is provided.

34

3.3. Extensions of the VRPCC

De�nition 3.5. In the VRPCC with time windows, for each job a time window
[ei, li] for its execution is de�ned. Then, a schedule S is feasible, if ei ≤ tdi ≤ li for
each job i ∈ N .

In the VRPCC, it is assumed that the track can be booked for maintenance every
night. But in practice, the time for maintenance can be further restricted due to
planned night trains or other maintenance activities. Then, for each job a list of
days can be provided where the track is already booked by tra�c or maintenance.

De�nition 3.6. In the VRPCC with closed time windows, each job i ∈ N has a list
of days T i ⊂ Ti, where maintenance is not possible. Then, a schedule is feasible if
tdi /∈ T i for each job i ∈ N .

It is also possible that only a part of the working shift is closed in some nights
because, e.g., a night train will pass the track section which will lead to a more
complex computation of the start times of the jobs.

In the VRPCC it is assumed that all jobs can be processed by all machines
because all jobs regard to the same category of maintenance. But in practice, it can
be necessary to plan jobs of di�erent maintenance categories together. Then, it has
to be ensured that each job is processed by an appropriate vehicle, e.g., tamping
jobs are executed by tamping machines and grinding jobs are handled by grinding
machines.

35

4. Formulations as Mixed-Integer

Linear Program

In Chapter 3, a non-linear formulation of the VRPCC was introduced that describes
a schedule by partitioning the jobs into m subsets to allocate jobs to routes and
de�ning a permutation of the jobs of each subset to describe its order in the route.
To complete the schedule, the start times of the jobs are computed dependent on the
de�ned routes. But the VRPCC can also be formulated as MILP which allows the
usage of commercial software to solve MILPs like CPLEX or Gurobi. Then, the start
times (td, tm) cannot be calculated directly from the schedule, but become decision
variables. With it, not only the assignment to routes and the order of the jobs have
to be determined, but also the start times are part of the decision process. This leads
to a strong increase of the solution space which is the main drawback of solving the
VRPCC via solving a MILP of it. However, one can pro�t from years of research of
solving MILPs which have found their way in commercial solvers like CPLEX that
�uses techniques from branching and cutting together with a �bag of tricks� [...] e.g.,
strategies for the pre-processing of optimization problems, various ways for using
cutting planes, and di�erent heuristics used during the search� [67, p. 154]. With it,
the computational times to solve MILPs were improved signi�cantly in the last years,
see [86]. Furthermore, a formulation as MILP allows to add straightforwardly several
additional constraints, e.g., a limited time horizon for maintenance, the compliance
with time windows or restrictions on the choice of the maintenance machine for some
jobs.

As introduced in Section 2.3.1, there are di�erent possibilities to formulate a VRP
with time constraints as MILP. Thereby, the formulations can be split into a part to
de�ne the routes of the vehicles and a part to de�ne start times for the jobs. For the
VRPCC, at �rst a basic MILP with a three-index formulation to de�ne routes and
a formulation of the time constraints based on a big-M linearization is presented in
Section 4.1. However, computational experiments showed that this �rst MILP was
hard to solve. Because, as proposed in [116, p. 14], �in integer programming, formu-
lation [of] a `good' model is of crucial importance�, some alternatives formulations
of the time and route constraints are presented. In detail, Section 4.2 provides sev-
eral variants to formulate time constraints which are the crucial point so solve the
VRPCC. Three alternative ideas to the initial big-M formulation are investigated:
Firstly, another de�nition of the start times is introduced. Secondly, the formulation
presented in [146], that uses two-index time variables, is applied. And thirdly, binary
time variables are used for the start days that allow to integrate additional valid

37

4. Formulations as Mixed-Integer Linear Program

constraints on the number of jobs executed per day. In Section 4.3, it is shown how
the route constraints can be formulated by means of two-index binary variables. As
it will be observed, additional constraints are necessary to ensure the correct order
of the depots. For this purpose, four alternative formulations are presented. Finally,
in Section 4.4, the presented MILPs for the VRPCC are compared with respect to
solution performance with CPLEX based on computational experiments.
Since the start times are non-negative decision variables and there is no constraint

that stipulates to use the minimally allowed start time, the solution space can be
unbounded. In detail, for jobs with zero customer costs, several values for the start
day may lead to an optimal solution. To restrict the solution space without losing the
optimal value, an appropriate upper bound for the start day dmax should be de�ned.
In case of the time-constrained VRPCC, dmax is a given value. Otherwise, the upper
bound has to be chosen su�ciently large to ensure that an optimal schedule with
minimally allowed start times does not exceed it. In this chapter, it is assumed that
an upper bound for the start day dmax is given.

4.1. A Basic Formulation (R1T1)

In this section, an initial formulation of the VRPCC as MILP is presented which
is based on a common formulation of the VRPTW as presented in [143, p. 158f
(VRPTW)]. According to this, the route constraints are formulated by binary three-
index variables xk

ij which equals to one if and only if jobs i ∈ Na and j ∈ Na with
i ̸= j are assigned to route k ∈ M and job i is executed directly before job j. To
formulate the time constraint, the start time of job i ∈ N ∪ Ns equals to htdi + tmi
with h are the minutes per day. In contrast to the formulation in [143], the time
variables are de�ned independently from the routes.
The basic MILP for the VRPCC is formulated as:

(R1T1) min
∑
k∈M

∑
i∈Na

∑
j∈Na\{i}

dijx
k
ij +

∑
i∈N

cit
d
i (4.1)

s.t.
∑
k∈M

∑
j∈Na\{i}

xk
ij = 1 i ∈ N ∪Ns, (4.2)

∑
j∈Na\{i}

xk
ji −

∑
j∈Na\{i}

xk
ij =


−1 if i = sk,

1 if i = zk,

0 otherwise,

i ∈ Na, k ∈ M , (4.3)

xk
skzk

= 0 k ∈ M , (4.4)

xk
ij ∈ {0, 1} i, j ∈ Na, k ∈ M , (4.5)

38

4.1. A Basic Formulation (R1T1)

(tdsk , t
m
sk
) = (td0, t

m
0) k ∈ M , (4.6)

htdi + tmi + ai + rij − htdj − tmj ≤ (1−
∑
k∈M

xk
ij)M

i ∈ N ∪Ns, j ∈ N, i ̸= j, (4.7)

htdi + tmi ≥ htd0 + tm0 +min
k∈M

{rski} i ∈ N , (4.8)

td0 ≤ tdi ≤ dmax , tdi ∈ N i ∈ N , (4.9)

0 ≤ tmi ≤ ui , tmi ∈ R+ i ∈ N . (4.10)

The objective function is given by formula (4.1) that minimizes the total costs,
which are the sum of travel costs and customer costs. The travel costs depend on
the predecessor-successor-relations, which are given by the binary variables xk

ij, and
the customer costs depend on the start days tdi .

The constraints (4.2)�(4.5) represent a three-index route formulation with binary
variables xk

ij. In detail, equations (4.2) ensure that each job i ∈ N is visited once
by one vehicle. Equations (4.3) impose that a) each vehicle k ∈ M starts the route
in its start depot, b) each vehicle k ∈ M �nishes its route in its end depot, and c)
each job i ∈ N is entered and left by the same vehicle. Constraints (4.4) guarantee
that a vehicle does not travel directly from its start depot to its end depot. With it,
empty routes cannot occur. And with constraint (4.5), the variables xk

ij are de�ned
as binary variables.

The de�nition of start times is regulated by constraints (4.6)�(4.10). To be more
precise, equations (4.6) set the start time of each start depot to t0 = (td0, t

m
0). Con-

straints (4.7) realize that job j ∈ N does not start before the previous job i is �nished
and the vehicle has traveled to the location of job j: If

∑
k∈M xk

ij = 1, the time vari-
ables have to ful�ll htdi + tmi + ai + rij ≤ htdj + tmj . Contrariwise,

∑
k∈M xk

ij = 0 leads
to htdi + tmi + ai+ rij −htdj − tmj ≤ M which does not restrict the start times if M is
chosen su�ciently large. For any job i ∈ N , equation (4.8) de�nes an earliest start
time taking into account that at least one start depot has to be scheduled before.
Note that the travel times must satisfy the triangle constraint, see De�nition 2.3, to
ensure that (4.8) are valid constraints. Conditions (4.9) indicate that the start days
are integers not larger than the given time horizon dmax. Finally, for any job i ∈ N ,
constraint (4.10) bounds the start minute by ui to ensure that job i can be �nished
during the working shift.

Note that constraints (4.7) are a big-M linearization of the non-linear time con-
straints (3.2). A su�ciently large value for M is M := h(dmax + 1). This is an
upper bound for the start time in minutes htdi + tmi , because tdi is bounded by dmax

for any job i ∈ N and tmi is bounded by ui ≤ h.

In modeling TSPs and VRPs, route models similar to (4.2)�(4.5) are normally

39

4. Formulations as Mixed-Integer Linear Program

completed by subtour elimination constraints. Otherwise, a solution feasible to
(4.2)�(4.5) can contain subtours which are cycles of jobs C = (i1, i2, . . . , il), l < |N |
with xk

ipip+1
= 1, for p = 1, 2 . . . , l − 1, and xk

ili1
= 1. Theorem 4.1 shows that for

(R1T1) additional subtour elimination constraints are not necessary since for jobs
of a cycle it is not possible to assign time variables that ful�ll (4.7).

Theorem 4.1. All solutions feasible to (4.2)�(4.10) cannot contain subtours.

Proof. Assuming C = (i1, i2, . . . , ip) is a cycle de�ned by (4.2)�(4.5). Thus, it exists
a route k ∈ M with xk

ilil+1
= 1, for l = 1, 2 . . . , p − 1, and xk

ipi1
= 1. According to

(4.3), C cannot contain depots.
From (4.7) results that ξ(til+1

) ≥ ξ(til) + ail + rilil+1
, for l = 1, 2 . . . , p − 1, and

ξ(ti1) ≥ ξ(tip)+aip+ripi1 with the linear function ξ : N×R → R that transforms the
start time pair t = (td, tm) into a scalar time value as de�ned in (3.1). Since for each
job i ∈ N , the working duration ai is larger than zero, the following contradiction
is observed

ξ(ti1) < ξ(ti2) < . . . < ξ(tip) < ξ(ti1).

Consequently, a feasible solution of (R1T1) cannot contain a cycle.

4.2. Improvements of the Time Constraints

The computational experiments provided in Section 4.4.1 showed that the LP re-
laxation value of formulation (R1T1) is small compared to the optimal value. This
results from small values for the start days in an optimal LP solution. Furthermore,
constraints (4.7) are a big-M linearization of the non-linear constraints

htdj + tmj ≥ htdi + tmi + ai + rij, if
∑
k∈M

xk
ij = 1, i, j ∈ Na

which is known to lead to weak LP relaxations, see [30], and also to cause numerical
problems, compare [6] for more information. To overcome these di�culties, in this
section some alternative time formulations are presented that will have a tighter
LP relaxation. At �rst, Section 4.2.1 provides a second time formulation based on
big-M linearization but with another de�nition of the time variables. Based on this,
Section 4.2.2 provides a �ow formulation of the start times which is known to lead to
a more tight LP relaxation. Finally, in Section 4.2.3, a model with binary variables
for the start days is presented where additional valid constraints can be formulated.

4.2.1. Another Splitting of the Start Times (R1T2)

The �rst alternative time model is based on a start time ti in minutes for each job
i ∈ N ∪ Ns. The model is derived from (R1T1) by replacing htdi + tmi by ti and

40

4.2. Improvements of the Time Constraints

adding constraints to de�ne the start day tdi as the greatest integer not larger than
the start time in minutes divided by the minutes per day.
To obtain the model (R1T2), the constraints (4.6)�(4.10) of (R1T1) are replaced

by the constraints (4.11)�(4.16).

(R1T2) min
∑
k∈M

∑
i∈Na

∑
j∈Na\{i}

dijx
k
ij +

∑
i∈N

cit
d
i

s.t. (4.2)�(4.5)

tsk = htd0 + tm0 k ∈ M , (4.11)

ti − tj + ai + rij ≤ (1−
∑
k∈M

xk
ij)M

i ̸= j, i ∈ N ∪Ns, j ∈ N , (4.12)

htd0 + tm0 +min
k∈M

{rski} ≤ ti ≤ hdmax + ui i ∈ N , (4.13)

ti ∈ R+ i ∈ N , (4.14)

0 ≤ ti − htdi ≤ ui i ∈ N , (4.15)

td0 ≤ tdi ≤ dmax , tdi ∈ N i ∈ N . (4.16)

Constraints (4.11)�(4.14) result from constraints (4.6)�(4.10) by replacing htdi + tmi
with ti. Inequalities (4.15) ensure the correct de�nition of the start days and the
compliance with the working shift: If job i is executed on day tdi , the start minute
on this day is equal to ti − htdi which has to be in [0, ui]. And constraints (4.16)
bound the start days of the jobs.
The following two small changes in the model can signi�cantly improve the LP

relaxation:

� In the LP relaxation, the whole time between two workings shifts can be
used because the working shift constraints are neglected when the start days
become non-integer values. The reason is that constraint (4.15) can always
be satis�ed, e.g., by tdi =

ti
h
. To minimize the falsely usable time between the

working shifts, it can be de�ned that

h = min

{
1440, u + max

i,j∈Na

rij

}
. (4.17)

If the longest travel time between two jobs i, j ∈ Na is less than the time be-
tween two working shifts, traveling between two jobs can always be completed
before the next working shift begins. This remains true, if h is rede�ned by

41

4. Formulations as Mixed-Integer Linear Program

(4.17). Otherwise, equation (4.17) ensures that h is not larger than the number
of minutes per day.

� If tm0 + mink∈M{rski} > ui, job i cannot start at day td0. Consequently, for
each job i ∈ N , the lower bound of the start day in constraint (4.16) can be
replaced by

td0i := td0 +max

{
0,

⌈
1

h

(
tm0 +min

k∈M
{rski} − ui

)⌉}
. (4.18)

The computational results showed that these small changes signi�cantly increase
the quality of the LP relaxation, compare Section 4.4.1. Nevertheless, also with
these improvements, in an LP solution of (R1T2), all start days can be equal to td0i
because if the binary variables xk

ij become real numbers, subtour-like structures can
be de�ned and start times can be chosen small.
Note that both improvements can also be applied to (R1T1). The resulting for-

mulation is referred to as (R1T1i).

4.2.2. Two-Index Variables for the Start Times (R1T3)

It is known, that the LP relaxation of the big-M formulation used in (R1T1) and
(R1T2) is weak, see [143]. The computational experiments, provided in Section
4.4.1, showed that in the LP relaxation solutions, the start times are close to its
lower bounds. This is caused by the fact that constraints (4.12) are satis�ed for
(partly) consecutive executed jobs i, j ∈ N , which means xk

ij > 0 for any k ∈ M ,
with start times ti and tj = ti +∆, if

∆ ≥ ai + rij − (1−
∑
k∈M

xk
ij)M.

Because M is large in comparison to ai + rij, the time di�erence ∆ between the
start times tj and ti can be small, even if the sum

∑
k∈M xk

ij is close to one. If
(1 −∑k∈M xk

ij) is larger than
1
M (ai + rij), then the time di�erence ∆ can even be

negative which means that job j can have a start time smaller than the start time
of its (fractional) predecessor i. Consequently, a solution of the LP relaxation of
(R1T2) can be found in which all jobs start on the �rst day which minimizes the
customer cost value.
To obtain a better LP relaxation, for the next time formulation the time variables

ti of (R1T2) are replaced by the two-index �ow variables tij with i ∈ N ∪ Ns and
j ∈ N ∪Nz as proposed in [146]. These variables are zero if xk

ij = 0 for each k ∈ M .
Contrariwise, if any vehicle travels from job i to job j, the start time of job i is given
by tij. Since job i is left once by one vehicle, only one variable tij is larger than
zero. To the resulting MILP formulation is referred by (R1T3). In the following,
�rstly the formulation is presented and secondly, it is discussed whether two-index
time variables lead to larger start times in the LP relaxation solutions.

42

4.2. Improvements of the Time Constraints

For a job i ∈ N , let δouti = N \ {i} ∪Nz be the set of all possible successors and
δini = Ns∪N \{i} be the set of all possible predecessors. For the start depots sk with
k ∈ M , the set of possible successors is δoutsk

= N . Then, the constraints (4.6)�(4.10)
of (R1T1) are replaced by (4.19)�(4.24) to obtain (R1T3).

(R1T3) min
∑
k∈M

∑
i∈Na

∑
j∈Na\{i}

dijx
k
ij +

∑
i∈N

cit
d
i

s.t. (4.2)�(4.5)∑
i∈δoutsk

tski = htd0 + tm0 k ∈ M , (4.19)(
htd0+tm0 +min

k∈M
{rski}

)∑
k∈M

xk
ij ≤ tij ≤ (hdmax + ui)

∑
k∈M

xk
ij

i ∈ N ∪Ns, j ∈ δouti , (4.20)

∑
j∈δouti

tij ≥
∑
j∈δini

(
tji+(aj+rji)

∑
k∈M

xk
ji

)
i ∈ N , (4.21)

tij ∈ R+ i ∈ N ∪Ns, j ∈ δouti , (4.22)

0 ≤
∑
j∈δouti

tij − htdi ≤ ui i ∈ N , (4.23)

td0i ≤ tdi ≤ dmax , tdi ∈ N i ∈ N . (4.24)

Equations (4.19) de�ne the start times of the start depots. Inequalities (4.20) ensure
that the �ow variable tij is zero, if

∑
k∈m xk

ij = 0. Otherwise, tij must be not
smaller than the minimal feasible start time and not larger than the maximal feasible
start time. Consequently, together with the route constraints (4.2) and (4.3), it is
guaranteed that for each job i ∈ N , a single time variable tij with j ∈ δouti is larger
than zero, which is the start time of job i. Further, there is a single time variable
tji with j ∈ δini larger than zero, which is the start time of the predecessor of job i.
Constraints (4.21) ensure the correct scheduling of the jobs which means that job
i ∈ N must not start before its predecessor, which belongs to the set δini , is �nished
and the vehicle has traveled to the location of job i. Constraints (4.22) de�ne
the start times in minutes as continuous numbers. Inequalities (4.23) ensure the
correct de�nition of start days and the compliance with the working shift. Finally,
constraints (4.24) specify the start days as integers between the minimal feasible
start day td0i and the time horizon dmax.
Note that the time formulation of (R1T3) has similarities to �ow problems where

tij represents the time �ow on edge {i, j}. The inequalities (4.21) can be interpreted

43

4. Formulations as Mixed-Integer Linear Program

as a kind of the �ow conservation rule, see, e.g., [90, p. 153]. Because of that, the
right side of inequality (4.21) is called the time �ow entering job i and the left side
of inequality (4.21) is the time �ow leaving job i.
The comparison of the LP relaxation solutions of (R1T3) and (R1T2) shows that

in the LP relaxation of (R1T3), the start time of a job i cannot be smaller than

∑
j∈δin

tji+(aj+rji)
∑
k∈M

xk
ji.

This means that from each predecessor the working duration and travel time to job i
are partly taken into account and summarized. This is an essential di�erence to the
big-M formulation, where each pair of jobs is separately analyzed. Consequently, in
the LP relaxation of (R1T2), the start time of job i cannot be smaller than

max
j∈δin

tj + aj + rji − (1−
∑
k∈M

xk
ji)M.

Recap, since (1 −∑k∈M xk
ji) ≥ 0 and M is signi�cantly larger than aj + rji, it is

also possible to obtain ti < tj even job j is fractionally scheduled before job i.
The computational experiments con�rmed that the LP relaxation of (R1T3) is

not worse than the LP relaxation of (R1T2), but also not much better, see Section
4.4.1. It turned out that also the LP relaxation of the time constraints (R1T3) led
to start times close to its lower bound. The reason for this behavior is that in the
LP relaxation, a part of the entering �ow can be moved to other jobs to reduce the
start time of the main successor, which is the job j ∈ δouti for which

∑
k∈M xk

ji is
close to one. In detail, for a job i ∈ N with job ȷ̂ as main predecessor (thus xȷ̂i is
close to one), it is

∑
j∈δouti

tij ≥ tȷ̂i+(aȷ̂+rȷ̂i)
∑
k∈M

xk
ȷ̂i +

∑
j∈δini \{ȷ̂}

(
tji+(aj+rji)

∑
k∈M

xk
ji

)
.

To reduce the start time of job i, either
∑

k∈M xk
ȷ̂i or tȷ̂i itself has to be reduced. In

detail, the time �ow from ȷ̂ to i must satisfy

tȷ̂i ≥
∑
j∈σinȷ̂

(
tjȷ̂+(aj+rjȷ̂)

∑
k∈M

xk
jĵ

)
−

∑
j∈σout

ĵ
\{i}

tĵj.

Consequently, to reduce the start time of job i, a part of the time �ow can be shifted
to other jobs, e.g., jobs with a zero customer cost coe�cient, by choosing xĵj > 0,
j ∈ σout

ĵ
\ {i}. The following example illustrates this e�ect.

44

4.2. Improvements of the Time Constraints

s

1

2

3

z

37.6

551.4
820.2

356.5

883.1

328.4

1167.5
100.3

Figure 4.1.: Example for the time �ow in an LP relaxation solution of formulation

(R1T3).

Example Assuming an instance with three jobs {1, 2, 3} and two depots s and z,
which are located as shown in Figure 4.1. Each job i ∈ {1, 2, 3} has a customer
cost coe�cient ci = 100 and working duration ai = 240. The travel costs and times
correspond to the Euclidean distances and are given by

(dij)i,j∈{s,1,2,3,z} = (rij)i,j∈{s,1,2,3,z} =


0 112 101 112 201
112 0 51 101 112
101 51 0 51 101
112 101 51 0 112
201 112 101 112 0

 .

The working shift has a length of 480 minutes and the start time in the start depot
is t0 = (0, 480). Consequently, if a single vehicle is available, on each day only one
job can be �nished.
With h = 682, the two matrices

X = (x1
ij)i,j∈{s,1,2,3,z} =


0 0.94 0 0.06 0
0 0 0.93 0 0.07
0 0.06 0 0.94 0
0 0 0.07 0 0.93
0 0 0 0 0


and

T = (tij)i∈{s,1,2,3};j∈{s,1,2,3,z} =


0 448 0 31 0
0 0 550.5 0 332
0 311 0 610.5 0
0 0 80 0 842


represent a solution of the LP relaxation. In this solution, each job i ∈ {1, 2, 3}
has

∑
j∈{s,1,2,3,z} tij ≤ 1162 which is the end of the working shift of day one. Conse-

quently, tdi = 1.0 for each job i ∈ {1, 2, 3}. Recap, in a feasible solution, each day a
single job can be executed. The reason for this behavior is that due to non-integer
route variables x1

ij, a part of the time �ow is shifted to other jobs. This is illustrated

45

4. Formulations as Mixed-Integer Linear Program

in Figure 4.1 where an arrow between two vertices i, j ∈ V represent that x1
ij > 0.

If the arrow has a dashed line, then x1
ij < 0.1. The labels on the arrows show the

value of corresponding time �ow from job i to job j which is tij+(ai+rij)x
1
ij. It can

be seen in Figure 4.1 that there is a main �ow where the jobs are visited in order
1 → 2 → 3, and a second �ow where the jobs are visited in reverse order. With this
second �ow, a part of the entering time �ow is shifted to other jobs to reduce the
start time of each job.

4.2.3. Binary Variables for Start Days (R1T4) and (R1T5)

Comparing the LP relaxation of (R1T3) with (R1T2) showed that the improvements
are small and that nevertheless all job with non-zero customer cost coe�cient had
the �rst day as start day in the LP relaxation. Furthermore, the computational
experiments showed that (R1T3) was harder to solve than (R1T1) and (R1T2),
compare Section 4.4.1.
Another possibility to improve the LP relaxation is to add further valid con-

straints. For example, it can be assumed that at most η jobs can be visited per day
which is valid if η is not too small. To add an according constraint, the start days
are modeled by binary variables. Then, yiτ is one if and only if job i is started at
day τ ∈ T = {td0, td0 +1, . . . , dmax}. Thus, the start day of job i equals to

∑
τ∈T τyiτ .

The model derived from (R1T2) by using binary variables for start days is given as

(R1T4) min
∑
k∈M

∑
i∈Na

∑
j∈Na\{i}

dijx
k
ij +

∑
i∈N

ci

(∑
τ∈Ti

τyiτ

)
(4.25)

s.t. (4.2)�(4.5), (4.11)�(4.14),

0 ≤ ti − h
∑
τ∈Ti

τyiτ ≤ ui i ∈ N , (4.26)∑
τ∈Ti

yiτ = 1 i ∈ N , (4.27)∑
i∈N

yiτ ≤ η τ ∈ T , (4.28)

yiτ ∈ {0, 1} i ∈ N, τ ∈ T . (4.29)

In the objective function (4.25), the sum of travel cost value and customer cost
value is minimized. The binary variables xk

ij and the start times in minutes ti
have to satisfy the constraints (4.2)�(4.5) of (R1T1) and (4.11)�(4.14) of (R1T2).
Constraints (4.26) ensure that the start day is the largest integer less than ti

h
and that

the job is processed within the working shift. Equalities (4.27) indicate that exactly
one start day is allocated to each job. Note that Ti := {td0i, td0i + 1, . . . , dmax} ⊆ T
is the set of feasible start days for job i with td0i is the smallest feasible start day
as de�ned in equation (4.18). By means of constraints (4.28), it is realized that at

46

4.2. Improvements of the Time Constraints

most η jobs are allocated to any day τ ∈ T . Some possibilities to compute η are
presented later in Section 6.2.1.1. For short, η is computed by �nding a subset of
jobs with maximal cardinality such that the sum of the job's working durations and
the smallest possible travel times does not exceed the time available per day for
working and traveling. Finally, constraints (4.29) de�nes yiτ as binary variables.
The computational experiments showed that the upper bound of the jobs per day

de�ned with constraint (4.28) leads to a signi�cant improvement of the LP relaxation
value, see Section 4.4.1.

Clearly, the binary start days can also be applied to the basic formulation (R1T1)
which leads to the MILP called (R1T5). For this purpose, the variables tdi with
i ∈ N ∪ Ns are replaced by

∑
τ∈T τyiτ in the base formulation (R1T1). Then, the

objective function (4.25), the route constraints (4.2)�(4.5), the constraint (4.10) and
the constraints on the binary variables for the start day (4.27)�(4.29) are combined
with (4.30)�(4.33).

(R1T5) min
∑
k∈M

∑
i∈Na

∑
j∈Na\{i}

dijx
k
ij +

∑
i∈N

ci

(∑
τ∈Ti

τyiτ

)

s.t. (4.2)�(4.5), (4.10), (4.27)�(4.29)

ysk,τ =

{
1, if τ = td0,

0, otherwise,
k ∈ M, τ ∈ T , (4.30)

tmsk = tm0 k ∈ M , (4.31)

h
∑
τ∈T

τyiτ + tmi + ai + rij − h
∑
τ∈T

τyjτ − tmj ≤ (1−
∑
k∈M

xk
ij)M

i ∈ N ∪Ns, j ∈ N, i ̸= j, (4.32)

h
∑
τ∈T

τyiτ + tmi ≥ htd0 + tm0 +min
k∈M

{rski} i ∈ N . (4.33)

The start times of the start depots are de�ned by the constraints (4.30) and (4.31)
as (td0, t

m
0). For job i ∈ N ∪Ns and j ∈ N with

∑
k∈M xk

ij = 1, the constraints (4.32)
ensure that job j starts not before job i is �nished and the vehicle has traveled to the
location of job j. This constraint is similar to (4.7) with tdi is replaced by

∑
τ∈T τyiτ .

Finally, for any job i ∈ N , constraint (4.33) bounds the start time converted into
minutes from below by the minimal feasible start time. Note, that h is computed
by equation (4.17) to strengthen the LP relaxation.

Remark With binary variables for the day of job execution, additional constraints
for the VRPCC with closed time windows can be easily integrated, e.g., by adapting
Ti.

47

4. Formulations as Mixed-Integer Linear Program

4.3. Route Constraints with Two-Index Variables

In this section, alternative formulations for the route constraints (4.2)�(4.5) of
(R1T1) are presented. Recap, in (R1T1) the binary variables xk

ij denote whether
vehicle k ∈ M travels from job i ∈ N ∪Ns to job j ∈ N ∪Nz. With it, m routes are
de�ned. To reduce the number of variables, the m routes of the m vehicles can be
formulated as one large route through all depots using two-index binary variables.
Then, decision variables xij encode whether a vehicle travels from job i to job j.
Similar formulations can be found, e.g., in [40, 95, 143]. Additionally, there are
arti�cial travels from end depot zk to start depot sk+1, for all k = 1, 2, . . . ,m − 1,
and from zm to s1. To the formulation of route constraints with two-index variables
is referred as (R2).

(R2) min
∑

i∈N∪Ns

∑
j∈N∪Nz\{i}

dijxij +
∑
i∈N

cit
d
i

(4.34)

s.t.
∑

j∈Na\{i}
xij = 1 i ∈ Na, (4.35)

∑
j∈Na\{i}

xji = 1 i ∈ Na, (4.36)

xzms1 = 1, (4.37)

xzksk+1
= 1 k ∈ M \ {m}, (4.38)

xskzl = 0 k, l ∈ M , (4.39)

xij ∈ {0, 1} i, j ∈ Na, k ∈ M , (4.40)

tdi ∈ N obtained from time constraints i ∈ N .
The objective function, given by equation (4.34), is the sum of travel costs and
customer costs which is minimized. Note that the arti�cial travels from the end
depots to the start depots are not considered by calculating the travel costs. Con-
straints (4.35) and (4.36) ensure that each job and each depot is visited and left
exactly once. Equations (4.37) and (4.38) de�ne the arti�cial travelings between the
depots. Equations (4.39) forbid empty routes.
To de�ne the start times tdi of the job i ∈ N , the time constraints of the previous

formulated models can be used by replacing
∑

k∈M xk
ij with xij: For this purpose,

� (T1) denotes constraints (4.6)�(4.10) and (T1i) its improvement,

� (T2) denotes constraints (4.11)�(4.16),

� (T3) denotes constraints (4.19)�(4.24),

� (T4) denotes objective function (4.25) and constraints (4.11)�(4.14),
(4.26)�(4.29), and

48

4.3. Route Constraints with Two-Index Variables

� (T5) denotes objective function (4.25) and constraints (4.10), (4.27)�(4.29),
(4.30)�(4.33),

either applying three-index variables xk
ij or two-index variables xij.

However, (R2) in combination with one of the time constraint variants is not
su�cient to de�ne a feasible schedule of the VRPCC. Two kinds of infeasibilities
can occur:

� In (R2), it is not ensured that behind the start depot sk the �rst visited depot is
the end depot zk. For example, for an instance with m = 3, a large route with
the depot order s1 → . . . → z2 → s3 → . . . → z1 → s2 → . . . → z3 → s1 would
be feasible to (R2), but is not a correct schedule because the depots have to be
visited in the order s1 → . . . → z1 → s2 → . . . → z2 → s3 → . . . → z3 → s1.

� In di�erence to (R1), subtours are not eliminated in (R2). Due to the fact
that travels are also de�ned between the depots, a cycle C = {i1, i2, . . . , il}
can contain depots. And since the time constraints must not be met for
depots, the contradiction of Theorem 4.1 is resolved there. Note that at most
m subtours can occur which would lead to m routes with an incorrect depot
order.

So, additional constraints are necessary to guarantee the correct order of the depots
and exclude subtours in the large route. Four variants of such constraints are intro-
duced next: in Section 4.3.1 and Section 4.3.2, two variants that use a certain class
of subtour elimination constraints are presented; and Section 4.3.3 and Section 4.3.4
provide two variants with additional variables to allocate jobs to routes.

4.3.1. Application of MTZ-Constraints (R2a)

One possibility for a well-de�ned large route with two-index variables is the usage of
MTZ-constraints, as introduced in [112], which are subtour elimination constraints
named after their creators Miller, Tucker and Zemlin. Then, an additional decision
variable vi represents the position of job i ∈ Na in the large route beginning in depot
s1. The resulting model is given by

(R2a) min
∑

i∈N∪Ns

∑
j∈N∪Nz\{i}

dijxij +
∑
i∈N

cit
d
i

s.t. (4.35)�(4.40),

vs1 = 0, (4.41)

0 ≤ vi ≤ n+ 2m− 1 i ∈ Na, (4.42)

vi−vj+(n+2m−1)xij ≤ n+2m−2 i, j ∈ Na, j ̸= s1, (4.43)

vsk ≥ vsk−1
+ 3 k ∈ M \ {1}. (4.44)

49

4. Formulations as Mixed-Integer Linear Program

The model (R2a) is an extension of (R2). The objective function (4.34) and the
constraints on the binary route variables (4.35)�(4.40) are completed by the MTZ-
constraints (4.41)�(4.44). In detail, equation (4.41) sets the position of the start
depot s1 to zero. Constraints (4.42) bound the position value from below by zero
and from above by n+2m−1. Inequalities (4.43) ensure that vj is not smaller than
vi+1, if job i is the predecessor of job j which means xij = 1. Otherwise, inequality
(4.43) is trivially true because vi − vj cannot exceed n+2m− 2. Constraints (4.44)
guarantee the correct order of the start depots in the large route.

Remark In [39], an improved formulation of the MTZ-constraint is given as

vi − vj + (n+ 2m− 1)xij + (n+ 2m− 3)xji ≤ n+ 2m− 2

i, j ∈ Na, j ̸= s1. (4.45)

In case of xij = 1, two inequalities have to be considered, which are vi − vj ≤ −1
and, with interchanged indexes, vj − vi ≤ 1. Consequently, vj = vi + 1, if xij = 1.
The comparison of the LP relaxation showed that with constraints (4.45) instead of
(4.43), larger LP relaxation values were obtained, see Section 4.4.1. In the following,
this variant is referred to as (R2as).

4.3.2. A Flow Formulation of the MTZ-Constraints (R2b)

In [57], a stronger formulation of the MTZ-constraints is presented, where the po-
sition of each job in the route is modeled by a �ow formulation. For this purpose,
the variables vi are replaced by the �ow variables vij with

vij =

{
the position of job i, if xij = 1,

0, otherwise.

The resulting mixed-integer program is

(R2b) min
∑

i∈N∪Ns

∑
j∈N∪Nz\{i}

dijxij +
∑
i∈N

cit
d
i

s.t. (4.35)�(4.40)

vs1i = 0 i ∈ Na, (4.46)

vij ≤ (n+ 2m− 1)xij i, j ∈ Na, i ̸= s1, (4.47)∑
j∈Na\{i}

vij −
∑

j∈Na\{i}
vji = 1 i ∈ Na \ {s1}, (4.48)

∑
i∈Na

vski ≥
∑
i∈Na

vsk−1i + 3 k ∈ M \ {1}, (4.49)

vij ≥ 0 i, j ∈ Na. (4.50)

50

4.3. Route Constraints with Two-Index Variables

The constraints (4.46)�(4.50) complete (R2) by de�ning the position of each job in
the long route. To ensure that the start depot s1 is on position zero, equations (4.46)
set all �ow variables corresponding to start depot s1 to zero. Constraints (4.47)
ensure that vij is zero if xij = 0 and that otherwise vij is bounded by n + 2m − 1.
Equations (4.48) guarantee that the position of any job or depot is by one larger
than the position of the predecessor in the route. With it, again the successor of s1
gets position 1 and the end depot zm is on position n+ 2m− 1. Constraints (4.49)
lead to a correct order of the start depots. Finally, the variables vij are de�ned as
numbers not smaller zero.
As shown in [150], the advantage of the �ow formulation is that it leads to a

stronger LP relaxation than the original MTZ-constraints. This e�ect was also
obtained in the computational experiments. With route model (R2b), smaller gaps
between the LP relaxation value and the optimal value were obtained. But the
improved variant of (R2a) led to a tighter LP relaxation than (R2b), see Section
4.4.2.

4.3.3. Binary Route Assignment (R2c)

For some variants of the VRP, it is necessary to know which vehicle visits a job.
Then, a binary variables yik can be introduced that represent the assignment of jobs
to routes by

yik =

{
1, if job i ∈ Na belongs to route k ∈ M ,

0, otherwise,

see [55, 143]. As shown later in Theorem 4.2, the assignment of jobs to routes is also
able to solve both problems of the two-index formulation: the depots will be visited
in the correct order and subtours cannot occur. The resulting MILP is called (R2c).

(R2c) min
∑

i∈N∪Ns

∑
j∈N∪Nz\{i}

dijxij +
∑
i∈N

cit
d
i

s.t. (4.35)�(4.40)∑
k∈M

yik = 1 i ∈ Na (4.51)

yskk = 1 k ∈ M (4.52)

yzkk = 1 k ∈ M (4.53)

yik − yjk ≤ 1− xij − xji k ∈ M, i, j ∈ N (4.54)

yskk − yjk ≤ 1− xskj k ∈ M, j ∈ N (4.55)

yik − yzkk ≤ 1− xizk k ∈ M, i ∈ N (4.56)

yik ∈ {0, 1} i ∈ Na, k ∈ M (4.57)

51

4. Formulations as Mixed-Integer Linear Program

The constraints (4.51)�(4.57) complete (R2). To be more precise, equations (4.51)
ensure that each job is assigned to one route. Equations (4.52) and (4.53) allocate the
depots to the corresponding routes. Constraints (4.54) impose that two successively
visited jobs are assigned to the same route: If xij or xji is one, two inequalities,
namely yik − yjk ≤ 0 and yjk − yik ≤ 0, have to be considered which leads to
yik = yjk. Otherwise, constraints (4.54) are trivially hold because yik and yik are
binary and consequently, yi − yj cannot be larger than one. Constraints (4.55) and
(4.56) ensure that the successor of start depot sk and the predecessor of end depot
zk are assigned to route k ∈ M . All constraints together lead to yik = 1, if and only
if job i is visited between the start depot sk and the end depot zk in the long route
through all jobs and depots.

Theorem 4.2. A solution of (R2c) in combination with time constraints cannot

contain subtours and the depots are visited in the correct order.

Proof. Firstly, the correct order of the depots is proven via contradiction. Assuming
a solution where the �rst depot visited after sk is zl with l ̸= k ∈ M . Constraint
(4.52) leads to yskk = 1. Let i ∈ N be the successor of sk, then from (4.55) follows
that yik = 1. Further, inequalities (4.54) lead to yjk = 1 for all j ∈ N visited after
job i but before the next end depot. In case of zl is the �rst end depot visited after
sk with l ∈ M and l ̸= k, constraint (4.56) indicates that also yzlk = 1. Further,
from equation (4.53) follows that yzll = 1. Together, this leads to an infeasibility in
constraint (4.51) for the end depot zl.

Secondly, it is shown that the solution cannot contain subtours. Assuming a
solution with a cycle C. To allow a feasible de�nition of the start times, C must
contain depots as shown in Theorem 4.1. Without loss of generality, it is assumed
that s1 belongs to C (contrariwise, there is another cycle in Na\C that contains s1).
As shown above, the next visited end depot has to be z1. With constraint (4.38)
of (R2) is ensured that s2 is the successor of z1. Then, the next visited end depot
has to be z2, which is the predecessor of s3. A continuation of this process leads
to the conclusion that all depots must be part of the cycle. Then, there has to be
another cycle without depots. But, as shown in Theorem 4.1, for such a cycle, it is
not possible to de�ne feasible start times. Consequently, a feasible solution of (R2c)
in combination with time constraints cannot contain cycles.

4.3.4. Integer Route Assignment (R2d)

For the formulation (R2d), the binary variables yik of (R2c) are replaced by integer
variables yi with yi = k if and only if job i ∈ Na is assigned to route k ∈ M . With
it, the number of variables is reduced.

52

4.3. Route Constraints with Two-Index Variables

(R2d) min
∑

i∈N∪Ns

∑
j∈N∪Nz\{i}

dijxij +
∑
i∈N

cit
d
i

s.t. (4.35)�(4.40)

ysk = k k ∈ M (4.58)

yzk = k k ∈ M (4.59)

yi − yj ≤ (1− xij − xji)m i, j ∈ N (4.60)

ysk − yi ≤ (1− xski)m k ∈ M, i ∈ N (4.61)

yi − yzk ≤ (1− xizk)m k ∈ M, i ∈ N (4.62)

yi ∈ {1, 2, . . . ,m} i ∈ Na (4.63)

By means of the constraints (4.58)�(4.63), the route formulation (R2) is completed.
With equations (4.58) and (4.59) the depots are assigned to the corresponding routes.
Constraints (4.60) ensure that two consecutive executed jobs i, j ∈ N are assigned to
the same route. In detail, if xij or xji is one, two inequalities are considered, which
are yi − yj ≤ 0 and yj − yi ≤ 0. Consequently, yj = yi. Otherwise, if xij = xji = 0,
constraint (4.60) is trivially hold. The reason is that yi − yj cannot exceed m,
because yi and yi are de�ned as positive integers not larger than m. Constraints
(4.61) guarantee that yi ≥ k, if job i is the successor of the start depot sk. Similar
to that, constraint (4.62) impose that yi ≤ k, if job i is the predecessor of the end
depot zk. Finally, constraint (4.63) de�nes that yi is an integer not larger than m.
All constraints together ensure that yi = k, if job i is visted after sk but before zk
in the long route through all jobs and depots.

Theorem 4.3. A solution of (R2d) in combination with time constraints cannot

contain subtours and the depots are visited in the correct order.

Proof. Initially, the correct order of the depots is shown. Let sk be a start depot
and let zl be the �rst end depot visited after sk with l, k ∈ M . Let further j ∈ N

be the successor of sk and i ∈ N the predecessor of zl. Then, it follows from the
constraints (4.58) and (4.61) that yj ≥ ysk = k. Further, the constraints (4.59) and
(4.62) lead to yi ≤ yzl = l. Additional, the constraints (4.60) stipulate that all jobs
between j and i, including j and i, are assigned to the same machine. Thus,

k ≤ yj = yi ≤ l. (4.64)

With this observation, the proof can be given via backwards induction:

� If k = m, then also l = m, because this is the only end depot zl with m ≤ l.
Thus, the �rst depot visited after sm is zm.

53

4. Formulations as Mixed-Integer Linear Program

� If k = m − 1, then an end depot zl, with m − 1 ≤ l, has to be the �rst end
depot visited behind sm−1. As previously shown, the start depot visited before
zm is sm. Consequently, the �rst depot reached after sm−1 can only be zm−1.

� Assuming the depots are visited in the correct order for all k = m,m −
1, . . . ,m − p and 1 ≤ p ≤ m − 2. For k = m − p − 1, the �rst visited
depot after sm−p−1 has to be zl with l ≥ m− p− 1 to satisfy inequality (4.64).
Due to the fact that the depots sk and zk with k ≥ m − p are visited in the
correct order, zm−p−1 has to be the �rst depot reached after sm−p−1.

Consequently, only the correct order of the depots allow a feasible route assignment.
Analogous to the proof of Theorem 4.2, the correct order of the depots ensures

that the solution does not contain subtours.

Compared to (R2c), the number of variables and constraints is reduced. The
results of the computational experiments in Section 4.4.2 suggest that using integer
instead of binary variables leads to a better solvable MILP.

