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Abstract

We present an integrated pixel segmentation and region

tracking algorithm, designed for indoor environments. Vi-

sual monitoring systems often use frame differencing tech-

niques to independently classify each image pixel as either

foreground or background. Typically, this level of process-

ing does not take account of the global image structure,

resulting in frequent misclassification. We use an adap-

tive Gaussian mixture model in colour and space to repre-

sent background and foreground regions of the scene. This

model is used to probabilistically classify observed pixel

values, incorporating the global scene structure into pixel-

level segmentation. We evaluate our system over 4 se-

quences and show that it successfully segments foreground

pixels and tracks major foreground regions as they move

through the scene.

1. Introduction

The challenge of intelligent video surveillance is to extract

meaningful structure from a stream of raw image pixel data.

A popular approach is to apply a “bottom-up” sequence

of processing steps to each frame image. Each step rep-

resents an incremental abstraction of the image data, re-

sulting in a high-level and context specific interpretation of

the scene dynamics. Typically, the first level of process-

ing employs a per-pixel background subtraction technique

to classify each pixel as either foreground or background.

Many methods have been proposed. Wren’s Pfinder system

[14], and Zhao [15] use an adaptive Gaussian to represent

each pixel’s background colour value. Subsequent values

are classified by thresholding against this distribution, and

adaption of the model copes with slow lighting changes. El-

gammal [2] uses a non-parametric kernel density estimate

instead of a Gaussian model. Stauffer [12] introduced a per-

pixel mixture of Gaussians: the popularity of this model

lies in its ability to represent multiple processes for each

pixel. Many variations and modifications have been devel-

oped, such as [5, 6]. A common feature of these schemes is

that pixels are treated as spatially independent processes.

Spatial correlation of foreground pixels is typically de-

veloped at the second processing stage, through the cluster-

ing of foreground pixels into homogeneous regions. Such

systems have also been well studied and explored. The

Pfinder system [14] uses Gaussian distributions in colour

and space, and explicitly assigns each to a specific body

part. Khan [7] uses a similar approach, and further ex-

tends the feature space to include optical flow values [8].

Non-probabilistic schemes have also been used success-

fully, such as connected components algorithms [9, 15].

The work presented in this paper is motivated by the fact

that background subtraction techniques treat each pixel as

an independent process: classification is based only on pre-

vious observation of that pixel’s value. Failure to interpret

observations within the context of the higher-level image

structure leads to frequent and obvious misclassifications,

for example when a background object, or the camera, move

slightly. Some authors have addressed this issue. Stauffer’s