4.4. Computational Results

In this section, the MILPs are compared in terms of computational e�ort to solve
them with CPLEX. For this purpose, the instances of benchmark S (as described
in Appendix A) were modeled as di�erent MILPs and solved with CPLEX version
12.8 using the default settings and limiting the computational time to ten minutes.
At �rst, the major �nding is outlined. After that, in Section 4.4.1, the presented

formulations for time constraints are analyzed and in Section 4.4.2, the provided
formulations for route constraints are examined.

total rcc = 0.33 rcc = 0.66 rcc = 1
0

20

40

60

80

100

in
st
a
n
ce
s
(%

)

(R1T1)

(R2dT4)

Figure 4.2.: Percentage of optimally solved instances for two selected MILPs.

The major �nding of the computational results is that the VRPCC was hard
to solve. In Figure 4.2, for two selected MILPs of the VRPCC, the percentage of
optimally solved instances of benchmark S is shown dependent on the ratio of jobs
with non-zero customer cost coe�cient rcc. In detail, the basic formulation (R1T1)
is compared with the formulation (R2dT4) which turns out to be the best of the
presented MILPs. Even the instances are small�with only �fteen jobs and two
vehicles�a lot of instances were not optimally solved within the time limit of ten

54

4.4. Computational Results

minutes. In total, 46.1% of the instances were not optimally solved if they were
formulated by the base model and 25.6% of the instances if (R2dT4) was applied.
The instance of benchmark S, where only �ve of �fteen jobs have a non-zero customer
cost coe�cient, were always solved in less than ten minutes as shown in Figure 4.2
by the bars for rcc = 0.33. In case of a�icting two third of the jobs with a non-
zero customer cost coe�cient, the percentage of within ten minutes optimally solved
instances formulated according (R1T1) and (R2dT4) was drastically reduced to 50%
and 85%, respectively. And of the instance where all jobs are a�icted with a non-
zero customer cost coe�cient, only 11.7% and 38.3%, respectively, of the instances
were optimally solved within the time limit. This shows that the number of jobs
with non-zero customer cost coe�cient has a strong in�uence on the hardness to
solve an instance.

4.4.1. Comparison of Time Formulations

In this subsection, the presented time formulations are compared in terms of LP
relaxation quality and computational performance when solving them with CPLEX.
Recap, the presented time formulations are

� (T1) and its improvement (T1i), where the start time equals to the sum htdi+tmi
of the start day tdi and the start minute on this day tmi for job i ∈ N ,

� (T2), where the start time equals to ti and the start day tdi of job i ∈ N is
computed from ti,

� (T3), where two-index variables tij are applied to de�ne start times in minutes
and to compute the start day,

� (T4), where the start time equals to ti and the start day is de�ned by binary
variables yiτ which enables the formulation of additional constraints to limit
the number of jobs visited per day, and

� (T5), which is similar to (T4) but with h
(∑

τ∈T τyiτ
)
+ tmi as start time.

A detailed de�nition of the constraints is given in Sections 4.1 and 4.2.
At �rst, the LP relaxations of the formulated MILPs are compared because the

quality of the LP relaxation has a strong in�uence to the performance of solving a
MILP with CPLEX. After that, performance analysis for the computational time
and the gap to an optimal solution are done. In conclusion, it will be seen that (T4)
showed the best performance in terms of computational time, gap to an optimal
value and also quality of the LP relaxation.
Figure 4.3 shows on the left the cumulative distribution of the start days obtained

with the LP relaxations of the presented time models compared to the cumulative
distribution of the start days in an optimal solution S∗. Note that the start time in
the depots is (0, 480) which is the end of the working shift on day zero, compare the
benchmark de�nition given in Appendix A. Consequently, job processing cannot

55

4. Formulations as Mixed-Integer Linear Program

0 2 4 6
0

20

40

60

80

100

tdi

%
o
f
jo
b
s

0 10 20 30 40 50
0

20

40

60

80

100

gap (%)

%
o
f
in
st
a
n
ce
s

(R1T1) (R1T1i) (R1T2) (R1T3) (R1T4) (R1T5) S∗

Figure 4.3.: Cumulative distribution for the start days and performance pro�les for the

gap between LP relaxation value and optimal value for the time models on

benchmark S.

start before day one. On the right of Figure 4.3, performance pro�les for the gap
between LP relaxation value and the optimal value are shown.
With (R1T1) as presented in Section 4.1, the start day of each job was less than

one which results from insu�cient lower bounds for the start days and the big-M
linearization. Consequently, the customer cost value of the LP relaxation was small
and the gap to the optimal value was large: For each instance, the LP relaxation
was more than 20% smaller than the optimal value and for more than 75% of the
instances, the LP relaxation value was less then half of the optimal costs.
The formulation (R1T2) led to signi�cantly better LP relaxation values. This

is mainly caused by tighter lower bounds for the start day of the jobs: For each
job i ∈ N , the start day tdi must greater than or equal to one. As it can be seen
in the left plot of Figure 4.3, in the obtained LP relaxation solutions of (R1T2),
nearly all jobs had start day one. With the improved variant of (R1T1i), where the
conversion factor h and minimal feasible start day td0i are de�ned as proposed for
model (R1T2), for some jobs a larger start day was determined. But nevertheless,
both formulations had the same LP relaxation values because for all jobs with a
non-zero customer cost coe�cient, the start day was one. The reason is that the
big-M formulation leads to a weak LP relaxation. As mentioned in Section 4.2.2,
due to M is large in comparison to the time di�erence between two consecutive
executed jobs, even with xk

ij close to one the start time of job j can be equal to the
start time of its predecessor i.
The application of two-index variables for the start times in formulation (R1T3)

resulted in some larger start days, but the LP relaxation was not signi�cantly im-
proved. This can be seen in the right plot of Figure 4.3 on the fact that the per-
formance pro�le of (R1T3) is only slightly above the one of (R1T1i) and (R1T2).
It was observed that also the formulation with two-index time variables allows to
determine the start days minimal, but the binary route variables cannot be as close
to one as with the big-M linearization. Consequently, the LP relaxations of the

56

4.4. Computational Results

0 200 400 600
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

0 1 2 3 4 5
75

80

85

90

95

100

gap (%)

%
o
f
in
st
a
n
ce
s

(R1T1) (R1T1i) (R1T2) (R1T3) (R1T4) (R1T5)

Figure 4.4.: Comparison of the formulations of time constraints on benchmark S.

min Q1 Q2 Q3 max

(R1T1) 0.01 0.18 2.41 4.36 5.79
(R1T1i) <0.01 0.16 2.30 4.43 6.29
(R1T2) <0.01 0.17 2.26 3.80 4.81
(R1T3) <0.01 0.27 0.64 0.80 2.04
(R1T4) <0.01 0.15 0.81 2.62 3.75
(R1T5) 0.01 0.19 1.06 3.13 4.56

Table 4.1.: Number of nodes (in millions), analyzed during the solution process with

CPLEX, for di�erent time formulations in benchmark S.

formulations (R1T2) and (R1T3) led to the same customer cost value, but with
(R1T3) a larger travel cost value was determined.
The MILPs (R1T4) and (R1T5) led to almost the same LP relaxation value. Due

to the additional constraints, that limit the number of jobs per day, the computed
start times were larger than in the other variants. Consequently, a lot of jobs had
a start day larger or equal to day two. But, in comparison to an optimal solution
S∗, the start days were still too small. Comparing the performance pro�les of the
LP relaxation value in the right plot of Figure 4.3 shows that the LP relaxation of
(R1T4) and (R1T5) outperformed the other models. Nevertheless, the gap between
LP relaxation value and optimal value is large: the minimal measured gap was 7.1%
and for half of instances, the gap exceeded 22%.

After comparing the quality of the LP relaxation of the di�erent formulations, the
performance of solving them with CPLEX is analyzed. For this purpose, Figure 4.4
shows performance pro�les for computational time and gap to the optimal value of
the time formulations combined with the basic route formulation (R1). Table 4.1
provides statistic values for the number of analyzed nodes during the solution process
with CPLEX. In detail, the minimal value, the �rst, second and third quartile as

57

4. Formulations as Mixed-Integer Linear Program

min Q1 Q2 Q3 max

rcc = 0.33 0.7 7.1 17.0 36.9 350.9
rcc = 0.66 4.2 50.9 181.2 600.0 600.0
rcc = 1.00 10.4 415.0 600.0 600.0 600.0

Table 4.2.: Statistic values for computational times of the formulation (R1T4) for di�er-

ent groups of benchmark S.

well as the maximum value are given in millions. Note, that CPLEX solves MILPs
with a branch-and-cut approach [105]. Thus, on each node of the search tree, the
LP relaxation of the subproblem is solved with some iterations of an optimizer, such
as the dual simplex algorithm.
As it can be seen in Figure 4.4, the MILP (R1T3), which applies two-index vari-

ables to formulate time constraints, was harder to solve. A reason could be that the
signi�cantly increased number of variables results in LP relaxations harder to solve.
This impression is underpinned by the number of analyzed nodes. As it can be seen
in Table 4.1, less nodes were analyzed than with the other approaches even more
time was spend to the solution process.
The variants of the big-M formulation with integer variables for the start days,

which are (R1T1), (R1T1i) which applies the tightened conversion factor h and min-
imal start day td0i, and (R1T2), showed a similar performance. The computational
times and the number of analyzed nodes were similar. This is an unexpected ob-
servation because (R1T1) in the variant presented in Section 4.1 had a worse LP
relaxation in comparison to (R1T1i). But a comparison of the log-�les of CPLEX
showed that in both variants the same values in the root node were obtained which
means that CPLEX adds appropriate cuts to exclude start days less than td0i which
cannot lead to a feasible solution.
As expected, the model (R1T4) and (R1T5), where additional constraints limit

the number of jobs visited per day, outperformed the other models. The best of the
presented time constraint formulations was (R1T4) because with this formulation,
less time was required to solve the instances and, in case of exceeding the time limit
of ten minutes, better solutions were obtained than with the other time constraint
formulations. This can be seen in Figure 4.4 on the fact that the performance pro�les
for computational time and gap of (R1T4) are both well above the performance
pro�les of the others. Also comparing the number of analyzed nodes of (R1T4) and
(R1T5) suggests that branching was more e�cient if the start day is computed from
an overall start time in minutes, as in formulation (R1T4), instead of de�ning the
start time as sum of start day and start minute at a day, as in (R1T5).
Concluding, the formulation (R1T4), where the start times are de�ned in minutes

and binary variables are used to de�ne the start days and restrict the number of
jobs visited per day by a valid upper bound η, led to the best performance in solving
it with CPLEX.

58

4.4. Computational Results

Finally, Table 4.2 provides the statistic values minimum, 25th-percentile, median,
75th-percentile and maximum for computational times of the formulation (R1T4)
for instances of benchmark S grouped by rcc, which is the percentage of jobs a�icted
with non-zero customer cost coe�cient. As it can be seen, the computational e�ort
was signi�cantly higher if more jobs were a�icted with a non-zero customer cost
coe�cient. For instances generated with rcc = 0.33, which means �ve of �fteen
jobs have a non-zero customer cost coe�cient, half of instances were solved within
less than 17 seconds. Doubling the number of jobs with non-zero customer cost
coe�cient resulted in an increase of the median by more than factor ten, see Table
4.2 column Q2. From the instances with rcc = 1, where each job has a non-zero
customer cost coe�cient, less than a half was solved within the time limit of 10
minutes (which are 600 seconds).

4.4.2. Comparison of Route models

In this subsection, the �ve di�erent route models, introduced in Section 4.1 and
Section 4.3, are compared. These are

� (R1), which is the three-index formulation,

� (R2a) and (R2as), which are the two-index formulations with classical MTZ-
constraints and its strengthened variant, respectively,

� (R2b), which is the two-index formulation with a �ow-formulation of the MTZ-
constraints,

� (R2c), which is the two-index formulation with binary variables to allocate
jobs to routes, and

� (R2d), which is the two-index formulation with integer variables to allocate
jobs to routes.

The route formulations were combined with the time constraints (T4) because it
showed the best performance, as observed in the computational experiments pro-
vided in Section 4.4.1

Again, �rstly the quality of the LP relaxation is analyzed. After that, the per-
formance of solving the formulations with CPLEX is compared with respect to
computational time and gap to an optimal solution. In conclusion, it will be seen
that with (R2d) the best performance in terms of computational time, gap to an
optimal value and also quality of the LP relaxation was observed.
Figure 4.5 shows performance pro�les for the gap of the LP relaxation value to

the optimal value for the presented route formulations. As it can be seen, the
formulations (R2asT4), (R2cT4) and (R2dT4) had the best LP relaxation values.
Note that the LP relaxation values of (R2cT4) and (R2dT4) were equal. With the
other three formulations, signi�cantly smaller LP relaxation values were obtained.

59

4. Formulations as Mixed-Integer Linear Program

0 10 20 30 40
0

20

40

60

80

100

gap (%)

%
o
f
in
st
a
n
ce
s

(R1T4)

(R2aT4)

(R2asT4)

(R2bT4)

(R2cT4)

(R2dT4)

Figure 4.5.: Performance pro�les for the gap between LP relaxation value and optimal

value for the route formulations on benchmark S.

0 200 400 600
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

0 0.2 0.4 0.6 0.8 1
90

92

94

96

98

100

gap (%)

%
o
f
in
st
a
n
ce
s

(R1T4) (R2aT4) (R2asT4) (R2bT4) (R2cT4) (R2dT4)

Figure 4.6.: Comparison of formulations of route constraints on benchmark S.

min Q1 Q2 Q3 max

(R1T4) <0.01 0.15 0.81 2.62 3.75
(R2aT4) <0.01 0.03 0.30 2.02 3.00
(R2asT4) <0.01 0.05 0.31 1.91 2.84
(R2bT4) <0.01 0.03 0.36 0.99 2.10
(R2cT4) <0.01 0.09 0.46 2.57 5.67
(R2dT4) <0.01 0.08 0.46 2.61 4.73

Table 4.3.: Number of nodes (in millions), analyzed during the solution process with

CPLEX, for route formulation on benchmark S.

60

4.4. Computational Results

0 5 10 15 20
0

20

40

60

80

100

gap (%)

%
o
f
in
st
a
n
ce
s

gap to best solution

0 10 20 30 40 50
0

20

40

60

80

100

gap (%)

%
o
f
in
st
a
n
ce
s

gap to best lower bound

(R2aT4) (R2asT4) (R2cT4) (R2dT4)

Figure 4.7.: Comparison of selected formulations of route constraints on benchmark M.

To compare the performance of solving the formulations with CPLEX, Figure 4.6
shows performance pro�les for computational time and gap between the obtained
objective value and the optimal value of the route formulations combined with the
best time formulation (T4). Further, Table 4.3 provides the statistic values min-
imum, 25th-percentile, median, 75th-percentile and maximum for the number of
nodes analyzed during the solution process. Recap, in each node an LP relaxation
is solved where some variables are �xed.
As it can be seen in Figure 4.6, the formulations (R1T4) and (R2bT4) were outper-

formed by the other variants. Unexpectedly, (R2aT4) and its strengthened variant
showed a similar performance even the LP relaxation of (R2asT4) was signi�cantly
better. For both, almost the same computational times were required and the num-
ber of analyzed nodes was similar. For the instances, were the time limit of ten
minutes was exceeded, (R2aT4) led to slightly better solution than its strengthened
variant.
Also (R2cT4) and (R2dT4), where the jobs are allocated to routes by additional

constraints and variables, were solved fast. (R2dT4) led to the highest number of
instances optimally solved within ten minutes. But, in case of exceeding the time
limit of ten minutes, with (R2cT4) the gap to an optimal solution was smaller as
shown in the right plot of Figure 4.6. For both variants, the number of analyzed
nodes during the solution process was approximately equal but higher than for
formulations (R2aT4) and (R2bT4), compare Table 4.3.
Due to the models (R2aT4), (R2cT4) and (R2dT4) showed a comparable perfor-

mance on benchmark S, they are further analyzed on benchmark M, which consists
of 100 instances with 30 jobs. For a detailed description of benchmark M, compare
Appendix A. None of the instances was solved within the time limit of ten min-
utes. Because of that, only the quality of the best integer solution obtained after
ten minutes is analyzed. Figure 4.7 shows on the left performance pro�les for the
gap between the obtained objective value and the best obtained solution with one

61

4. Formulations as Mixed-Integer Linear Program

min Q1 Q2 Q3 max

rcc = 0.33 0.4 2.9 6.0 20.3 143.0
rcc = 0.66 1.9 28.7 72.7 424.8 600.0
rcc = 1.00 6.7 247.1 600.0 600.0 600.0

Table 4.4.: Statistic values for computational times of formulation (R2dT4) for di�erent

groups of benchmark S.

of the presented MILPs, and on the right performance pro�les for the gap between
the obtained objective value and the best lower bound of CPLEX after ten minutes.
Note that the lower bound provided by CPLEX is the minimum LP relaxation value
of all unexplored nodes. It can be observed that better solutions were obtained with
(R2dT4) because its performance pro�le is mostly above the other ones. But it
can also be seen that after ten minutes the gap between the best found integer and
the best lower bound was large. Thus, it may be that the quality of the obtained
solution was worse compared to an optimal solution, or that the lower bounds were
worse.
In closing, for the model (R2dT4), the best performance of CPLEX was reached.

For this MILP formulation, Table 4.4 shows statistic values for the computational
times of the instances of benchmark S grouped by the percentage of jobs with non-
zero customer cost coe�cient. As it can be seen, the computational e�ort was
signi�cantly higher if more jobs were a�icted with a non-zero customer cost coef-
�cient. In detail, for instances, where �ve of �fteen jobs have a non-zero customer
cost coe�cient, the median of the computational time was 6.0 seconds. Doubling rcc
led to a more than ten times higher median. And from the instances, where all jobs
have a non-zero customer cost coe�cient, more than a half was not solved within
ten minutes. But, in comparison to the results of (R1T4) provided in Table 4.2, the
computational times were signi�cantly improved in all three groups.

4.5. Conclusion

In this chapter, di�erent MILP formulations for the VRPCC were presented. The
constraints of each model can be divided into a part to model the routes of the
vehicles and a part to control the time variables. For each part, several formulations
were presented that can be combined without restrictions.
In the Sections 4.1 and 4.2, several variants to ensure correct start times were pre-

sented. The �rst model, given in Section 4.1, was based on the time pair t = (td, tm)
with the start day td and the start minute tm on day td as introduced in Chap-
ter 3. The big-M linearization technique was used to linearize the time constraints
(3.2) which ensure that each job does not start before its predecessor is �nished
and the vehicle has traveled to its location. Due to worse LP relaxation values,
several alternative formulations for the time constraints were developed in Section

62

4.5. Conclusion

4.2. At �rst, a start time in minutes was used instead of the time tuple which led to
some observations reasoning the worse LP relaxation of the initial model and leading
to a signi�cant improvement of it. After that, a linearization based on two-index
time variables was applied which is known to lead to better LP relaxation values.
Finally, binary variables for the start day were introduced in order to add valid con-
straints that restrict the number of jobs visited per day without eliminating feasible
solutions.
After formulating several variants of time constraints, alternative route formu-

lations were investigated. With it, �ve possibilities to ensure correct routes were
stated. The �rst route model, presented in Section 4.1, is based on binary three-
index variables. In Section 4.3, four variants were shown with binary two-index
variables to model the routes of the vehicles by one large route. There, mainly two
di�erent approaches to ensure feasible routes were presented: On the one hand, the
usage of well-known subtour elimination constraints that assign each job to a po-
sition in the large route; and on the other hand, an explicit assignment of jobs to
vehicles.
The computational experiments provided in Section 4.4 showed that the formu-

lation (R2dT4) led to the best performance in solving the VRPCC with CPLEX.
Recap, (R2dT4) is a two-index route formulation with an assignment of jobs to
routes combined with time constraints where the start time is de�ned in minutes
and the start day is modeled by binary variables. Further, it was observed that
instances were harder to solve, if more jobs are a�icted with a non-zero customer
cost coe�cient.

63

5. Heuristics and Local Search

Approaches

The computational experiments of solving MILP formulations of the VRPCC showed
that they are hard to solve. Even the test instances were small�with only �fteen
jobs and two vehicles�a lot of instances could not be optimally solved within a
time limit of ten minutes. In detail, for the best model (R2dT4) only 74.4% of
the instances were solved in less than ten minutes. Furthermore, it was observed
that the number of jobs a�icted with a non-zero customer cost coe�cient had a
signi�cantly impact on the hardness to solve the VRPCC. The more jobs have a
non-zero customer cost coe�cient, the higher is the expected computational time.
For larger instances, exact solving will be very time consuming and sometimes not
even possible. Computational tests on instances with 30 jobs showed, that none of
the hundred instances could be solved within ten minutes. Furthermore, after ten
minutes the gap between the best lower bound and the best found integer solution
was large.
In order to �nd good solutions for larger instances in reasonable time, in this chap-

ter some heuristics and metaheuristics to obtain a feasible solution are presented: In
the �rst section of this chapter, di�erent greedy heuristics for the VRPCC are devel-
oped. Greedy heuristics are a common approach to get an approximate solution for
a complex optimization problem that can be divided into single decisions. In each
step, the decision is selected which seems to be the best. Three di�erent criteria
to decide which is the best decision are developed. Section 5.2 provides a rollout
algorithm to obtain approximate solutions for the VRPCC. This is an algorithm
that evaluates the decisions of each step by means of a heuristic to see the e�ects
on the cost value. In each step, the decision with the smallest cost evaluation is
taken. In Section 5.3, a local search procedure for the VRPCC is presented which
improves an initial solution iteratively. For this purpose, more cost-e�cient solu-
tions are searched by moving jobs to another position or route. Finally in Section
5.4, the results of computational experiments are presented, where the performance
of the heuristics in terms of solution quality is analyzed.
In the following, a solution will be a feasible solution, which is in general not

optimal. Note that, if the heuristics are applied to an extension of the VRPCC, it is
not ensured to �nd a feasible solution. For example, in case of the time-constrained
VRPCC or the VRPCC with time windows, some jobs can remain unplanned which
leads to an uncompleted schedule.
In this chapter, the following notation is used: A partial schedule consists of a set of

65

5. Heuristics

unplanned jobs Ñ and a schedule of the jobs of N \Ñ given by S̃ = (Ñk,Π
k(Nk))k∈M .

An empty schedule is given by (∅, ())k∈M and Ñ = N with in�nite costs.

5.1. Greedy Heuristics

Greedy heuristics are a special class of algorithms developed for optimization prob-
lems. A greedy solution is built up step-by-step, selecting in each step the decision
that maximize or minimize an evaluation function, see [33].
For the VRPCC, the developed greedy algorithms are designed as follows: The

solving process starts with an empty schedule. By means of n decision steps, the n
jobs are appended to a certain route. In each step, locally the best choice to append
one currently unplanned job to one route is selected and carried out. For short, the
job and the route will be called job-route-pair.

De�nition 5.1. A job-route-pair is feasible if and only if appending the job at the
end of the route does not lead to constraint violations.

To take the locally best choice of all feasible job-route-pairs, a selection criteria
is used. The selection step is repeated until all jobs are appended to a route or no
more feasible job-route-pairs exist. In the latter case, the heuristic ends with an
uncompleted schedule and another try to �nd a feasible solution is needed.
In this dissertation, three new selection criteria are developed for the VRPCC:

� nearest neighbor, that is based on the well-known nearest neighbor heuristic
of TSPs [15] to minimize travel costs, see Section 5.1.1;

� most expensive neighbor, that is the contrary of the nearest neighbor idea and
is focused on customer costs, see Section 5.1.2; and

� cost-balanced neighbor, that considers both cost parts, see Section 5.1.3.

In each case, the greedy algorithm for the VRPCC has a computational complexity
of O(n2m): the algorithm requires n steps to append all jobs; and for each step, the
e�ort to select the best pair of job and route is of order O(nm).
As de�ned in Chapter 3, a feasible solution of the VRPCC must not contain

empty routes. Since the designed greedy heuristics do not ensure that each route
contains at least one job, �nally a simple algorithm to �ll empty routes, called FILL
algorithm, is applied: Firstly, for each route k ∈ M it is checked whether it is empty.
In this case, a job is selected from another route and added to the empty route. The
route l ∈ M , from which the job is selected, must contain at least two jobs and the
total costs to shift the job to route k must be minimal. The pseudocode of the FILL
algorithm is shown in Appendix B as Algorithm 1.

66

5.1. Greedy Heuristics

5.1.1. Nearest Neighbor Heuristic

Due to its simplicity, the nearest neighbor heuristic [15] is an in practice widely used
heuristic for the TSP: Starting with an arbitrary city, in each step the nearest city
not visited so far is added to the tour until the tour is completed. This is a very
simple approach because it is easy to apply and has a low computational e�ort, but
it can produce solutions of poor quality. It can be shown that there is no constant
worst case performance, see [128]. An application to a VRP can be found, e.g., in
[23].
To apply the nearest neighbor heuristic (NN) to the VRPCC, the approach is

modi�ed such that from the unplanned jobs with small travel costs the one with
the highest customer cost coe�cient is selected. In more detail, the algorithm starts
with an empty solution S̃ := (∅, ())k∈M and the set of unplanned job Ñ contains all
jobs. A given factor f ≥ 0 represents the allowed variation from the minimal travel
cost value. The schedule is build up stepwise by appending one job after the other
to a route. In each step, the best feasible job-route-pair is searched, which consists
of four substeps:

1. If no feasible job-route-pair exists, return the uncompleted schedule. In this
case, the NN heuristic was not successful.

2. Determine the minimal travel cost value dmin of all feasible job-route-pairs,
which is

dmin := min
k∈M, j∈Ñ

{dlkj| (j, k) feasible}

whereby lk is the current last job of route k ∈ M . Note, if a route is empty, lk
equals to the start depot sk.

3. Identify the maximal customer cost coe�cient c∗ of all jobs with travel costs
not larger than dmin(1 + f) to any route. This is computed by

c∗ := max
k∈M, j∈Ñ

{cj| (j, k) feasible, dlkj ≤ dmin(1 + f)}.

4. Select from the job-route-pairs, where the customer cost coe�cient of the job
is equal to c∗, the one which leads to the smallest travel costs. Then, append
the job to the corresponding route and remove it from the set of unplanned
jobs Ñ .

Finally, if all jobs are appended but one or more routes are empty, the FILL algo-
rithm is applied to shift one job to each empty route. The pseudocode of the NN
heuristic is shown in Appendix B as Algorithm 2.
Since the focus is mainly on travel costs, the customer cost value and the total

costs can be large compared to an optimal solution. It is shown by the following
theorem that the approximation ratio of the NN heuristic is unbounded.

67

5. Heuristics

(a) solution of NN heuristic

(b) an (in some cases optimal) solution

Figure 5.1.: Example of an instance where the nearest neighbor heuristic has an un-

bounded approximation ratio.

Theorem 5.1. The approximation ratio of the NN heuristic is unbounded.

Proof. The proof for a given algorithm parameter f is done by an example. Imagine
the following instance with n jobs and one vehicle: Between the start depot s and
the �nish depot z, the jobs {1, 2 . . . n} are arranged in a line in consecutive order.
For job i ∈ N , the travel costs to job j ∈ N are dij =

D
n
|i − j| with D > (1 + f)n,

and the costs to travel to a depot are dsi = D
n
(i − 1) and diz = D

n
(n − i). The

customer cost coe�cients are zero for all jobs except job n which has cn = B. The
working time of each job is set to u

2
and the travel times hold 1 ≤ rij ≤ h − u

2
for

all jobs i, j ∈ Na. With it, every day one and only one job can be visited. The start
time of the start depot is set to t0 = (0, u).
In this instance, because of D > (1 + f)n, only the nearest neighbor is taken

into account when searching for the highest customer cost coe�cient c∗ of the
nearest neighbors. Consequently, independent from the customer costs coe�cients,
the NN heuristic leads to the solution SNN = ((N, (1, 2, 3 . . . n))) with travel costs
gd(SNN) = (n− 1)D

n
and customer costs gc(SNN) = nB since job n is executed as

last job on day n. This solution is shown in Figure 5.1 on the top. The circles
represent the jobs and their customer cost coe�cients are written inside. The route
is illustrated by arrows.
Another feasible solution is S = ((N, (n, n− 1, n− 2, . . . , 1))), which is shown in

Figure 5.1 below. For this solution, the travel costs are gd(S) = 3(n − 1)D
n
; and

the customer costs amount to gc(S) = B because job n is done as �rst job. Note
that this solution is optimal for instances with B su�cient high. This leads to the
approximation ratio

g(SNN)

g(S∗)
≥ g(SNN)

g(S)
=

(n− 1)D
n
+ nB

3(n− 1)D
n
+B

∈ Θ(n).

68

5.1. Greedy Heuristics

Thus, in this example the approximation ratio increases with the number of jobs.
Consequently, it exists no constant upper bound on the approximation ratio.

5.1.2. Most-Expensive Neighbor Heuristic

In the most-expensive neighbor heuristic (MEN), the selection of jobs mainly de-
pends on customer costs. Due to choosing in each step the job with highest customer
cost coe�cient would lead to a too high travel e�ort, another approach is used: From
the jobs with a high customer cost coe�cient, a feasible job-route-pair with smallest
total cost evaluation is selected.
To be more precise, the MEN heuristic starts with an empty solution and the set

of unplanned job Ñ contains all jobs. A given factor f ≥ 0 represents the allowed
variation from the most-expensive job, which is the unplanned job with highest
customer cost coe�cient. The schedule is build up stepwise by appending one job
after the other to a route. Thus, in each step a feasible job-route-pair has to be
chosen. Selecting the best feasible job-route-pair according to the most-expensive
selection criterion consists of four substeps:

1. Determine the highest customer cost coe�cient of the unplanned jobs

cmax := max{cj| j ∈ Ñ}.

2. If no feasible job-route-pair (j, k) with cj ≥ fcmax exists, return the uncom-
pleted schedule. In this case, the MEN heuristic was not successful.

3. Compute for each feasible job-route-pair (j, k) with cj ≥ fcmax the evaluation
value

e(j, k) := dlkj + tdcmax

with lk is the currently last job of route k ∈ M and td is the start day resulting
from appending job j to route k. Note that the evaluation is not computed
with the customer cost coe�cient of job j, but with cmax. This avoids that
jobs with a smaller customer cost coe�cient are preferred. Otherwise, the jobs
with smaller customer cost coe�cient can have a better evaluation even when
the travel costs are higher.

4. Select the job-route-pair with minimal evaluation value and append the job to
the corresponding route.

These steps are repeated until all jobs are planned. Finally, it is checked whether
the schedule contains empty routes that need to be �lled by the FILL algorithm.
The pseudocode of the MEN heuristic is shown in Algorithm 3, Appendix B.
The MEN heuristic is mainly focused on the customer costs and there are a lot

of cases were the solution of the MEN heuristic will be far away from an optimal
solution. In the proof of the following theorem, an example is designed which shows
that there is no constant upper bound for the approximation ratio of the MEN
heuristic.

69

5. Heuristics

(a) solution of MEN heuristic

(b) optimal solution

Figure 5.2.: Example of an instance where the most-expensive neighbor heuristic has an

unbounded approximation ratio.

Theorem 5.2. The approximation ratio of the MEN heuristic is unbounded.

Proof. Assuming an instance with n jobs and one vehicle, where the n jobs are
arranged in consecutive order between the start depot s and the end depot z. The
travel costs between two jobs i and j are dij = D|i − j| with a constant D, the
distances to the depots are dsi = D(i − 1) and diz = D(n − i). In order to ensure
that all jobs can be executed within one day, the working times and travel times are
very small, and u is large. The start time of the start depot is t0 = (0, u). With it,
the �rst job is visited on day 1. The customer cost coe�cient of job i ∈ N is de�ned
as follows:

ci =


n− (2i− 1) i < n

2

n− 2(n− i) i > n
2

0 otherwise.

Consequently, for the customer cost coe�cients it holds that cn > c1 > cn−1 > c2 >

· · · > c⌈n/2⌉.
For this instance, the MEN heuristic applied with f > n−1

n
leads to the solution

SMEN with the route ΠMEN = (n, 1, n − 1, 2, n − 2, 3, . . . ,
⌈
n
2

⌉
). This solution is

illustrated in Figure 5.2 on the top. The travel costs of SMEN are

gd(SMEN) =

(
(n− 1) +

n−1∑
k=1

(n− k) +
⌊n
2

⌋)
D

=

(
(n− 1) +

1

2
n(n− 1) +

⌊n
2

⌋)
D

≥ 1

2
(n2 + n− 1)D

70

5.1. Greedy Heuristics

and the customer costs are gc(SMEN) =
∑

i∈N ci independent from the route because
all jobs are executed on the same day.
An optimal solution is S∗ = ((N, (1, 2, 3 . . . n))), also illustrated in Figure 5.2,

with travel costs value gd(S∗) = (n − 1)D and customer costs gc(S∗) =
∑

i∈N ci.
Then, the approximation ratio of the MEN heuristic of this instance is

g(SMEN)

g(S∗)
≥ (n2 + n− 1) D

2
+
∑

i∈N ci

(n− 1)D +
∑

i∈N ci
∈ Θ(n).

Thus, the approximation ratio increases with n, such that it exists no constant upper
bound for it.
It should be noted that the proof so far applied only for f > n−1

n
. In case of

f ≤ n−1
n
, other customer cost coe�cients c̃i, i ∈ N, have to be used with c̃1 < fc̃n,

e.g., c̃i = ϕ−ci with ϕ < f .

5.1.3. Cost-Balanced Neighbor Heuristic

A third variant of the greedy heuristic is developed to consider both cost parts of the
objective function together. Based on the customer cost coe�cient and the travel
costs, a balanced cost value is calculated. The job with the smallest balanced costs is
appended to the corresponding route. This variant is called cost-balanced neighbor
heuristic (CBN).
To compute the balanced costs, an estimation for the number of jobs that can be

visited by one vehicle in one day is necessary, which is given by the quotient of the
time available per day and the average time needed for one job:

nday :=
u+ 1

n

∑
i∈N min{rij| j ∈ N, j ̸= i}

1
n

∑
i∈N(ai +min{rij| j ∈ N, j ̸= i}) . (5.1)

The time available per day is estimated by the length of the working shift u plus
the average travel time to the nearest neighbor; and the average time per job i ∈ N
is estimated by the average of the working duration ai plus the travel time to the
nearest neighbor. Then, the balances costs of a job-route-pair are computed as

cb(j, k) = βdlkj − (1− β)
n
m
− |Nk|
nday

cj (5.2)

with β is a factor to give more weight on travel costs or on customer costs. This
cost evaluation consists of the travel costs dlkj and an estimation for the saving in
customer costs. Because the saving should be maximized, it is multiplied by minus
one. To calculate the saving in customer costs, it is assumed that a job is visited
at day n

mnday
, if it is not appended in the current iteration. Note that this is an

estimation for the number of days needed to visit all jobs assuming near neighbors
are scheduled consecutive and the jobs are equally distributed among all vehicles.
In this case, the customer cost value of a job j equals to n

mnday
cj. Otherwise, if job

71

5. Heuristics

102 104
0.4

0.45

0.5

0.55

0.6

0.65

n

Dn −Dn−2

Dn −Dn−2

2
π

Figure 5.3.: Increment of the length of the largest diagonal in n-sided regular polygons

with side length D = 1 and n even.

j is appended to route k in this iteration, the customer cost value is assumed to be
|Nk|
nday

cj. This estimation is used instead of the real start day to have the same basis
as in the estimation of the customer cost value that occurs when j is not appended
now. The di�erence between both are the saving in customer cost. Note that if
route k already contains more than n

m
jobs, the savings are negative which means it

could be better to add job j to a shorter route.
In more detail the CBN heuristic works as follows: Given is a factor β ∈ [0, 1],

which is used to have more weight on travel costs (β near 1) or on customer costs
(β near 0). The algorithm is initialized by an empty schedule S̃ := (∅, ())k∈M and
the set of unplanned jobs Ñ contains all jobs. While the set of unplanned jobs
is not empty, in each step the best job-route-pair is determined from all feasible
job-route-pairs (j, k) with j ∈ Ñ and k ∈ M . This consist of three substeps:

1. If no feasible job-route-pair exists, return the uncompleted schedule. In this
case, the CBN heuristic was not successful.

2. Compute for each feasible job-route-pair (j, k) the balanced costs cb(j, k) by
equation (5.2).

3. Select the job-route-pair with minimal balanced cost value and append the job
to the corresponding route.

Finally, if the CBN heuristic was successful, the schedule is checked for empty routes
which have to be �lled applying the FILL algorithm. The pseudocode of the CBN
heuristic is given by Algorithm 4 in Appendix B.
Despite the fact that the CBN heuristic takes travel and customer costs into

account, an instance can be designed which shows that the approximation ratio of
the CBN heuristic is also unbounded. This instance is based on an n-sided regular
polygon with edge length D. The travel costs and customer cost coe�cients are
chosen such that the CBN heuristic selects jobs in an order that leads to large
travel costs and times. For this purpose, the distances in such a regular polygon are

72

5.1. Greedy Heuristics

D

1
2
Dn

1
2
Dn

α

β

β

α := 2π
n

β := 1
2
(π − 2π

n
)

Figure 5.4.: Triangle to calculate the lengthD of the largest diagonal in an n-sided regular

polygon for n ∈ N even.

analyzed. For even n ∈ N, let Dn be the length of the largest diagonal in an n-sided
regular polygon with edge length D. As shown in the proof of Lemma 5.3 below,
Dn and the increment Dn −Dn−2 increases with n, see also Figure 5.3.

Lemma 5.3. For any even numbers n, n0 ∈ N with n > n0 ≥ 4, it holds for the

largest diagonal length Dn in an n-sided regular polygon with edge length D that

Dn > Dn0 + (n− n0)dn0 with dn0 :=
1
2
(Dn0 −Dn0−2).

Proof. It will be shown �rstly that Dn −Dn−2 increases with n. Based on this, the
assumption of the lemma will be proved.
The length of the largest diagonal Dn can be calculated with the triangle illus-

trated in Figure 5.4. It is formed by two consecutive points of the polygon and the
midpoint of the polygon. The angle at the polygon center point is 2π

n
, which results

from dividing the full circle into n equal angles. The two angles at the polygon
points are both 1

2
(π − 2π

n
), because the triangle is isosceles. The length of the basis

and the two legs amounts to D and 1
2
Dn, respectively. With the law of sines, it

turns out that
D

sin(2π
n
)
=

Dn

2 sin(π
2
− π

n
)
.

Applying some trigonometric functions and solving the equation for Dn leads to

Dn =
D

sin π
n

= D csc
π

n
.

To show that the di�erenceDn+2−Dn increases with n, the two di�erencesDn−Dn−2

and Dn+2 −Dn are compared. For this purpose, a series expansion of the cosecant
for 0 < x < π is used, see [92],

csc x =
∞∑
k=0

(−1)k+12(22k−1 − 1)B2k

(2k)!
x2k−1

73

5. Heuristics

with B2k is the 2k-th Bernoulli number. To show that Dn −Dn−2

!
< Dn+2 −Dn, it

has to be proven that

0
!
< Dn+2 − 2Dn +Dn−2

= D csc
π

n+ 2
− 2D csc

π

n
+D csc

π

n− 2

= D
∞∑
k=0

(−1)k+12(22k−1 − 1)B2k

(2k)!

[(
π

n+ 2

)2k−1

− 2
(π
n

)2k−1

+

(
π

n− 2

)2k−1
] (5.3)

In the following, the obtained sum will be analyzed. For k = 0, it follows that
1
π
(n+ 2− 2n+ n− 2) = 0. To investigate the remaining summands with k ≥ 1, the

Bernoulli numbers are replaced by a formula using the zeta function, see [5],

B2k =
(−1)k+12(2k)!

(2π)2k
ζ(2k),

taking into account that

ζ(s) =
∞∑
j

1

js
.

Then, for the �rst factor of each summand it is

(−1)k+12(22k−1 − 1)B2k

(2k)!
=

4(22k−1 − 1)

(2π)2k

∞∑
j=1

1

j2k
> 0.

To obtain inequality (5.3), it remains to show that the second factor of each sum-
mand is not less than zero:

0
!
<

(
π

n+ 2

)k

− 2
(π
n

)k
+

(
π

n− 2

)k

= πkn
k(n− 2)k + nk(n+ 2)k − 2(n− 2)k(n+ 2)k

nk(n− 2)k(n+ 2)k

= πk (n
2 − 2n)k + (n2 + 2n)k − 2(n2 − 4)k

nk(n− 2)k(n+ 2)k
.

Obviously, for n > 4 the denominator is positive. For the numerator of the fraction,

74

5.1. Greedy Heuristics

the binomial formula yields

(n2 − 2n)k + (n2 + 2n)k − 2(n2 − 4)k

=
k∑

i=0

(
k

i

)
n2(k−i)(−2n)i +

k∑
i=0

(
k

i

)
n2(k−i)(2n)i − 2

k∑
i=0

(
k

i

)
n2(k−i)(−4)i

= 2

⌊ k
2
⌋∑

i=0

(
k

2i

)
n2(k−2i)(2n)2i − 2

⌊ k
2
⌋∑

i=0

(
k

2i

)
n2(k−2i)42i + 2

⌊ k−1
2

⌋∑
i=0

(
k

2i+ 1

)
n2(k−2i−1)42i+1

= 2

⌊ k
2
⌋∑

i=0

(
k

2i

)
n2(k−2i)[(2n)2i − 42i] + 2

⌊ k−1
2

⌋∑
i=0

(
k

2i+ 1

)
n2(k−2i−1)42i+1

> 0.

Thus, it is proven that Dn+2 − Dn > Dn − Dn−2 for even n > 4. Further, with
d0 =

1
2
(Dn0 −Dn0−2), it follows for n > n0 that

Dn+2 −Dn > 2dn0 .

Secondly, it is shown that Dn > Dn0 + (n − n0)dn0 is valid. Since n and n0 are
even and n > n0 ≥ 4, it holds that

Dn = Dn0 +

1
2
(n−n0)∑
k=1

(
Dn0+2k −Dn0+2(k−1)

)
> Dn0 +

1
2
(n−n0)∑
k=1

2dn0

= Dn0 + (n− n0)dn0 .

With the proof that the linear function Dn0 + (n − n0)dn0 is a lower bound for
the length of the largest diagonal in a regular polygon with n edges of length D, the
approximation ratio of the CBN heuristic is investigated.

Theorem 5.4. For the CBN heuristic, the approximation ratio is unbounded.

Proof. For the proof, the following instance is analyzed: Let n be even. Assuming
n jobs are arranged in a regular polygon with n edges of length D ∈ N. The travel
costs between the jobs are equal to the rounded-up Euclidean distances. Then,
the travel costs to the nearest neighbor are always D and the travel costs to the
diagonally opposite job amount to ⌈Dn⌉. The travel time is the Euclidean distance

75

5. Heuristics

multiplied with factor ft and rounded up. The jobs are numbered clockwise from 1
to n. The customer cost coe�cients are set to

ci :=

{
(n− 2i)B if i ≤ n

2
,

2(n− i)B if i > n
2
.

Consequently, always the two opposite jobs have the same customer cost coe�cient
and its maximum is B(n − 2). All jobs have to be served by one vehicle and its
depots are located on the same position as job 1 which is one of the two most-
expensive jobs. The start time of the depots is de�ned by t0 = (0, 0). The working
duration of each job is a. The number of jobs per day is calculated as nday =

u+⌈ftD⌉
a+⌈ftD⌉ .

Consequently, it is independent from the number of jobs.
In this instance, the CBN heuristic proceeds as follows:

1. Starting in the depot, job 1 is the nearest job and also one of the two most-
expensive jobs. Consequently, its balanced costs are minimal and job 1 is
appended at �rst to the route.

2. With route ΠCBN = (1), mainly two jobs have to be considered:

� Job 2 is the nearest job.
Its balanced costs are cb(1, 1) = βD − (1− β) n−1

nday
B(n− 4).

� Job n
2
+ 1 is the most-expensive unplanned job and is located at the

opposite of job 1.
Its balanced costs are cb(

n
2
+ 1, 1) = βDn − (1− β) n−1

nday
B(n− 2).

If B > β
1−β

nday
2(n−1)

(Dn − D), the smallest balanced costs are cb(
n
2
+ 1, 1) and

the opposite job n
2
+ 1 is selected and appended to the route. Then, it is

ΠCBN = (1, n
2
+ 1).

3. With n
2
+ 1 as current last job of the route, n

2
+ 2 is the nearest job and also

one of the two most-expensive jobs. Because of that, its balanced costs are
minimal and n

2
+ 2 is appended to route 1.

4. With route ΠCBN = (1, n
2
+ 1, n

2
+ 2), again two jobs have to be considered:

� Job n
2
+ 3 is the nearest job.

Its balanced costs are cb(
n
2
+ 3, 1) = βD − (1− β) n−3

nday
B(n− 6).

� Job 2 is the most-expensive unplanned job and located at the opposite
of job n

2
+ 1.

Its balanced costs are cb(2, 1) = βDn − (1− β) n−3
nday

B(n− 4).

If B > β
1−β

nday
2(n−3)

(Dn −D), again the opposite job is selected and appended to
the route. Then, it is ΠCBN = (1, n

2
+ 1, n

2
+ 2, 2).

76

5.1. Greedy Heuristics

(a) solution of CBN heuristic (b) solution of NN solution

Figure 5.5.: Example of an instance where the cost-balanced neighbor heuristic has an

unbounded approximation ratio.

These steps are repeated until the set of unplanned jobs is empty. In case of

B >
β

1− β

nday
2

(Dn −D),

always the nearest job and the opposite job are appended alternately. Consequently,
if n can be divided by 4, the CBN heuristic leads to the route

ΠCBN = (1, n
2
+ 1, n

2
+ 2, 2, 3, . . . , n

2
+ 3, . . . , n, n

2
)

and otherwise to

ΠCBN = (1, n
2
+ 1, n

2
+ 2, 2, 3, . . . , n

2
+ 3, . . . , n

2
, n).

The CBN heuristic solution SCBN of this instance is shown in Figure 5.5 on the left.
In the following, the costs of the solution SCBN are estimated. A lower bound

for the days needed to travel to the opposite job is Tn :=
⌊
ftDn

h

⌋
. Then, job 1 is

executed on the start day, which is day 0. The next two jobs, which are n
2
+ 1 and

n
2
+ 2, are executed not before day Tn. The jobs 2 and 3, visited after n

2
+ 2, are

done not before day 2Tn, and the next two jobs not before day 3Tn. Continuing this
observation leads to Tn

⌊
i
2

⌋
is a lower bound for the start day of the job πi. Note,

job πi of the route has the customer cost coe�cient cπi
= B(n − 2⌈ i

2
⌉). Thus, for

the customer costs of the obtained solution SCBN, it holds that

77

5. Heuristics

gc(SCBN) ≥
n∑

i=1

Tn

⌊
i
2

⌋
B
(
n− 2

⌈
i
2

⌉)
= B [0(n− 2) + Tn(n− 2) + Tn(n− 4) + 2Tn(n− 4) + 2Tn(n− 6) + · · ·]
> B [0(n− 2) + 0(n− 2) + Tn(n− 4) + Tn(n− 4) + 2Tn(n− 6) + · · ·]

=

n/2∑
i=1

2Tn(i− 1)B(n− 2i) =

n/2∑
i=1

2

⌊
ftDn

h

⌋
(i− 1)B(n− 2i).

As shown in Lemma 5.3, Dn > Dn0 +(n−n0)dn0 for any n > n0 ≥ 4. Replacing Dn

by this approximation and utilizing ⌊x⌋ > x− 1, leads to

gc(SCBN) >

n/2∑
i=1

2

(
ft
h
(Dn0 + (n− n0)dn0)− 1

)
(i− 1)B(n− 2i) ∈ Θ(n4).

The travel costs can be estimated as

gd(SCBN) =
n

2
(D + ⌈Dn⌉) >

n

2
(D +Dn0 + (n− n0)dn0) ∈ Θ(n2)

Consequently, g(SCBN) = gc(SCBN) + gd(SCBN) ∈ Θ(n4).
In contrast, the NN heuristic leads to the solution SNN = ((N, (1, 2, 3, . . . , n −

1, n))), shown in Figure 5.5 on the right. The travel costs are nD. To calculate
the customer costs of SNN, the start day of each job has to be determined: Starting

with day 0, η = ⌊nday⌋ =
⌊
u+⌈ftD⌉
a+⌈ftD⌉

⌋
jobs are executed everyday. Thus, the i-th job

is done on day
⌈

i
η

⌉
− 1. Taking into account that the jobs on route position i and

i + n
2
, with i ≤ n

2
, have the same customer cost coe�cient B(n − 2i), the costs of

the NN solution can be expressed as follows:

g(SNN) =

n/2∑
i=1

(⌈
i

η

⌉
+

⌈
i+ n

2

η

⌉
− 2

)
B(n− 2i) + nD

<
B

η

n/2∑
i=1

(2i+
n

2
)(n− 2i) + nD

∈ O(n3)

because ⌈x⌉ < x+ 1.
To determine the approximation ration of the CBN heuristic, the costs of the NN

heuristic solution are used. Since the optimal solution has smaller or equal costs as
SNN, it is

g(SCBN)

g(S∗)
≥ g(SCBN)

g(SNN)
∈ Θ(n),

because the costs of the CBN heuristic are in order of Θ(n4) and the costs of the
NN heuristic are in order of Θ(n3). Consequently, there exists no constant bound
for the approximation ratio of the CBN heuristic.

78

5.2. Rollout Algorithm

5.1.4. Best-of-Greedy Algorithm

In the Sections 5.1.1 to 5.1.3, three di�erent greedy heuristics were presented that
append one job after the other to a route regarding di�erent selection criteria. Each
of these criteria o�ers the possibility to adjust it by a parameter. Dependent on
the customer cost coe�cients of the jobs and the costs to travel from job to job,
the solution quality resulting from di�erent values for the parameters varies, which
can be seen in the results of computational experiments provided in Section 5.4.1.
To be able to solve a wide range of di�erent instances, all greedy heuristics can
be combined to one best-of-greedy heuristic by selecting the solution with minimal
costs from a set of solutions obtained with the NN, MEN and CBN heuristic and
di�erent parameters. This approach is called best-of-greedy algorithm (BoG) and
shown in Algorithm 5 in Appendix B. Note, an uncompleted solution has an in�nite
cost value.
In detail, eleven solutions are generated applying the NN heuristic with factors

f ∈ [0, 0.1, . . . , 1]; ten solutions are computed by the MEN heuristic with factors
f ∈ [0.1, 0.2, . . . , 1]; and eleven solution are determined by the CBN heuristic with
weights β ∈ [0, 0.1, . . . , 1]. From these 32 solutions, the one with smallest total costs
is returned. Because of that, the computational costs of the BoG algorithm are 32
times larger than of a single greedy heuristic.

Remark For all three basic heuristics, the approximation ratio is unbounded. It
can be expected that also for the BoG algorithms no constant upper bound for the
approximation ratio exists. However, the proof of this conjecture is still pending.

5.2. Rollout Algorithm

The rollout algorithm was introduced in [16] for combinatorial optimization prob-
lems. Inspired by dynamic programming, the algorithm is designed for problems
that can be solved step-by-step taking in each step one decision. In the greedy
heuristics described in Section 5.1, each decision is taken by looking for the locally
best choice. In dynamic programming, in each step the decision is selected that
minimizes the optimal cost-to-go function which gives for each decision the minimal
costs needed to complete the partial solution. In many applications, this approach
is not practicable because the optimal cost-to-go function cannot be computed in
acceptable time. The idea of the rollout algorithm is to replace the optimal cost-
to-go function by an approximation based on a heuristic H that is able to �nd a
solution based on a partial solution. Then, in each step the decision is taken that
leads to minimal costs by completing the partial solution with H.
To ensure that the solution of the rollout algorithm cannot be worse than the

solution of the used heuristic H, the heuristic has to be sequentially consistent. This
means, that a heuristic solution is always reproduced by the heuristic completion of
its partial solutions, see [16] for further information.

79

5. Heuristics

The rollout algorithm for the VRPCC works as follows: Again, the solution is
build up iteratively by appending jobs at the end of routes. The algorithm starts
with an empty solution S̃ := (∅, ())k∈M and the set of unplanned job Ñ contains all
jobs. Then, in each step the best feasible job-route-pair is searched which consists
of three substeps:

1. If no feasible job-route-pair exists, return the uncompleted schedule.

2. Analyze each feasible job-route-pair (j, k), with j ∈ Ñ and k ∈ M . For this
purpose,

2.1. append j to route k.

2.2. Complete the partial solution by one of the presented greedy heuristics.

2.3. Compute and store the approximated cost-to-go value which equals to
the total costs of the obtained solution.

2.4. Remove job j and all before unplanned jobs from the schedule.

3. Select the job-route-pair with minimal approximated cost-to-go value and ap-
pend the job to the corresponding route.

These steps are repeated until all jobs are added to a route. The computational
complexity is O(n4m2): The algorithm takes n steps to append all jobs to a route.
In each step, at most nm possible job-route-pairs have to be analyzed. And to
analyze one job-route-pair, a greedy heuristic with an e�ort of O(n2m) is used.
Note, the obtained solution can contain empty routes. Thus, �nally empty routes
are removed by the FILL algorithm. The pseudocode of the rollout algorithm is
given in Appendix B, Algorithm 6.
To ensure that the NN, MEN and CBN heuristic are sequentially consistent, the

job and route with smallest indices are chosen if several job-route-pairs were best.
As mentioned in [16], also a set of heuristics can be the base of the approximated
cost-to-go function. Thus, also the BoG algorithm, which is the best solution from
solving VRPCC with di�erent greedy heuristics, can be used.
To reduce the calculation e�ort, it is possible to reduce the number of analyzed

job-route-pairs or the number of decisions taken by the heuristic to evaluate a job-
route-pair. The �rst-mentioned variant is restricting the width of the search tree
by a value w ∈ [1, n]. Then, in every step a candidate list with at most w jobs is
created and only these jobs are analyzed. To determine good candidates, similar
selection criteria as in the greedy heuristics can be used:

� When the candidates are selected by the nearest neighbor criteria, the un-
planned jobs are arranged in increasing order with regard to the smallest travel
costs to the current last job of any route. The �rst w jobs of this order are
the candidates.

� When the candidates are selected by the most-expensive neighbor criteria, the
w jobs with highest customer cost coe�cient are the candidates. If less than

80

5.3. Local Search Algorithms

w jobs are a�icted with a non-zero customer cost coe�cient, the remaining
jobs are selected by the nearest neighbor criteria.

� When the candidates are selected by the cost-balanced neighbor criteria, the
unplanned jobs are arranged in increasing order with regard to the minimal
cost evaluation for any route. The �rst w jobs of this order are the candidates.

With a restriction of the search width, the computational complexity is decreased
to O(n3m2w). However, the �nally obtained solution S̃ can be worse than the
heuristic solution because the choice of the selection criteria used by the heuristic
can be missing in the candidate list. To compensate this, the algorithm should
store the best solution of all solutions generated in substep 2.3. during the solution
process and �nally return either the computed solution, or, if better, the best of all
produced solutions.
With the second-mentioned variant to reduce the calculation e�ort, the depth of

the search tree is restricted. Then, for each analyzed job-route-pair at most d jobs
are added with the selected greedy heuristic. The approximated cost-to-go function
is the sum of the costs of the uncompleted solution obtained by adding d jobs with
the greedy heuristic and an estimation of the costs for the unplanned jobs which is
computed by

cest(Ñ) =
∑
i∈Ñ

tdestci + min
j∈Ñ, i ̸=j

rij,

where tdest =
1
m
(|Ñ |
nday

+
∑

k∈M tdlk) is an estimation for the average start day of the
unplanned jobs with nday as de�ned for the CBN heuristic in equation (5.1). This
approach leads to a decrease in the computational complexity to O(n3m2d): n steps
are necessary to append all jobs. For each step, at most nm job-route-pairs are
analyzed. To evaluate one job-route-pair, the computational complexity is reduced
to O(dnm). Not that for d < n, the rollout algorithm can produce a solution
with higher costs than the solution of the base heuristic. This drawback cannot be
compensated by returning the best solution determined during the solution process.
From the step, where a completed solution was obtained via the limited base heuris-
tic, the solution can only be improved in the further steps because all unplanned
jobs are analyzed. Thus, the last obtained solution is not worse than a previously
obtained completed solution.
Using both restrictions of the search tree leads to a decrease in the time complexity

to O(n2m2dw): In each of the n steps, at most wm job-route-pairs are analyzed,
and analyzing one job-route-pair has a complexity of O(dnm).

5.3. Local Search Algorithms

Computational experiments on benchmark S showed that there is a signi�cant gap
between heuristic solutions and optimal solutions, see Section 5.4. A common way to
improve a heuristic solution is local search, see, e.g., [1], which means to iteratively

81

5. Heuristics

change an initial solution in order to �nd a better one. The set of all solutions
that can be reached by one change is called neighborhood. The most common local
search algorithms are �rst and best improvement [68], simulated annealing [85] and
tabu search [61]. How to apply local search to VRPs can be found, e.g., in [1, 23].
For a variant of the VRPCC with a single machine, two di�erent neighborhoods are

compared in [70] applied to simulated annealing: the two-opt neighborhood known
from solving TSPs as presented, e.g., in [128], where two edges are exchanged, and
the m-move neighborhood where a part of the route is moved to another position.
Thereby, it was found out that the two-opt neighborhood does not lead to good
results because the part of the route between the exchanged edges is visited in
reverse order. Consequently, the jobs that were previously visited �rst are visited
last after the edge exchange which often leads to larger customer costs. The second
neighborhood m-move led to better results. But the best solutions were obtained,
when both neighborhoods were combined.
This section provides an approach for best and �rst improvement of a heuristic

solution of the VRPCC. In contrast to simulated annealing, only neighbor solutions
with smaller costs are accepted. The improvement algorithms work as follows:

1. Generate a start solution S.

2. Search for an improved solution in the neighborhood of solution S. Thereby,
�rst improvement takes the �rst found neighbor with smaller objective value,
and best improvement takes the neighbor that leads to the largest improve-
ment.

3. If an improved neighbor was found, replace the current solution S by its neigh-
bor and repeat from step 2.

4. If none of the neighbors has a smaller objective value, the algorithm terminates.

Note that the obtained solution is a local minimum with respect to the neighborhood.
In Appendix B Algorithm 7, the pseudocode for �rst and best improvement is given.
To apply the improvement algorithms, a neighborhood of a feasible solution has to

be de�ned. For this purpose, three basic operations to modify the current solution
are used:

� Shift one job to another position in the same or another route,

� switch two jobs, and

� move a part of a route to another route similar to [70].

To analyze, whether a certain neighbor leads to an improvement, its costs have
to be determined. This can be achieved by generating the neighbor solution and
computing the start times as well as the total costs. But, to speed up the algorithm,
the change in the costs can also be approximated without generating the neighbor.
Then, the true costs of the neighbor are only computed, if the approximated cost

82

5.4. Computational Results

change has a negative value or a small positive value, which means an improvement
is probable. Otherwise, the next neighbor is analyzed because an improvement is
not expected.
To generate a start solution for the improvement algorithm, two variants are

common: applying a heuristic and creating a random solution. For the �rst case,
it was decided to compute the start solution by the BoG heuristic because with a
good start solution, less improvement steps are necessary to reach a local minimum.
As noted before, the improvement algorithms cannot leave the reached local min-

imum. To be able to explore a larger area of the solution space, the improvement
algorithm can be restarted several times. For each run, another start solution should
be used. In case of a random start solution, in each run a new start solution can be
generated to explore di�erent areas of the solution space. And in case of a heuristic
start solution, it was decided to randomly change the last obtained solution and
restart the improvement algorithm with this changed solution.

5.4. Computational Results

This section provides a comparison of the presented heuristics in terms of solutions
quality. The most computational experiments were done with benchmark L that
consists of one hundred instances with one hundred jobs. More information can be
found in Appendix A. To observe the behavior of the heuristics for di�erent kinds
of instances, benchmarks dominated by travel costs or customer costs are de�ned
by multiplying the travel costs of the edges or the customer cost coe�cients of the
jobs with factor 10 or 100. Therewith, �ve kinds of benchmark L are on hand for
the experiments. Since the instances of benchmark L cannot be optimally solved,
the heuristics are compared in terms of the percentage gap to the best obtained
solution. For this purpose, let {S1, S2, . . . , Sp} be a set of solutions of one instance
obtained by the heuristics {H1, H2, . . . , Hp}. Then,

gap{H1,H2,...,Hp}(Hq) :=

(
g(Sq)

min{g(S1), g(S2), . . . , g(Sp)}
− 1

)
· 100% (5.4)

is the percentage gap of the solution obtained by heuristic variant Hq compared to
the heuristics {H1, H2, . . . , Hp}. Furthermore, let S ′ be the solution with smallest
costs of the set {S1, S2, . . . , Sp}.
Firstly, an overview of the main results of this section will be provided: In Sec-

tion 5.4.1, the greedy heuristics are compared with the observation that all three
greedy heuristics should be combined to the BoG heuristic to obtain good heuristic
solutions. After that, in Section 5.4.2, several variants of the rollout algorithm are
analyzed. It turns out, that the BoG heuristic was the best variant to compute the
approximated cost-to-go function. Further, it is noticed that restricting the rollout
width to the half of the jobs led to better solutions than non-restricting the rollout
algorithm. Finally, in Section 5.4.3, �rst and best improvement are compared with

83

5. Heuristics

0 2 4 6 8 10
0

20

40

60

80

100

gap (%) to S∗

%
o
f
in
st
a
n
ce
s

benchmark S

0 2 4 6 8 10
0

20

40

60

80

100

gap (%) to S′

%
o
f
in
st
a
n
ce
s

benchmark M

0 2 4 6 8 10
0

20

40

60

80

100

gap (%) to S′

%
o
f
in
st
a
n
ce
s

benchmark L

solving (R2dT4) with CPLEX

solving (R2dT4) with CPLEX and start solution from BoG heuristic

solving (R2dT4) with CPLEX and start solution from single best improvement

BoG heuristic

full rollout with BoG heuristic

limited rollout with BoG heuristic and w = 0.5n

single best improvement (BI)

repeated �rst improvement (10000 FI)

Figure 5.6.: Comparison of several heuristics and solving a MILP with CPLEX on three

benchmarks.

the result that in case of a single run best improvement led to the best results but
in case of several runs, �rst improvement was better.

To summary the results, Figure 5.6 shows a comparison of the solution quality
of the BoG heuristic, the two best variants of the rollout algorithm, a single run
of the best improvement algorithm and several runs of the �rst improvement al-
gorithm. Furthermore, the results for applying CPLEX to (R2dT4) are analyzed
initializing the solution process with di�erent start solutions. For the comparison,
not only benchmark L is used, but also the smaller benchmarks S and M. Note that
for each instance of benchmark S, an optimal solution S∗ is known. Consequently,
for benchmark S the gap to the optimal value is given. For benchmark M and L, the
heuristics are compared with each other: The percentage gap to S ′, which is the
solution with smallest costs obtained by one of the analyzed heuristics, is computed
by equation (5.4). For all solution methods and benchmarks, the computational
time was restricted to ten minutes. The quartiles of the computational times are
provided in Table 5.1.

In the left plot of Figure 5.6, the results on benchmark S are compared, which
consists of 180 instances each with 15 jobs and two vehicles. There, the best solutions
were obtained by the repeated �rst improvement algorithm, which is to apply at most
10000 times �rst improvement to the randomly changed last obtained solution. With
this approach, for 178 of 180 instances an optimal solution was found. Note that
with this local search algorithm optimality cannot be proven. Also solving (R2dT4)
with CPLEX showed a good performance. In case of applying CPLEX without a
start solution, for 174 instances, an optimal solution was found and for 134 instances,
the optimality was proven. Initializing the solution process of CPLEX with a start

84

5.4. Computational Results

benchmark S benchmark M benchmark L

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

CPLEX 11.0 70.4 600 600 600 600 600 600 600

BoG heuristic <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

lim. rollout <0.1 <0.1 <0.1 0.1 0.1 0.1 25.3 41.4 62.1

full rollout <0.1 <0.1 <0.1 0.2 0.3 0.4 37.7 61.4 92.0

BI <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 10.6 12.7 15.6

10000 FI 2.3 2.8 3.4 30.4 35.8 42.4 600 600 600

Table 5.1.: Quartiles of computational times for several heuristics.

solution did not change the performance signi�cantly. Comparing the computational
times shows that 10000 times �rst improvement requires only a fraction of the time
needed by CPLEX which can be gathered from the rows CPLEX and 10000 FI in
Table 5.1. As expected, the worst solutions were obtained with the BoG heuristic.
For half of the instances, the solutions obtained with the BoG heuristic were more
than 5.6% more expensive than an optimal solution.
The results on benchmark M, which consists of 100 instances each with 30 jobs, are

shown in the middle of Figure 5.6. Note that the gap is computed with respect to the
best solution obtained with any of the presented solution approaches because optimal
solutions are not known. For 93 instances, the best objective value was obtained by
the repeated �rst improvement algorithm. Solving (R2dT4) with CPLEX did not
lead to good solutions in benchmark M. In case of providing no start solution, for 12
instances a best solution was found, but for half of the instances the obtained solution
was more than 3.4% more expensive as the best obtained solution and for ten percent
of the instances, the gap was larger than 12.5%. Initializing the solution process
with a start solution resulted in signi�cant better results but nevertheless, solving
(R2dT4) with CPLEX was clearly outperformed by the repeated �rst improvement
algorithm because of the fact that with the latter, more cost-e�cient schedules
were computed and also less computational time was required. From the faster
computed heuristics, which are the heuristics computed in less than a second as
shown in Table 5.1, slightly better schedules were obtained with a single run of the
best improvement algorithm and the full rollout algorithm than with the limited
rollout algorithm: With these two heuristics, a best solution was found for 4 and 2
instances, respectively. For half of the instances, the gap exceeded 2.6% and 3.2%,
respectively. And for each instance of benchmark M, the gap of the solution obtained
by the best improvement algorithm and the full rollout algorithm to the best solution
was smaller than 10%.
The right plot of Figure 5.6 shows the performance pro�les for the gap to the

best solution on benchmark L. Again, the solutions with smallest costs were mostly
obtained with the repeated �rst improvement algorithm. Note, that in case of
benchmark L not all 10000 improvement runs were made because of the time limit

85

5. Heuristics

of ten minutes. Applying one times best improvement to the BoG solution led to
better solution than the rollout algorithms which can be seen on the performance
pro�les and was also faster computed as shown in Table 5.1. With the BoG heuristic,
worse solutions were obtained: for 80 of 100 instances the gap to the best solution
was larger than 10%. As expected, also CPLEX led not to good solutions: In
case of not providing a start solution, the obtained solutions were even much worse
than a heuristic solution and the smallest gap to a best solution was 58%. With
providing the solution of the BoG heuristic as start solutions, the obtained solutions
were slightly better than the start solution, which can be seen on the small distance
between the both corresponding performance pro�les in Figure 5.6. But in case
of providing the solution of single best improvement as start solution, it was rarely
improved by applying CPLEX for ten minutes which can be seen on almost identical
performance pro�les. The failing of applying CPLEX is not surprising because for
such large instance, a computational time of ten minutes is short for an exact solver.
In summary, it is observed that the repeated �rst improvement algorithm outper-

forms the other presented heuristics. Solving a MILP formulation with the commer-
cial solver CPLEX showed a good performance on benchmark S, where each instance
contains only �fteen jobs. But for the two benchmarks M and L, where each instance
contains 30 and 100 jobs, respectively, the solutions obtained in ten minutes were
not better than an heuristic solution and also optimality was not reached.

5.4.1. Comparison of Greedy Heuristics

In this section, �rstly, for each greedy heuristic, the in�uence of its parameter to
the solution quality is analyzed. Secondly, the greedy heuristics are compared with
each other based on instances dominated by travel costs and instances dominated
by customer costs.

Nearest Neighbor Heuristic

For the NN heuristic, the in�uence of the factor f is analyzed, which gives the allowed
deviation from the smallest travel cost when searching for a nearest neighbor with
large customer cost coe�cient. The NN heuristic was tested on the basic benchmark
L, and on the benchmarks derived by increasing the travel costs by factor ten or
hundred. An increase of the customer cost coe�cients was not analyzed, because
the NN heuristic is designed to minimize travel costs and with it, it is not suitable
for instances with high customer costs. The factor f was varied between zero and
one. Note that with f = 0 only feasible job-route-pairs with a nearest neighbor can
be selected and with f = 1, it is allowed to append a job to a route with at most
the double of the minimal travel costs of a feasible job-route-pair.
Figure 5.7 shows performance pro�les of the percentage gap to the best obtained

solution for the NN heuristic with di�erent factors f on three di�erent kinds of
benchmark L. Note that only the solutions obtained with the NN heuristic applying
any of the discussed factors is taken into account to compute the percentage gap.

86

5.4. Computational Results

0 5 10 15 20
0

20

40

60

80

100

gap (%) to S′

%
o
f
in
st
a
n
ce
s

basic instances

0 5 10 15 20
0

20

40

60

80

100

gap (%) to S′

%
o
f
in
st
a
n
ce
s

d′ij := 10dij

0 5 10 15 20
0

20

40

60

80

100

gap (%) to S′

%
o
f
in
st
a
n
ce
s

d′ij := 100dij

f = 0.0 f = 0.1 f = 0.2 f = 0.3 f = 0.4 f = 0.5

f = 0.6 f = 0.7 f = 0.8 f = 0.9 f = 1.0

Figure 5.7.: Comparison of di�erent factors f for the nearest neighbor heuristic on vari-

ants of benchmark L.

As it can be seen on the left plot, for the basic instances, larger factors show a better
performance than smaller factors. For each factor, in some instances the gap is zero
which means that with it the best NN heuristic solution was found. In contrast,
for the instances with increased travel costs, smaller factors f resulted in signi�cant
better solutions. There, the best choice for factor f was 0.1, because with this value
more often a small gap was achieved than with other factors.
To apply the NN heuristic as base heuristic in the rollout algorithm, a factor has

to be selected. Because with f = 0.1, worse solutions were obtained in the basic
instances, another factor is selected. The factor f = 0.3 seems to be a compromise
and is used in further computational experiments with the NN heuristic.

Most-Expensive Neighbor Heuristic

The MEN heuristic was tested on benchmark L in its basic de�nition, and also with
increased customer cost coe�cients, once by factor ten and once by factor hundred.
Di�erent factors f were analyzed, from f = 1, which implies that always a job with
highest customer cost coe�cient is appended, to f = 0.1, which means that the
next job is appended with a higher priority to travel costs and start day because all
jobs, whose customer cost coe�cient is not smaller than ten percent of the maximal
customer cost coe�cient of all unplanned jobs, are taken into account by choosing
the best job-route-pair.
Figure 5.8 shows performance pro�les of the percentage gap to the best obtained

solution of the MEN heuristic with di�erent factors f on three di�erent kinds of
benchmark L. In all three benchmark variants, f close to one led to worse solutions.
This is because the jobs with high customer costs are rarely close together. Conse-
quently, appending the jobs in the order of customer cost coe�cient leads to much
traveling which is associated with large travel times. But large travel times lead to
a late execution of jobs which in turn results in high customer costs in the objective
function. Thus, not only the travel costs of the solutions obtained with the MEN

87

5. Heuristics

0 5 10 15 20
0

20

40

60

80

100

gap (%) to S′

%
o
f
in
st
a
n
ce
s

basic

0 5 10 15 20
0

20

40

60

80

100

gap (%) to S′

%
o
f
in
st
a
n
ce
s

c′i := 10ci

0 5 10 15 20
0

20

40

60

80

100

gap (%) to S′

%
o
f
in
st
a
n
ce
s

c′i := 100ci

f = 0.1 f = 0.2 f = 0.3 f = 0.4 f = 0.5

f = 0.6 f = 0.7 f = 0.8 f = 0.9 f = 1.0

Figure 5.8.: Comparison of di�erent factors f for the most-expensive neighbor heuristic

on variants of benchmark L.

heuristic and factor f = 1.0 were large, but also the customer costs.
The left plot of Figure 5.8 shows that in the basic instances of benchmark L,

smaller values of the factor f led to the best results. Good solutions were most
often obtained applying factor f = 0.4 which can be seen on the fact that the
corresponding pro�le is mostly to the left of the other pro�les. Recap, in case of
factor f = 0.4, all jobs with at least forty percent of the highest customer cost
coe�cient are considered by selecting the best job-route-pair. Consequently, the
selection is more based on the cost evaluation than on the customer cost coe�cients.
In the instances with increased customer cost coe�cients, which are shown in the

middle and in the right plot of Figure 5.8, better solutions were obtained with the
values 0.6 and 0.7 for factor f . With these factors, more often a best solution was
found, which can be seen on the high rate of instances with gap equal to zero. Fur-
thermore, the performance pro�les remain well above and to the left of that for the
other factors. Due to factor f = 0.6 led also to good solutions in the basic bench-
mark variant, this heuristic is used with factor f = 0.6 in further computational
experiments.

Cost-Balanced Neighbor Heuristic

The CBN heuristic was tested for di�erent values of β ∈ [0, 1] which is an algorithm
parameter used to give more weight on travel costs or customer costs by selecting
the best job-route-pair. Firstly, it is analyzed, how the travel costs and customer
costs vary in dependence of β. Note that β = 0 leads to a focus on customer costs
and that with β = 1 only travel costs are considered. After that, the gap to the best
solution is analyzed for di�erent values of the parameter β on benchmark L and its
variants.
Figure 5.9 shows statistic values for the percentage gap of customer costs, travel

costs and total costs with respect to the minimal value of a solution obtained with the
CBN heuristic. Given are the minimum, 25-th percentile, median, 75th-percentile

88

5.4. Computational Results

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

β

g
a
p
(%

)
customer costs

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

β

g
a
p
(%

)

travel costs

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

β

g
a
p
(%

)

total costs

minimum 25th-percentile median 75th-percentile maximum

Figure 5.9.: Comparison of cost values for solutions obtained with the CBN heuristic

applying di�erent values for parameter β on benchmark L.

and maximum of the gap.
By comparing the customer cost value obtained with di�erent values of the pa-

rameter β, which are shown in the left plot of Figure 5.9, it is observed that the
smallest customer cost value was not obtained with β = 0 even with β = 0, only
customer costs are taken into account by selecting the best job-route-pair and jobs
with high customer cost coe�cient are appended �rstly to the routes. As already
mentioned by analyzing the in�uence of factor f to the quality of a MEN heuristic,
this leads not only to large travel costs but also to larger travel times which cause,
due to the later execution of jobs, also high customer costs. Increasing the param-
eter β up to 0.4 resulted in smaller customer cost values. A further increasing led
to higher customer costs because the focus is then more and more on minimizing
travel costs than on minimizing customer costs.
Analyzing the obtained travel costs dependent on the chosen value for the param-

eter β, for which statistic values are provided in the middle plot of Figure 5.9, shows
that, as expected, with β = 1 solutions with smallest travel costs were obtained.
Interesting is the strong increase in travel costs with decreasing the parameter β.
For β = 0.5 almost half of instances showed a gap larger than 50% to the solution
with minimal travel costs as shown in the middle plot of Figure 5.9.
Finally, the total costs, which are the sum of travel costs and customer costs, are

compared. As shown in the right plot of Figure 5.9, the smallest median of total
costs were obtained when the parameter β was set to 0.5, 0.6 and 0.7. For larger
values of the parameter β, the increase in customer costs was not compensated by
the savings in travel costs. And for smaller values of the parameter β, the increase
in travel costs was not compensated by the savings in customer costs or, for β ≤ 0.2,
travel and customer costs increased.
Figure 5.10 shows performance pro�les for the percentage gap to the best obtained

solution for the CBN heuristic with di�erent values of the parameter β on three
variants of benchmark L. In the basic variant of benchmark L, which is shown in the
middle plot of Figure 5.10, several values of the parameter β led to good results,

89

5. Heuristics

0 5 10 15 20
0

20

40

60

80

100

gap (%)

%
o
f
in
st
a
n
ce
s

d′ij := 10dij

0 5 10 15 20
0

20

40

60

80

100

gap (%)

%
o
f
in
st
a
n
ce
s

basic

0 5 10 15 20
0

20

40

60

80

100

gap (%)

%
o
f
in
st
a
n
ce
s

c′i := 10ci

β = 0.0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

β = 0.6 β = 0.7 β = 0.8 β = 0.9 β = 1.0

Figure 5.10.: Comparison of di�erent parameters β for the cost-balanced neighbor heuris-

tic on variants of benchmark L.

i.e., the values 0.5 and 0.6 showed the best performance in terms of solution quality.
Applying β = 0 or β = 1 resulted in solutions with much higher costs. With it,
the previously made observations are con�rmed. For the instances with increased
travel costs, shown in the left plot of Figure 5.10, applying small values for the
parameter β, i.e., β ≤ 0.3, resulted in solutions with higher costs because travel
costs were not adequate considered by selecting the best job-route-pairs to build
up the routes. However, also with β = 1, where only travel costs are taken into
account by the selection of the best job-route-pair, the CBN heuristics produced
solutions with higher costs. Finally, the right plot of Figure 5.10 shows the results
for instances with increased customer cost coe�cients. As it can be seen and as
expected, β = 0 and β = 1 led not to good solutions. But interesting is that also
in the benchmarks with increased customer costs, the best performance of the CBN
heuristic in terms of solution quality was reached with the parameters β = 0.7 or
β = 0.8 even these parameters lead to a higher focus on travel costs by the selection
of the best job-route-pair.
In further computational experiments, the CBN heuristic was used with β = 0.6

because this parameter value showed a good performance in all three variants of
benchmark L.

Best-of Greedy Heuristic

In this subsection, the NN, MEN and CBN heuristic are compared with each other
and with the BoG algorithm. For the computational experiments, �ve variants
of benchmark L were used: its basic variant, as de�ned in the Appendix A, and
four variants obtained by multiplying the travel costs on the edges or the customer
cost coe�cients of the jobs with factor ten or hundred. The NN, MEN and CBN
heuristic were applied with the parameter setting de�ned based on the previous
computational experiments. In detail, the NN heuristic was processed with f = 0.3,
the MEN heuristic with f = 0.6 and the CBN heuristic was applied with β = 0.6.

90

5.4. Computational Results

factor travel costs factor customer costs

100 10 10 100

NN heuristic 7.0% 11.7% 61.0% 121.7% 141.5%

MEN heuristic 55.1% 29.3% 6.5% 2.2% 1.8%

CBN heuristic 4.6% 7.6% 8.0% 12.7% 21.4%

Table 5.2.: Average gap to the BoG solution of solutions obtained by a greedy heuristic

in di�erent variants of benchmark L.

Due to the fact that the BoG algorithm returns the best solution obtained with
various parameter setting of the NN, MEN and CBN heuristic inclusive the analyzed
parameter settings, the costs of a solution obtained with the BoG heuristic SBoG

cannot be higher than the costs of a solution computed with the NN, MEN or CBN
heuristic.
In Table 5.2, the greedy heuristics are compared in terms of the average percentage

gap to the BoG solution SBoG, which is computed by

gapBoG(S) :=
g(S)− g(SBoG)

g(SBoG)
100%. (5.5)

As expected, with the NN heuristic applying factor f = 0.3, worse solutions were
obtained for instances dominated by customer costs. But also for the basic variant of
benchmark L and the two variants with increases travel costs, the solutions obtained
with the NN heuristic had signi�cantly higher costs than the solutions obtained
with the other heuristics on average. Unsurprisingly, the MEN heuristic applying
factor f = 0.6 showed a reverse trend: In the benchmark variants dominated by
customer costs, the solutions computed with the MEN heuristic were very close to
the solutions of the BoG algorithm. But on the benchmark variants dominated by
travel costs, the MEN heuristic produced solutions with much higher costs than the
BoG heuristics. This e�ect is due to the fact that also in case of small customer
cost coe�cients, jobs with non-zero customer cost coe�cient are visited �rst which
results in higher travel costs. The CBN heuristic applying parameter β = 0.6 showed
the same trend as the NN heuristic: Even travel and customer costs are considered
by selecting the best job-route-pair, in instances dominated by customer costs, the
solutions obtained with the CBN heuristic were inferior. Consequently, applying
one of the greedy heuristics is not suitable to obtain good heuristic solutions for a
wide range of instances. Instead, the BoG algorithm should be preferred.

5.4.2. Rollout Algorithm

In this subsection, di�erent variants of the rollout algorithm, which is presented in
Section 5.2, are analyzed and compared. For a consistent analysis, again the per-
centage gap to the solution obtained with the BoG algorithm for the same instance

91

5. Heuristics

factor travel costs factor customer costs

100 10 10 100

RNN -5.0% -6.2% 5.0% 17.3% 20.8%

RMEN 18.7% 4.9% -5.0% -5.3% -5.5%

RCBN -6.0% -7.1% -5.1% 0.1% 3.4%

RBoG -7.9% -9.4% -7.7% -6.2% -6.2%

Table 5.3.: Average gap to a BoG solution of solutions obtained with the rollout algorithm

applying di�erent greedy algorithms as base heuristic in di�erent variants of

benchmarks L.

is used as quality measurement. Note that a gap smaller zero is an improvement
compared to the solution of the BoG heuristic.
At �rst, it is analyzed which of the presented greedy heuristics is suitable as base

heuristic for the rollout algorithm. Subsequently, di�erent variants to restrict the
search tree by limiting its width or depth are analyzed.
For the rollout algorithm with applying di�erent heuristics as base heuristic, Table

5.3 shows the average gap of the obtained solution to the solutions of the BoG
heuristic. In detail, the analyzed rollout variants are

� RNN that applies the NN heuristic with f = 0.3,

� RMEN that applies the MEN heuristic with f = 0.6,

� RCBN that applies the CBN heuristic with β = 0.6, and

� RBoG that applies the BoG algorithm as base heuristic to evaluate the feasible
job-route-pairs.

It can be seen that the rollout algorithm followed the trend of the applied base
heuristics. The variants RNN and RCBN were not suitable to solve instances domi-
nated by customer costs; and the rollout variant RMEN produce worse solutions for
instances dominated by travel costs. This can be seen on the fact that there the
average gap to the BoG solution was greater than zero.
Applying the BoG algorithm as base heuristic, the rollout algorithm performed

well in all kinds of benchmark. As expected due to the algorithm design, all solutions
obtained by the rollout algorithm RBoG were not worse than solution of the BoG
heuristic. Comparing all entries in the row corresponding to RBoG of Table 5.3 shows
that in all benchmark variants, on average a signi�cant improvement was reached.
This is due to the fact that the BoG algorithm uses all three greedy heuristics to
obtain a solution. Consequently, in instances dominated by customer costs a solution
of the MEN heuristic can be returned as best and in instances dominated by travel
costs a solution of the CBN or NN heuristic can be returned as best. Note that using

92

5.4. Computational Results

factor travel costs factor customer costs

100 10 10 100

nearest -7.2% -8.2% -4.4% -2.6% -2.7%

most-expensive -2.5% -4.8% -4.9% -4.9% -5.3%

cost-balanced -7.2% -8.6% -6.4% -5.2% -5.2%

mixed -6.9% -8.2% -5.6% -4.2% -4.5%

Table 5.4.: Average gap to a BoG solution of solutions obtained with the limited rollout

algorithm applying di�erent candidate selection variants.

the BoG algorithm as base heuristic results in 32 times the computational cost of
using the NN, MEN or CBN heuristic.

The limited rollout algorithm

Next, it is analyzed how a limitation of the search tree of the rollout algorithm
a�ects to the solution quality. At �rst, the rollout algorithm with a limited search
width is investigated. In this variant of the rollout algorithm, not all possible job-
route-pairs are taken into account by searching for the best job-route-pair, but only
w job candidates are analyzed. In Table 5.4, di�erent variants to get candidates are
compared. The candidates are selected by

� nearest neighbors: the candidates are the w unplanned jobs with the smallest
distance to the current last job of any route,

� most-expensive neighbors: the candidates are the w unplanned jobs with high-
est customer cost coe�cient,

� cost-balanced neighbors: the candidates are the w unplanned jobs with mini-
mal balanced costs considering all routes, and

� mixed neighbors: the candidates are the union of w
3
nearest neighbors, w

3

most-expensive neighbors and w
3
cost-balanced neighbors.

The rollout was used with w = 10, d = 100 and the BoG algorithm as base heuristic.
As shown in Table 5.4, the nearest neighbor selection yielded a signi�cant improve-
ment in the instances dominated by travel costs compared to the solutions obtained
with the BoG algorithm. In comparison to the results of the rollout algorithm RBoG

with w = 100, as shown in Table 5.3, the improvement is still high by a signi�cant
reduced computational e�ort. But for the basic variant and the variants with in-
creased customer costs of benchmark L, the average improvement of the obtained
solutions was considerably smaller than the average improvement of the full rollout
algorithm. Using the most-expensive neighbors as candidates led to a moderate

93

5. Heuristics

−15−10 −5 0 5 10
0

20

40

60

80

100

gapBoG(%)

%
o
f
in
st
a
n
ce
s

width w

w = 1

w = 3

w = 5

w = 10

w = 20

w = 30

w = 50

w = 100
−15−10 −5 0 5 10

0

20

40

60

80

100

gapBoG

%
o
f
in
st
a
n
ce
s

depth d

d = 1

d = 10

d = 25

d = 50

d = 75

d = 100

Figure 5.11.: Comparison of the rollout algorithm with varying width and depth on

benchmark L.

average improvement in all benchmark variants beside the one with travel costs in-
creased by factor hundred, which can be seen in Table 5.4. On average, the obtained
solutions were 2.5% better than the BoG solution in the benchmark variant with
hundredfold travel costs and about 5% better in the other four benchmark vari-
ants. Using cost-balanced or mixed neighbors as candidates led to a high average
improvement in all kinds of benchmark L whereby slightly smaller improvements
were observed with the mixed neighbors. Comparing the limited rollout with cost-
balanced candidates with the full rollout algorithm (see Table 5.3, row RBoG) shows
that limiting the width to ten jobs resulted in a changed average gap to the solutions
obtained with the BoG heuristic by about one percentage point to the worse by a
drastically reduced computational e�ort. Consequently, next it is analyzed whether
a limited search tree width can lead to a similar solution quality than the full rollout
algorithm by reduced computational e�ort.

In Figure 5.11, the in�uence of width and depth on the solution quality is shown
by means of performance pro�les for the percentage gap to the solution of the
BoG heuristic. In the left plot, the rollout algorithm was applied with a width
w ∈ {1, 3, 5, 10, 20, 30, 50, 100}, depth d = 100 and the BoG algorithm as base heuris-
tic. As candidates, the w jobs with smallest balanced costs are chosen. For width
w = 1, where for the job with minimal balanced costs the best route to append this
job is selected by the rollout approach, 95 instances were improved by up to 10%.
In only one instance, the solution of the rollout algorithm was more worse than the
solution of the BoG heuristic. Increasing the width up to w = 20 led to a signi�cant
improvement of the solution quality which can be seen in the left plot of Figure
5.11 where the corresponding performance pro�les are clearly beside each other. A
further increase of the width w did not lead to a signi�cant better performance in
terms of solution quality, which can be seen on the fact that the performance pro�les
overlap, but to a strong increase in the computational time, as shown in Figure 5.12.
With width w = 30 and w = 50, a slightly better performance was observed than
with width w = 100 and w = 20.

In the right plot of Figure 5.11, the results of varying the depth of the rollout al-
gorithm are shown: The rollout algorithm was applied with with w = 100, a depth

94

5.4. Computational Results

1 3 5 10 20 30 50 100

20

40

60

width

co
m
p
.
ti
m
e
(s
)

1 10 25 50 75 100

20

40

60

depth

co
m
p
.
ti
m
e
(s
)

Figure 5.12.: In�uence of the width and depth of the rollout algorithm on the computa-

tional time.

d ∈ {1, 10, 25, 50, 75, 100} and the BoG algorithm as base heuristic. The evaluation
of each decision was based on the costs of the (uncompleted) schedule and an esti-
mation of the costs of the unplanned jobs. It turns out that limiting the depth led
to worse solution. The costs of an uncompleted solution seems not to be suitable to
evaluate a decision. For the depths 1, 10 and 25, the obtained solutions of the rollout
algorithm were more expensive than the solution of the BoG heuristic, which can
be seen on the fact that all gaps were larger than zero. Also with depth d = 50, for
only two instances a better solution was found than with the base heuristic. Even
with depth d = 75, in still only 72% of the instances a better solution was obtained
with the limited rollout algorithm than with the BoG heuristic. Thus, limiting the
search depth is not a suitable approach to reduce the computational time of the
rollout algorithm because the obtained solutions were inferior.
In summary, for the VRPCC, the rollout algorithm led to better solutions than

the greedy heuristics. Furthermore, the results showed that not all jobs have to be
analyzed by selecting the best job-route-pair with the rollout approach, but that
analyzing only a part of the jobs with small balanced costs resulted in solutions of
similar quality by a signi�cant reduced computational time.

5.4.3. Local Search Algorithms

This subsection shows, how much a solution of the BoG heuristic can be improved
by the local search algorithms �rst improvement and best improvement as presented
in Section 5.3. Again, the algorithms are compared in terms of the percentage gap to
the solution obtained by the BoG heuristic, which is denoted by gapBoG, as de�ned
in equation (5.5).
Figure 5.13 gives performance pro�les for the gap to the solution of the BoG

heuristic of the algorithms �rst improvement (FI), best improvement with approxi-
mation (BIA) and a second variant of best improvement (BIE), where the cost of all
neighbors are exactly computed. The local search procedures are initialized on the
one hand by a heuristic solution (subscripted HEU), to be more precise by the solu-
tion of the BoG heuristic, and on the other hand by a random solution (subscripted
RAND).

95

5. Heuristics

−20 −15 −10 −5 0
0

20

40

60

80

100

gapBoG

%
o
f
in
st
a
n
ce
s

1 Run

−20 −15 −10 −5 0
0

20

40

60

80

100

gapBoG

%
o
f
in
st
a
n
ce
s

10 Minutes

FIHEU BIEHEU BIAHEU FIRAND BIERAND BIARAND

Figure 5.13.: Comparison of �rst and best improvement on benchmark L.

Start Solution heuristic random

FI: �rst improvement 1.25 7.77
BIA: best improvement with approximation 10.48 37.96
BIE: best improvement 12.94 41.94

Table 5.5.: Average computational time for �rst and best improvement algorithms (in

seconds).

The left plot of Figure 5.13 shows the gap reached in a single run of the improve-
ment algorithms. There, it is observed that both best improvement variants led to
similar results but that the computational time can be reduced if the approximation
is applied. This e�ect is due to the fact that cost changes are computed only for
promising neighbors. With the �rst improvement algorithm, smaller improvements
of the initial solution were found. It can also be seen, that initializing the local
search procedures by a random solution resulted in worse solutions than starting
with a heuristic solution. For some instances, in this case the obtained solution was
not better than the solution computed with the BoG heuristic.
The right plot of Figure 5.13 shows the results of repeating the improvement al-

gorithms for ten minutes. Due to �rst improvement and best improvement cannot
leave a local minimum with respect to the neighborhood, the local search is restarted
if no further improvement was found. In case of a heuristic start solution, the last
obtained solution is randomly changed until a solution with at least 15% higher
costs is found to explore another area of the solution space. As it can be seen, in
this case, �rst improvement was better than best improvement. One reason is that
�rst improvement is a faster algorithm than best improvement because only a part
of the neighborhood has to be analyzed, which can also be seen on the average com-

96

5.5. Conclusion

putational times provided in Table 5.5. As a consequence, more improved solutions
were generated during the time limit of ten minutes resulting in a higher probability
of �nding a better solution. Another reason could be that best improvement tends
to obtain similar solutions in several runs because it undoes the random changes
quickly. In case of choosing the start solution by random, each run of the improve-
ment algorithms is started with a new random solution. As it can be seen in the right
plot of Figure 5.13, in this case, all three improvement algorithms showed a similar
performance. Further, it can be observed that the improvements were smaller if ran-
dom solutions are used as start solutions. One reason for this behavior is that the
computational time of a single improvement algorithm run was signi�cantly larger if
the start solution was chosen by random because more improvement steps were nec-
essary to reach a local minimum with respect to the neighborhood. Consequently,
less improved solutions were obtained within ten minutes. Furthermore, as observed
by analyzing a single run of the improvement algorithms initialized with a random
solution, mostly better solutions were found when the improvement algorithm is
initialized by a heuristic solution.
In conclusion it can be said �rstly, that the proposed local search procedures

should be initialized by a heuristic solution, and secondly, that, if one run or only
few runs of local search are possible, then the best improvement algorithm should
be used, but if more time is available, it is better to run the �rst improvement
algorithm several times.

5.5. Conclusion

In this chapter, di�erent heuristics were presented to solve the VRPCC approxi-
mately. In Section 5.1, three newly developed greedy heuristics were investigated.
It was proven that the approximation ratio of each of them is unbounded. Further-
more, the three greedy heuristics were combined to a best-of-greedy algorithm. In
Section 5.2, an application of the rollout algorithm to the VRPCC was investigated
which applies the previously presented heuristics to evaluate decisions by building
up the schedule job by job. Finally, in Section 5.3, the local search algorithms �rst
and best improvement were presented and a de�nition of a neighborhood for the
VRPCC was given.
Computational experiments were carried out to compare the performance of the

heuristics in terms of solution quality. The results were presented in Section 5.4.
Based on large instances with one hundred jobs, it was analyzed, which settings of
the heuristics yielded the best solutions. It was observed that, dependent on the
instance, di�erent greedy heuristics with di�erent parameter settings produced the
best solution. Consequently, the combination of them, which is the best-of greedy
heuristic, was the best choice to obtain a good approximate solution for a large spec-
trum of instances. Further, it was found out that the rollout algorithm signi�cantly
improved the greedy heuristics. Also the presented �rst and best improvement al-
gorithms led to signi�cant improvements of the greedy solutions.

97

5. Heuristics

The BoG heuristic, the rollout algorithm and local search were compared with
solving one of the presented MILPs by CPLEX. It turned out that in benchmark
S, where the optimal solution is known, repeating �rst improvement several times
often obtained an optimal solution, even more often than solving (R2dT4) with
CPLEX. Also in benchmark M and L, repeated local search outperformed the other
heuristics and applying the commercial solver. Because the exact solution method
was outperformed by the heuristics, in the next chapter an alternative exact solution
approach will be investigated.

98

6. Two Branch-and-Bound

Algorithms for the Partition

and Permutation Model

After applying a commercial solver to the VRPCC, it turned out that the customer
costs lead to a problem harder to solve because the time variables and the route
variables are hardly linked which leads to poor LP relaxation values. Because of
that, other exact solution approaches were searched. As explained in Section 2.3, the
branch-and-bound method is a suitable approach to solve combinatorial problems
like VRPs. In this chapter, it is described how the general solution approach branch-
and-bound is applied to the VRPCC. At �rst, the branch-and-bound method is
introduced in detail. Then, Section 6.2 provides lower bounds for the objective
value, which are a fundamental part of this solution method. After that, in Section
6.3, two branch-and-bound algorithms for the VRPCC are presented. In detail, with
the proposed branching strategies the routes are build-up job by job. The algorithms
are implemented in a depth-�rst fashion applying backtracking and allowing parallel
computation. Finally, Section 6.4 compares the lower bounds and the two branching
strategies using computational experiments. The comparison of the computational
costs of the two branch-and-bound algorithms and of solving a MILP of the VRPCC
with a commercial solver shows that the developed branch-and-bound algorithms in
combination with the lower bounds e�ciently solve small instances of the VRPCC.

6.1. General Principles of the Branch-and-Bound

Method

Branch-and-bound is a common principle to solve complex combinatorial optimiza-
tion problems. An introduction to this method can be found, e.g., in [10, 90]. The
main idea is to successively break up the solution space S into certain subsets Si and
to discard subsets that cannot contain an optimal solution. In doing so, a search
tree is produced as shown in Figure 6.1: Each node i corresponds to a solution space
Si which is a subset of S. To break-up the solution space of a node i into subsets,
several child nodes are created each with a smaller solution space such that the
union of the solution spaces of the child nodes is equal to the solution space of node
i. If a node corresponds to (at most) one feasible solution, a leaf of the search tree
is reached. The root of the search tree is the node corresponding to the complete

99

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

rootdepth 0

idepth 1

depth 2

depth 3

leaves

child nodes of i

Figure 6.1.: Illustration of a search tree.

solution space S. In the following, the distance of a node to the root will be called
depth of the node in the search tree.

The branch-and-bound algorithm for an optimization problem

min{g(s)| s ∈ S} (6.1)

essentially consists of the following steps:

Initialize: The search tree is initialized with the root node to which the whole
solution space S belongs to. Further, an upper bound UB for g(s) is
determined, this could be for example the objective value of a feasible
solution which is stored as best solution so far s∗.

Select: Take a node from the search tree that has not been analyzed yet.

� If the solution space of the node contains several feasible solutions,
continue.

� Otherwise, if a single feasible solution s corresponds to the node,
calculate its objective value g(s). If g(s) < UB, store s as the best
solution achieved so far s∗ and set UB = g(s). Repeat step Select.

Bound: Calculate a lower bound LB for the solutions that belongs to the selected
node.

Branch or Prune:

� If LB < UB, branch on the node by dividing its solution space into
(disjoint) subsets. Each of them creates a new node.

� Otherwise, prune the node because no better solution than s∗ be-
longs to its solution space.

Go to step Select.

100

6.1. General Principles of the Branch-and-Bound Method

Return optimal solution: When all nodes of the tree are analyzed, the best solu-
tion so far s∗ is optimal for the problem (6.1). This is true because
the branch-and-bound algorithm ensures that the objective value of
any feasible solution is not smaller than g(s∗). If no feasible solution
was found, the solution space of (6.1) is empty and the optimization
problem is infeasible.

Note that if the upper bound is not based on a feasible solution, then branching is
necessary in the branch-or-prune step even for nodes with LB = UB until a feasible
solution is found. The �rst found feasible solution s with gc(s) ≤ UB has to be
stored.
To design a branch-and-bound algorithm, mainly three questions have to be an-

swered:

� How to select the next node?
Two selection strategies are common, see [42]:

� �Last in, �rst out�: This strategy leads to a depth-�rst search where each
branch is explored as far as possible. One advantage of this strategy is
that possibly a feasible solution can be obtained in shorter time, which is
important if no upper bound was found. But often, the objective value
of this �rst solution is far from the optimal value. A second advantage of
�last in, �rst out� is that, in comparison to the strategy described below,
fewer nodes have to be stored simultaneously.

� �Best �rst�: With this strategy, the best node, e.g., the one with smallest
lower bound, is selected in each step in order to quickly �nd a good
solution that improves the upper bound. This allows to prune more
nodes which keeps the search tree small. However, several nodes and their
lower bound must be stored, which can require a lot memory capacity or
additional e�ort to store and retrieve the information.

� How to determine a lower bound?
This question strongly depends on the problem and its formulation. In many
applications, a relaxation of the problem is used, which can be quickly calcu-
lated via a suitable algorithm, e.g., the LP relaxation.

� How to create new nodes?
The branching strategy strongly depends on the problem formulation and also
on the chosen lower bound. If the lower bound results from the LP relaxation
of a MILP formulation, two variants are common [116]:

� Variable dichotomy: one integer variable is selected that has a fractional
value in the solution of the LP relaxation. Two new nodes are generated:
One where the variable is bounded from below by the rounded up value,
and another where the variable is bounded from above by the round down
value.

101

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

� Generalized upper bound dichotomy: In several MILPs, generalized up-
per bound constraints occur, which are

∑
j∈Q xj ≤ U for some binary

variables of the problem. For example, the constraints (4.35) and (4.36)
of the route formulation (R2) presented in Section 4.3 are generalized up-
per bound constraints. To generate two new nodes, the set Q is split into
two non-empty subsets Q1 ⊂ Q and Q \ Q1. Then for the �rst node, it
is stipulated that

∑
j∈Q1

xj = 0. And for the second node, the constraint∑
j∈Q\Q1

xj = 0 is added. With it, the solution space is split into two
disjunctive sets.

The branch-and-bound method can be improved by some tests to strengthen the
bounds, discard subsets or �x further variables.
For the VRPCC, in this thesis two branch-and-bound algorithms are developed

that rely on the formulation (PP) presented in Section 3.2. Recap, in (PP), a
schedule is de�ned by a partition of the jobs into m non-empty subsets Nk and
a permutation for each partition Πk(Nk)) with k ∈ M . In the branch-and-bound
algorithms, each node of the search tree refers to a partial solution S̃, which is de�ned
by a set of unplanned jobs Ñ and an uncompleted schedule (Ñk,Π

k(Ñk))k∈M , where

Ñ ∪
(⋃

k∈M Ñk

)
= N . The solution space of the node is the set of all schedules

that can be generated by completing the partial solution according to the branching
strategy. To get an upper bound, one of the heuristics presented in Section 5.1.4
is used. To select the next branching node, the depth-�rst approach is chosen. In
detail, the design of the branching rules allows to use the backtracking approach
[116, 141] which leads to a single, not yet analyzed tree node. For the bound
step, lower bounds for travel costs and customer costs are calculated separately and
the sum of both is used as lower bound for the total costs, see Section 6.2. For
the branching step, two strategies are developed. In the �rst branching strategy,
presented in Section 6.3.1, new nodes are created by append ing one job at the end
of one route of the current uncompleted schedule. Applying the second strategy,
new nodes are generated by includ ing a certain job inside a route of the current
uncompleted schedule, see Section 6.3.2. It will be shown that the �rst branching
strategy produces an unbalanced search tree, but allows the application of tighter
bounds compared to the second branching strategy, which however results in a more
balanced search tree.

6.2. Lower Bounds

Tight and fast computed lower bounds are fundamental for the e�ciency of branch-
and-bound methods. With tight bounds, most branches that do not lead to an
optimal solution can be discarded and fewer leaves of the search tree need to be
generated. A �rst idea to obtain a lower bound for the VRPCC could be to use
the LP relaxation of a MILP formulation, e.g., one of the formulations proposed in
Chapter 4 where the binary and integer variables are replaced by continuous ones.

102

6.2. Lower Bounds

However, as it will be seen later, there exists lower bounds that are more appropriate.
For the novel customer cost part of the objective function, new developed bounds will
be presented in Section 6.2.1. These bounds are investigated both analytically and
computationally. For the latter, the quality of the bounds and the computational
time are analyzed using computational experiments, see Section 6.4.1.1. For the
travel cost part of the objective function, lower bounds of the TSP can be applied
by making small changes to the travel cost matrix. A collection of possible bounds
is presented in Section 6.2.2. A computational analysis of them is given in Section
6.4.1.2.

6.2.1. Lower Bounds for Customer Costs

In this thesis, several lower bounds for the customer cost value gc(s) de�ned by
equation (3.6) are developed, in particular:

� A simple lower bound that is based on an upper bound for the number of jobs
that can be visited per day,

� some lower bounds that are derived from solving di�erent special bin packing
problems and

� one lower bound that is computed by a polynomial algorithm which provides
a solution of the LP relaxation of one of the presented bin packing problems.

The last bound was considered because solving bin packing problems is NP-hard.
The computational e�ort of the lower bounds on customer costs depends on the

number of analyzed jobs. To reduce the computational time, it would be bene�cial
to consider only jobs with non-zero customer cost coe�cient which are given by
the set Nc = {i ∈ N | ci > 0}. The following lemma indicates that jobs with zero
customer cost coe�cient can be ignored when calculating lower bounds for customer
costs.

Lemma 6.1. Let N ′ ⊆ N a set of considered jobs. Then, for each feasible solution

S on N , a feasible solution S ′ on N ′ can be deduced by removing the jobs of the set

N \ N ′ from the routes. This solution is feasible without changing the start times.

Furthermore, if for S ′ the start times are calculated based on (3.8), the customer

cost value cannot be higher than the customer cost value of S.

Proof. For each job i ∈ N ′, let pi and p′i be its predecessor in S and S ′, re-
spectively. As assumed, the travel times satisfy the triangle inequality, thus it is
rij + aj + rjk ≥ rik for each i ̸= j ̸= k ∈ N . Then, a feasible start time ti of job i in
S is also feasible in S ′:

� if pi = p′i, then ti is obviously feasible; and

103

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

� if pi ̸= p′i, then in S at least one job is visited between p′i and i. Let πi be
the position of i in S. Then, pi = πi−1. Let further πi−j be the position of
p′i. Because S is feasible and the travel times satisfy the triangle inequality, it
holds that

ξ(ti) = ξ(tπi
) ≥ ξ(tπi−1

) + aπi−1
+ rπi−1πi

≥ ξ(tπi−j
) +

k=j−1∑
k=0

(
aπi−j+k

+ rπi−j+kπi−j+k+1

)
≥ ξ(tπi−j

) + aπi−j
+ rπi−jπi

= ξ(tp′i) + ap′i + rp′ii.

Thus, for the solution S ′ the start time ti satis�es constraint (3.2). Consequently,
with the start times calculated based on the schedule S, S ′ is a feasible solution.
Furthermore, a recalculation of the start times for S ′ based on equation (3.8) does

not lead to increased start times as reasoned in Section 3.1. Because of that, the
customer cost value of S ′ is not larger than the customer cost value of S.

For the sake of readability, the following de�nitions are introduced:

� Only the jobs with non-zero customer cost coe�cient have to be considered
which are given by the set

Nc := {i ∈ N | ci > 0}
with cardinality nc.

� The minimal travel time from job i ∈ Nc to any other job in Nc is

ri := min{rij| j ∈ Nc, j ̸= i}. (6.2)

� For the trips outside the working shift, the time Rm has to be reserved which
is given by

Rm := max
{∑

i∈I ri| I ⊆ Nc, |I| = m
}
. (6.3)

� The k-th largest travel time rkmax of the set {ri| i ∈ Nc} is de�ned as

r1max := ri1max
with i1max = min{i| ri ≥ rj, i, j ∈ Nc} (6.4)

and

rkmax := rikmax
(6.5)

with ikmax = min{i| ri ≥ rj, i, j ∈ Nc \ {ik
′

max| 1 ≤ k′ ≤ k}}, (6.6)

respectively.

� The set of feasible start times is given by T . For the benchmarks used in the
computational experiments, which are de�ned in Appendix A, the start time is
(0, 480) which means that the �rst job is executed on day one. Consequently,
T = {1, 2, . . . , dmax}. If another start time is chosen, T has to be adapted.

104

6.2. Lower Bounds

6.2.1.1. A Lower Bound based on a Constant Number of Jobs per Day

The idea of the �rst presented lower bound for the customer costs is to calculate, how
many jobs can be done at most per day; and then, to allocate the most expensive
jobs to the �rst day, the next most expensive jobs to the second day, and so on.
At �rst, a simple calculation of η̃, which is the maximal number of jobs executable

at one day, is given. Let tmin := min{ai+ri| i ∈ Nc} be the minimal time needed per
job, where ai is the working duration and ri is the minimal time needed to travel to
the next job calculated by equation (6.2). For each day, u minutes are available for
job execution and the time r1max, as de�ned in equation (6.4), has to be reserved for
the trip outside the working shift. Thus, not more than

η̃ := m
⌊u + r1max

tmin

⌋
(6.7)

jobs can be done per day.
The estimation of (6.7) can be improved by replacing tmin with the smallest sum

of execution and travel time of η jobs and by using di�erent approaches to consider
m vehicles. For the �rst approach, the number of jobs that can be done by one
vehicle on one day is computed and then multiplied by the number of vehicles m.
For the second approach, the time available for all vehicles is considered to calculate
how many jobs can be executed per day. The minimum of both values is then η.
Recap, ai + ri is the minimal time needed for execution and travel for job i ∈ Nc.
Then, the upper bound for the number of jobs executable by one vehicle at one day
is the value η1 that meets the conditions

min
{I⊆Nc| |I|=η1}

∑
i∈I

(ai + ri) ≤ u + r1max (6.8)

and
u + r1max < min

{I⊆Nc| |I|=η1+1}

∑
i∈I

(ai + ri). (6.9)

Inequality (6.8) ensures that a subset I with cardinality η1 exists, such that the sum
of the shortest possible time for execution and travel of the jobs of I does not exceed
the maximum time available per vehicle per day. And inequality (6.9) guarantees
that η1 is an upper bound, because there exists no set with more than η1 jobs, such
that the sum of the shortest possible times of its job �ts to the total available time.
A similar problem is solved to calculate the upper bound η2 for the number of

jobs that can be executed on one day by all m vehicles:

min
{I⊆Nc| |I|=η2}

∑
i∈I

(ai + ri) ≤ mu +Rm (6.10)

and
mu +Rm < min

{I⊆Nc| |I|=η2+1}

∑
i∈I

(ai + ri). (6.11)

105

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

η1 = 2

η2 = 5

(a) mη1 < η2

η1 = 3

η2 = 5

(b) mη1 > η2

Figure 6.2.: Schematic illustration of the comparison of mη1 and η2.

Each of both approaches has an advantage: For η1, the advantage is that the time
available per day is better approximated. As shown in Figure 6.2(a) by an example
with two vehicles, if the remaining space in the bin for one day per vehicle is large,
it can happen that more than mη1 items �t into the bin for one day and all vehicles.
But, as illustrated in Figure 6.2(b), the advantage of η2 is that more items are taken
into account. Consequently, if the item have strongly di�erent sizes, it is possible
that fewer than mη1 jobs �t into the bin for one day and all vehicles because the
items are packed in order of increasing item size and with it also larger items can
be included.

Lemma 6.2. The value η := min{mη1, η2} computed by the inequalities (6.8)�(6.11)
is an upper bound for the number of jobs processed on one day.

Proof. Let S be a solution on N and Sc the solution derived from S by removing the
jobs that does not belong to Nc. For each job i ∈ Nc, the successor in Sc is denoted
by qi. Assuming, it exists a day t ∈ T where more than η jobs are executed, which
means |{i ∈ Nc| tdi = t}| > min{mη1, η2}.
If |{i ∈ Nc| tdi = t}| > mη1, then there exists a route k ∈ M where more than η1

jobs are visited on day t. Let Ik,t := {i ∈ Nc ∩ Nk| tdi = t} be the jobs visited on
day t by vehicle k with |Ik,t| > η1. As shown in Lemma 6.1, Sc is a feasible solution,
thus for this route k and day t it holds that∑

i∈Ik,t
(ai + riqi) ≤ u + rjqj ,

with j is the job that is executed at last on day t, thus j ∈ Ik,t but qj /∈ Ik,t.
Rearranging leads to

u ≥
∑
i∈Ik,t

(ai + riqi)− rjqj

=
∑

i∈Ik,t\{j}
(ai + riqi) + aj

≥
∑

i∈Ik,t\{j}
(ai + ri) + aj,

because ri ≤ riqi . Adding rj on both sides leads to

u + rj ≥
∑
i∈Ik,t

(ai + ri).

106

6.2. Lower Bounds

Due to rj ≤ r1max, it follows that
∑

i∈Ik,t(ai + ri) ≤ u + r1max. This is a contradiction
to (6.9), because if |Ik,t| > η1, it holds that

u + r1max < min
{I⊆Nc| |I|=η1+1}

∑
i∈I

(ai + ri) ≤
∑
i∈Ik,t

(ai + ri) ≤ u + r1max.

Secondly, it is shown that also |{i ∈ Nc| tdi = t}| > η2 leads to a contradiction.
Let It := {i ∈ Nc| tdi = t} be the set of jobs visited on day t with |It| > η2. Then, it
is

mu ≥
∑
i∈Ik,t

ai +
∑
i∈Ik,t
tdqi= t

riqi ≥
∑
i∈Ik,t

ai +
∑
i∈Ik,t
tdqi= t

ri.

Adding the travel times for the jobs executed after day t on both sides leads to

mu +
∑
i∈Ik,t
tdqi>t

ri ≥
∑
i∈Ik,t

(ai + ri).

Since |{ri| i ∈ Ik,t, tdqi > t}| ≤ m it holds that the sum of these travel times does
not exceeds Rm. Consequently, it holds that

∑
i∈Ik,t(ai + ri) ≤ mu + Rm, which is

a contradiction to inequality (6.11) of the de�nition of η2:

mu +Rm < min
{I⊆Nc| |I|=η2+1}

∑
i∈I

(ai + ri) ≤
∑
i∈Ik,t

(ai + ri) ≤ mu +Rm.

Thus, in a feasible solution neither more than mη1 nor more than η2 jobs can be
visited per day and η = min{mη1, η2} is an upper bound for the number of jobs
executable per day.

To calculate η1 and η2 e�ciently, the set Nc is ordered by increasing values of
ai + ri. The complexity of the sorting is O(nc log(nc)). The values are summed up
in increasing order until the time bounds, u + r1max and mu +Rm, respectively, will
be exceeded with the next summand.
To obtain the lower bound LBc

s, an allocation of jobs to days with minimal cus-
tomer costs is sought. The problem is described by (6.12)-(6.14).
(S) LBc

s := min
∑
i∈Nc

ciτi (6.12)

s.t. τi ∈ T i ∈ Nc (6.13)

|{i ∈ Nc| τi = t}| ≤ η t ∈ T (6.14)

The decision variable τi is the day to which job i ∈ Nc is assigned. The objec-
tive function (6.12) is the sum of the time-dependent customer costs and has to be
minimized. Constraints (6.13) ensure that a day is allocated to each job. Finally,
constraints (6.14) bound the number of jobs allocated to day t ∈ T by the upper

107

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

bound η. The solution can be obtained in polynomial time by ordering the jobs by
decreasing values of ci. The �rst η jobs of the ordered list are allocated to the �rst
day of T , the next η jobs are allocated to the second day and so on.

Theorem 6.3. LBc
s is a lower bound for the customer costs of VRPCC.

Proof. As shown in Lemma 6.2, if Sc is a feasible schedule of the jobs Nc, than at
most η jobs are visited per day. Thus, each feasible solution of the VRPCC can be
transformed into a feasible solution of (S) by setting τi = tdi for the jobs i ∈ Nc,
where the objective value equals to the customer cost value of Sc. Consequently,
LBc

s cannot be larger than the customer cost value of a solution of the VRPCC.

6.2.1.2. Lower Bounds from Minimum Weighted Sum Bin Packing

Problems

The �rst lower bound LBc
s is a straightforward approach. Instead of using a �xed

number of jobs per day, one could also be inspired by bin packing problems to
allocate jobs to days. The resulting problems are similar to the minimum weighted
sum bin packing problem (MWSBP) as introduced in [48]. In the MWSBP, each
item is a�icted with a weight and the objective is to minimize the costs c which
are the sum of the item weights multiplied with the index of the bin in which the
item is packed. Two polynomial algorithms are presented in [48], one to calculate a
lower bound for the optimal value c∗ and one to get an approximated solution with
c ≤ c∗(1 + δ) where 1/δ is an integer. Both algorithms are based on the search for
a shortest path in a graph, where the size of the graph increases with the desired
accuracy of the result.
The in this thesis presented bin packing problems to obtain a lower bound for

customer costs are not solved with these polynomial algorithms because their com-
putational e�ort increases strongly with the accuracy. Furthermore, applying the
bin packing problems to the branching strategies leads to additional constraints
and non-identical bin sizes. Adapting the algorithms to these restrictions is hardly
possible. Because of that, CPLEX is used to solve the bin packing problems.

There are two possibilities to consider traveling outside the working shift:

� Increase the time available per day for working and traveling to pack working
time and travel time together as one item in the bins.

� De�ne separate items for the working time and travel time and pack them in
bins of the same size as the working shift.

The bins can be designed either one per day or one per day and vehicle. In the
latter case, the time available per day is more precisely modeled and better bounds
can be obtained. However, for each day, there are m bins of similar size which can
lead to several solutions of same costs with interchanged bin allocation. This can
lead to an increased computational e�ort, as more solutions have to be analyzed.

108

6.2. Lower Bounds

Bin Packing Problems with Bin Size Increased by Time Reserved for

Traveling Outside the Working Shift

At �rst, the bin packing problems (BP1) and (BP2) are presented where for each
job one item has to be packed into a bin. The size of the items represents the sum
of the working duration and the minimal travel time to another job. The bin size
corresponds to the total time available for work plus the time reserved to travel
outside the work shift. This leads to the following problem de�nition:

(BP1) LBc
BP1 := min

∑
i∈Nc

∑
t∈T

citxit

s.t.
∑
t∈T

xit = 1 i ∈ Nc,∑
i∈Nc

xit(ai + ri) ≤ mu +Rm t ∈ T ,

xit ∈ {0, 1} i ∈ Nc, t ∈ T .

In (BP1), each bin corresponds to one day. The bin size is set to the time available
for maintenance and travel per day mu + Rm, where Rm is the time reserved for
traveling outside the working shift as de�ned in equation (6.3). The allocation of
items, or rather jobs, to bins is done by binary variables xit, i ∈ Nc, t ∈ T , where
xit = 1 if and only if job i is allocated to the bin of day t. The size of each job i ∈ Nc

is ai + ri, which is the time needed for the execution of the job and the minimal
time needed to travel to the next job as de�ned in equation (6.2). The weight of
each job is the customer cost coe�cient ci. The objective is to minimize the sum of
the customer costs resulting from the job allocation.
As mentioned above, a better bound can be obtained if for each vehicle a separate

bin per day is de�ned. This leads to the following problem formulation:

(BP2) LBc
BP2 := min

∑
i∈Nc

∑
t∈T

∑
k∈M

citxitk

s.t.
∑
t∈T

∑
k∈M

xitk = 1 i ∈ Nc,∑
i∈Nc

xitk(ai + ri) ≤ u + rkmax t ∈ T, k ∈ M ,

xitk ∈ {0, 1} i ∈ Nc, t ∈ T, k ∈ M .

The problem (BP2) is a bin packing problem with m|T | bins, one per day and
vehicle. Each bin is associated to a route k ∈ M and has the size u + rkmax, where
rkmax is the k-th largest value of the set {ri| i ∈ Nc} as de�ned in equations (6.4)
and (6.6). Then, the bin size equals the sum of the working shift length and the
time reserved for the trip to the �rst job executed on the next day. Again, each job
i ∈ N has the size ai+ri and the weight ci. The allocation of jobs to bins is done by
three-index variable xitk, i ∈ Nc, t ∈ T, k ∈ M , where xitk = 1 if and only if job i
is allocated to the bin associated to day t and route k. The objective is to minimize
the sum of customer costs resulting from the job allocation.

109

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

The next theorem shows that LBc
BP1 and LB

c
BP2 are lower bounds for the customer

cost value.

Theorem 6.4. LBc
BP1 and LBc

BP2 are lower bounds for the customer cost part of

the VRPCC.

Proof. Let S be a solution on N and Sc the solution derived from S by removing
the jobs N \Nc. The successor of a job i ∈ Nc in schedule Sc is denoted by qi. Then,
for each day t ∈ T , the working shift constraint leads to∑

i∈N
tdi=t

ai +
∑
i∈N

tdi=tdqi=t

riqi ≤ mu.

Because ri ≤ riqi , it is also true that∑
i∈Nc

tdi=t

ai +
∑
i∈Nc

tdi=tdqi=t

ri ≤ mu. (6.15)

To match the capacity constraint of (BP1), the sum of the minimal travel times for
the trips to the jobs that are executed on the next day has to be added. This sum
contains at most m summands, thus∑

i∈Nc

tdi=t<tdqi

ri ≤ max{
∑
i∈I

ri| I ⊆ Nc, |I| = m} = Rm.

Consequently, adding these costs on both sides of inequality (6.15) implies that for
each day t ∈ T , ∑

i∈Nc

tdi=t

(ai + ri) ≤ mu +
∑
i∈Nc

tdi=t<tdqi

ri ≤ mu +Rm.

Thus, each feasible solution S of the VRPCC can be transformed into a feasible
solution of the bin packing problem (BP1) by allocating each job to the bin that
corresponds to the start day of the job. The costs of this solution are equal to
gc(S). Consequently, also the schedule with minimal customer cost value can be
transformed into a feasible solution of LBc

BP1. Consequently, LB
c
BP1 is a lower bound

for the customer costs of the VRPCC.
The proof for LBc

BP2 is similar: Let Nc,k be the set of jobs allocated to route k in
Sc. For each t ∈ T and k ∈ M , it is valid that∑

i∈Nc,k

tdi=t

ai +
∑

i∈Nc,k

tdi=tdqi=t

ri ≤
∑

i∈Nc,k

tdi=t

ai +
∑

i∈Nc,k

tdi=tdqi=t

riqi ≤ u. (6.16)

110

6.2. Lower Bounds

Furthermore, for each day t ∈ T , at most one trip to a job executed on the next
day has to be considered per vehicle. Thus, there is at most one job i ∈ Nc,k with
tdi = t < tdqi . Because {rjmax}j=1,...,m are the m largest values of {ri| i ∈ Nc}, there
exists a mapping from k ∈ M to jk,t ∈ M such that∑

i∈Nc,k

tdi=t<tdqi

ri ≤ r
jk,t
max,

for each k ∈ M , and ⋃
k∈M

{jk,t} = M.

Then, adding the costs reserved for the job that is executed on the next day on both
sides of inequality (6.16) leads to∑

i∈Nc,k

tdi=t

(ai + ri) ≤ u +
∑

i∈Nc,k

tdi=t<tdqi

ri ≤ u + r
jk,t
max.

Consequently, each feasible solution S can be transformed into a feasible solution of
(BP2) with equal customer costs. Thus, the minimal customer costs of a solution of
the VRPCC cannot be smaller than LBc

BP2.

By means of the following theorem, the bounds are compared analytically.

Theorem 6.5. It holds that LBc
BP2 is at least as good as LBc

s and LBc
BP1.

Proof. Firstly, it is shown that LBc
BP2 ≥ LBc

s. Since∑
k∈M

∑
i∈Nc

(ai + ri)xitk ≤
∑
k∈M

(
u + rkmax

)
≤ m(u + r1max)

≤ m min
{I⊂Nc| |I|=η1+1}

∑
i∈I

(ai + ri)

and ∑
k∈M

∑
i∈Nc

(ai + ri)xitk ≤
∑
k∈M

(
u + rkmax

)
= mu +Rm

≤ min
{I⊂Nc| |I|=η2+1}

∑
i∈I

(ai + ri),

it follows that
∑

k∈M
∑

i∈Nc
xitk ≤ η for each t ∈ T . Thus, each feasible solution

of (BP2) can be transformed into a feasible solution of (S) with the same objective
value and it is valid that LBc

s is not larger than LBc
BP2.

111

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

Note that LBc
s and LBc

BP2 are not equal because not each feasible solution of (S)
can be transformed into a feasible solution of (BP2) with same cost value. This is
not di�cult to see: Let I ⊂ Nc a set with |I| ≤ η but

∑
i∈I(ai + ri) > mu + Rm.

Such a set can exist, because η is an upper bound of the jobs executable per day
and it is not ensured that each day η jobs are executable. Then, all jobs of I can
be allocated to the same day in (S), but it is not possible to pack all jobs into the
m bins of LBc

BP2 associated to one day.
Secondly, it is shown that LBc

BP2 ≥ LBc
BP1. Because of∑

k∈M

∑
i∈Nc

(ai + ri)xitk ≤
∑
k∈M

(
u + rkmax

)
= mu +Rm t ∈ T,

each feasible solution of (BP2) can be transformed into a feasible solution of (BP1)
by de�ning xit =

∑
k∈M xitk and both solutions have the same cost value. Thus,

LBc
BP1 is not larger than LBc

BP2.
Finally, it is shown that LBc

BP2 and LBc
BP1 are not equal. For a feasible solu-

tion of LBc
LPBP1, let It := {i ∈ Nc| xit = 1, k ∈ M} be the set of jobs allocated

to day t ∈ T . To obtain a feasible solution of (BP2), a partition of It into m

blocks Itk with k ∈ M has to be found, such that each block satis�es the con-
straint

∑
i∈Itk(ai + ri) ≤ u + rkmax. Although in both problems the time available

per day is equal, it can be impossible to �nd such a partition. Consequently, it is
LBc

BP2 ≥ LBc
BP1.

Note that if the bin sizes are similar, there exists several solutions of (BP2) with
the same cost value. This could lead to a loss of performance in solving (BP2)
compared to (BP1).

Remark For the bounds LBc
s and LBc

BP1, neither LB
c
s ≥ LBc

BP1 nor LB
c
BP1 ≥ LBc

s

is true. The reasons are that on the one hand, a feasible solution of (S) is infeasible
for (BP1) when a set I ⊂ Nc with |I| ≤ η exists, for which the sum

∑
i∈I(ai + ri)

is larger than mu + Rm. And on the other hand, if mη1 < η2, a feasible solution of
(BP1) can be infeasible for (S), because a set I ⊂ Nc with

∑
i∈I(ai+ ri) ≤ mu+Rm

can contain more than mη1 jobs.
However, if η2 ≤ mη1, it is true that LBc

BP1 ≥ LBc
s because a bin of a solution

of (BP1) cannot contain more than η2 jobs due to its de�nition given by inequality
(6.11). Then, each feasible solution of (BP1) can be transformed into a feasible
solution of (S) with same cost value.

Remark The lower bounds LBc
BP1 and LBc

BP2 can be improved by adding con-
straints

∑
i,j∈I xij ≤ |I| and∑i,j∈I

∑
k∈M xijk ≤ |I|, respectively, to exclude subsets

I ⊆ Nc, where the sum of the start times and the minimal travel times the between
the jobs of the subset I exceeds the bin size. For (BP1), a subset I can be excluded
if ∑

i∈s
(ai + min

j∈I\{i}
rij)− max

I⊆I
|I|=m

∑
i∈I

min
j∈I\{i}

rij > mu, (6.17)

112

6.2. Lower Bounds

whereby the m redundant travel time rij were subtracted. And for (BP2), a subset
I cannot be processed by one vehicle within one day if it satis�es∑

i∈I
(ai + min

j∈I\{i}
rij)−max

i∈I
min

j∈I\{i}
rij > u. (6.18)

Both kinds of subsets can be generated iteratively from a previous solution of the
bin packing problem based on the items packed into one bin. Hence, the iterative
algorithm starts by solving the bin packing problem without any excluded subsets.
Then, each set of jobs allocated to one bin is analyzed whether the inequality (6.17)
and (6.18), respectively, is true. If so, this subset is excluded in all further iterations.
In order to generate a su�ciently large pool of excluded subsets quickly, not only
the subsets obtained by the bin packing problem should be analyzed, but also sets
with one job fewer and sets with one job exchanged should be tested and excluded
if necessary.

Bin Packing Problems with Working Items and Travel Items

In (BP1) and (BP2), the fact that it is allowed to travel to the next job outside
the working shift is modeled by increasing the bin size by the maximal possible
trip duration. In the following, two bin packing problems, denoted as (BP3) and
(BP4), are formulated, where the bin size is not increased. To allow trips outside the
working shift, separate items for working duration ai and minimal possible travel
time ri are packed. Thereby, the number of travel items per bin can be smaller than
the number of packed working items.
At �rst, (BP3) is presented where one bin per day is de�ned.

(BP3) LBc
BP3 := min

∑
i∈Nc

∑
t∈T

citxit (6.19)

s.t.
∑
i∈Nc

(xitai + yitri) ≤ mu t ∈ T (6.20)∑
i∈Nc

(xit − yit) ≤ m t ∈ T (6.21)

yit − xit ≤ 0 i ∈ Nc, t ∈ T (6.22)∑
t∈T

xit = 1 i ∈ Nc (6.23)∑
t∈T

yit ≤ 1 i ∈ Nc (6.24)

xit ∈ {0, 1}, yit ∈ {0, 1} i ∈ Nc, t ∈ T (6.25)

In (BP3), a binary variable xit is one if and only if the working duration of job i is
allocated to day t ∈ T . Further, yit takes value one if and only if the travel time of
job i is assigned to the working shift of day t. The objective function (6.19), which
has to be minimized, is the sum of the customer cost coe�cient ci of job i ∈ Nc

113

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

multiplied by the day t to which the job is assigned to. Thus, for each job, there
are two items that could be packed into a bin associated to a day: the working
item ai and the travel item ri. With constraint (6.20), it is ensured that the sum
of the allocated items is not larger than the available time for working per day,
i.e., mu. The inequalities (6.21) realize that at most m working items more than
travel items are packed into each bin. By constraints (6.22) is stipulated that the
travel items have to be packed into the same bin as the corresponding working item.
Furthermore, equations (6.23) stipulate that each working item has to be allocated
to exactly one bin, and inequalities (6.24) ensure that each travel item is allocated
to at most one bin.

Remark Relaxing (6.22) leads to a problem that can be solved faster. Then, it is
not further stipulated that the travel item of job i is allocated to the same bin as the
working item of job i. Note that according to (6.21) nevertheless each bin contains
several travel items.

Better lower bounds can be obtained, if m bins are used per day, i.e., one for each
vehicle. The corresponding bin packing problem is denoted as (BP4).

(BP4) LBc
BP4 := min

∑
i∈Nc

∑
t∈T

∑
k∈M

citxitk (6.26)

s.t.
∑
i∈Nc

(xitkai + yitkri) ≤ u t ∈ T, k ∈ M (6.27)∑
i∈Nc

(xitk − yitk) ≤ 1 t ∈ T, k ∈ M (6.28)

yitk − xitk ≤ 0 i ∈ Nc, t ∈ T, k ∈ M (6.29)∑
t∈T

∑
k∈M

xitk = 1 i ∈ Nc (6.30)∑
t∈T

∑
k∈M

yitk ≤ 1 i ∈ Nc (6.31)

xitk ∈ {0, 1}, yitk ∈ {0, 1} i ∈ Nc, t ∈ T, k ∈ M

The problem (BP4) is similar to (BP3). A binary variable xitk or yitk is equal
to one if and only if the working item or travel item of job i, respectively, is allo-
cated to the bin associated to day t ∈ T and vehicle k ∈ M . There are mainly three
di�erences between (BP3) and (BP4):

� In (BP4), totally m|T | bins are available, instead of |T | bins as in (BP3).

� The size of each bin of (BP4) equals to the length of the working shift u,
instead of the time available for working per day mu.

� In (BP4), only one more working item than travel items can be allocated to a
bin, instead of at most m more working items than travel items as in (BP3).

114

6.2. Lower Bounds

The following theorem shows that LBc
BP3 and LBc

BP4 are lower bounds for the
customer costs value of the VRPCC.

Theorem 6.6. LBc
BP3 and LBc

BP4 are lower bounds for the customer cost part of

the VRPCC and it is LBc
BP4 ≥ LBc

BP3.

Proof. The �rst goal is to show that each solution S can be transformed into a feasi-
ble solution of (BP4) and that then gc(S) is equal to the costs of the corresponding
solution of (BP4).
Let S be a feasible solution on N and Sc be the feasible solution deduced from S

taking into account only the jobs of Nc. Further, let qi be the successor of job i in
Sc. For each k ∈ M , let Nc,k be the jobs visited by vehicle k in Sc. For each day
t ∈ T , the working shift constraint leads to

u ≥
∑

i∈Nc,k

tdi=t

ai +
∑

i∈Nc,k

tdi=tdqi=t

riqi ≥
∑

i∈Nc,k

tdi=t

ai +
∑

i∈Nc,k

tdi=tdqi=t

ri.

The binary variables are set to

xitk =

{
1 if i ∈ Nc,k and tdi = t

0 otherwise
and yitk =

{
1 if i ∈ Nc,k and tdi = tdqi = t

0 otherwise
.

Obviously,
∑

i∈Nc

∑
t∈T
∑

k∈M citxitk = gc(S).
It remains to show that this de�nition of the binary variables leads to a feasible
solution of (BP4). Firstly, the bin size constraints (6.27) are proven. Applying the
binary variables to the working shift constraints leads to

u ≥
∑

i∈Nc,k

tdi=t

ai +
∑

i∈Nc,k

tdi=tdqi=t

ri =
∑
i∈Nc

(xitkai + yitkri) ∀t ∈ T, k ∈ M.

Thus, the bin size constraints (6.27) are valid.
Secondly, the other constraints have to be proven: Because for each day and

route there is at most one trip outside the working shift, constraints (6.28) are
true. Furthermore, since each job is allocated to exactly one bin, which is the bin
associated to day t and vehicle k where the job is visited, also constraints (6.30) are
true. Moreover, for each job i ∈ Nc,k with tdi = t, the travel time ri is allocated also
to the bin of day t and vehicle k if the job and its successor qi are both visited on
day t by vehicle k. Otherwise, yitk = 0. Thus, also constraints (6.31) and (6.29)
are true. In summary, this implies that each feasible solution of VRPCC can be
transformed to a feasible solution of (BP4). With it, LBc

BP4 is a lower bound of the
customer cost part of VRPCC.

115

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

Next, it is shown that LBc
BP4 ≥ LBc

BP3, which implies that also LBc
BP3 is a lower

bound for the customer costs of VRPCC. To transform a feasible solution of (BP4)
to (BP3), let xit =

∑
k∈m xitk and yit =

∑
k∈m yitk. Hence, the objective value does

not change and the constraints (6.23) and (6.24) are valid. Further, the binarity
of xit and yit is ensured because of (6.30) and (6.31), respectively. For each t ∈ T ,
from constraints (6.27) of (BP4) follows that∑

k∈M

∑
i∈Nc

(xitkai + yitkri) =
∑
i∈Nc

(xitai + yitri) ≤
∑
k∈M

u = mu.

Thus, constraints (6.20) of (BP3) are valid. And from (6.28), it results that∑
k∈M

∑
i∈Nc

(xitk − yitk) =
∑
i∈Nc

(xit − yit) ≤
∑
k∈M

1 = m ∀t ∈ T

which means that (6.21) is also true. Finally, for each i ∈ Nc and t ∈ T , constraints
(6.29) lead to ∑

k∈M
(yitk − xitk) = yit − xit ≤ 0.

Thus, also (6.22) is satis�ed. In summary follows that each feasible solution of
(BP4) can be transformed into a feasible solution of (BP3) and LBc

BP3 ≯ LBc
BP4.

But LBc
BP3 and LBc

BP4 are not equal because it is not always possible to split up the
jobs of a bin of (BP3) into m bin of (BP4) associated to the same day. Thus, not
each feasible solution of LBc

BP3 can be transformed into a feasible solution of (BP4).
With it, it is shown that LBc

BP4 ≥ LBc
BP3.

Theorem 6.7. It holds that LBc
BP3 is not less than LBc

BP1; and LBc
BP4 is not less

than LBc
s, LB

c
BP1, LB

c
BP2 and LBc

BP3.

Proof. Firstly, it is shown that LBc
BP3 ≥ LBc

BP1. For this purpose, it has to be
proven that each feasible solution of (BP3) is also a feasible solution of (BP1). Let
It ⊂ Nc be the set of jobs allocated to day t ∈ T in a solution of (BP3). Thus,
xit = 1 for each i ∈ It. Since constraint (6.20) is satis�ed, it holds that∑

i∈It
(ai + ri) ≤ mu + max

{Ĩt⊂It| |Ĩt|=m}

∑
i∈Ĩt

ri ≤ mu +Rm.

Thus, the binary variables xit lead to a feasible solution of (BP1) with same costs.
The reversal is not necessarily true because of the increased bin size of LBc

BP1.
Consequently, it follows that LBc

BP3 ≥ LBc
BP1.

Secondly, it remains to show that LBc
BP4 is not worse than the other bounds:

From Theorem 6.5, it is obtained that LBc
BP2 ≥ LBc

BP1 and LBc
BP2 ≥ LBc

s and
from Theorem 6.6 follows that LBc

BP4 ≥ LBc
BP3. Thus, it remains to show that

LBc
BP4 ≥ LBc

BP2. Let {xitk} and {yitk}, with i ∈ Nc, t ∈ T and k ∈ M , be a feasible

116

6.2. Lower Bounds

solution of (BP4). The goal is to show that this solution can be transformed into
a feasible solution of (BP2). At �rst, for each vehicle exists at most one trip to
a job executed on the next day. Recap, {rjmax}j=1,...,m are the m largest values of
{ri| i ∈ Nc}. Then, for each t ∈ T , there exists a mapping from k ∈ M to jkt ∈ M

with
⋃

k∈M{jkt} = M such that ∑
i∈Nc

xitk=1,yitk=0

ri ≤ rjktmax (6.32)

for each k ∈ M . This means that for each travel item, which is not packed into the
bin of the corresponding working item, a bin of (BP2) can be found, such that this
travel item does not exceed the time reserved for traveling outside the working shift.
With it, for each bin associated to day t ∈ T and vehicle k ∈ M , it holds that∑

i∈Nc

(xitkai + yitkri) ≤
∑
i∈Nc

xitk(ai + ri) (6.33)

≤
∑
i∈Nc

(xitkai + yitkri) + rjktmax (6.34)

≤ u+ rjktmax. (6.35)

Inequality (6.33) shows the transition from (BP4) to (BP2). The formula on the
left provides the total size of the items of the bin in (BP4) which is smaller than the
total size of the items packed into the bin of (BP2) because there is one additional
summand ri. As shown by (6.32), this additional summand is less than rjktmax and
thus, inequality (6.34) is satis�ed. The fact that in (BP4) the bin size is limited to
u, leads to inequality (6.35). Consequently, the variables xitk of a feasible solution
of (BP4) lead also to a feasible solution of (BP2).
The reversal is not necessarily true. Let Itk be the set of jobs allocated to day

t ∈ T and vehicle k ∈ M in a feasible solution of LBc
BP2. Transforming this solution

to (BP4) leads to ∑
i∈Itk

(ai + ri)−max
i∈Itk

ri ≤ u + rkmax −max
i∈Itk

ri ⋚ u

if the largest travel item is not allocated to the bin. In the most cases, rkmax is larger
than the removed travel item, thus, it is not possible to make a statement whether
the sum of the working items and selected travel items is less than, equal or larger
than u. Thus, not each feasible solution of (BP2) can be transformed into a feasible
solution of (BP4). Consequently, LBc

BP4 ≥ LBc
BP2.

Remark For instances withmη1 < η2, LB
c
s can be a better bound than LB

c
BP3. This

is caused by the fact that by computing LBc
BP3, not more than η2 jobs were allocated

to one day, but it is possible to allocate more than mη1 jobs to one day because the
bin size for day t equals to mu. But if η2 ≤ mη1, it holds that LB

c
BP3 ≤ LBc

s.

117

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

6.2.1.3. Linear Programming Relaxation of Bin Packing Bounds

The computational experiments showed that solving the bin packing problems is to
time-consuming in relation to the bound quality, compare the results provided in
Section 6.4.1.1. For this reason, applying the corresponding lower bounds to one of
the presented branch-and-bound algorithm is not useful. But a fast calculable lower
bound for a bin packing problem is its LP relaxation. To obtain an LP relaxation,
the integer constraints on the binary variables are removed and the binary variables
become positive numbers. With it, items can be packed fractional in di�erent bins
and the bins can be completely �lled. As it will be shown in Section 6.4.1.1, the
LP relaxations are not only faster solvable with CPLEX, but lead also to lower
bounds on customer costs with a similar quality as the original bin packing problems.
Furthermore, as shown later, the LP relaxation of LBc

LPBP1 can be calculated with
an algorithm that has a complexity of O(nc log(nc) + nc).

Theorem 6.8. The bin packing problems (BP1) and (BP2) have the same LP re-

laxation value. Also the LP relaxation values of (BP3) and (BP4) are equal.

Proof. Firstly, it is shown that (BP1) and (BP2) have the same LP relaxation values.
For this purpose, let (LPBP1) and (LPBP2) be the LP relaxation of (BP1) and
(BP2), respectively. In (LPBP1), one bin of size mu + Rm is associated to day
t. And in (LPBP2), m bins are associated to day t and the total size of these m

bins is
∑

k∈M
(
u + rkmax

)
= mu + Rm. Because of that, each packing of (LPBP2)

can be transformed to a feasible packing of (LPBP1) with same costs by de�ning
xit =

∑
k∈M xitk. And also from each feasible packing of (LPBP1), a feasible packing

of (LPBP2) with same costs can be transformed, e.g., by de�ning xitk = xit
u+rkmax

mu+Rm
.

Consequently, both problems have the same optimal value.
For the LP relaxations of (BP3) and (BP4), named (LPBP3) and (LPBP4), an

analog observation is made: In both problems, the total size of the bins associated
to day t is mu. In detail, to show that the LP relaxation values are equal, �rstly it
is observed that xit =

∑
k∈M xitk and yit =

∑
k∈M yitk transform a feasible solution

of (LPBP4) to a feasible solution of (LPBP3) with same costs, compare the proof
of Theorem 6.6. Secondly, it is proven that a solution of (LPBP4) can be obtained
from a solution of (LPBP3) by de�ning xitk =

xit

m
and yitk = yit

m
. Clearly, the bin

size constraints (6.27) of (LPBP4) are valid. For constraints (6.28), it follows from
(6.21) of (LPBP3) that

1
!

≥
∑
i∈Nc

(xitk − yitk) =
∑
i∈Nc

(xit − yit)
1

m

≤ m
1

m
= 1.

118

6.2. Lower Bounds

And from constraints (6.22) of (LPBP3), it follows that (6.29) of (LPBP4) is satis-
�ed, because

yitk − xitk =
yit
m

− xit

m
≤ 0.

Finally, the constraints (6.30) and (6.31) of (LPBP4) apply because the constraints
(6.23) and (6.24) of (LBPP3) are satis�ed. Thus, also each feasible solution of (BP3)
can be transformed into a feasible solution of (BP4) with same costs. Consequently,
both problems have the same optimal value.

For the branch-and-bound method, lower bounds have to be tight, but it is also
important that the bound can be calculated fast. The following theorem shows
that the LP relaxation of (BP1) can be calculated by an algorithm with polynomial
runtime.

Theorem 6.9. LBc
LPBP1 can be calculated in O(nc log(nc)).

Proof. For the proof of this theorem, several fractional knapsack problems are solved.
A fractional knapsack problem is given as max{x⊤c|0 ≤ x ≤ 1, x⊤w ≤ W}, see [90],
where c ∈ Nn is the cost vector, w ∈ Nn the weight vector and W ∈ N the maximal
weight. A solution of the fractional knapsack problem is computed by sorting the
items such that ci

wi
≥ ci+1

wi+1
for i ∈ {1, 2, . . . , n− 1} and selecting the �rst items k of

this order until
∑k+1

i=1 wi > W . Then, a solution is given by the vector x ∈ Rn with

xi =


1 if i ≤ k,

1
wk+1

(
W −∑k

i=1 wi

)
if i = k + 1, and

0 otherwise.

To compute LBc
LPBP1, for each job i ∈ Nc an item is de�ned with costs ci and

weight wi = ai + ri. The total weight is W = mu +Rm. Following the approach to
solve the fractional knapsack problem, the jobs are sorted by ci

wi
= ci

ai+ri
in decreasing

order. Then, for each day t ∈ T in increasing order, the fractional knapsack problem
is solved in order to allocate maximal costs to the day. After that, the allocated
items are (fractional) removed from the item set. Consequently, for each day t ∈ T ,
the fractional knapsack problem can be formulated as follows:

Ct := max{x⊤
t c|0 ≤ xt −

∑
τ∈T,τ<t

xτ ≤ 1, x⊤w ≤ W}. (6.36)

Consequently, it holds that Cτ ≥ Ct for τ < t and further that
∑

t∈T xt = 1.
Next, it is shown that with {xt}t∈T an optimal solution of LBc

LPBP1 is obtained.
The corresponding customer cost value is equal to

∑
t∈T tCt. Clearly,∑

t∈T
Ct =

∑
i∈Nc

ci. (6.37)

119

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

Assuming another solution {x′
t}t∈T with C ′

τ < Cτ for any τ ∈ T . Then, due to
equation (6.37), there must be at most one day θ ∈ T with C ′

θ > Cθ. W.l.o.g., let
there be only two days with di�ering costs. Thus, C ′

t = Ct for each t ∈ T \ {τ, θ}
and further C ′

τ = Cτ − δ and C ′
θ = Cθ + δ with δ > 0. If τ < θ, it holds that∑

t∈T
tC ′

t =
∑
t∈T

tCt + (θ − τ)δ >
∑
t∈T

tCt.

Thus, solution {x′
t}t∈T has a higher objective value than solution {xt}t∈T . Otherwise,

if θ < τ , Cθ was not maximal which is a contradiction to its de�nition given by
equation (6.36) for t = θ. Consequently, the costs Ct, t ∈ T lead to a minimal
customer cost value.
Finally, the complexity of solving the fractional knapsack problems is analyzed.

The algorithm consists of the subprocesses sorting the jobs by the customer costs
per time unit and allocating the items to the bins. Using, e.g., heapsort [33], the
complexity of the �rst subprocess is O(nc log(nc)). Further, using an appropriate
implementation, the complexity of the second subprocess is O(nc). Consequently,
the algorithm to obtain the lower bound LBc

LPBP1 has a complexity of O(nc log(nc)).

An pseudo-code of the algorithms to compute LBc
LPBP1 is given in Algorithm 8 in

Appendix B.
From classical bin packing problems, it is known that the LP relaxation has a

worst-case performance ratio of 1
2
, see [111]. The following theorem shows, that this

observation is also true for the here presented (BP1) and its LP relaxation. For the
proof, which is inspired by the proof provided in [111], an instance is constructed
where LBc

LPBP1 is only about a half of LBc
BP1.

Theorem 6.10. For T = {1, 2, . . .}, the LP relaxation of (BP1) has a worst-case

performance ratio of 1
2
.

Proof. In an optimal solution of LBc
BP1, at most one bin can be �lled by less than

a half. Otherwise, if there are two or more bins that are packed by less than half,
the items of two such bins can be packed into one bin, which cannot lead to higher
costs.
Assuming an instance, where all bins are �lled slightly over a half which can only

be optimal if all items are slightly larger than the half of the bin size. Then, in the
solution of (BP1), to each bin a single item is allocated to. But in the solution of
(LPBP1), the items of two bins are packed nearly completely in one bin. To compare
the cost values of both solutions, let Ct be the costs of item i ∈ N allocated to bin
t ∈ T in an optimal solution of (BP1). Then, the optimal value LBc

BP1 equals to∑
t∈T tCt. In the solution of the LP relaxation, the items of bin one and two are

nearly packed together into bin one, the items of bins three and four into bin two,

120

6.2. Lower Bounds

and so on. Thus, an item, which is in an optimal solution of (BP1) allocated to bin
t, is in an optimal solution of (LPBP1) mainly allocated to bin

⌈
t
2

⌉
. Consequently,

the cost value can be approximated as LBc
LPBP1 =

∑
t∈T
⌈
t
2

⌉
Ct + εt where εt > 0 is

a positive number caused by the fact that the sum of the size of two items is slightly
larger than the bin size and a small part of one item has to be shifted to the next
bin. Consequently, for such an instance it is

LBc
LPBP1

LBc
BP1

=

∑
t∈T
⌈
t
2

⌉
Ct + εt∑

t∈T tCt

>
1
2

∑
t∈T tCt∑

t∈T tCt

=
1

2
.

Even this worst-case performance ratio is small, the computational results pro-
vided in Section 6.4.1.1 showed that LBc

LPBP1 is close to LBc
BP1.

Remark In general, neither LBc
LPBP1 ≤ LBc

s nor LB
c
s ≤ LBc

LPBP1 hold for all in-
stances.

6.2.2. Lower Bounds for Travel Costs

Lower bounds for travel costs are well known from research concerning the TSP.
A collection of several lower bounds for the TSP can be found, e.g., in [128]. To
apply TSP bounds to the developed branch-and-bound algorithms, the m routes of
a feasible VRPCC solution are joined to one big route, as shown in the two-index
models provided in Section 4.3. To this end, the travel costs between the depots zk
and sk+1, k = 1, . . . ,m − 1, as well as zm and s1 are set to zero, and all the other
travel costs between depots are set to in�nity.
In this section, a small selection of lower bounds for the TSP is presented which

were applied in the designed branch-and-bound algorithms: At �rst, the fast cal-
culated two-neighbor bound is given. In Section 6.2.2.2, two lower bounds are pre-
sented which are based on the assignment problem. And in Section 6.2.2.3, two
lower bounds are provided that are obtained from minimum spanning trees.

6.2.2.1. The Two-Neighbor Bound

A straightforward lower bound for the travel costs is the two-neighbor bound, see
[128]. For the VRPCC, this bound is computed by

LBd
2N :=

⌈
1

2

(∑
i∈N

min{dji + dik| j ∈ N ∪Ns, k ∈ N ∪Nz, j ̸= i, k ̸= i, k ̸= j}

+
∑
i∈Ns

min{dij| j ∈ N}+
∑
i∈Nz

min{dji| j ∈ N}
)⌉

.

For each job i ∈ N , the travel costs to its two nearest neighbors are summed up
taking into account, that the predecessor and the successor must be di�erent jobs,

121

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

that the predecessor must not be an end depot and that the successor must not be
a start depot. Also the minimal travel costs to leave the start depots and to reach
the end depots are added. In doing so, the costs of 2n+ 2m edges are summed up.
Because a tour in a graph has as many edges as the graph has nodes, see Proposition
2.1, the route through all jobs and all depots must have n + 2m edges. Due to the
m edges that connect the end depot zk with the start depot s[k+1 (mod m)], k ∈ M
have zero travel costs, only n+m edges must be added to compute a lower bound.
Consequently, the sum of the travel costs is divided by two and rounded up.

6.2.2.2. Two Bounds from the Assignment Problem

A lower bound for the travel costs of a TSP can be derived from the assignment
problem which results from the TSP by relaxing subtour elimination constraints:

(AP) LBd
AP := min

∑
i∈Na

∑
j∈Na

dijxij

s.t.
∑

j∈Na\{i}
xij = 1 ∀i ∈ Na∑

j∈Na\{i}
xji = 1 ∀i ∈ Na

xij ∈ {0, 1} ∀i, j ∈ Na

The result of (AP) is a set of cycles. It can be solved in O(n3) using the Hungarian
method, as shown in [115]. The assignment problem equals to the problem of �nding
n independent elements in an n × n-matrix with minimal sum where independent
means that not two of the selected items are in the same column or in the same row.
The idea of the algorithm is to reduce the matrix iteratively until n independent
zeros can be selected. Then, the positions of the selected zeros represent an optimal
assignment and the optimal value is the sum of the corresponding elements in the
original cost matrix.
The assignment bound is known to be weak because it contains several small cy-

cles. An improvement of this lower bound is provided in [27], where an approach is
proposed that iteratively adds the costs necessary to connect the cycles. The algo-
rithm starts with the cost matrix. For this matrix, a solution of (AP) is calculated
using the Hungarian method. The resulting costs initialize the lower bound LBd

APC

and the reduced matrix is stored. Then, the cycles of the solution are contracted,
which means a single node replaces the nodes of one cycle. For these new nodes,
a new cost matrix is computed from the reduced matrix by the minimal costs be-
tween the cycles, taking into account the triangle inequality. Based on this new
cost matrix, again the assignment problem is solved. The calculated optimal value
is added to the current lower bound. If the new solution consists of more than one
cycle, the iterative approach continuous with contracting the cycles. Otherwise, the
calculated lower bound LBd

APC is returned. To control the computational e�ort, the
process can be stopped after a prede�ned number of iterations. The solution process
is shown schematically in Figure 6.3.

122

6.2. Lower Bounds

Solution

for the original graph.

Solution

for the graph obtained from the �rst contraction.

Solution

for the graph obtained from the second contraction.

Figure 6.3.: Schematic representation of the solution process of LBd
APC.

6.2.2.3. Minimum Spanning Tree Based Lower Bounds

Another lower bound for the travel costs of a TSP can be obtained by relaxing the
constraints that ensure that each job is connected to exactly two other jobs. Then,
a minimum spanning tree problem has to be solved. As shown in Proposition 2.1,
a tree has n-1 edges, but a tour has n edges. Because of that, an 1-tree is used,
see, e.g., [90, 116], which is a tree-like subgraph with n edges. To get a minimum-
weight 1-tree, a minimum spanning tree on all but one vertices is computed and the
remaining vertex is connected to this tree by two edges of minimum weight. It can
be shown, that a tour is an 1-tree where the tree equals to a path. Because of that,
a minimum-weight 1-tree is a lower bound for the weight of a minimal tour which
is the solution of the TSP. To improve the 1-tree bound, for each vertex an 1-tree is
computed and the maximum of the obtained bound values is returned. The 1-tree
bound is named as LBd

MST.
To calculate a minimum-weight spanning, the algorithm of Jarník/Prim/Dijkstra

[126] or the one of Kruskal [93] can be applied, see also [33]. By a suitable im-
plementation and data structure, the complexity of the algorithms for a complete
graph with n vertexes can be stated as O(n2) and O(n2 log n), respectively. Note,
the cost matrix has to be symmetric or an approach for the asymmetric TSP has to
be used, e.g., the algorithm to solve the min-sum arborescence problem presented
in [53]. To compute LBd

MST, a symmetric cost matrix D̃ is derived from the cost
matrix D by d̃ij = min{dij, dji}.
In Figure 6.4, a minimal spanning tree and a minimum-weight 1-tree computed

on vertex 1 are shown. For the latter, the two edges to connect vertex 1 are drawn
by dashed lines.
To improve the 1-tree bound, an iterative approach was presented in [74], where

vertices with degree larger than two are penalized. This is done by setting the edge
weight to wij = d̃ij + πi + πj where πi is a penalty for vertex i. Let W ∗(π) be the

123

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

12

3

4 5

6
7

89

(a) A minimal spanning tree of

G.

12

3

4 5

6
7

89

(b) A 1-tree of G computed on

vertex 1.

Figure 6.4.: Example for an 1-tree.

minimal weight of an 1-tree with penalty vector π, then W ∗(π) − 2
∑

i∈Na
πi is a

lower bound of the travel costs for the TSP. Thus, the best lower bound is given
by maxπ W

∗(π)− 2
∑

i∈Na
πi, as shown in [74]. To approximate the optimal bound

value, the penalty vector π is changed iteratively. Let di be the degree of vertex i in
the 1-tree computed in step k ∈ N. Then, the penalty for the next iteration is set to
πk+1
i = πk

i + t(di− 2), where t is an appropriately chosen step size. This reduces the
weight of edges incident to a vertex with degree 1 and increases the weight of edges
incident to a vertex with degree greater 2. The improved 1-tree bound is referred to
by LBd

iMST.

6.3. Two Branching Strategies

To design an e�cient branch-and-bound algorithm, a suitable branching strategy has
to be found. For the VRPCC, two branching strategies are developed in Section 6.3.1
and 6.3.2. Both are based on the partition and permutation model (PP) provided in
Section 3.2. A new node is generated based on a partial solution S̃ which is de�ned
by the set of unplanned jobs Ñ and the uncompleted schedule (Ñk,Π

k(Ñk))k∈M ,

where Ñ ∪
(⋃

k∈M Ñk

)
= N . To reduce the storage e�ort, both branching strategies

are implemented as depth-search with backtracking.

6.3.1. Branching Strategy Append

The �rst developed branching strategy is to build-up the routes successively by
appending one job to the end of a route. Then, it can be expected that tight lower
bounds can be found for the partial solutions, since travel costs and customer costs
of the so far appended jobs are �xed. Furthermore, the costs of a partial solution
can be determined very e�ectively because only the start time of the appended job
has to be calculated. To avoid multiple solutions (which will otherwise occur very
often), the routes are �lled with jobs one after the other.
Let (Ñk,Π

k(Ñk))k∈M be the partial solution of the current node and let k′ be the
non-empty route with largest index. Then, the routes 1, 2, . . . , k′−1 are called closed

124

6.3. Two Branching Strategies

Figure 6.5.: Example of the search tree for branching strategy Append.

and the routes k′, k′+1, . . . ,m are called open. Note, that the routes k′+1, . . . ,m are
still empty. For this node, child nodes are generated by appending each unplanned
job i ∈ Ñ on the one hand at the end of route k′ and on the other hand, if exists, as
�rst job at route k′+1. This approach is similar to the branching strategy presented
in [89]. In the following, the branch-and-bound algorithm with branching strategy
Append is called BB-Append algorithm.

The search tree resulting from this branching strategy is illustrated in Figure 6.5
on a small example with four jobs and two routes. Each node of the search tree is
related to a (partial) solution. In Figure 6.5, on each node the partial solution is
drawn by boxes of di�erent colors that represent the jobs. The order of the boxes
from top to bottom equals to the job order of route one and route two. An empty
route is represented by a gray box.

As it can be seen in Figure 6.5, the structure of the search tree is unfavorable: In
the branching steps on nodes with small depth, many more child nodes are generated
than on nodes with a large depth: From the root node, which has depth zero, n
child nodes are created: one for each job. And for a node with depth k, for each
so far unplanned job one or two child nodes are generated. One where the job is
appended to the current route and, if possible, a second where the job is appended
to the next route as �rst job. Consequently, for each node with depth k, n − k or
2(n− k) new nodes are produced. And for nodes with depth n-1, where a single job
is unplanned, only one child node has to be created. This leads to a high number
of partial solutions compared to the number of feasible solutions. For example for
an instance with four jobs and two routes, the search tree has 101 internal nodes
but only 72 leaves, see Figure 6.5. Furthermore, the tree is unbalanced. On nodes,
where the routes 1, 2, . . . ,m−1 are closed, only half of child nodes are generated, as
it is not possible to append a job to route m+1. This can also be seen in the small
example of Figure 6.5 by comparing two nodes with depth two: One with both jobs
appended to route one, which has four child nodes and corresponds to four feasible
solutions. And another with one job appended to route one and one job appended
to route two, which has only two child nodes and two feasible solutions. Due to
pruning is mostly possible on deeper nodes, this structure of the search tree leads
to the e�ect that by eliminating a partial solution often only a small subspace of
the solution space is removed. With it, perhaps more nodes have to be analyzed
compared to a better structured search tree.

125

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

6.3.1.1. Implementation

In the following, the branch-and-bound steps as introduced in Section 6.1 are ex-
plained for the BB-Append algorithm.
Initialize: The BB-Append algorithm gets as input the jobs in a prede�ned

order Nsort, i.e., the jobs are sorted by the customer cost coe�cient in decreased
order. At �rst, an upper bound is determined by help of a greedy heuristic. In
detail, a schedule is calculated with the BoG heuristic and improved by the best
improvement heuristic. Then, the upper bound UB is set to the costs of this schedule.
After initializing, the �rst node is generated with the set of unplanned jobs

Ñ = N \ {j1} and the partial solution S̃ = ({j1}, (j1), ∅, (), . . . , ∅, ()) which is a
uncompleted schedule where job j1 is the only planned job, scheduled as �rst job of
route one.
Select: The branching strategy Append is implemented as backtracking [141].

Consequently, in each step a single node is present and the selection step is not
required.
Bound: In this step, the lower bound for the current node is computed which

is the base to decide whether it should be further analyzed or pruned. Computing
the lower bound of a node consists of at most three substeps:

1. Check, whether the corresponding partial solution can lead to a feasible solu-
tion. If not, the lower bound is set to in�nity.

2. Otherwise and if all jobs are planned, a leaf of the tree is reached. The cost
value is calculated and compared with the upper bound UB. If the costs are
smaller, the best solution so far and the upper bound are updated. Due to the
node is fully analyzed, the lower bound is set to in�nity.

3. If not all jobs are planned, the total lower bound is the sum of the costs for the
jobs planned so far gc(S̃) and the lower bounds computed on the unplanned
job LBc and LBd.

To compute gc(S̃), the start times of all planned jobs are determined to obtain
the customer cost value and the travel costs between planned jobs and depots
are summed up whereby the end depots of the open routes are ignored. Note
that if the current node is created as child node of the last analyzed node, only
the costs for the new appended job have to be added to the cost value of the
last node.

Only if the costs of the partial solution gc(S̃) are smaller than the upper
bound, a lower bounds LBc and LBd are computed for the costs that appear
if all unplanned jobs are appended.

Branch or Prune: As mentioned, the branching step is designed as backtrack-
ing approach. Thus, if the computed total lower bound of the node is below the
upper bound, the current branch has to be further investigated and one child node is
generated as next node. For this purpose, the �rst unplanned job j of the sorted jobs

126

6.3. Two Branching Strategies

list Nsort is searched and appended to the open route with smallest index because
the routes are �lled one after the other.
If the lower bound is not smaller than the upper bound, the current branch has

not to be further investigated and is pruned. Then, a backtracking step is executed
which means to follow back the path in the search tree until a node is reached which
has a not yet analyzed child node. From this node, one not yet analyzed child
node is generated as next node. In detail, let j be the last appended job and k the
corresponding route. Then, there are the following four cases:

1. If k < m and more than one job is assigned to route k, job j is shifted to route
k + 1. Consequently, route k is closed and route k + 1 is the one open route
that contains jobs.
To illustrate backtracking embedded in the BB-Append algorithm, some ex-
amples are given and illustrated by Figure 6.6, which shows a part of the
search tree based on an instance with job list Nsort = (j1, j2, j3, j4) and two
vehicles. As highlighted by number 1, if the node with the partial solution
Π1 = (j1, j2), Π2 = () is pruned, the backtracking algorithm leads to the node
with the partial solution Π1 = (j1), Π2 = (j2).

2. If job j is the �rst in route k, shifting job j to the next route would lead to
an empty route k because it closes route k. Then, the schedule is infeasible.
Thus, job j is not shifted to route k + 1. Instead, another job j′ is searched
and appended to route k− 1 to obtain the next child node of the parent node
of the current node. Again, only jobs that are in Nsort after job j are allowed.
In Example 3 in Figure 6.6, the node with the partial solution Π1 = (j1),
Π2 = (j3) is pruned. Then, j = j3 and k = 2. The next unplanned job from
Nsort behind job j is the job j4 which is appended to route k − 1 = 1. Thus,
the backtracking algorithm produces Π1 = (j1, j4), Π2 = ().

3. If k = m, no further route can be opened and it is veri�ed whether another
unplanned job can be visited instead of job j. To ensure that solutions are not
generated twice, only jobs which are in the sorted job list Nsort after job j are
allowed.
As illustrated by Example 2 in Figure 6.6, backtracking on the node with
solution Π1 = (j1), Π2 = (j2, j3) leads to Π1 = (j1), Π2 = (j2, j4) because job
j3 is replaced by job j4.

4. However, if k = m or j is the �rst job and also all jobs that are in Nsort after j
are allocated to a route of the partial solution, neither job j can be shifted nor
another unplanned job can be appended instead of j. In this case, the current
node is the lastly analyzed child node of its parent node. Consequently, job j is
removed from route k to obtain the parent node and backtracking is repeated.
For example, backtracking on the leaf with the partial solution Π1 = (j1, j3),
Π2 = (j4, j2) leads in the �rst iteration to Π1 = (j1, j3), Π2 = (j4), because
neither j2 can be shifted to a new route nor an unplanned job exists. Also in

127

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

Figure 6.6.: Details of a search tree resulting from branch-and-bound with branching

strategy append.

the second iteration the last appended job, which is now j4, is removed from
the schedule because k = m and j4 is the last job of the list Nsort. For the next
iteration step, the partial solution is Π1 = (j1, j3), Π2 = (). Now, k = 1 < m
and the last appended job j3 is shifted to route k + 1 = 2. The uncompleted
schedule Π1 = (j1), Π2 = (j3) is returned. Following the path back in the
search tree until a new node is created is shown as Example 4 in Figure 6.6.

Return optimal solution If backtracking reaches the root node and all child
nodes of the root node are analyzed, the branch-and-bound algorithm is �nished

In Appendix B, the pseudocode of the BB-Append is shown in Algorithm 9 and
the backtracking algorithm applied in the branching step is given in Algorithm 10.

Parallelization

To speed up the solution process, the algorithm is parallelized. For this purpose, the
whole search tree is split into several subtrees and for each subtree a task is de�ned.
These tasks can be computed in parallel whereby the number of processors of the
used computer de�nes how many tasks can be computed simultaneously. To use the
available computing power optimal, it is aimed that all processors �nish their tasks
at the same time. Since it is not known in advance how many nodes of a subtree
will be analyzed, more tasks then processors are de�ned. If any processor completes
a task, the next from the tasks list is chosen. The tasks with the smallest lower
bound of the partial solution are handled �rst in order to quickly improve the upper
bound.

128

6.3. Two Branching Strategies

For the parallelized BB-Append, each task is initialized with a partial solutions
visiting exactly three jobs. Consequently, for instances with four or more jobs and
at least three machines, which means n ≥ 4 and m ≥ 3, the number of tasks is
4 n!
(n−3)!

, since there are n!
(n−3)!

possibilities to select an order of three jobs and four
possibilities to allocate the jobs to at most the �rst three routes, which are

� all jobs to route one,

� the �rst two jobs to route one and the third job to route two,

� the �rst job to route one and the second and third job to route two and

� the �rst job to route one, the second job to route two and the third job to
route three.

For example with n = 15 and m = 3, 10920 tasks are created.

6.3.1.2. Adaptations to Calculate Lower Bounds

To calculate the lower bounds for the BB-Append algorithm, some adaptations are
required to bene�t from the knowledge of the decisions made so far. Since the
already planned jobs are �xed, the lower bound of the node is the sum of the costs
of the partial solution g(S̃), the applied customer cost bound LBc and the applied
travel cost bound LBd.
By computing a lower bound on customer costs, the time available per day is

reduced by considering that some routes are closed and that one open route contains
at least one job. Further, only unplanned jobs of Nc have to be considered. To
calculate lower bounds on travel costs, depots of closed routes and planned jobs
are not taken into account because their travel costs are �xed. However, the last
appended job is considered because it serves as start depot of the corresponding
route.
The computational experiments showed the customer costs bounds are tighter

than the travel cost bounds, see Section 6.4.1. Because of that the lower bound of
the customer cost part is calculated �rst. If the sum of current costs and the lower
bound for customer costs is smaller than the upper bound, also the lower bound for
the travel cost part is computed and added to the lower bound.

Adaptation for LBc
s

There are two approaches to adapt the customer cost bound LBc
s to the branching

scheme Append which di�er in the way to calculate the upper bound ηt for the
number of jobs executable on day t ∈ T . The resulting lower bounds are the faster
computed bound LBc

s, fast and the more accurate bound LBc
s, accurate.

Recap, the set of unplanned jobs, which are the jobs not allocated to a route in
the partial solution, is denoted by Ñ . Let jl be the lastly appended job and k the
corresponding route. Then, the routes 1, 2, . . . , k − 1 are closed, thus no other job

129

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

can be appended to these routes. To route k, further jobs can be appended in the
next branching steps which cannot start before day tl = tdjl . The routes k+1, . . . ,m
are still empty.
For LBc

s, fast, the value η1 is calculated at the beginning of the process with all
jobs with non-zero customer cost coe�cient based on the inequalities (6.8) and
(6.9). Recap, η1 is an upper bound for the number of jobs executable per day by
one vehicle. Then, ηt for t ∈ T is calculated as follows:

ηt =


(m− k)η1 if t < tl,

(m− k)η1 +
⌊(

1− tmjl
+ajl+rjl
u+r1max

)
η1

⌋
if t = tl,

(m− k + 1)η1 if t > tl.

Thus, for each day earlier than the start day of the last appended job jl, jobs can
be appended to only m − k routes. On day tl, the next job appended to route k
cannot start before minute tmjl +ajl+rjl . Because of that, for vehicle k the remaining
time has to be added to (m − k)η1. And for each day later than tl, to each of the
m−k+1 open routes η1 jobs can be allocated to. The advantage of this approach is
that η1 is calculated only once which reduces the calculation e�ort. But this a�ects
the accuracy because the minimal travel time to the next job ri is not restricted to
the jobs Nc ∩ Ñ which could lead to larger values for ri and a reduction of ηt.
In the accurate approach LBc

s, accurate, the values ri are calculated based on the

partial solution by ri = min{rij| j ∈ Nc ∩ Ñ , j ̸= i}. Thus, the already planned jobs
are not considered. Further, Rm−k = max{∑i∈I ri| I ⊆ Nc ∩ Ñ , |I| = m− k} is the
time reserved for the trips outside the working shift. Then, following the de�nition
of η1 via inequalities (6.8) and (6.9), and of η2 via inequalities (6.10) and (6.11), the
values ηt are calculated as follows:

� if t < tl then ηt = min{(m − k)η1, η2,m−k}, where η2,m−k is calculated with
(m− k)u +Rm−k as time available per day;

� if t = tl then ηt = min{(m − k)η1 + η̃1, η̃2,m−k}, where η̃1 is calculated with
u + max{ri| i ∈ Nc ∩ Ñ} − (tmjl + ajl + rjl) as time available, and η̃2,m−k is
calculated with (m− k+1)u− (tmjl + ajl + rjl) +Rm−k+1 as time available and

� if t > tl then ηt = min{(m− k + 1)η1, η2,m−k+1}, where η2,m−k+1 is calculated
with (m− k + 1)u +Rm−k+1 as time available per day.

This approach leads to a higher calculation e�ort, because each time the values ri
have to be calculated and the k smallest values have to be determined. But the
values ηt are a tighter upper bound for the number of jobs executable on day t since
only so far unplanned jobs are considered in the calculations.

Adaptation for LBc
LPBP1

To calculate LBc
LPBP1, only unplanned jobs are taken into account. Thus, for job

i ∈ Ñ∩Nc, the minimal travel time to another job is ri = min{rij| j ∈ Nc∩Ñ , j ̸= i}

130

6.3. Two Branching Strategies

and the time reserved for traveling to the jobs executed on the next day for m− k
vehicles equals to Rm−k. Based on these de�nitions, the size Bt of the bin t ∈ T is
calculated as

Bt =


(m− k)u +Rm−k if t < tl,

(m− k + 1)u +Rm−k+1 −
(
tmjl + ajl +mini∈Nc∩Ñ rjli

)
if t = tl,

(m− k + 1)u +Rm−k+1 if t > tl.

Thus, for each day before the start day of the last planned job tl, the bin size equals
to the time for (m− k) vehicles. On each day after day tl, the bin size equals to the
time for m − k + 1 vehicles. And on day tl, from the time available for m − k + 1
vehicles the already planned time of vehicle k is subtracted, which is the start minute
of the last job jl plus its working duration and the travel time to the next job of the
set Nc ∩ Ñ .

Adaptation for Travel Cost Bounds

By calculating lower bounds for the travel costs of the remaining jobs, only un-
planned jobs and open routes have to be considered. Further, the last appended job
jl acts as start depot for route k. Thus, considered are

� the unplanned jobs,

� the last appended job jl that works as start depot for route k,

� the start depots of the routes k + 1, . . . ,m, and

� the end depots of the routes k, k + 1, . . . ,m.

With it, the size of the travel cost matrix decreases with increasing depth in the
branch-and-bound tree. As mentioned in Section 6.2.2, the travel costs between the
depots zl and sl+1, l = k, k + 1, . . . ,m − 1, as well as zm and jl are set to zero.
The other travel costs between depots including jl are set to in�nity. This leads
to some asymmetries in the distance matrix, which are not considered in the travel
cost bounds based on minimum spanning trees.
The iteratively improved travel cost bounds LBd

APC and LBd
iMST can be aborted

if the bound exceeds UB − g(S̃) − LBc with UB is the current upper bound of
the branch-and-bound solution process, g(S̃) is the total cost value of the analyzed
partial solution S̃ and LBc is the value of the applied customer cost bound calculated
for S̃. Because in this case, the lower bound exceeds the upper bound and the branch
will be discarded.

6.3.2. Branching Strategy Include

As shown in Section 6.3.1 based on Figure 6.5, the search tree generated during
the BB-Append algorithm is unfavorable and it is expected that only small parts

131

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

Figure 6.7.: Example of the search tree for branching strategy include.

of the solution space are discarded when a branch is pruned. Because of that, a
second branching strategy is developed in this dissertation: With branching strategy
include, the child nodes are created by including a certain job on di�erent positions
into the routes of the current partial solution.
To be more precise, the �rst unplanned job of the sorted list is included at the

�rst, the second, till to the last position of each route. Consequently, |N | − |Ñ |+m
branches are generated, because the job can be included after each already planned
job, which leads to |N | − |Ñ | child nodes; and as �rst job of each route which leads
to m further child nodes.
In the following, the branch-and-bound algorithm with branching strategy Include

is called BB-Include algorithm.
The resulting search tree is illustrated in Figure 6.7 based on an instance with four

jobs sorted as Nsort = {j1, j2, j3, j4} and two vehicles. As it can be seen on this small
example, the search tree generated by the BB-Include algorithm is better structured
compared to the search tree of the BB-Append algorithm: For the instance of Figure
6.7, only 33 branching nodes are generated to get all 72 leaves, instead of 101
branching nodes when branching strategy Append is used. The reason for this better
structure is that on nodes deeper in the search tree more branches are generated
than on nodes close to the root. For the example shown in Figure 6.7, from the root
node with the empty schedule two branches are generated: Including job j1 to route
one and to route two, respectively. For each of both tree nodes with depth one, three
new branches are generated including job j2 on each possible position which is before
job j1, after job j1 and in the other route. And for each node with depth two, four
new branches are generated independent from the structure of the corresponding
partial solution. This can be seen in Figure 6.7 comparing, e.g., branching on the
node on the left where job j1 and j2 are assigned to route one, and on the node
which is the third from the left where job j1 and j2 are allocated to di�erent routes.
Finally, branching on nodes with depth three leads either to �ve leaves or, if one
route is still empty, to only one leave. Then, for the instance of Figure 6.7, in the
search tree resulting from branching strategy include, 16 or 20 feasible solutions
belong to a node with depth two, instead of two or four feasible solutions when the
BB-Append algorithm is applied. Consequently, pruning a node on a certain level
of the search tree discards more solutions than pruning a node of the same depth in
the search tree corresponding to branching strategy append.

132

6.3. Two Branching Strategies

However, since jobs are inserted within the routes, the costs for the already
planned jobs are not �xed. For a planned job, the start day can be shifted back-
ward, if jobs are inserted before its position in the route. And also the travel costs
of a planned job can change, if a new predecessor or successor is included. Because
of that, all jobs have to be taken into account by computing lower bounds and the
computational e�ort does not decrease with increasing depth of the search tree. Fur-
thermore, it is expected that the lower bounds are less tight than the lower bounds
computed within the BB-Append algorithm.
In contrast, in the BB-Append algorithm, the costs of the planned jobs are �xed

and the lower bounds are only computed for the unplanned jobs. Consequently, in
the BB-Append algorithm, the computational e�ort for lower bounds decreases with
increasing depth in the search tree and it is expected that on deeper nodes better
lower bounds are obtained because fewer feasible solutions regards to the branch of
a node.

6.3.2.1. Implementation

In this section, implementation details are given for the branch-and-bound steps of
the BB-Include algorithm.
Initialize: The input of the BB-Include algorithm consists of a sorted job list

Nsort = (j1, j2, . . . , jn) and the depot sets Ns and Nz. In Nsort, the jobs are sorted
by the customer cost coe�cient in decreased order. This has two reasons: Firstly,
if all jobs of Nc are planned, the lower bound on customer costs does not need to
be calculated. And secondly, the lower bound on the customer cost value of an
unplanned job can be very small because, theoretically, each job can be inserted as
�rst job of a route. But for a planned job, its customer cost value cannot become
smaller than the current value. Consequently, the more jobs with non-zero customer
costs are planned, the better is the lower bound on customer costs.
To obtain an upper bound, a schedule is determined by a heuristic and the cor-

responding cost value is the upper bound UB. The �rst node is generated with the
uncompleted schedule where job j1 is the only job visited by vehicle one.
Select: The BB-Include algorithm is implemented as depth-search with a back-

tracking algorithm. Then, always a single not yet analyzed node exists and the
selection step is needless.
Bound: In this step, the lower bounds are computed which are needed to decide

whether the current branch should be further analyzed or pruned. Similar to the
BB-Append algorithm, this step consists of three substeps:

1. Firstly, it is checked whether the corresponding partial solution can lead to
a feasible solution. If this is not possible, i.e., because there are fewer jobs
unplanned than routes are empty or dmax is exceeded, the lower bound is set
to in�nity.

2. Otherwise and if all jobs are planned, the cost value can be calculated and com-
pared with the upper bound UB. If the current solution S̃ is an improvement,

133

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

i.e., g(S̃) < UB, the best solution so far and the upper bound are updated.
Due to the node is fully analyzed and further branching is not possible, the
lower bound is set to in�nity.

3. Also if not all jobs are planned, the costs of the partial solution are determined.
If these costs are not smaller than the upper bound, the lower bound is set
to in�nity because completing the current partial solution cannot lead to less
costs. Otherwise, the lower bound of the node is the sum of a lower bound for
travel costs and a lower bound for customer costs, which are calculated taking
into account all jobs and considering that the unplanned jobs can be included
inside the current routes.

Branch or Prune: If the lower bound is less than the upper bound UB, the
branch can contain a solution better than the best so far and has to be further
analyzed. Then, the �rst unplanned job of the list Nsort is included as last job of
route one to create a child node.
Otherwise, the branch is not further investigated and a new node is generated

via backtracking: Let j be the last included job, k the corresponding route and
p its position in the route. Note, that the last included job always equals to the
(|N |−|Ñ |)-th job of Nsort because the jobs are included strictly in the order provided
by Nsort. In Figure 6.8, examples for backtracking are shown for an instance with
four jobs and two machines. There are three cases:

1. If p > 1, the job j is brought forward to position p− 1.
As shown by Example 1 in Figure 6.8, backtracking on the node with partial
solution with Π1 = (j1, j2, j3) and Π2 = () leads to Π1 = (j1, j3, j2) and Π2 = ()
because j3 is brought forward by one position.

2. If job j is the �rst one of route k and if k < m, it can be shifted to the next
route and included as last job of route k + 1.
The example for this case is highlighted by number two in Figure 6.6. As it can
be seen, backtracking on the leaf with solution Π1 = (j4, j1, j2) and Π2 = (j3)
leads to the leaf with solution Π1 = (j1, j2) and Π2 = (j3, j4).

3. Otherwise, all child nodes of the current parent node are analyzed. In this
case, job j is removed to generate the current parent node and from this
backtracking is repeated until a new partial solution was generated or all jobs
are removed.
For this case, an example is shown in Figure 6.8 highlighted by number three.
Starting from the node with Π1 = (j1, j2) and Π2 = (j4, j3), at �rst, job
j4 is removed because it is the �rst job of route m which means that all
possible positions of job j4 are already analyzed. The obtained parent node
has the partial solution Π1 = (j1, j2) and Π2 = (j3). As it can be seen, all
possibilities to include job j3 are analyzed. Consequently, again the parent
node is generated by removing job j3. Now, the current node is the one with
partial solution Π1 = (j1, j2) and Π2 = (). Its parent root has child nodes

134

6.3. Two Branching Strategies

Figure 6.8.: Details of a search tree resulting from branch-and-bound with branching

strategy include.

which are not proceeded so far. According to the backtracking algorithm, job
j2 can be brought forward in the corresponding route and the next node is the
one with partial solution Π1 = (j2, j1) and Π2 = ().

Return optimal solution: If backtracking reaches the root node and all child
nodes of it are analyzed, the BB-Include algorithm is �nished.
In Appendix B, the pseudocode of the BB-Include algorithm is shown in Algorithm

11 and the corresponding backtracking method is given in Algorithm 12. With this
procedure, the solutions of an instance with four jobs and two routes are generated
in the order shown in Figure 6.7 from left to right.

Parallelization

Also the BB-Include algorithm can be parallelized by splitting the search tree into
disjunctive subtrees. To optimally use the available computing power, it is aimed
that all processors �nish their tasks at the same time. Because the computational
e�ort to analyze a subtree depends on many factors, signi�cantly more tasks then
processors are de�ned. Then, a new task can be taken from the task list if any
processor completes a task. To de�ne the tasks, all nodes of the search tree of a
certain level d are generated which are all possible partial solutions where the �rst
d jobs of Nsort are planned. The depth d is chosen dependent on the number of
vehicles such that at least 500 tasks are produced which is a su�cient large number
of treads to appropriately utilize the processors. Therefore, the number of nodes on
level d is calculated which is

∏d
j=1(m+ j− 1). Given this, a suitable value for d can

135

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

be chosen. For example, for an instance with three vehicles, d is set to �ve to obtain
2520 tasks. In hope to improve the upper bound faster, the tasks are sorted by the
lower bound of the corresponding partial solution in increasing order and computed
in this order.

6.3.2.2. Adaptations to Calculate Lower Bounds

To calculate lower bounds for the BB-Include algorithm, all jobs have to be taken
into account because jobs can be included between already planned jobs. The lower
bound of the branch is then the sum of the customer cost bound and the travel cost
bound both calculated based on all jobs. Let Np ⊂ Nc be the set of jobs allocated
to a route in the partial solution. These jobs have a day for their execution in the
partial solution, which is tdi , i ∈ Np. In the further solution process, these jobs can
only be shifted behind the current start time. Thus, the job i cannot be executed
earlier than tdi . Further, for these jobs only the travel costs to the predecessor and
successor in the route of the partial solution and to all unplanned jobs have to be
considered.
In the BB-Include algorithm, at �rst the jobs with non-zero customer cost coef-

�cient are included into the routes to know the minimal customer costs as soon as
possible. If all these jobs are planned, the lower bound of the customer cost value
equals to the customer cost value of the uncompleted schedule. Consequently, the
lower bounds for customer costs are only calculated if any job i ∈ Nc is unplanned.
If the lower bound of the customer cost plus the travel costs of the partial solution
are below the upper bound UB, a bound for the travel cost value is determined.

Adaptation for LBc
s

To calculate the lower bound of the customer costs of all solutions corresponding
to the analyzed node, additional constraints are added which ensure that already
allocated jobs are only shifted behind the current start day. The maximal number
of jobs per day η is calculated as described in Section 6.2.1.1, Lemma 6.2. The
optimization problem is then

LBc
s, include :=min

∑
i∈Nc

ciτi

s.t. τi ∈ T i ∈ Nc

|{i ∈ Nc| τi = t}| ≤ η t ∈ T

tdi ≤ τi i ∈ Nc ∩Np

To solve this optimization problem, the jobs are sorted by its customer cost coe�-
cient in decreasing order. The start time of already unplanned jobs is set to tdi = 0,
i ∈ Nc \Np. Then, the �rst η jobs with tdi ≤ 1 are allocated to day 1 and removed
from the list. From the remaining jobs, again the �rst η jobs with tdi ≤ 2 are al-
located to day 2 and removed. This is repeated, until all jobs are allocated. The

136

6.3. Two Branching Strategies

computation e�ort is O(|Nc| log(|Nc|)) to sort the jobs and O(|T ||Nc|) to allocate
the jobs to days.

Adaptation for LBc
LPBP1

To capitalize from the knowledge of the partial solution, also for the lower bound
obtained from the LP relaxation of (BP1), additional constraints are included to
ensure that jobs which are planned in the current partial solution are only shifted
behind. These additional constraints lead to the following bin packing problem:

LBc
LPBP1, include := min

∑
i∈Nc

∑
t∈T

citxit

s.t.
∑
t∈T

xit = 1 i ∈ Nc∑
i∈Nc

xit(ai + ri) ≤ mu +Rm t ∈ T

xit ≥ 0 i ∈ Nc, t ∈ T

xit = 0 i ∈ Nc ∩Np, t ≤ tdi ∈ T

To obtain a solution in polynomial time, the solution procedure presented in Section
6.2.1.3 is applied with a small change: To �ll a bin t, only the items of jobs with tdi ≤ t
are taken into account. For this purpose, for currently unplanned jobs i ∈ Nc \Np,
the start day is set to tdi = 0.

Adaptation to Calculate Travel Cost Bounds

By de�ning the travel cost matrix for a partial solution generated insight the BB-
Include algorithm, all jobs are taken into account. Thus, the size of the travel cost
matrix is always n + 2m. Let Np :=

⋃
k∈M Ñk be the set of the already planned

jobs. For these jobs, only travel costs between consecutive jobs have to be considered.
Because currently not planned jobs could be allocated at each position of the current
routes, for these jobs the travel costs to all other jobs have to be considered. For
the depots, the rules to transform the m routes to one large route are applied. In
summary, the following travel costs are used:

d̃ij =



∞, if i = j ∈ Na, (6.38a)

dij, if i ∈ Np ∪Ns, j ∈ Np ∪Nz and i is the predecessor of j, (6.38b)

∞, if i ∈ Np ∪Ns, j ∈ Np ∪Nz and i is not the predecessor of j, (6.38c)

dij, if i ∈ Np ∪Ns, and j ∈ N \Np, (6.38d)

dij, if i ∈ N \Np and j ∈ Np ∪Nz, (6.38e)

dij, if i, j ∈ N \Np, i ̸= j, (6.38f)

∞, if i ∈ Ns, j ∈ Nz, (6.38g)

0, if i = zk, j = s[k+1 (mod m)] and k ∈ M , (6.38h)

∞ if i = zk, j = sl, k, l ∈ M and l ̸= k + 1 (mod m). (6.38i)

137

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

The travel costs d̃ii are set to in�nity by equation (6.38a) because these edges are
irrelevant in calculating travel cost bounds. If the jobs or depots i, j are visited
consecutively in the current solution with i is the predecessor of j, the travel costs
dij have to be considered, as de�ned by equation (6.38b). But for planned jobs or
depots which are not visited consecutively, the travel costs between them are not
taken into account and set to in�nity, see (6.38c). By means of equation (6.38d)
and (6.38e), the travel costs between an unplanned job and a planned job or depot
are taken into account. And of course also the costs between two unplanned jobs
i, j ∈ N \Np are used as de�ned in (6.38f). Finally, travel costs between depots are
de�ned. The travel costs from each start depot to an end depot are set to in�nity
by equation (6.38g) because empty routes are forbidden. To connect the m routes
to one large route, the costs between the end depot of route k ∈ M and the start
depot of the subsequent route k+1 (mod m) are set to zero via (6.38h) and all other
travel costs between an end depot and a start depot are set to in�nity by equation
(6.38i). Note that the resulting travel cost matrix contains more asymmetries than
a cost matrix obtained by computing a travel cost bound for a node in the BB-
Append algorithm. Because of that, probably the travel cost bounds based on the
assignment problem could be better than the bounds based on the minimum-weight
1-trees since for the computation of the minimal spanning tree, not symmetric entries
are replaced by its minimum.

6.4. Computational Results

In this section, it is analyzed, how e�ciently the VRPCC is solved by means of
the presented branch-and-bound algorithms. For this purpose, at �rst the lower
bounds are compared in terms of bound quality and computational time because for
the branch-and-bound method, tight and fast computable lower bounds are needed.
The results are presented in Section 6.4.1.1, where the customer cost bounds are
analyzed, and Section 6.4.1.2 that compares the presented travel cost bounds. After
that, the performance of the branch-and-bound algorithms for selected lower bounds
is compared in order to �nd the best variant. Thereby, the two branching strategies
are analyzed separately in the Sections 6.4.2.1 and 6.4.2.2. Finally, in Section 6.4.2.3,
the best variant of both developed branch-and-bound algorithms are compared with
the best variant of solving the VRPCC with the commercial solver CPLEX on several
benchmarks.
To summary the results, initially the BB-Append and BB-Include algorithm, both

applying the lower bounds LBc
LPBP1 and LB

d
APC, are compared with solving (R2dT4)

with CPLEX. For this purpose, Table 6.1 provides the statistic values minimum,
25-th, 50-th and 75-th percentile and maximum (denoted by min, Q1, Q2, Q3 and
max) for the computational time. Furthermore, the number of not optimally solved
instances and the average gap to an optimal value for these instances are given.
Note that the branch-and-bound algorithms are initialized with a start solution
which is obtained by the BoG algorithm. In contrast, CPLEX is not initialized

138

6.4. Computational Results

computational time not avg
min Q1 Q2 Q3 max opt. gap

CPLEX 0.6 11.0 70.4 600 600 46 0.03%
BB-Append 0.4 1.3 2.4 5.8 128.7 0 �
BB-Include 0.1 0.7 2.0 6.6 141.3 0 �

Table 6.1.: Comparison of the BB-Append and BB-Include algorithm as well as solving

(R2dT4) with CPLEX on benchmark S.

with a start solution because this did not improve the performance. The results
show that the smallest computational times were obtained with the branch-and-
bound algorithms. With the BB-Append and the BB-Include algorithm, 75% of the
instances were solved in less than 5.8 and 6.6 seconds, respectively, compare Table
6.1, Column Q3. And all instances were optimally solved within the time limit of ten
minutes. Instead, solving the MILP (R2dT4) with CPLEX led to signi�cant larger
computational times and for more than a fourth of the instances, the time limit was
exceeded. To be more precise, 46 instances were not solved within ten minutes. On
average, the gap to the optimal solution in these 46 instances was 0.03%, where in
41 instances the gap was zero and the maximal gap of the remaining instances was
0.7%. Consequently, in benchmark S, the two branch-and-bound algorithms clearly
outperformed solving (R2dT4) with CPLEX.

6.4.1. Comparison of Lower Bounds

In this subsection, the lower bounds for customer costs and for travel costs are
compared with each other in computational experiments. For this purpose, the
bounds were computed for the instances of benchmark L, each with 100 jobs, because
in these large instances, di�erences in bound quality should be more obviously.
Furthermore, the bounds were calculated for the 180 instances of benchmark S and
compared with the minimal customer cost or travel cost value to evaluate the quality
of the bounds. The time to compute a lower bound was limited to 60 seconds.
Firstly, the main result will be summarized. For this purpose, the LP relaxation

bound of the MILP (R2dT4) is compared with di�erent sums of a customer cost
bound and a travel cost bound to evaluate the quality of the total bound. In Figure
6.9, performance pro�les for the gap of the total bound value to the costs of an
optimal solution or the best bound are shown based on benchmark L and benchmark
S. Table 6.2 provides statistic values for the computational times. Compared are

� the LP relaxation value,

� the sum of the bounds LBc
LPBP1 and LBd

APC, which showed the best perfor-
mance applied to one of the branch-and-bound algorithms,

139

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

0 10 20 30 40 50
0

20

40

60

80

100

gap(%) to best bound

%
o
f
in
st
a
n
ce
s

benchmark L

0 10 20 30 40 50
0

20

40

60

80

100

gap(%) to g∗(S)
%

o
f
in
st
a
n
ce
s

benchmark S

LP relaxation value LBc
LPBP1

+ LBd
APC

LBc
s + LBd

2N
LBc

BP4
+ LBd

iMST

Figure 6.9.: Comparison of lower bounds for total costs.

benchmark L

bound min Q1 Q2 Q3 max

LP relaxation 158 178 188 208 289
LBc

LPBP1 +LB
d
APC 7 10 12 16 101

LBc
s +LB

d
2N < 1 < 1 < 1 1 2

LBc
BP4 +LB

d
iMST 669 60194 60376 60722 62398

benchmark S

bound min Q1 Q2 Q3 max

LP relaxation < 1 2 10 10 39
LBc

LPBP1 +LB
d
APC < 1 < 1 < 1 < 1 4

LBc
s +LB

d
2N < 1 < 1 < 1 < 1 1

LBc
BP4 +LB

d
iMST 11 60 149 303 1408

Table 6.2.: Computational times for lower bounds for total costs (in milliseconds).

140

6.4. Computational Results

� the sum of the bounds LBc
s and LBd

2N, which were the two fasted computed
lower bounds, and

� the sum of the bounds LBc
BP4 and LBd

iMST, which were the two bounds with
highest bound values.

As it can be seen in Figure 6.9 and Table 6.2, the lower bound derived from LBc
LPBP1

and LBd
APC is tighter than the LP relaxation bound and faster computed. A better

total bound was achieved summing LBc
BP4 and LB

d
iMST. However, the computational

time was drastically greater. With the two fastest computed lower bounds LBc
s and

LBd
2N, the LP relaxation value was not reached.

6.4.1.1. Comparison of Lower Bounds for Customer Costs

In this subsection, the developed lower bounds for the customer cost values are
compared. At �rst, the obtained values for η1 and η2, which are two di�erent
variants to obtain an upper bound for the number of jobs that can be visited per
day, are compared in Table 6.3. Furthermore, ηH denotes the maximal number of
jobs started at one day in the solution obtained with the BoG heuristic. The �rst
column shows the percentage of instances in which η1 and η2 was smaller than the
other of both. And the further columns give the statistic values minimum, 25-th,
50-th and 75-th percentile and maximum (denoted by min, Q1, Q2, Q3 and max).
In benchmark S, for half of the instances, η2 was a better bound than η1. For the
other half, both bound values were equal. Recap, the advantage of η2 is that more
jobs are considered by computing the upper bound. Comparing the statistic values
of η2 with the number of jobs executed at most per day in a heuristic solution ηH
shows that the upper bound is about one or two larger. Indeed, ηH is not an upper
bound. In benchmark L, the di�erences between η1 and η2 were more obviously. In
94% of the instances, η2 was the tighter upper bound. But the gap between η2 and
the maximal number of jobs solved per day in a heuristic solution ηH was large.

better min Q1 Q2 Q3 max

benchmark S

mη1 0% 6 8 8 8 12
η2 50.0% 6 7 8 8 10
ηH � 4 5 6 7 8

benchmark L

mη1 0.02% 18 21 28 35 35
η2 94.0% 18 19 24 28 32
ηH � 10 11 14 16 20

Table 6.3.: Comparison of η1 and η2 based on benchmark S and benchmark L.

141

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

0 5 10 15
0

20

40

60

80

100

gap(%) to best bound

%
o
f
in
st
a
n
ce
s

0 5 10 15
0

20

40

60

80

100

gap(%) to best bound

%
o
f
in
st
a
n
ce
s

benchmark L

0 5 10 15
0

20

40

60

80

100

gap(%) to best bound

%
o
f
in
st
a
n
ce
s

0 5 10 15
0

20

40

60

80

100

gap(%) to gc,∗(S)

%
o
f
in
st
a
n
ce
s

LBc
s

LBc
s, fast

LBc
LPBP1∑
i∈N ci

0 5 10 15
0

20

40

60

80

100

gap(%) to gc,∗(S)

%
o
f
in
st
a
n
ce
s

benchmark S

LBc
BP1

LBc
BP1 excl. subtours

LBc
LPBP1

LBc
BP2

LBc
BP2 excl. subtours

0 5 10 15
0

20

40

60

80

100

gap(%) to gc,∗(S)

%
o
f
in
st
a
n
ce
s

LBc
BP3 relaxe (6.22)

LBc
BP3

LBc
BP4 relaxe (6.29)

LBc
BP4

LBc
LPBP3

Figure 6.10.: Comparison of the lower bounds on customer costs.

Figure 6.10 shows performance pro�les for the gap of the lower bounds for cus-
tomer costs. The results are presented in six diagrams arranged in two rows and
three columns. In the �rst row, the results obtained on benchmark L are shown.
There, the bound value is compared with the best bound value because an optimal
value is not known. The second row of Figure 6.10 provides the results for the in-
stances of benchmark S, where the gap between the bound value and the minimal
possible customer cost value gc,∗(S) is used. Note, gc,∗(S) is obtained by solving the
instances minimizing only customer costs. Table 6.4 provides statistic values for the
computational time in milliseconds.

The bounds are presented in three groups The �rst group, shown in the �rst col-
umn of Figure 6.10, contains the very fast computed bounds. In detail, the bounds
LBc

s and LBc
s, fast, which are presented in Section 6.2.1.1 and Section 6.3.1.2, respec-

tively, are shown together with LBc
LPBP1 as introduced in Section 6.2.1.3. Recap,

LBc
s and LBc

s, fast are computed based on η, which is a constant upper bound for the
number of jobs that can be visited per day, and LBc

LPBP1 is calculated by solving the
LP relaxation of the bin packing problem (BP1). For these three lower bounds, for
the most instances less than a millisecond was needed to obtain the bound value,
compare Table 6.4. The performance pro�les of LBc

s, fast and LBc
s in Figure 6.10 on

the left show that LBc
s, fast provided smaller bounds. This is caused by the fact that

142

6.4. Computational Results

benchmark L

bound min Q1 Q2 Q3 max

LBc
s < 1 < 1 < 1 < 1 2

LBc
s, fast < 1 < 1 < 1 < 1 2

LBc
LPBP1 < 1 < 1 < 1 1 2

LBc
BP1 14 136 301 661 15593

LBc
BP1 excl. subtours 135 59522 60000 60000 60000

LBc
BP2 135 6425 60000 60000 60000

LBc
BP2 excl. subtours 44844 60160 60000 60000 60000

LBc
BP3 98 887 2977 9708 60000

LBc
BP3 relax constraint (6.22) 96 484 1498 3259 31403

LBc
BP4 784 60000 60000 60000 60000

LBc
BP4 relax constraint (6.29) 293 15746 60000 60000 60000

LBc
LPBP3 3 36 100 233 2284

benchmark S

bound min Q1 Q2 Q3 max

LBc
s < 1 < 1 < 1 < 1 1

LBc
s, fast < 1 < 1 < 1 < 1 1

LBc
LPBP1 < 1 < 1 < 1 < 1 1

LBc
BP1 3 5 54 70 682

LBc
BP1 excl. subtours 2 4 58 129 4972

LBc
BP2 7 11 79 119 2134

LBc
BP2 excl. subtours 7 35 232 882 6921

LBc
BP3 6 10 71 101 518

LBc
BP3 relax constraint (6.22) 7 10 77 136 403

LBc
BP4 9 57 120 220 983

LBc
BP4 relax constraint (6.29) 11 27 148 303 1407

LBc
LPBP3 < 1 1 2 2 4

Table 6.4.: Computational times for lower bounds on customer costs (in milliseconds).

143

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

for LBc
s, fast the number of jobs per day is mη1. But in LBc

s, the number of jobs per
day equals to the minimum from mη1 and η2 which leads often to a better approx-
imation because, as shown in Table 6.3, η2 was often tighter than η1. Signi�cantly
better bounds were obtained with the LP relaxation of (BP1). For all instances of
benchmark L, the gap of LBc

LPBP1 was below 5%. And also in benchmark S, often
(BP1) was more close to the minimal possible customer cost value than LBc

s and
LBc

s, fast.
The second group consists of the bounds based on the bin packing problems (BP1)

and (BP2), where the bin size is increased to reserve time for traveling outside the
working shift. In detail, the bounds LBc

BP1, LB
c
BP1 excluding iteratively unfeasible

subsets and the LP relaxation LBc
LPBP1, as well as LBc

BP2 and LBc
BP2 excluding

unfeasible subsets are shown. Recap, LBc
BP2 cannot be smaller than LBc

BP1 as shown
in Theorem 6.5. In benchmark L, all variants led to almost the same bound values,
but the computational times di�er strongly. As it can be seen in Table 6.4, for the
most instances solving (BP2) exceeded the time limit of 60 seconds, but the LP
relaxation value was obtained in less than one millisecond. In benchmark S, LBc

BP2

was slightly better than LBc
BP1. Excluding subsets that cannot be packed into one

bin resulted in much better bounds. All variants, besides the LP relaxation of (BP1),
required much computational time, compare Table 6.4. For the half of the instances
of benchmark S, the computational time for LBc

BP1 and LBc
BP2 exceeds 54 and 79

milliseconds, respectively. The LP relaxation led to the smallest lower bounds but
in almost all instances the computational time was less than one millisecond.
And the third group are the bin packing problems LBc

BP3 and LBc
BP4, where work-

ing duration and travel time are separately packed into the bins. Again, using m
bins per day led to a small improvement of the bound value, see Figure 6.10, but
to a strong increase of the computational e�ort as shown in Table 6.4. Relaxing
the constraint that working duration and travel time of a certain job have to be
packed into the same bin led to similar bound values, but did not lead to a su�cient
reduction of the computational time to allow its application to one of the presented
branch-and-bound algorithms. Also the LP relaxation of these bin packing prob-
lems is not an usable approach. Even the obtained bound values of LBc

LPBP3 were
slightly better than the values of LBc

LPBP1, the computational e�ort was too high
compared to the improvement of the bound value because it could not be solved by
a polynomial algorithm but was solved by CPLEX. During the branch-and-bound
algorithms, millions of lower bounds are computed such that 100 milliseconds is to
slow to apply the bound.
Consequently, only the bounds of the �rst group should be applied to branch-

and-bound because the calculation of the other bounds was too time-consuming
compared to the bound quality. Thereby, LBc

LPBP1 showed the best bound quality.

6.4.1.2. Comparison of Lower Bounds for Travel Costs

In this subsection, the presented travel costs bounds are compared in computational
experiments. At �rst, di�erent parameter settings to calculate LBd

iMST are compared

144

6.4. Computational Results

0.5 1 1.5 2 2.5

400

420

440

460

t

avg. LBd
iMST

1000 iterations

100 iterations

10 iterations

Figure 6.11.: Comparison of di�erent constant step sizes t to compute the travel cost

bound LBd
iMST.

and a setting suitable for the used benchmark is selected. After that, the bounds
are compared.

Parameter for Minimum-Weight 1-Tree Bound LBd
iMST

In this paragraph, di�erent settings for the step size t to calculate the improved
minimum-weight 1-tree bound LBd

iMST are compared. The computational experi-
ment was done on 60 instances with 15, 20 or 25 jobs.
For the �rst test, the step size was chosen constant. For the comparison, the

bounds obtained with at most 10, 100 and 1000 iterations are analyzed computed
with t ∈ [0.01, 2.5]. Figure 6.11 shows for di�erent step sizes the average bound
value LBd

iMST. As expected, more iterations led to better bounds especially for small
values of t. In case of 1000 iterations, in average the best bounds were obtained
with t ∈ [0.12, 0.65], where the average of LBd

iMST was above 462, which can be seen
in Figure 6.11. Reducing the number of iterations to 100 led to slightly smaller
bounds. The best average bound was about 459 obtained with t = 0.85. With
t ∈ [0.65, 1.15], the average bound exceeded 458. Larger step sizes led to a smaller
average bound value. And with only 10 iterations, the obtained bounds were even
smaller. Then, the step size had to be chosen higher in order to improve the bound
faster. The best results were obtained with t ∈ [1.85, 1.95], where the average of
LBd

iMST exceeded 434, compare Figure 6.11.
In the two plots of Figure 6.12, two variants for a nonconstant step size of t

are presented. On the left, a parameter schema with exponentially decreasing step
size is shown. There, the step size of the k-th iteration was set to tk = 0.985kt.
The coe�cient 0.985 was found by some computational tests. With at most 1000
iterations, t ∈ [2, 10] led to the best bounds. There, LBd

iMST was in average above
462.5 as shown in Figure 6.12(a). The best average results with 100 iterations were
obtained with t ∈ [1.3, 2.2], where the average of LBd

iMST was about 459, compare
Figure 6.12(a). And allowing only 10 iterations performed best with t ∈ [1.8, 2.3]

145

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

1 2 3 4

400

420

440

460

t

avg. LBd
iMST

1000 iterations

100 iterations

10 iterations

(a) tk = 0.985kt

1 2 3 4

400

420

440

460

t

avg. LBd
iMST

1000 iterations

100 iterations

10 iterations

(b) tk = t− k∆(t)

Figure 6.12.: Comparison of exponential and linear parameter schemes for the step size

to compute the travel cost bound LBd
iMST.

resulting to an average bound of 434. Thus, in contrast to the constant step size, one
parameter setting �tted for all numbers of iterations which is t ≈ 2. Furthermore, for
each iteration number, this exponential parameter scheme resulted to similar average
bound values as the best respective solution with a constant step size tk = t.
Also a linear decreased step size tk = t − k∆t was tested with ∆t is chosen such

that after nI iterations tk is zero. To be more precise, ∆t = t
nI
. The obtained

results are shown in Figure 6.12(b) for nI equal to 1000, 100 and 10. As observed by
constant parameters shown in Figure 6.11, also linear decreased parameters require
an adaptation of the parameter setting to the number of iterations in order to obtain
good solutions. As shown in 6.12(b), the more iterations are allowed, the smaller
the step size should be chosen. For each iteration number, the best average values
were similar to the best values obtained with the other parameter schemes.

After obtaining a parameter setting that obtains good results for various iteration
numbers, the iteration number itself is analyzed. As expected, in the previous ex-
periments it was observed that more iterations led to better bounds. However, more
iterations also require more computational time. Because of that, in the following
a trade-o� between computational time and bound quality is searched. For this
purpose, Table 6.5 contains the average bound value and the average computational
time for LBd

MST and LBd
iMST calculated with di�erent numbers of iterations. In the

�rst group, for each of the na jobs an 1-tree is calculated and the best is chosen
for the iteration step. And in the second group, only one 1-tree is determined with
job 1 as the vertex connected �nally to the spanning tree. As it can be seen, more
iterations led to better bounds at the expense of an increased computational time.
Further, comparing the best of na 1-trees with only one 1-tree shows that with the
latter similar results can be obtained by decreased computational e�ort because
more iterations can be executed when in each iteration only one minimum spanning

146

6.4. Computational Results

Bound Bound value Comp. Time (ms)

Use best of na 1-trees

Initial solution LBd
MST 393,1 0,3

LBd
iMST with 10 iterations 434,4 1,5

LBd
iMST with 25 iterations 445,0 2,9

LBd
iMST with 50 iterations 453,6 5,6

LBd
iMST with 100 iterations 459,1 9,5

LBd
iMST with 1000 iterations 462,5 33,3

Use single 1-trees on job 1

Initial solution LBd
MST 356,6 0,0

LBd
iMST with 10 iterations 409,9 0,1

LBd
iMST with 100 iterations 452,4 0,4

LBd
iMST with 250 iterations 456,2 0,6

LBd
iMST with 500 iterations 456,7 0,8

LBd
iMST with 1000 iterations 457,0 1,0

Table 6.5.: Comparison of number of iterations and number of calculated 1-trees.

tree has to be determined. Using one 1-tree and 250 iterations showed the best
trade-o� between bound quality and computational time.
Consequently, the bound LBd

iMST is applied with 250 iterations. The step size in
iteration k is set to tk = 0.985k 2. And in each iteration, a single 1-tree is calcu-
lated whereby job 1 represents the vertex that is �nally connected to the minimum
weighted spanning tree by means of two edges of minimal weight. Also the bound
LBd

MST is obtained from a single 1-tree computed on job 1 because computing na

trees is too time consuming compared to the achieved bound quality.

Comparison of the Travel Cost Bounds

In the following, the travel costs bounds

� LBd
2N, which is the half of the sum of the travel costs to the two nearest

neighbors of each job,

� LBd
AP and LBd

APC, which are the bounds calculated from the assignment prob-
lem, as well as

� LBd
MST and LBd

iMST, which are the bounds calculated from minimum spanning
trees,

are compared in terms of initial gap and computational time because for an e�cient
branch-and-bound algorithm, bounds are needed that are calculated fast and have
a high bound value. Again, the comparison is done on benchmark L, where each

147

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

0 10 20 30 40 50
0

20

40

60

80

100

gap(%) to best bound

%
o
f
in
st
a
n
ce
s

benchmark L

0 10 20 30 40 50
0

20

40

60

80

100

gap(%) to gt,∗(S)

%
o
f
in
st
a
n
ce
s

benchmark S

LB
d
2N

LB
d
AP

LB
d
APC

LB
d
MST

LB
d
iMST

Figure 6.13.: Comparison of the lower bounds on travel costs.

benchmark L benchmark S

bound min Q1 Q2 Q3 max min Q1 Q2 Q3 max

LBd
2N < 1 < 1 < 1 < 1 1 < 1 < 1 < 1 < 1 1

LBd
AP 5 8 11 14 155 < 1 < 1 < 1 < 1 2

LBd
APC 7 10 12 15 99 < 1 < 1 < 1 < 1 3

LBd
MST < 1 < 1 < 1 1 7 < 1 < 1 < 1 < 1 1

LBd
iMST 14 24 29 32 287 < 1 < 1 1 1 53

Table 6.6.: Computational times for lower bounds on travel costs (in milliseconds).

instance contains 100 jobs, because in these large instances, di�erences in bound
quality should be more apparent; and on the 180 instances of benchmark S, because
there the obtained bound value can be compared with the minimal travel costs.
Figure 6.13 shows performance pro�les for the gap of the lower bounds for travel

costs. In the left plot, for instances of benchmark L, the gap to the best lower
bound is provided. In the right plot, for instances of benchmark S, the gap to
the minimal feasible travel cost value is given which is computed by solving an
instance minimizing only travel costs and ignoring the customer cost value during the
optimization. Furthermore, Table 6.4 provides percentiles of the computational time
in milliseconds. In detail, the minimum, 25th percentile, median, 75th percentile
and the maximum are given denoted by min, Q1, Q2, Q3 and max.
As it can be seen in Figure 6.13, the trivial bound LBd

2N led to the smallest bound
values. Comparing the assignment bound LBd

AP with the 1-tree bound LB
d
MST, which

is obtained from one minimum spanning tree calculated on the jobs Na \ {1}, shows
that in benchmark L, LBd

MST outperformed LBd
AP because better bound values were

obtained and less time was required for the computation. Also for the iteratively

148

6.4. Computational Results

improvements of these bounds, the bound value computed from minimal spanning
trees LBd

iMST was tighter than the improved assignment bound LBd
APC, but at the

expense of higher computational times. Note, that for LBd
APC at most 6 iterations

were needed to found an assignment with a single cycle, but LBd
iMST was executed

with up to 250 iterations.
Concluding, it can be seen that all travel cost bounds have their pros and cons:

LBd
AP and LBd

iMST were fast calculated and showed a similar approximation quality.
LBd

APC led to signi�cantly improved bounds by a small increase of the computational
e�ort. And LBd

iMST showed the best performance but also the highest computational
times (which are still acceptable). Only the simple two-neighbor bound LBd

2N was
unconvincingly. Therefore, only LBd

2N will not be tested applied to the developed
branch-and-bound algorithms.

6.4.2. Comparison of the Branch-and-Bound Algorithms

In the following, the performance of both developed branch-and-bound algorithms
in combination with the presented lower bounds is analyzed. The algorithms were
tested based on the 180 instances of benchmark S and the computational time
was limited to ten minutes. With it, the results can be compared with those of
Section 4.4 where for several MILP formulations of the VRPCC, the performance
of a commercial solver is analyzed.

6.4.2.1. Applying Branching Strategy Append

In this section, it is analyzed which lower bounds lead to the best performance of
the branch-and-bound algorithm with branching strategy append. The analyzed
customer cost bounds are the two variants LBc

s, fast and LBc
s, accurate, where a �xed

number of jobs executable per day is computed, and LBc
LPBP1 that is the solution

of the LP relaxation of a special bin packing problem. A detailed description can
be found in Section 6.2.1. The investigated lower bounds for travel costs are the
two assignment bounds LBd

AP and LBd
APC and the two bounds LBd

MST and LBd
iMST

obtained from minimum spanning trees, which are introduced in Section 6.2.2.
The BB-Append algorithm is implemented as described in Section 6.3.1.1 as paral-

lelized depth-�rst search with backtracking. Needed adaptations of the lower bounds
to the branching strategy are explained in Section 6.3.1.2.
Figure 6.14 shows performance pro�les for the computational times of the BB-

Append algorithm applying di�erent lower bounds. Due to the fact, that the most
instances of benchmark S were solved in less than one minute, a logarithmic scale
is used for the horizontal axis. In Table 6.7, for each combination of customer cost
bound and travel cost bound, the number of instances, where the solution process
exceeded the time limit of ten minutes, is given together with the average gap to the
optimal value for these instances. Furthermore, Table 6.8 provides the number of
nodes analyzed during the solution process, which is a good indicator of the quality
of the used lower bounds. Tighter lower bounds lead to fewer analyzed nodes because

149

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

10−1 100 101 102
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

LB
c
s, fast & LB

d
AP

LB
c
s, fast & LB

d
APC

LB
c
s, fast & LB

d
MST

LB
c
s, fast & LB

d
iMST

LB
c
s, accurate & LB

d
AP

LB
c
s, accurate & LB

d
APC

LB
c
s, accurate & LB

d
MST

LB
c
s, accurate & LB

d
iMST

LB
c
LPBP1 & LB

d
AP

LB
c
LPBP1 & LB

d
APC

LB
c
LPBP1 & LB

d
MST

LB
c
LPBP1 & LB

d
iMST

Figure 6.14.: Performance pro�les for computational time of the BB-Append algorithm

applying di�erent lower bounds on benchmark S.

LBd
AP LBd

APC LBd
MST LBd

iMST

LBc
s, accurate 9 (0.28%) 0 6 (0.28%) 0

LBc
s, fast 11 (0.38%) 0 7 (0.24%) 4 (0.00%)

LBc
LPBP1 9 (0.28%) 0 6 (0.21%) 0

Table 6.7.: Number of instances where the time limit was exceeded and the average gap to

the optimal value for these instances for the BB-Append algorithm applying

di�erent lower bounds.

LBd
AP LBd

APC LBd
MST LBd

iMST

LBc
s, accurate 94.6 12.2 60.0 5.4

LBc
s, fast 177.9 34.7 110.4 15.5

LBc
LPBP1 96.7 10.0 58.3 3.9

Table 6.8.: Number of analyzed nodes (in millions) during the solution process of the

BB-Append algorithm applying di�erent lower bounds.

150

6.4. Computational Results

branches can be pruned closer to the root. Each �eld of Table 6.8 shows how many
nodes of the search tree were analyzed when the branch-and-bound algorithm was
applied with the customer cost bound of the corresponding row and the travel cost
bound of the corresponding column.
Firstly, the travel cost bounds are compared. The performance pro�les of Figure

6.14 show that applying LBd
APC, which is the improved assignment bound, led to the

smallest computational times. With the faster computed travel cost bounds LBd
AP

and LBd
MST, signi�cantly more nodes were analyzed than with LBd

APC, which can be
seen in Table 6.8. This is caused by the fact that the bound values LBd

AP and LBd
MST

were less tight than LBd
APC as shown in Section 6.4.1.2. This was not compensated

by the smaller computational time required to compute LBd
AP and LBd

MST such that
the branch-and-bound algorithm took more time if these two travel cost bounds
were applied. Furthermore, as it can be seen in Table 6.7, some instances were not
solved within ten minutes and for these instances the average gap to the optimal
value was larger than zero. In contrast, with LBd

iMST, which is a tighter bound
than LBd

APC, more nodes were pruned which can be seen on the smaller number of
analyzed nodes, compare Table 6.8. However the computational times were higher
due to the larger computational e�ort to calculate LBd

iMST which can be seen on the
corresponding performance pro�les in Figure 6.14.
Secondly, the customer cost bounds are analyzed. On the performance pro�les

provided in Figure 6.14, it can be seen that the customer cost bound LBc
s, fast re-

sulted in higher computational times than LBc
s, accurate and LBc

LPBP1. Recap, the
customer cost bound LBc

s, fast was designed to be fast computed at the expense of
bound quality. As it can be seen on the comparable high number of nodes analyzed
during branch-and-bound with customer cost bound LBc

s, fast, provided in Table 6.8,
the loss of bound quality was too high to be compensated by the reduced e�ort
to compute LBc

s, fast. The other two bounds led to a similar performance of the
BB-Append algorithm: the computational times were close together, as shown in
Figure 6.14, and also the number of analyzed nodes was similar, compare Table
6.8. However, the algorithm performed slightly better when LBc

LPBP1 was applied
because the corresponding performance pro�les are mostly to the left of the pro�les
of LBc

s, accurate.
Concluding, due to the relatively small computational times and the small num-

ber of analyzed nodes, the best performance of the BB-Append algorithm was
achieved with the customer cost bound LBc

LPBP1 in combination with travel cost
bound LBd

APC.

6.4.2.2. Applying Branching Strategy Include

In this section, it is analyzed which lower bounds led to the best computational
performance of the BB-Include algorithm. The analyzed customer cost bounds
are LBc

s, include, which is based on a �xed number of jobs executable per day , and
LBc

LPBP1, include, which is the solution of the LP relaxation of a bin packing problem.
A detailed description is given in Section 6.2.1. The investigated travel cost bounds

151

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

10−1 100 101 102
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

LB
c
s, include & LB

d
AP

LB
c
s, include & LB

d
APC

LB
c
s, include & LB

d
MST

LB
c
s, include & LB

d
iMST

LB
c
LPBP1, include & LB

d
AP

LB
c
LPBP1, include & LB

d
APC

LB
c
LPBP1, include & LB

d
MST

LB
c
LPBP1, include & LB

d
iMST

Figure 6.15.: Performance pro�les for computational time of the BB-Include algorithm

applying di�erent lower bounds on benchmark S.

LBd
AP LBd

APC LBd
MST LBd

iMST

LBc
s, include 1 (0.00%) 0 3 (0.00%) 5 (2.36%)

LBc
LPBP1, include 0 0 3 (0.00%) 1 (0.00%)

Table 6.9.: Number of instances where the time limit was exceeded and the average gap

to the optimal value for these instances for the BB-Include algorithm applying

di�erent lower bounds.

LBd
AP LBd

APC LBd
MST LBd

iMST

LBc
s, include 32.8 16.8 147.5 10.2

LBc
LPBP1, include 22.7 9.7 122.9 6.6

Table 6.10.: Number of analyzed nodes (in millions) during the solution process of the

BB-Include algorithm applying di�erent lower bounds.

152

6.4. Computational Results

are the two assignment bounds LBd
AP and LBd

APC, and the two bounds LBd
MST and

LBd
iMST obtained from minimum spanning trees, as introduced in Section 6.2.2.

The BB-Include algorithm is implemented as parallelized depth-�rst search with
backtracking. A detailed description is given in Section 6.3.2.1. Due to the fact
that branching strategy Include leads to changes inside the routes, also already
planned jobs have to be considered by computing lower bounds. This leads to
several adaptations: On the one hand, by computing lower bounds on customer
costs, it has to be ensured that the start time of already planned jobs can only be
later than the current start time. And on the other hand, to compute lower bounds
for travel costs, an (asymmetric) distance matrix is de�ned that considers, among
others, that an already planned job can only be connected to its predecessor and
successor or a job unplanned so far. More details are given in Section 6.3.2.2.

Figure 6.15 shows performance pro�les for computational times of BB-Include
algorithm applying di�erent lower bounds. For the horizontal axis, a logarithmic
scale is used because the most instances were solved in less than one minute. Table
6.9 gives the number of instances that were not optimally solved within the time
limit of ten minutes and in braces the average gap to the optimal value for these
instances. And Table 6.10 provides the average number of analyzed search tree
nodes. In both tables, each �eld refers to the BB-Include algorithm applied with
the customer cost bound of the corresponding row and the travel cost bound of the
corresponding column.

Firstly, the travel cost bounds are compared. As it can be seen in Figure 6.15, the
instances were solved faster if an assignment bound for the travel costs is applied to
BB-Include algorithm. The corresponding performance pro�les remain well above
and to the left of the pro�les of the lower bounds obtained from 1-trees. Furthermore,
the time limit was exceed in a single case and there, the obtained solution value was
equal to the optimal value. A reason for the higher computational e�ort of the lower
bound on travel costs LBd

MST and LBd
iMST could be that the distance matrix for the

travel cost bounds has a lot of asymmetric entries, which is not taken into account
by these bounds. Nevertheless, LBd

iMST yielded tighter bound values than LBd
AP and

LBd
APC, which can be seen on the fact that less nodes were analyzed during the

solution process if LBd
iMST was applied to branch-and-bound, see Table 6.10. But,

as shown in Section 6.4.1.2, the e�ort to compute LBd
iMST is higher than for LBd

APC.
From the both assignment bounds, LBd

AP was clearly outperformed by the improved
variant LBd

APC.

Secondly, the two lower bound on customer costs are compared. Figure 6.15 shows
that LBc

LPBP1, include led to a better performance of the BB-Include algorithm than
LBc

s, include. Independent from the combined travel cost bound, the computational
times with LBc

LPBP1, include were smaller and less nodes were analyzed than with
LBc

s, include which results from the better bound quality of LBc
LPBP1, include obtained

with similar computational e�ort.

Concluding, the best combination of lower bounds for BB-Include algorithm was
LBc

LPBP1, include and LBd
APC.

153

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

BB-Append BB-Include Solving (R2dT4)

all instances 9.3 8.5 224.5 (46)

rcc

0.33 9.8 2.8 20.3
0.66 6.4 2.9 201.5 (9)
1.00 11.7 19.8 451.6 (37)

job
location

uniformly 3.0 7.1 180.8 (16)
clustered 15.6 10.0 268.2 (30)

Table 6.11.: Average computational time (in seconds) for the two branch-and-bound al-

gorithms BB-Append and BB-Include and solving the MILP (R2dT4) via

CPLEX.

6.4.2.3. Comparison with Applying a Commercial Solver

In the following, the two developed branch-and-bound algorithms are compared with
solving a MILP of the VRPCC via CPLEX. The two branch-and-bound algorithm
BB-Append and BB-Include are used applying the customer cost bound LBc

LPBP1

and the travel cost bound LBd
APC. The solved MILP was (R2dT4), which was solved

fastest with CPLEX as shown in Section 4.4. Recap, (R2dT4) is a formulation of
the VRPCC, where the routes are de�ned by two-index binary variables to de�ne for
each job the predecessor and successor in the route and integer variables to allocate
each job to a route, see Section 4.3.4. The start time of a job is given by a continuous
variable that is the start time in minutes counted from day zero. To de�ne the start
days of the jobs, binary variables are used. With it, the number of jobs per day
is limited which leads to a tighter LP relaxation, compare Section 4.2.3. The used
upper bound to limit the jobs executed per day is η as de�ned in Section 6.2.1.1.

In�uence of Instance Characteristics to the Computational E�ort

As de�ned in Appendix A, the instances of benchmark S are generated in groups,
e.g., each 60 of 180 instances have the same number of jobs with non-zero customer
cost coe�cient. In this paragraph, it is analyses whether the computational e�ort to
solve an instance di�ers between these groups. For this purpose, Table 6.11 provides
the average computation time of the solution methods for di�erent groupings of the
instances of benchmark S.
Comparing the computational times as average over all instances, which is pro-

vided in the �rst row of Table 6.11, shows that BB-Include had the best performance.
On average, only 8.5 seconds were necessary to solve one instance of benchmark S.
With the BB-Append algorithm, one instance of benchmark S was solved on aver-
age in 9.3 seconds. Solving the MILP (R2dT4) with the commercial solver CPLEX
led to the highest average computational time which is 224.5 seconds. Note, that
with CPLEX, not all instances were optimally solved within the time limit of ten

154

6.4. Computational Results

minutes. In 46 instances, the solution process was not completed which is given in
Table 6.11 in parentheses.

At �rst, three groups are de�ned that categorize the 180 instances according to
the ratio of jobs with non-zero customer cost coe�cients rcc. Instances generated
with rcc = 0.33, where a third of the jobs is a�icted with non-zero customer costs,
were easy to solve for each of the three algorithms which can be seen on the small
average computational times provided in Table 6.11. As obtained for all instances,
with the BB-Include algorithm, the instances were solved faster than with the other
solution methods. The instances generated with rcc = 0.66, which means that ten
of �fteen jobs have a non-zero customer cost coe�cient, were signi�cantly harder
to solve applying CPLEX. The average computational times was increased tenfold.
Indeed, the computational times of the two branch-and-bound algorithms were not
drastically changed. The instances, where all jobs are a�icted with non-zero cus-
tomer cost coe�cients, were signi�cantly harder to solve by the commercial solver.
This can be seen on the higher average computational times of the instances with
rcc = 1 shown in Table 6.11. For these instances, solving the MILP with CPLEX was
not a suitable solution method because several instances were not solved optimally
within ten minutes. Also the BB-Include algorithm showed a signi�cantly increased
computational e�ort: Compared to the instances generated with rcc = 0.66, the av-
erage computational time was more than sextuplet. For the BB-Append algorithm,
the increase in computational time was small.

To investigate, why the computational time of the BB-Include algorithm was
drastically increased between instances generated with rcc = 0.66 and rcc = 1, the
search strategy has to be analyzed in more detail. Recap, if all jobs with non-zero
customer cost coe�cient are planned, the customer cost value of the solution is
known and a calculation of the customer cost bound is not required. Furthermore,
the known customer cost value of the partial solution is better than each provided
lower bound. With branching strategy include, the jobs with non-zero customer
costs are planned �rst. Consequently, if several jobs are not a�icted with customer
costs, then for the deeper levels of the search tree, which contains the most nodes,
the customer cost value of the partial solution is a tight lower bound and only the
travel cost bound has to be computed. Because of that, the computational e�ort
to compute lower bounds decreases and furthermore, more nodes can be discarded
because the tight lower bound shows that an optimal solution does not belongs to
its solution space. In contrast, with branching strategy Append the jobs are not
appended in this order and with it, also on nodes far away from the root of the
search tree, it could be necessary to compute both bound values. However, if all
jobs are a�icted with a non-zero customer cost coe�cient, the customer cost bound
is computed in each node of the search tree. Due to the structure of the search
trees, in the BB-Include algorithm the number of customer cost bound computations
increases much more then in the BB-Append algorithm. Furthermore, as mentioned
in Section 6.3.2.1, all jobs have to be considered by computing lower bounds for the
BB-Include algorithm but only the unplanned jobs have to be taken into account
by computing lower bounds for the BB-Append algorithm. Both together led to a

155

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

smaller increase of the computational time for the BB-Append algorithm than for
the BB-Include algorithm.
Comparing the instances with uniformly distributed jobs and clustered instances

shows that the latter are harder to solve because on average the computational times
were higher as shown in Table 6.11. For the BB-Include algorithm, the di�erence in
the average computational times is much smaller than for the BB-Append algorithm
or solving the MILP (R2dT4) with CPLEX.

In�uence of Cost Structure to Computational E�ort

The previous results showed that instances, where more jobs are a�icted with a non-
zero customer cost coe�cient, were harder to solve. Because of that, in the following
it is analyzed how the three compared methods solve instances dominated by travel
costs or by customer costs. For this purpose, four further kinds of benchmark S are
de�ned by increasing the travel costs or the customer costs each by factor ten and
hundred: There are two variants of benchmark S, where the jobs i ∈ Na have travel
costs d′ij := 10dij or d′ij := 100dij to each job j ∈ Na. Consequently, these instances
are dominated by travel costs in which 85% and 98%, respectively, of the total costs
are travel costs on average. And there are two variants of benchmark S, where the
customer cost coe�cient of each job i ∈ N is set to c′i := 10ci or c′i := 100ci. Note,
that the number of jobs with non-zero customer cost coe�cient is not changed: in
each kind of benchmark S, one third of the instances have 5, 10 and 15 jobs with
non-zero customer cost coe�cient, respectively. These two variants of benchmark
S are dominated by customer costs, 91% and 99%, respectively, of the total costs
are customer costs. In the basic variant of benchmark S, 45% of the total costs are
travel costs and 55% are customer costs.
Compared are the BB-Append and BB-Include algorithm, both applying the lower

bounds LBc
LPBP1 and LBd

APC, as well as solving (R2dT4) with CPLEX.
Firstly, the results on the instances dominated by travel costs are investigated.

For these instances, the two plots in the �rst row of Figure 6.16 show performance
pro�les for the computational time in seconds and for the gap to the optimal value,
respectively. As it can be seen, all three algorithms solved the most instances fast.
To be more precise, 62.5%, 49.2% and 47.8% of instances were solved in less than
one second with the BB-Append algorithm, the BB-Include algorithm and CPLEX,
respectively. The two branch-and-bound algorithms solved all instances within ten
minutes, and with CPLEX, in seven of 360 instances, the time limit was exceeded
and for two of them, the optimal value was not found.
Secondly, the results on the instances dominated by customer costs are analyzed

based on the two plots given in the second row of Figure 6.16. The performance
pro�les for the computational times show that in these instances, the BB-Include
algorithm clearly outperformed the other two solution methods. The computational
times were signi�cantly smaller and all instances were solved within ten minutes.
With the BB-Append algorithm, in 23 of 360 instances the solution process was
terminated after ten minutes and for 14 of these instances, the optimal value was

156

6.4. Computational Results

10−1 100 101 102
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

0 0.5 1 1.5 2
85

90

95

100

gap (%)

%
o
f
in
st
a
n
ce
s

10−1 100 101 102
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

0 0.5 1 1.5 2
85

90

95

100

gap (%)

%
o
f
in
st
a
n
ce
s

Instances dominated by Travel Costs

Instances dominated by Customer Costs

BB-Append BB-Include solving (R2dT4) with CPLEX

Figure 6.16.: Comparison of the BB-Append and BB-Include algorithm with solving

(R2dT4) with CPLEX on variants of benchmark S with increased travel

costs and increased customer cost coe�cients.

not found. The highest computational times were achieved applying CPLEX to the
MILP (R2dT4). Only a third of the instances were solved in less than ten minutes
and for 15.6% of the instances, the optimal value was not found.

In�uence of dmax to the Computational Performance

As de�ned in De�nition 3.4, in the time-constrained VRPCC, all jobs have to be
served within a given time horizon dmax. In the following, it is analyzed how a short
time horizon a�ects to the computational e�ort. For this purpose, two variants of
benchmark S with a small value for dmax are de�ned: In the �rst one, dmax is set to
the smallest value for which a feasible solution can be found. This variant is called
�tight�. In the second variant of benchmark S, every instance is infeasible, which
is enforced by setting dmax one day smaller than in the tight benchmark variant.
Therefore, this variant is called �infeasible�.
To solve these instances with CPLEX, the corresponding value of dmax is used

157

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

10−1 100 101 102
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

10−1 100 101 102
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

10−1 100 101 102
0

20

40

60

80

100

computational time (s)

%
o
f
in
st
a
n
ce
s

Non-restrictive Tight Infeasible

BB-Append BB-Include solving (R2dT4) with CPLEX

Figure 6.17.: Comparison of the BB-Append and BB-Include algorithm with solving

(R2dT4) with CPLEX on variants of benchmark S where dmax is small.

as upper bound for the start day. Also the two branch-and-bound algorithm can
be easily adapted to this variant of the VRPCC. The customer cost bounds can be
applied to check whether all unplanned jobs can be scheduled without exceeding
the time horizon dmax because computing lower bounds on customer costs is done
by allocating jobs to days. Consequently, not only the jobs with a non-zero cus-
tomer cost coe�cient are taken into account but all jobs which means Nc = N .
Then, if for the partial solution of any node, the LP relaxation of (BP1) with
T = {td0, td0 + 1, . . . , dmax} is infeasible, LBc

LPBP1 is set to in�nity because the node
can be pruned.
In Figure 6.17, performance pro�les for the computational time of the BB-Append

and BB-Include algorithm, both applying the lower bounds LBc
LPBP1 and LBd

APC, as
well as solving (R2dT4) with CPLEX are given. The results are shown on the left
for the benchmark S with dmax = n which does not restrict the solution space, in
the middle for the tight variant of benchmark S which means there exists a feasible
solution for each instance, and on the right for the infeasible variant where dmax

was chosen just small enough that no feasible solution exists. For all algorithms, a
time limit of ten minutes was de�ned and the BoG heuristic was applied to �nd a
feasible start solution. If no feasible start solution was found, the upper bound for
the branch-and-bound algorithms was set su�ciently large to 231 − 1, which is the
largest integer value in the used programming language Java.
For each instance with tight dmax, all algorithms found a feasible solution within

the time limit of ten minutes. The two branch-and-bound algorithms BB-Append
and BB-Include solved all instances within ten minutes which can be seen in the
middle plot of Figure 6.17. In case of solving the instances with CPLEX, for 56
of 180 instances, the solution process took more than ten minutes. In comparison
to benchmark S with a non-restrictive value of dmax, shown in the left diagram of
Figure 6.17, it turned out that the tight value for dmax does not lead to a signi�cant
performance change. In the tight benchmark variant, the computational times for
the BB-Include algorithms and also solving (R2dT4) with CPLEX were slightly
larger than in the normal variant of benchmark S. The reason for the small increase

158

6.4. Computational Results

0 2 4 6 8 10
0

20

40

60

80

100

gap (%)

%
o
f
in
st
a
n
ce
s

BB-Append with LBc
LPBP1 & LBd

APC

BB-Include with LBc
LPBP1 & LBd

APC

Solving (R2dT4) with CPLEX

start solution

repeated �rst improvement

Figure 6.18.: Comparison of the BB-Append and the BB-Include algorithm as well as

solving (R2dT4) with CPLEX in benchmark M.

of the computational time is that for some instances no feasible start solution was
found which leads to additional e�ort to �nd a start solution and a suitable upper
bound. The BB-Append algorithms had shown almost the same computational
performance in both variants.
For the benchmark variant with infeasible instances, the computational times

varied strongly as shown in the left plot of Figure 6.17. There are some instances,
where it can be observed fast that no feasible solution exists, but for some instance
it seems to be hard. With CPLEX, for 81 of these 180 instances, it was observed
in less than 0.11 seconds that no feasible solution exists. But for the rest of the
instances, infeasibility could not be shown. With the BB-Include algorithm, for 153
of 180 instances it was obtained in less than 0.21 seconds that no feasible solution
exists. But for the remaining 27 instances, infeasibility could not be observed. And
with the BB-Append algorithm, for 153 instances, less than 0.5 seconds were needed
to show that they are infeasible. For further 18 instances, infeasibility was shown in
less than 15.2 seconds. And for further 8 instances, infeasibility was shown during
the time limit of ten minutes. For only one instance, the time limit was exceeded.

Increase of the Computational Time with Increasing Number of Jobs

Finally, it will be analyzed how the computational time increases with increasing
number of jobs. So far, mainly the computational performance on benchmark S was
investigated. Thereby, it was observed that the two branch-and-bound algorithms
outperformed solving (R2dT4) with CPLEX.
Firstly, based on benchmark M the exact solution methods BB-Append, BB-

Include and solving (R2dT4) by CPLEX are compared with the best heuristic,
which is repeated �rst improvement as described in Section 5.3. All three exact
solution methods were initialized with the solution obtained by the BoG algorithm
improved by a single run of the best improvement algorithm. It turned out that
with the branch-and-bound algorithms none of the 100 instances with 30 jobs was

159

6. Two Branch-and-Bound Algorithms for the Partition and Permutation Model

10 15 20 25 30
0

900

1800

2700

3600 / 0

jobs

ti
m
e
(s
)

BB-Append

BB-Include

solving (R2dT4) with CPLEX

single best improvement

mutliple �rst improvement

10 15 20 25 30

2.5

5

7.5

10
g
a
p
(%

)

10 15 20 25 30
0

2

4

6

8

10

n
o
t
o
p
ti
m
a
ll
y
so
lv
ed

Figure 6.19.: Average computational time and gap of the BB-Append and BB-Include

algorithm as well as solving (R2dT4) with CPLEX dependent on the num-

ber of jobs.

solved within the time limit of one hour. And only a single instance of benchmark
M was solved optimal in one hour by CPLEX. Because of that, Figure 6.18 provides
performance pro�les for the gap to the best obtained solution. As it can be seen,
both branch-and-bound algorithm hardly found solutions better than the provided
start solution. Signi�cantly better solutions were obtained with CPLEX. The best
solutions were obtained with repeated �rst improvement.
This is in contrast to the results obtained for benchmark S where both branch-and-

bound algorithm outperformed CPLEX. Because of that, secondly the algorithms
are compared for instances with di�erent job numbers. For this purpose, initially ten
instances with ten jobs were de�ned. To obtain from them ten instances with eleven
jobs, one job is added to each instance. In this manner, also the further instances
are generated such that an instance with n jobs contains all jobs of the according
instance with n− 1 jobs. In the instances, on average 78% of the jobs are a�icted
with a non-zero customer cost coe�cient. The ratio of customer costs on the total
costs varies between 26% and 82% and its median is 48%. The computational time
was limited to one hour.
Figure 6.19 shows the computational results for the branch-and-bound algorithms

BB-Append and BB-Include as well as solving the MILP (R2dT4) with CPLEX for
instances with an increasing number of jobs from 10 to 30. In detail, the main plot
shows the average computational times in seconds with the average gap to the best
obtained solution on the top. Beside this, a second plot shows the number of not
optimally solved instances. As it can be seen, solving the MILP (R2dT4) showed
the highest average computational time for the most job numbers. Between n = 13
and n = 25, the average computational time increases until for n = 25 none of the

160

6.5. Conclusion

instance was solved within one hour. The two branch-and-bound algorithms BB-
Append and BB-Include outperformed the commercial solver up to n = 22. But,
between n = 18 and n = 22, the average computational times increase strongly so
that for larger instances, CPLEX led to better solutions, which can be seen on the
gap provided on the top of Figure 6.19. It can also be observed, that for instances
with more than 25 and 27 jobs, respectively, the branch-and-bound algorithms did
not found solutions better than the start solution. The best solutions were obtained
by the local search algorithm with 10000 �rst improvement iterations.

6.5. Conclusion

In this chapter, two branch-and-bound algorithms for the VRPCC were presented.
Both are based on the partition and permutation model which was presented in
Chapter 3. After giving a detailed description of the branch-and-bound method,
some lower bounds for the VRPCC were presented. In detail, in Section 6.2.1, several
lower bounds for the customer cost part were developed and analytically compared.
The computational experiments showed that the lower bound LBc

LPBP1, which is
the LP relaxation value of a special bin packing problem, had the best trade-o�
between small computational time and high bound values. In Section 6.2.2, several
lower bounds for the travel cost part were investigated which are known from the
classical TSP.
After providing lower bounds, in Section 6.3, two branching strategies were de-

signed that build-up the routes successively. With it, the start times of the jobs can
be computed from the partial solution and are not decision variables as in a MILP
formulation of the VRPCC. The computational experiments provided in Section
6.4 showed that both developed branch-and-bound algorithms outperformed solving
one of the presented MILPs of the VRPCC by CPLEX. However, in medium-sized
problems, the branch-and-bound algorithms were not suitable to solve the VRPCC.
As applying CPLEX to solve a MILP formulation of the VRPCC, both branch-and-
bound algorithms were not able to obtain an optimal solution in reasonable time.
To be more precise, a solution better than the start solution was rarely obtained.
This is caused by the fact that the search tree is scanned in a unfavorable order
because of the used backtracking approach.

161

7. Summary and Outlook

In this thesis, a new variant of the vehicle routing problem was investigated which
results from a railway maintenance planning problem. The aim of this optimization
problem is the scheduling of maintenance jobs that correct failures which occurred
unexpectedly. In contrast to common vehicle routing problems, the objective func-
tion contains not only travel costs, but also customer costs. These customer costs
are time-dependent and represent penalties that have to be paid for each day from
the time of failure detection to the time of maintenance completion. Consequently,
for each maintenance job, which is represented by a customer, the customer costs
are computed by multiplying its customer cost coe�cient with its start day which
is the day on which maintenance is planned.
This new vehicle routing problem with customer costs (VRPCC) was introduced

in this thesis by a non-linear partition and permutation model. In this model, a
feasible solution is de�ned by a partition of the job set into subsets that represents
the allocation of jobs to vehicles and a permutation for each subset that represents
the order of processing the jobs. Then, the start times of the jobs were calculated
based on the orders given by the permutations. It was taken into account that work
can only be done in eight hour shifts during the night. Based on the start times,
the customer cost value of each job is computed, which are the penalty costs paid
for this job. Then, the costs of a schedule are calculated via the sum of travel costs
and customer costs.
To solve the VRPCC by commercial optimization software, the VRPCC was for-

mulated as mixed-integer linear program. In doing so, the start times became de-
cision variables. Furthermore, it turned out that including customer costs led to
problems harder to solve than vehicle routing problems where only travel costs are
minimized. This was caused by the fact that in the LP relaxation, the start days
were set close to the earliest feasible start day. Consequently, the customer cost
value of the LP relaxation was small. Since the lower bound for the branch-and-cut
algorithm of the solver is the LP relaxation, this lower bound is not tight unless
the customer cost value of an optimal solution is insigni�cantly small. To improve
the LP relaxation, several alternative formulations were developed. Computational
experiments were conducted to compare the formulations in terms of LP relaxation
value, computational time and, in case of not reaching the optimum, the gap to an
optimal solution, if available. The best performance was achieved with a formulation
that uses binary variables for the start days. With it, the number of jobs allocated
to a single day was limited by an upper bound. Nevertheless, small instances, where
the customer costs have a signi�cant impact on the obtained solution, were still hard
to solve. Medium-sized and large instances could not be solved e�ciently by the

163

7. Summary and Outlook

applied commercial solver.
For practical applications, an optimal solution is often not necessary. Instead,

heuristics are used to obtain a good and feasible solution in short time. For this
purpose, several construction heuristics for the VRPCC were designed and investi-
gated. Furthermore, two local search algorithms, �rst and best improvement, were
applied. The computational experiments showed that the repeated �rst improve-
ment algorithm, which is applying the �rst improvement algorithm several times to
di�erent start solutions, was the best heuristic with respect to solution quality.
Further, in order to compare the classical approach, i.e., solving a mixed-integer

linear program of the VRPCC by a commercial solver, with the heuristics, the com-
putational time was limited to ten minutes. In this setting, the numerical exper-
iments indicated that the repeated �rst improvement algorithm outperformed the
classical approach. To be more precise, for instances with �fteen jobs the repeated
�rst improvement algorithm found more often an optimal solution than the com-
mercial solver. However, the drawback of this heuristic is that the approximation
quality of the obtained solution cannot be determined.

Although the improvement algorithms obtained good heuristic solutions, one aim
of this thesis was to �nd an exact solution method to optimally solve small instances
of the VRPCC in reasonable time. As mentioned above, the classical approach,
where the problem is formulated as mixed-integer linear program and then solved
by a commercial solver, was not suitable mainly due to two reasons: Firstly, the
start times of the jobs become decision variables, when the VRPCC is formulated
as mixed-integer linear program, which increases the solution space. And secondly,
the LP relaxations of the developed formulations were not tight because the values
for the start days can be chosen small when the integer constraints are removed.
Because the commercial solver uses a branch-and-cut method to solve mixed-integer
linear programs where the lower bound equals to the LP relaxation improved by
some additional cuts, the lower bounds were small and less branches were discarded.
Since the branch-and-bound method is a suitable approach to solve complex com-

binatorial optimization problems, this approach was chosen and, in this thesis, two
special branch-and-bound algorithms for the VRPCC were developed. To design a
branch-and-bound algorithm that solves a combinatorial problem e�ciently, tight
and fast computable lower bounds are needed to discard parts of the solution space.
In this thesis, new lower bounds for the customer cost part of the objective func-
tion were formulated, where most of the bounds are based on solving bin packing
problems. All lower bounds for customer costs were compared analytically and ex-
perimentally, whereby the computational experiments showed that the lower bound
computed from the LP relaxation of a speci�c bin packing problem had the best
trade-o� between computational e�ort and bound quality. In this thesis, a suit-
able algorithm was developed for this bound, which computes the bound value in
O(n log(n) + n). For the travel cost part of the objective function, several known
lower bounds from the TSP were compared. The improved assignment bound, �rstly
provided in [27], showed the best performance applied to the designed branch-and-
bound algorithms.

164

To design a branch-and-bound algorithm, beside e�cient lower bound, also suit-
able branching strategies are necessary to split the problem space into smaller sub-
spaces. In this thesis two branching strategies were developed which are based on
the non-linear partition and permutation model to take advantage from the prob-
lem structure. To be more precise, new branches are generated by appending or
including a job in an uncompleted schedule. Consequently, the start times can be
computed directly from the so far planned jobs and more tight lower bounds can be
computed for the so far unplanned jobs.
In this thesis, the �rst approach for such a branching strategy was to generate a

new branch by appending an unplanned job at the end of an uncompleted route. It
was reasoned that this strategy leads to tight lower bounds because the costs of the
planned jobs are �xed. However, an analysis of the resulting search tree indicated
that the number of generated nodes is large. Because of that, in this thesis a second
branching strategy was developed where new branches are generated by including
an unplanned job inside an uncompleted route. This implies that costs of the so
far planned jobs are no longer �xed because including a job can shift planned jobs
behind, but the corresponding search tree contains signi�cantly less nodes and has a
more suitable structure. The two corresponding branch-and-bound algorithms were
implemented as depth-�rst search with backtracking to reduce the storage e�ort.
By means of computational experiments, the developed branch-and-bound algo-

rithms were compared with the classical approach, which means solving a mixed-
integer linear program of the VRPCC by a commercial solver. The results showed
that both branch-and-bound algorithms solved the small instances faster than the
classical approach.

Finally, some possible directions for future research on the VRPCC are pointed
out and discussed.
For practical applications, some additional requirements can be imposed on the

solution. In Section 3.3, some possible extensions of the VRPCC are mentioned.
To apply the presented heuristics and solution approaches, some adaptations would
be necessary. For example, for the branch-and-bound algorithms, the limitation of
the planning horizon or time window restrictions can be integrated in computing
lower bounds on customer costs. Also the requirement that maintenance crews
have certain skills and can only process corresponding tasks can be integrated. For
the application of a commercial solver, according constraints can be formulated as
shown, e.g., in [151]. It would be interesting to investigate how such additional
constraints a�ect to the solution performance.
As stated in Section 2.3.3, in this thesis the branch-and-price method was not

applied to the VRPCC because of the large amount on feasible routes and the time-
dependent costs in the objective function. However, in further research it might be
worth to explore how branch-and-price can be e�ciently applied to the VRPCC.
Recent papers like, e.g., [56, 122] show that also vehicle routing problems with less
restrictions to the routes can be solved by the branch-and-price method. And also
problems with time-dependent subproblems were addressed, e.g., in [100, 138].

165

7. Summary and Outlook

As shown in Section 4.4, the customer costs lead to problems harder to solve by
a commercial solver: Even some small instances with �fteen jobs were not solved
within ten minutes. To obtain near-optimal solutions in medium-sized instances,
MIP based local search, compare, e.g., [77, 81, 124], might be a topic of further
research. For example, after obtaining a start solution by a heuristic, iteratively
some variables can be �xed such that a small subset of variables remains to be
optimized applying a commercial solver.
Also the two developed branch-and-bound algorithms were not suitable to solve

medium-sized instances, which was observed in the computational experiments pre-
sented in Section 6.4.2.3. This is caused by the backtracking approach: To avoid
storing millions of branching nodes, the search tree is investigated in a speci�c or-
der. Because of that, the branch-and-bound algorithms analyze at �rst unfavorable
solutions where the most jobs are allocated to a single route. Further research could
improve the branch-and-bound algorithms, e.g., by developing a more suitable best-
�rst search strategy in order to �nd faster an improved solution or by tightening the
lower bounds. It might also be worth to develop additional valid constraints like an
upper bound for the number of jobs per route or for the latest start day.

166

Bibliography

[1] E. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Prince-
ton University Press, 2003.

[2] S. Almoustafa, S. Hana�, and N. Mladenovi¢. New exact method for large
asymmetric distance-constrained vehicle routing problem. European Journal
of Operational Research, 226:386�394, 2013.

[3] J. Andrews, D. Prescott, and F. De Rozières. A stochastic model for railway
track asset management. Reliability Engineering & System Safety, 130:76�84,
2014.

[4] C. Archetti, N. Bianchessi, and M. G. Speranza. Branch-and-cut algorithms
for the split delivery vehicle routing problem. European Journal of Operational
Research, 238(3):685�698, 2014.

[5] G. B. Arfken. Mathematical Methods for Physicists. Number Bd. 1 in Math-
ematical Methods for Physicists. Academic Press, 1966.

[6] N. Ascheuer. Hamiltonian path problems in the on-line optimization of �exible
manufacturing systems. PhD thesis, Technische Universität Berlin, Germany,
1996.

[7] N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the asymmetric travel-
ling salesman problem with time windows by branch-and-cut. Mathematical
Programming, 90(3):475�506, 2001.

[8] P. Augerat, D. Naddef, J. M. Belenguer, E. Benavent, A. Corberán, and G. Ri-
naldi. Computational results with a branch and cut code for the capacitated
vehicle routing problem. Technical report, Institute for Systems Analysis and
Computer Science, 1995.

[9] N. Balakrishnan. Simple heuristics for the vehicle routeing problem with soft
time windows. Journal of the Operational Research Society, 44(3):279�287,
1993.

[10] E. Balas and M. Guignard. Report of the session on branch and bound/implicit
enumeration. In Annals of Discrete Mathematics, volume 5, pages 185�191.
Elsevier, 1979.

167

Bibliography

[11] R. Baldacci, N. Christo�des, and A. Mingozzi. An exact algorithm for the ve-
hicle routing problem based on the set partitioning formulation with additional
cuts. Mathematical Programming, 115(2):351�385, 2008.

[12] R. Baldacci, E. Hadjiconstantinou, and A. Mingozzi. An exact algorithm for
the capacitated vehicle routing problem based on a two-commodity network
�ow formulation. Operations Research, 52(5):723�738, 2004.

[13] R. Baldacci, A. Mingozzi, and R. Roberti. Recent exact algorithms for solv-
ing the vehicle routing problem under capacity and time window constraints.
European Journal of Operational Research, 218(1):1�6, 2012.

[14] M. M. Baldi, F. Heinicke, A. Simroth, and R. Tadei. New heuristics for the
stochastic tactical railway maintenance problem. Omega, 63:94�102, 2016.

[15] M. Bellmore and G. Nemhauser. The traveling salesman problem: A survey.
Operations Reseach, 16:538�558, 1968.

[16] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu. Rollout algorithms for combina-
torial optimization. Journal of Heuristics, 3(3):245�262, 1997.

[17] S. Bo§, A. K. Nemani, and R. K. Ahuja. Iterative algorithms for the curfew
planning problem. Journal of the Operational Research Society, 62(4):593�607,
2011.

[18] N. Boland, T. Kalinowski, and S. Kaur. Scheduling network maintenance jobs
with release dates and deadlines to maximize total �ow over time: Bounds
and solution strategies. Computers & Operations Research, 64:113�129, 2015.

[19] N. Boland, T. Kalinowski, H. Waterer, and L. Zheng. Mixed integer program-
ming based maintenance scheduling for the hunter valley coal chain. Journal
of Scheduling, 16(6):649�659, 2013.

[20] C. Borraz-Sánchez and D. Klabjan. Strategic gang scheduling for railroad
maintenance. Technical report, Department of Industrial Engineering and
Management Sciences, Northwestern University, 2012.

[21] O. Bräysy and M. Gendreau. Vehicle routing problem with time windows. Part
I: Route construction and local search algorithms. Transportation science,
39(1):104�118, 2005.

[22] O. Bräysy, P. P. Porkka, W. Dullaert, P. P. Repoussis, and C. D. Tarantilis. A
well-scalable metaheuristic for the �eet size and mix vehicle routing problem
with time windows. Expert Systems with Applications, 36(4):8460�8475, 2009.

[23] A. V. Breedam. An analysis of the behavior of heuristics for the vehicle routing
problem for a selection of problems with vehicle-related, customer-related, and
time-related constraints. PhD thesis, Faculty of Applied Economics, University
of Antwerp - RUCA, 1994.

168

Bibliography

[24] G. Budai, D. Huisman, and R. Dekker. Scheduling preventive railway mainte-
nance activities. Technical report, Econometric Institute, Erasmus University
Rotterdam, 2004.

[25] F. Camci. The travelling maintainer problem: Integration of condition-based
maintenance with the travelling salesman problem. Journal of the Operational
Research Society, 65(9):1423�1436, 2014.

[26] Z. Cao, H. Guo, J. Zhang, D. Niyato, and U. Fastenrath. Improving the
e�ciency of stochastic vehicle routing: A partial lagrange multiplier method.
IEEE Transactions on Vehicular Technology, 65(6):3993�4005, 2015.

[27] N. Christo�des. Technical note � bounds for the travelling-salesman problem.
Operations Research, 20(5):1044�1056, 1972.

[28] N. Christo�des, A. Mingozzi, and P. Toth. Exact algorithms for the vehi-
cle routing problem, based on spanning tree and shortest path relaxations.
Mathematical Programming, 20(1):255�282, 1981.

[29] G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4):568�581, 1964.

[30] G. Codato and M. Fischetti. Combinatorial benders' cuts for mixed-integer
linear programming. Operations Research, 54(4):756�766, 2006.

[31] A. C. Consilvio, C. C. Crovetto, B. G. Guyot, A. K. Kirwan, N. M. Mazzino,
and F. P. Papa. Towards an intelligent and automated platform for railway
asset management. Proceedings of 7th Transport Research Arena TRA 2018,
2018.

[32] C. Contardo and R. Martinelli. A new exact algorithm for the multi-depot
vehicle routing problem under capacity and route length constraints. Discrete
Optimization, 12:129�146, 2014.

[33] T. H. Cormen, C. E. Leiersin, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT Press [u.a.], 2. edition, 2001.

[34] S. Dabia, S. Ropke, T. Van Woensel, and T. De Kok. Branch and price for the
time-dependent vehicle routing problem with time windows. In Proceedings
of the VII ALIO�EURO � Workshop on Applied Combinatorial Optimization,
pages 141�144, 2011.

[35] L. Dai, M. Stålhane, and I. B. Utne. Routing and scheduling of maintenance
�eet for o�shore wind farms. Wind Engineering, 39(1):15�30, 2015.

[36] K. Dalmeijer and R. Spliet. A branch-and-cut algorithm for the time win-
dow assignment vehicle routing problem. Computers & Operations Research,
89:140�152, 2018.

169

Bibliography

[37] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management
science, 6(1):80�91, 1959.

[38] N. De Jaegere, M. Defraeye, and I. Van Nieuwenhuyse. The vehicle routing
problem: State of the art classi�cation and review. Technical report, Faculty
of Economics and Business Ku Leuven, 2014.

[39] M. Desrochers and G. Laporte. Improvements and extensions to the Miller-
Tucker-Zemlin subtour elimination constraints. Operations Research Letters,
10(1):27�36, 1991.

[40] M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, and F. Soumis. Ve-
hicle routing with time windows: Optimization and approximation. Vehicle
Routing: Methods and Studies, 1988.

[41] E. D. Dolan and J. J. Moré. Benchmarking optimization software with per-
formance pro�les. Mathematical Programming, 91(2):201�213, 2002.

[42] A. Domschke, Wolfgang Drexl, R. Klein, and A. Scholl. Einführung in Oper-
ations Research. Springer Gabler, 9. edition, 2015.

[43] M. Dror, D. Fortin, and C. Roucairol. Redistribution of self-service electric
cars: A case of pickup and delivery. Technical report, INRIA National Institute
for Research in Digital Science and Technology, 1998.

[44] M. Dror, G. Laporte, and P. Trudeau. Vehicle routing with split deliveries.
Discrete Applied Mathematics, 50(3):239�254, 1994.

[45] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with
time windows. European journal of operational research, 54(1):7�22, 1991.

[46] B. Eksioglu, A. V. Vural, and A. Reisman. The vehicle routing problem:
A taxonomic review. Computers & Industrial Engineering, 57(4):1472�1483,
2009.

[47] N. A. El-Sherbeny. Vehicle routing with time windows: An overview of ex-
act, heuristic and metaheuristic methods. Journal of King Saud University-
Science, 22(3):123�131, 2010.

[48] L. Epstein and A. Levin. Minimum weighted sum bin packing. In International
Workshop on Approximation and Online Algorithms, 218�231. Springer, 2007.

[49] D. Feillet. A tutorial on column generation and branch-and-price for vehicle
routing problems. Operations Research, 8:407�424, 2010.

[50] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for
the elementary shortest path problem with resource constraints: Application
to some vehicle routing problems. Networks, 44(3):216�229, 2004.

170

Bibliography

[51] J. Feng, X. Jia, F. Zhu, Q. Yang, Y. Pan, and J. Lee. An intelligent system for
o�shore wind farm maintenance scheduling optimization considering turbine
production loss. Journal of Intelligent & Fuzzy Systems, 37(5):6911�6923,
2019.

[52] M. A. Figliozzi. An iterative route construction and improvement algorithm for
the vehicle routing problem with soft time windows. Transportation Research
Part C: Emerging Technologies, 18(5):668�679, 2010.

[53] M. Fischetti and P. Toth. An e�cient algorithm for the min-sum arborescence
problem on complete digraphs. ORSA Journal on Computing, 5(4):426�434,
1993.

[54] M. L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle
routing. Networks, 11(2):109�124, 1981.

[55] M. L. Fisher, K. O. Jörnsten, and O. B. G. Madsen. Vehicle routing with time
windows: Two optimization algorithms. Operations Research, 45(3):488�492,
1997.

[56] R. Fukasawa, Q. He, and Y. Song. A branch-cut-and-price algorithm for
the energy minimization vehicle routing problem. Transportation Science,
50(1):23�34, 2016.

[57] B. Gavish and S. C. Graves. The travelling salesman problem and related
problems. Technical report, Massachusetts Institute of Technology, Operations
Research Center, 1978.

[58] B. Gavish and K. Srikanth. An optimal solution method for large-scale multiple
traveling salesmen problems. Operations Reseach, 34(5):698�717, 1986.

[59] M. Gendreau, G. Laporte, and J.-Y. Potvin. Vehicle routing: Modern heuris-
tics. In Local search in combinatorial optimization, pages 311�336. Princeton
University Press, 2003.

[60] B. E. Gillett and L. R. Miller. A heuristic algorithm for the vehicle-dispatch
problem. Operations Research, 22(2):340�349, 1974.

[61] F. Glover. Future paths for integer programming and links to arti�cial intel-
ligence. Computers & Operations Research, 13(5):533�549, 1986.

[62] B. Golden, S. Raghavan, E. A. Wasil, and B. L. Golden. The vehicle routing
problem: Latest advances and new challenges. Springer, 2008.

[63] M. F. Gorman and J. J. Kanet. Formulation and solution approaches to the rail
maintenance production gang scheduling problem. Journal of Transportation
Engineering, 136:701�708, 2010.

171

Bibliography

[64] C. A. Grimes. Application of genetic techniques to the planning of railway
track maintenance work. In First International Conference on Genetic Algo-
rithms in Engineering Systems: Innovations and Applications, pages 467�472.
IET, 1995.

[65] Z. G. Guo and K. L. Mak. A heuristic algorithm for the stochastic vehicle
routing problems with soft time windows. In Proceedings of the 2004 congress
on evolutionary computation, volume 2, pages 1449�1456. IEEE, 2004.

[66] E. Gustavsson. Scheduling tamping operations on railway tracks using mixed
integer linear programming. EURO Journal on Transportation and Logistics,
4(1):97�112, 2015.

[67] T. Hanne and R. Dornberger. Computational intelligence in logistics and sup-
ply chain management, volume 244 of International Series in Operation Re-
search & Management Science. Springer, 2017.

[68] P. Hansen and N. Mladenovi¢. First vs. best improvement: An empirical
study. Discrete Applied Mathematics, 154(5):802�817, 2006. IV ALIO/EURO
Workshop on Applied Combinatorial Optimization.

[69] Q. He, H. Li, D. Bhattacharjya, D. P. Parikh, and A. Hampapur. Track geom-
etry defect recti�cation based on track deterioration modelling and derailment
risk assessment. Journal of the Operational Research Society, 66(3):392�404,
2015.

[70] F. Heinicke and A. Simroth. Application of simulated annealing to railway
routine maintenance scheduling. In Proceedings of the 14th International Con-
ference on Civil, Structure and Environmental Engineering Computers. Civil-
Comp Press, 2013.

[71] F. Heinicke, A. Simroth, G. Scheithauer, and A. Fischer. A railway mainte-
nance scheduling problem with customer costs. EURO Journal on Transporta-
tion and Logistics, 4:113�137, 2015.

[72] F. Heinicke, A. Simroth, and R. Tadei. On a novel optimisation model and so-
lution method for tactical railway maintenance planning. In 2nd International
Conference on Road and Rail Infrastructure, 2012.

[73] F. Heinicke, A. Simroth, R. Tadei, and M. Baldi. Job order assignment at
optimal costs in railway maintenance. In ICORES 2013 - Proceedings of the
2nd International Conference on Operations Research and Enterprise Systems,
pages 304�309, 2013.

[74] M. Held and R. M. Karp. The traveling-salesman problem and minimum
spanning trees: Part II. Mathematical Programming, 1(1):6�25, 1971.

[75] J. Hooker. Integrated Methods for Optimization. Springer, 2007.

172

Bibliography

[76] IBM Corporation. IBM ILOG CPLEX Optimization Studio 12.8 � User's
Manual, 2017.

[77] R. J. W. James and B. Almada-Lobo. Single and parallel machine capaci-
tated lotsizing and scheduling: New iterative MIP-based neighborhood search
heuristics. Computers & Operations Research, 38(12):1816�1825, 2011.

[78] N. Jiménez-Redondo, N. Bosso, L. Zeni, A. Minardo, F. Schubert, F. Heinicke,
and A. Simroth. Automated and cost e�ective maintenance for railway
(ACEM�Rail). Procedia-Social and Behavioral Sciences, 48:1058�1067, 2012.

[79] N. Jiménez-Redondo, Á. C. Cordón, U. Kandler, A. Simroth, A. Reyes,
F. J. Morales, J. Odelius, S. M. Famurewa, J. Morgado, E. Duarte, et al.
INFRALERT: Improving linear transport infrastructure e�ciency by auto-
mated learning and optimised predictive maintenance techniques. Proceedings
of 7th Transport Research Arena TRA 2018, 2018.

[80] D. Jungnickel. Graphs, Networks and Algorithms. Springer, 1999.

[81] T. Kalinowski, J. Matthews, and H. Waterer. Scheduling of maintenance
windows in a mining supply chain rail network. Computers & Operations
Research, 115:104670, 2020.

[82] B. Kallehauge, J. Larsen, and O. B. G. Madsen. Lagrangian duality applied
to the vehicle routing problem with time windows. Computers & Operations
Research, 33(5):1464�1487, 2006.

[83] B. Kallehauge, J. Larsen, O. B. G. Madsen, and M. M. Solomon. Vehicle
routing problem with time windows. In Column generation, pages 67�98.
Springer, 2005.

[84] U. Kandler, A. Simroth, J. Morgado, and E. Duarte. Decision support for
tactical planning � a use case of the INFRALERT project. Proceedings of 7th
Transport Research Arena TRA 2018, 2018.

[85] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671�680, 1983.

[86] T. Koch, T. Berthold, J. Pedersen, and C. Vanaret. Progress in mathemati-
cal programming solvers from 2001 to 2020. Technical report, Zuse Institute
Berlin, 2021.

[87] N. Kohl. Exact methods for time constrained routing and related scheduling
problems. PhD thesis, Technical University of Denmark, 1995.

[88] A. L. Kok, E. W. Hans, and J. M. J. Schutten. Vehicle routing under time-
dependent travel times: The impact of congestion avoidance. Computers &
Operations Research, 39(5):910�918, 2012.

173

Bibliography

[89] A. W. J. Kolen, A. H. G. Rinnooy Kan, and H. W. J. M. Trienekens. Vehicle
routing with time windows. Operations Research, 35(2):266�273, 1987.

[90] B. Korte and J. Vygen. Combinatorial optimization: Theory and algorithms.
Springer, 2000.

[91] A. Kovács, G. Erdös, L. Monostori, and Z. J. Viharos. Scheduling the main-
tenance of wind farms for minimizing production loss. IFAC Proceedings Vol-
umes, 44(1):14802�14807, 2011.

[92] V. Kowalenko. Applications of the cosecant and related numbers. Acta appli-
candae mathematicae, 114(1):15�134, 2011.

[93] J. B. Kruskal. On the shortest spanning subtree of a graph and the trav-
eling salesman problem. Proceedings of the American Mathematical Society,
7(1):45�50, 1956.

[94] S. N. Kumar and R. Panneerselvam. A survey on the vehicle routing problem
and its variants. Intelligent Information Management, 4(3):66�74, 2012.

[95] G. Laporte. The vehicle routing problem: An overview of exact and approx-
imate algorithms. European Journal of Operational Research, 59(3):345�358,
1992.

[96] G. Laporte. What you should know about the vehicle routing problem. Naval
Research Logistics, 54(8):811�819, 2007.

[97] G. Laporte, M. Desrochers, and Y. Nobert. Two exact algorithms for the
distance-constrained vehicle routing problem. Networks, 14(1):161�172, 1984.

[98] G. Laporte, Y. Nobert, and S. Taillefer. Solving a family of multi-depot vehicle
routing and location-routing problems. Transportation Science, 22(3):161�172,
1988.

[99] H. Lei, G. Laporte, and B. Guo. The capacitated vehicle routing problem with
stochastic demands and time windows. Computers & Operations Research,
38(12):1775�1783, 2011.

[100] G. Lera-Romero, J. J. M. Bront, and F. J. Soulignac. An enhanced branch
and price algorithm for the time-dependent vehicle routing problem with time
window. Technical report, Optimization Online, 2018, 2018.

[101] G. Li. Optimization-based decision support for inspection and maintenance of
infrastructure networks. PhD thesis, University of Texas at Austin, 2011.

[102] T. Lidén. Railway infrastructure maintenance � a survey of planning problems
and conducted research. Transportation Research Procedia, 10:574�583, 2015.

174

Bibliography

[103] T. Lidén and M. Joborn. An optimization model for integrated planning of
railway tra�c and network maintenance. Transportation Research Part C:
Emerging Technologies, 74:327�347, 2017.

[104] T. Lidén, T. Kalinowski, and H. Waterer. Resource considerations for inte-
grated planning of railway tra�c and maintenance windows. Journal of Rail
Transport Planning & Management, 8(1):1�15, 2018.

[105] R. Lima and E. W. O. Seminar. IBM ILOG CPLEX � what is inside of the
box. In Proc. 2010 EWO Seminar, pages 1�72, 2010.

[106] A. Löbel. Optimal Vehicle Scheduling in Public Transit. PhD thesis, TU
Berlin, 1997.

[107] A. Lucena. Time-dependent traveling salesman problem � the deliveryman
case. Networks, 20(6):753�763, 1990.

[108] R. Macedo, C. Alves, J. M. Valério de Carvalho, F. Clautiaux, and S. Hana�.
Solving the vehicle routing problem with time windows and multiple routes
exactly using a pseudo-polynomial model. European Journal of Operational
Research, 214(3):536�545, 2011.

[109] F. Ma�oli and A. Sciomachen. A mixed-integer model for solving ordering
problems with side constraints. Annals of Operations Research, 69:277�297,
1997.

[110] C. Malandraki and M. S. Daskin. Time dependent vehicle routing problems:
Formulations, properties and heuristic algorithms. Transportation science,
26(3):185�200, 1992.

[111] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. John Wiley & Sons Ltd., 1990.

[112] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formula-
tion of traveling salesman problems. Journal of the Association for Computing
Machinery, 7:326�329, 1960.

[113] M. Miwa. Mathematical programming model analysis for the optimal track
maintenance schedule. Quarterly Report of RTRI, 43(3):131�136, 2002.

[114] A. Montero, I. Méndez-Díaz, and J. J. Miranda-Bront. An integer program-
ming approach for the time-dependent traveling salesman problem with time
windows. Computers & Operations Research, 88:280�289, 2017.

[115] J. Munkres. Algorithms for the assignment and transportation problems. Jour-
nal of the Society for Industrial and Applied Mathematics, 5(1):32�38, 1957.

[116] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization,
volume 18. John Wiley & Sons Ltd., 1988.

175

Bibliography

[117] J. Neuhold. Tamping within sustainable track asset management.Monographic
Series TU Graz. Railway research, 6, 2020.

[118] J.-E. Nilsson and J. Nyström. Mapping railways maintenance contracts: The
case of Netherlands, Finland and UK. Technical report, The Swedish National
Road and Transport Research Institute (VTI), 2014.

[119] S. M. Oh, J. H. Lee, B. H. Park, H. U. Lee, and S. H. Hong. A study on a
mathematical model of the track maintenance scheduling problem. Computers
in Railways X, 88:85�96, 2006.

[120] M. W. Padberg. Linear optimization and extensions. Springer, 2., rev. and
expanded edition, 1999.

[121] S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and deliv-
ery problems. Part II: Transportation between pickup and delivery locations.
Journal für Betriebswirtschaft, 58(2):81�117, 2008.

[122] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-and-
price for capacitated vehicle routing. Mathematical Programming Computa-
tion, 9(1):61�100, 2017.

[123] F. Peng. Scheduling of track inspection and maintenance activities in railroad
networks. PhD thesis, University of Illinois at Urbana-Champaign, 2011.

[124] F. Peng, S. Kand, X. Li, and Y. Ouyang. A heuristic approach to the railroad
track maintenance scheduling problem. Computer-Aided Civil and Infrastruc-
ture Engineering, 26:129�145, 2011.

[125] S. M. Pour, K. Marjani Rasmussen, J. H. Drake, and E. K. Burke. A con-
structive framework for the preventive signalling maintenance crew scheduling
problem in the danish railway system. Journal of the Operational Research
Society, 70(11):1965�1982, 2019.

[126] R. C. Prim. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 36(6):1389�1401, 1957.

[127] A. G. Qureshi, E. Taniguchi, and T. Yamada. Exact solution for the vehicle
routing problem with semi soft time windows and its application. Procedia-
Social and Behavioral Sciences, 2(3):5931�5943, 2010.

[128] G. Reinelt. The Traveling Salesman: Computational Solutions for TSP Ap-
plications. Lecture Notes in Computer Science. Springer, 1994.

[129] L.-M. Rousseau, M. Gendreau, G. Pesant, and F. Focacci. Solving VRPTWs
with constraint programming based column generation. Annals of Operations
Research, 130(1-4):199�216, 2004.

176

Bibliography

[130] M. Savelsbergh. A branch-and-price algorithm for the generalized assignment
problem. Operations Research, 45(6):831�841, 1997.

[131] M. M. Solomon. On the worst-case performance of some heuristics for the ve-
hicle routing and scheduling problem with time window constraints. Networks,
16(2):161�174, 1986.

[132] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research, 35(2):254�265, 1987.

[133] Z. Su and B. De Schutter. Optimal scheduling of track maintenance activities
for railway networks. IFAC-PapersOnLine, 51(9):386�391, 2018.

[134] M. Tagmouti, M. Gendreau, and J.-Y. Potvin. Arc routing problems with time-
dependent service costs. European Journal of Operational Research, 181(1):30�
39, 2007.

[135] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin. A tabu
search heuristic for the vehicle routing problem with soft time windows. Trans-
portation science, 31(2):170�186, 1997.

[136] K. C. Tan, L. H. Lee, Q. L. Zhu, and K. Ou. Heuristic methods for vehicle
routing problem with time windows. Arti�cial intelligence in Engineering,
15(3):281�295, 2001.

[137] S.-Y. Tan and W.-C. Yeh. The vehicle routing problem: State-of-the-art clas-
si�cation and review. Applied Sciences, 11(21):10295, 2021.

[138] D. Ta³, M. Gendreau, N. Dellaert, T. Van Woensel, and A. G. De Kok. Vehicle
routing with soft time windows and stochastic travel times: A column genera-
tion and branch-and-price solution approach. European Journal of Operational
Research, 236(3):789�799, 2014.

[139] R. Tavakkoli-Moghaddam, A. R. Saremi, and M. S. Ziaee. A memetic algo-
rithm for a vehicle routing problem with backhauls. Applied Mathematics and
Computation, 181(2):1049�1060, 2006.

[140] F. Theurich, A. Fischer, and G. Scheithauer. A branch-and-bound approach
for a vehicle routing problem with customer costs. EURO Journal on Com-
putational Optimization, 9:100003, 2021.

[141] P. Tittmann. Einführung in die Kombinatorik. Springer Spektrum, 2. edition,
2014.

[142] P. Toth and D. Vigo. An exact algorithm for the vehicle routing problem with
backhauls. Transportation science, 31(4):372�385, 1997.

177

Bibliography

[143] P. Toth and D. Vigo. The Vehicle Routing Problem. Monographs on Discrete
Mathematics and Applications. Society for Industrial and Applied Mathemat-
ics, 2002.

[144] P. Toth and D. Vigo. Vehicle Routing Problems, Methods, and Applications.
Society for Industrial and Applied Mathematics, 2. edition, 2014.

[145] C. Vale, I. M. Ribeiro, and R. Calçada. Integer programming to optimize
tamping in railway track as preventive maintenance. Journal of Transportation
Engineering, 138:123�131, 2012.

[146] C. A. van Eijl. A polyhedral approach to the delivery man problem. Tech-
nical report, Department of Mathematics and Computing Science, Eindhoven
University of Technology, 1995.

[147] J. I. van Zante-de Fokkert, D. den Hertog, F. J. van den Berg, and J. H. M.
Verhoeven. The Netherlands schedules track maintenance to improve track
workers' safety. Interfaces, 37(2):133�142, 2007.

[148] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Springer,
5. edition, 2020.

[149] L. A. Wolsey. Integer programming. Wiley, 1998.

[150] R. T. Wong. Integer programming formulations of the traveling salesman
problem. In Proceedings of the IEEE international conference of circuits and
computers, pages 149�152. IEEE Press Piscataway NJ, 1980.

[151] S. Xie, C. Lei, and Y. Ouyang. A customized hybrid approach to infrastructure
maintenance scheduling in railroad networks under variable productivities.
Computer-Aided Civil and Infrastructure Engineering, 33(10):815�832, 2018.

[152] T. Zhang, J. Andrews, and R. Wang. Optimal scheduling of track mainte-
nance on a railway network. Quality and Reliability Engineering International,
29(2):285�297, 2013.

[153] E. Zio, M. Marella, and L. Podo�llini. Importance measures-based prioritiza-
tion for improving the performance of multi-state systems: Application to the
railway industry. Reliability Engineering & System Safety, 92(10):1303�1314,
2007.

178

List of Figures

Figure 1.1. The gasoline truck dispatching problem. 1

Figure 2.1. Examples for a graph, a cycle and a tree. 8
Figure 2.2. Examples for the minimal spanning tree problem, the traveling

salesman problem and a vehicle routing problem. 10
Figure 2.3. Illustration of a linear program. 11
Figure 2.4. Illustration of an integer linear program. 13

Figure 3.1. Example for a solution of the vehicle routing problem with
customer costs. 32

Figure 4.1. Example for the time �ow in an LP relaxation solution of
formulation (R1T3). 45

Figure 4.2. Percentage of optimally solved instances for two selected MILPs. 54
Figure 4.3. Cumulative distribution for the start days and performance

pro�les for the gap between LP relaxation value and optimal value
for the time models on benchmark S. 56

Figure 4.4. Comparison of the formulations of time constraints on bench-
mark S. 57

Figure 4.5. Performance pro�les for the gap between LP relaxation value
and optimal value for the route formulations on benchmark S. 60

Figure 4.6. Comparison of formulations of route constraints on benchmark
S. 60

Figure 4.7. Comparison of selected formulations of route constraints on
benchmark M. 61

Figure 5.1. Example of an instance where the nearest neighbor heuristic
has an unbounded approximation ratio. 68

Figure 5.2. Example of an instance where the most-expensive neighbor
heuristic has an unbounded approximation ratio. 70

Figure 5.3. Increment of the length of the largest diagonal in n-sided reg-
ular polygons with side length D = 1 and n even. 72

Figure 5.4. Triangle to calculate the length D of the largest diagonal in
an n-sided regular polygon for n ∈ N even. 73

Figure 5.5. Example of an instance where the cost-balanced neighbor
heuristic has an unbounded approximation ratio. 77

Figure 5.6. Comparison of several heuristics and solving a MILP with
CPLEX on three benchmarks. 84

179

List of Figures

Figure 5.7. Comparison of di�erent factors f for the nearest neighbor
heuristic on variants of benchmark L. 87

Figure 5.8. Comparison of di�erent factors f for the most-expensive neigh-
bor heuristic on variants of benchmark L. 88

Figure 5.9. Comparison of cost values for solutions obtained with the CBN
heuristic applying di�erent values for parameter β on benchmark L. . 89

Figure 5.10. Comparison of di�erent parameters β for the cost-balanced
neighbor heuristic on variants of benchmark L. 90

Figure 5.11. Comparison of the rollout algorithm with varying width and
depth on benchmark L. 94

Figure 5.12. In�uence of the width and depth of the rollout algorithm on
the computational time. 95

Figure 5.13. Comparison of �rst and best improvement on benchmark L. . 96

Figure 6.1. Illustration of a search tree. 100
Figure 6.2. Schematic illustration of the comparison of mη1 and η2. 106
Figure 6.3. Schematic representation of the solution process of LBd

APC. . 123
Figure 6.4. Example for an 1-tree. 124
Figure 6.5. Example of the search tree for branching strategy Append. . 125
Figure 6.6. Details of a search tree resulting from branch-and-bound with

branching strategy append. 128
Figure 6.7. Example of the search tree for branching strategy include. . . 132
Figure 6.8. Details of a search tree resulting from branch-and-bound with

branching strategy include. 135
Figure 6.9. Comparison of lower bounds for total costs. 140
Figure 6.10. Comparison of the lower bounds on customer costs. 142
Figure 6.11. Comparison of di�erent constant step sizes t to compute the

travel cost bound LBd
iMST. 145

Figure 6.12. Comparison of exponential and linear parameter schemes for
the step size to compute the travel cost bound LBd

iMST. 146
Figure 6.13. Comparison of the lower bounds on travel costs. 148
Figure 6.14. Performance pro�les for computational time of the BB-Append

algorithm applying di�erent lower bounds on benchmark S. 150
Figure 6.15. Performance pro�les for computational time of the BB-Include

algorithm applying di�erent lower bounds on benchmark S. 152
Figure 6.16. Comparison of the BB-Append and BB-Include algorithm with

solving (R2dT4) with CPLEX on variants of benchmark S with in-
creased travel costs and increased customer cost coe�cients. 157

Figure 6.17. Comparison of the BB-Append and BB-Include algorithm with
solving (R2dT4) with CPLEX on variants of benchmark S where dmax

is small. 158
Figure 6.18. Comparison of the BB-Append and the BB-Include algorithm

as well as solving (R2dT4) with CPLEX in benchmark M. 159

180

List of Figures

Figure 6.19. Average computational time and gap of the BB-Append and
BB-Include algorithm as well as solving (R2dT4) with CPLEX de-
pendent on the number of jobs. 160

Figure A.1. Example for the locations of 100 jobs. 188

181

List of Tables

Table 3.1. Costs of the example instance. 32

Table 4.1. Number of nodes (in millions), analyzed during the solution
process with CPLEX, for di�erent time formulations in benchmark S. 57

Table 4.2. Statistic values for computational times of the formulation
(R1T4) for di�erent groups of benchmark S. 58

Table 4.3. Number of nodes (in millions), analyzed during the solution
process with CPLEX, for route formulation on benchmark S. 60

Table 4.4. Statistic values for computational times of formulation (R2dT4)
for di�erent groups of benchmark S. 62

Table 5.1. Quartiles of computational times for several heuristics. 85
Table 5.2. Average gap to the BoG solution of solutions obtained by a

greedy heuristic in di�erent variants of benchmark L. 91
Table 5.3. Average gap to a BoG solution of solutions obtained with the

rollout algorithm applying di�erent greedy algorithms as base heuris-
tic in di�erent variants of benchmarks L. 92

Table 5.4. Average gap to a BoG solution of solutions obtained with the
limited rollout algorithm applying di�erent candidate selection variants. 93

Table 5.5. Average computational time for �rst and best improvement
algorithms (in seconds). 96

Table 6.1. Comparison of the BB-Append and BB-Include algorithm as
well as solving (R2dT4) with CPLEX on benchmark S. 139

Table 6.2. Computational times for lower bounds for total costs (in mil-
liseconds). 140

Table 6.3. Comparison of η1 and η2 based on benchmark S and benchmark
L. 141

Table 6.4. Computational times for lower bounds on customer costs (in
milliseconds). 143

Table 6.5. Comparison of number of iterations and number of calculated
1-trees. 147

Table 6.6. Computational times for lower bounds on travel costs (in mil-
liseconds). 148

Table 6.7. Number of instances where the time limit was exceeded and
the average gap to the optimal value for these instances for the BB-
Append algorithm applying di�erent lower bounds. 150

183

List of Tables

Table 6.8. Number of analyzed nodes (in millions) during the solution
process of the BB-Append algorithm applying di�erent lower bounds. 150

Table 6.9. Number of instances where the time limit was exceeded and
the average gap to the optimal value for these instances for the BB-
Include algorithm applying di�erent lower bounds. 152

Table 6.10. Number of analyzed nodes (in millions) during the solution
process of the BB-Include algorithm applying di�erent lower bounds. 152

Table 6.11. Average computational time (in seconds) for the two branch-
and-bound algorithms BB-Append and BB-Include and solving the
MILP (R2dT4) via CPLEX. 154

Table A.1. Base distributions to de�ne customer cost coe�cients. 189
Table A.2. Characteristics of benchmark S. 190
Table A.3. Characteristics of benchmark M. 191
Table A.4. Characteristics of benchmark L. 191

184

.

Appendices

185

A. Benchmarks

In the following, benchmarks are de�ned that were used to compare the solution
methods and heuristics experimentally. For heuristics, which do not guarantee to
solve a problem optimally, the approximation quality is analyzed. Solution methods
to optimally solve the VRPCC are compared in terms of computational time. For
this purpose, computational experiments were made on 24 Intel Xeon CPUs with
2.93 GHz of a NUMA architecture. All developed algorithms and heuristics were
written in the programming language Java. Mixed-integer linear programs were
solved with CPLEX 12.8.

To evaluate and compare the solution approaches in terms of solution quality or
computational time, performance pro�les are used as presented in [41] which show
cumulative distribution functions of di�erent approaches for a selected performance
measure.

De�nition A.1. A particular VRPCC with de�ned input data is called an instance.
A certain set of instances used for di�erent computational experiments is called
benchmark.

The computational tests were carried out with arti�cial instances, because real
data of maintenance activities were rarely available. Furthermore, di�erent com-
panies have di�erent maintenance strategies and approaches. Because of that, the
maintenance data of several companies can be strongly di�erent. To be able to
test the solution methods and heuristics in general, the instances were created by
random varying several design parameters which are explained in the next sections.

Working Shift and Start Time

The working shift has a length of eight hours which are 480 minutes. In all instances,
the start times of the depots are set to t0 = (0, 480) because a rolling planning hori-
zon is assumed which means that each maintenance machine ends them maintenance
job at the end of the working shift and can travel over day to the �rst job of the
new maintenance plan. Consequently, the �rst job can be visited on day one at the
beginning of the working shift.

187

A. Benchmarks

De�nition of Job and Depot Locations

The location of a job or a depot is de�ned by an x- and a y-coordinate in a square
with length l. Following the ideas of Marius M. Solomon1, two variants to de-
�ne job locations are used: uniformly distributed and clustered. In the uniformly
distributed instances, the x- and y-coordinates of the job locations are integers, gen-
erated uniformly randomly in the interval [1, l]. In Figure A.1(a), an instance with
100 uniformly distributed jobs is shown.

(a) Uniformly distributed (b) Clustered

Figure A.1.: Example for the locations of 100 jobs.

The job locations of the clustered instances are de�ned as follows:

1. Select the number of clusters randomly from [2
3

√
n, 2

√
n].

2. Generate the center C ∈ R2 = (Cx, Cy) and the radius R ∈ R of each cluster
whereby Cx and Cy are uniformly distributed in [0.1l, 0.9l], and R is uniformly
distributed in [0.05l, 0.1l].

3. Create the locations of the jobs. For each job,

3.1. choose a cluster randomly,

3.2. generate a radius r ∈ [0, R] and an angle ϕ ∈ [0, 2Π] by random, and

3.3. calculate the coordinates as x := ⌊cos(ϕ)r⌉+Cx and y := ⌊sin(ϕ)r⌉+Cy.

Figure A.1(b) shows an instance where the jobs location are de�ned clustered.

1The benchmark problems presented 1987 by Marius M. Solomon for the VRPTW [132] are

common to analyze the performance of new developed solution approaches for the VRPTW.

The geographical data of these benchmarks are generated randomly, clustered or randomly and

clustered.

188

In both variants, the coordinates of the depots are either chosen randomly from
the inner square [0.25l, 0.75l]× [0.25l, 0.75l] or all depots are de�ned in the midpoint
(
⌊
l
2

⌉
,
⌊
l
2

⌉
).

The travel costs and travel times are calculated based on the Euclidean distance
between two jobs. Let li and lj be the location of two jobs i, j ∈ Na. Then, the
travel costs and times are

dij := ⌈fd ∥li − lj∥2⌉ and rij := max{5, ⌈ft ∥li − lj∥2⌉},

With it, the triangle inequality is satis�ed for the travel times and costs.

De�nition of the Customer Cost Coe�cients

The randomized de�nition of customer cost coe�cients is based on three values: the
ratio of jobs with non-zero customer cost coe�cient rcc ∈ [0, 1], the type of customer
cost distribution from the set {1, 2, 3} and a factor fcc ∈ R. The �rst ⌊rccn⌉ jobs are
a�icted with a non-zero customer cost coe�cient. The customer cost coe�cient of
a job is computed by multiplying a random generated basic value with the customer
cost factor fcc. The product is rounded up to get an integer. Thereby, the basic
value is chosen with a certain probability uniformly from a certain interval. For the
three customer cost types, the probabilities and intervals are speci�ed as shown in
Table A.1. For example, the distribution of type three implies that a large base
value is chosen with probability 0.1 and a small base value with probability 0.9. For
each of the three customer cost types, the expected basic value is 40.

type interval probability

1 [10, 70] 1

2 [10, 20] 1/3

[30, 50] 1/3

[60, 70] 1/3

3 [150, 200] 1/10

[10, 40] 9/10

Table A.1.: Base distributions to de�ne customer cost coe�cients.

De�nition of Working Time

The working time of a job is the time needed for processing the job. It is de�ned by
the parameter fwd multiplied with a random value from [0.5, 1.5].

189

A. Benchmarks

min Q1 Q2 Q3 max

non-zero customer cost coe�cient 8 21 33 49 256

travel time to nearest job 5 5 5 11 43

travel costs to nearest job 1 4 7 16 64

travel time to any job 5 18 46 68 127

travel costs to any job 1 26 69 102 190

working duration 57 106 133 177 240

percentage of gc(S∗) 15.9% 37.5% 52.7% 65.3% 81.7%

Table A.2.: Characteristics of benchmark S.

Some Benchmark Classes

In the following, the three benchmark types S, M and L are described detailed.

Benchmark S

Benchmark S contains 180 instances. It is constructed to analyze the in�uence of
the customer cost structure to the performance of a solution method.
Each instance consists of 15 jobs located in a square with a side length of 100

units which have to be served by two machines. For half of the instances, the job
locations are uniformly distributed and for the other half, the locations are de�ned
by clusters. For the latter, the number of clusters is between three and seven. The
factor to calculate travel times from the Euclidean distance is one, and the travel
costs factor is 1.5.
The customer costs are de�ned as follows: The customer cost factor fcc is chosen

randomly from [0.5, 2]. From the 90 instances with uniformly distributed job loca-
tions, 30 instances are generated with rcc = 0.33, rcc = 0.66 and rcc = 1, respectively.
From 30 instances with same ratio of jobs with non-zero customer cost coe�cient,
in ten instances the customer costs are de�ned as type 1, 2 and 3, respectively. The
same holds for the 90 instances with clustered located jobs.
Table A.2 provides statistic values for customer cost coe�cients, travel times and

costs as well as working duration. Finally, the percentage of customer costs to the
total costs in an optimal solution is provided. As it can be seen, there are instances
more dominated by travel costs and instances more dominated by customer costs.

Benchmark M

Benchmark M collects 100 medium-sized instances. Each instance consists of 30 jobs
which have to be served by two or three vehicles. The locations of the jobs are chosen
randomly in a square of length 300, either uniformly distributed or clustered. The
factors for travel costs and time are fd = ft = 1 for all instances. At least half

190

min Q1 Q2 Q3 max

jobs with non-zero customer cost coe�cient 15 19 22 26 29

non-zero customer cost coe�cient 6 26 47 77 471

travel time/costs to nearest job 5/1 7 14 25 117

travel time/costs to any job 5/1 72 136 196 389

working duration 33 73 97 133 216

percentage of gc(S) 32.4% 53.5% 60.9% 68.8% 80.8%

Table A.3.: Characteristics of benchmark M.

min Q1 Q2 Q3 max

jobs with non-zero customer cost coe�cient 25 43 62 75 98

non-zero customer cost coe�cient 1 15 27 52 369

travel time/costs to nearest job 5/1 5 8 15 65

travel time/costs to any job 5/1 84 141 196 406

working duration 56 85 111 139 166

percentage of gc(S) 16.7% 48.1% 62.1% 74.1% 88.1%

Table A.4.: Characteristics of benchmark L.

of jobs are a�icted with a non-zero customer cost coe�cient. The customer cost
factor fcc is chosen uniformly distributed from [0.5, 2.5] and the customer cost type
is selected randomly between 1, 2 or 3. To determine the working duration, for each
instance the factor fwd is chosen randomly between four and nine.
Table A.3 gives statistic values for some characteristics of the instances of bench-

mark M: the number of jobs with non-zero customer cost coe�cient, the customer
cost coe�cient, travel time/costs and working duration. Furthermore, the percent-
age of customer costs to the total costs in the best-known solution are shown.

Benchmark L

Benchmark L contains 100 large instances which includes 100 jobs that have to
be served by three to �ve machines. The job locations are generated uniformly
distributed or clustered in a square of length 300. The factors for travel costs and
time are fd = ft = 1 for all instances. Between 25 and 100 jobs are a�icted with
a non-zero customer cost coe�cient. The customer cost type is selected randomly
between 1, 2 or 3, and fcc is chosen randomly from [0, 2]. The factor for the working
time fwd is equal to 23.
Table A.4 provides statistic values for the number of jobs with non-zero customer

cost coe�cient and the customer cost coe�cients itself, travel times and costs as well
as working duration. Finally, the percentage of customer costs to the total costs in

191

A. Benchmarks

a best-known solution is given.
Because benchmark L is used to test heuristics and them sensitivity to the ratio of

customer costs and travel costs, four additional variants of benchmark L are created
by multiplying either the travel costs by factor ten or hundred or the customer cost
coe�cients by factor ten or hundred.

192

B. Algorithm Pseudocodes

Algorithm 1: Algorithm to �ll empty routes (FILL)

Input: S

for k = 1 → m do

if Nk = ∅ then
cmin = ∞
for l = 1 → m do

if |Nl| > 1 then

for j ∈ Nl do

Create S ′ by shifting job j to route Nk.
if g(S ′) < cmin and all non-empty routes of S ′ are feasible

then

cmin = g(S ′)

jB = j

Shift job jB to route Nk in S.

return S

193

B. Algorithm Pseudocodes

Algorithm 2: Nearest neighbor heuristic (NN)

Input: f ≥ 0 // �exibility: allowed variation from the minimal travel cost value

S̃ := (∅, ())k∈M
Ñ := N

while Ñ ̸= ∅ do
I = {(j, k)| j ∈ Ñ , k ∈ M, (j, k) is feasible}
if |I| = 0 then

return uncompleted schedule S̃

Let lk ∈ N ∪Ns be the current last job of route k ∈ M .
dmin := min

(j,k)∈I
dlkj

cmax := max
(j,k)∈I

{cj| dlkj ≤ dmin(1 + f)}

(jB, kB) := argmin
(j,k)∈I

{dlkj| cj = cmax}

Append job jB at the end of route ΠkB and set NkB = NkB ∪ {jB} in S̃

Ñ = Ñ \ {jB}
If necessary, �ll empty routes.
return completed schedule S

194

Algorithm 3: Most-expensive neighbor heuristic (MEN)

Input: f ∈ (0, 1] // �exibility: allowed variation from the most-expensive job

S̃ := (∅, ())k∈M
Ñ := N

while Ñ ̸= ∅ do
cmax = max{cj| j ∈ Ñ}
emin = ∞
forall j ∈ Ñ do

if cj ≥ fcmax then

for k = 1 → m do

if (j, k) is feasible then

Let lk be the current last job of route k.
(td, tm) := ζ(ξ(tlk) + alk + rlkj, uj)

e(j, k) := dlkj + tdcmax

if emin > e(j, k) then

emin = e(j, k)

(jB, kB) = (j, k)

if (jB, kB) is None then

return uncompleted schedule S̃

Append job jB at the end of route ΠkB and set NkB = NkB ∪ {jB} in S̃.

Ñ = Ñ \ {jB}
If necessary, �ll empty routes.

return completed schedule S̃

195

B. Algorithm Pseudocodes

Algorithm 4: Cost-balanced neighbor heuristic (CBN)

Input: β ∈ [0, 1] // weight to balance travel costs and customer costs

nday // estimated number of jobs visited per day and vehicle,

// see equation (5.1) on page 71

S̃ := (∅, ())k∈M
Ñ := N

while Ñ ̸= ∅ do
cmin = ∞
forall j ∈ Ñ do

for k = 1 → m do

if (j, k) is feasible then

Let lk be the current last job of route k.

cb(j, k) = βdlkj − (1− β)
n
m
−|Nk|
nday

cj

if cmin > cb(j, k) then

cmin = cb(j, k)

(jB, kB) = (j, k)

if (jB, kB) is None then

return uncompleted schedule S̃

Append job jB at the end of route ΠkB and set NkB = NkB ∪ {jB} in S̃.

Ñ = Ñ \ {jB}
If necessary, �ll empty routes.

return completed schedule S̃

196

Algorithm 5: Best-of-Greedy algorithm (BoG)

Sbest := {(∅, ())k∈M} with g({(∅, ())k∈M}) = ∞
for f ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} do

S := schedule from NN heuristic with �exibility f

if g(S) < g(Sbest) then
Sbest = S

for f ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} do
S := schedule from MEN heuristic with �exibility f

if g(S) < g(Sbest) then
Sbest = S

for β ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} do
S := schedule from CBN heuristic with weight β
if g(S) < g(Sbest) then

Sbest = S

return Sbest

197

B. Algorithm Pseudocodes

Algorithm 6: Rollout algorithm

S̃ := (∅, ())k∈M
Ñ := N

while Ñ ̸= ∅ do
gmin = ∞
forall j ∈ Ñ do

Ñ := Ñ \ {j}
for k = 1 → m do

if (j, k) is feasible then

Append job j at the end of route Πk and set Nk = Nk ∪ {j}.
Let SH be the schedule obtained by completing S̃ by means of
a greedy heuristic.
if SH is feasible and g(SH) < gmin then

gmin = g(SH)

(jB, kB) = (j, k)

Remove job j from Πk and set Nk = Nk \ {j}.

Ñ := Ñ ∪ {j}
if (jB, kB) is None then

return uncompleted schedule S̃

Append job jB at the end of route ΠkB and set NkB = NkB ∪ {jB} in S̃.

Ñ = Ñ \ {jB}
If necessary, �ll empty routes.

return completed schedule S̃

198

Algorithm 7: Base algorithm for �rst and best improvement
Input: K // number of improvement runs

Compute S by the BoG heuristic.
Sbest = S

gmin = g(Sbest)

for K runs do

do

S = �rst/best improved neighbor of S
while an improved neighbor of S exists

if g(S) < gmin then

gmin = g(S)

Sbest = S

/* Compute start schedule for the next iteration which should be at least 15% more

expensive than last obtained schedule S. */

g = 1.15 g(S)

while g(S) < g do

S = random neighbor of S

return Sbest

199

B. Algorithm Pseudocodes

Algorithm 8: Compute LBc
LPBP1 with polynomial e�ort.

Input: Nc // set of jobs with non-zero customer cost coe�cient

T = {t1, t2, . . . , t|T |} // start days with tj < tj+1 ∀j ∈ {1, 2, . . . , |T | − 1}
LBc

LPBP1 = 0
Sort the jobs decreased by ci

ai+ri
to get c1

a1+r1
≥ c2

a2+r2
≥ · · · ≥ cnc

anc+rnc
.

b = 0

j = 1

for i = 1 to nc do

if b+ ai + ri ≤ mu +Rm then

LBc
LPBP1 = LBc

LPBP1 + tjci
b = b+ ai + ri // Pack job i completely into bin tj.

else

LBc
LPBP1 = LBc

LPBP1 +
(
tj

mu+Rm−b
ai+ri

+ tj+1

(
1− mu+Rm−b

ai+ri

))
ci

j = j + 1

b = ai + ri − (mu +Rm − b) // Pack job i fractional into bin tj and tj+1.

return LBc
LPBP1

200

Algorithm 9: Branch-and-bound with branching strategy append (BB-
Append).

Input: Nsort = (j1, j2, . . . , jn)

Calculate an heuristics solution S.
Initialize the best solution so far Sbest = S and the upper bound UB = g(S).

Start with the �rst partial solution S̃ = ({j1}, (j1), ∅, (), . . . , ∅, ()) and
Ñ = N \ {j1}.
while S̃ is not empty do

if the current partial solution S̃ can lead to a feasible solution then

if all jobs are planned then

if g(S̃) < UB then

UB = g(S̃)

Sbest = S̃

S̃ = backtrack(S̃)

else

if g(S̃) < UB then

Calculate lower bound LB.
else

Set LB = 0.
if g(S̃) + LB < UB then

Further investigate the branch:

Search �rst job j in Nsort which is unplanned in S̃.
Append j to the route where the last job was appended to.

else

S̃ = backtrack(S̃)

else

S̃ = backtrack(S̃)

return Sbest

201

B. Algorithm Pseudocodes

Algorithm 10: Backtracking for branching strategy append.

Input: S̃

while S̃ is not empty do

Let j be the last appended job and
k the corresponding route.
if k < m then

Shift j to route k + 1.

return S̃

Search for �rst j′ behind j in the sorted list with j′ is unplanned.
if j′ exists then

Remove j from route k.
Let k′ be the non-empty route with largest index or, if all routes are
empty, k′ = 1. Append j′ to route k′.

return S̃

Remove job j from route k.

return S̃

202

Algorithm 11: Branch-and-bound with branching strategy include (BB-
Include).

Input: Nsort = (j1, j2, . . . , jn)

Calculate an heuristics solution S.
Initialize the best solution so far Sbest = S and the upper bound UB = g(S).

Start with the �rst partial solution S̃ = ({j1}, (j1), ∅, (), . . . , ∅, ()) and
Ñ = N \ {j1}.
while S̃ is not empty do

if the current partial solution S̃ can lead to a feasible solution then

if all jobs are planned then

if g(S̃) < UB then

UB = g(S̃)

Sbest = S̃

S̃ = backtrack(S̃)

else

if g(S̃) < UB then

Calculate lower bound LB.
if LB < UB then

Further investigate the branch:
Include the �rst unplanned job of Nsort as last of route 1.

else

S̃ = backtrack(S̃)

else

S̃ = backtrack(S̃)

else

S̃ = backtrack(S̃)

return Sbest

203

B. Algorithm Pseudocodes

Algorithm 12: Backtracking for branching strategy include.

Input: partial solution S̃

while S̃ is not empty do

Let j be the last included job,
k the corresponding route and
p its position in the route.
if p > 1 then

Switch j and its predecessor. Then, j is on position p− 1 in route k.

return S̃

if k < m then

Shift j to route k + 1 and append it to the end of the route.

return S̃

Remove job j from route k.

return S̃

204

Erklärung des Promovierenden

zum Antrag auf Erö�nung des Promotionsverfahrens

1. Die folgende Promotionsordnung in ihrer gültigen Fassung erkenne ich an:

Bereich Mathematik und Naturwissenschaften
Promotionsordnung vom 23.02.2011

2. Die Promotion wurde an folgendem Institut/an folgender Professur durchgeführt:

Institut für Numerische Mathematik der Technischen Universität Dresden
in einem kooperativen Verfahren mit der Hochschule Mittweida

3. Folgende Personen haben die Promotion wissenschaftlich betreut und/oder mich
bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des
Manuskripts unterstützt:

Prof. Dr. Andreas Fischer
Dr. Guntram Scheithauer
Dr. Ute Gläser
Axel Simroth
Prof. Dr. Peter Tittmann
Prof. Dr. Thomas Kalinowski

4. Ich bestätige, dass für meine Person bisher keine früheren, erfolglosen Promo-
tionsverfahren stattgefunden haben.

5. Ich versichere weiterhin, dass

(a) ich die vorliegende Arbeit mit dem Titel �On a Vehicle Routing Problem with
Customer Costs and Multi Depots� ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel selbst angefertigt habe.
Hilfe Dritter wurde nur in wissenschaftlich vertretbarem und prüfungsrechtlich
zulässigem Ausmaÿ in Anspruch genommen. Es sind keine unzulässigen geld-
werten Leistungen, weder unmittelbar noch mittelbar, im Zusammenhang mit
dem Inhalt der vorliegenden Dissertation an Dritte erfolgt.

(b) die aus fremden Quellen direkt oder indirekt übernommenen Gedanken als
solche kenntlich gemacht sind.

(c) ich die vorliegende Arbeit bisher weder im Inland noch im Ausland in gle-
icher oder ähnlicher Form einer anderen Prüfungsbehörde zum Zwecke einer
Promotion oder eines anderen Prüfungsverfahrens vorgelegt habe.

6. Mir ist bekannt, dass die Nichteinhaltung dieser Erklärung oder unrichtige Angaben
zum Verfahrensabbruch oder zum nachträglichen Entzug des Doktortitels führen
können.

Dresden, 07.07.2022
Ort, Datum

Unterschrift: Antragsteller:in

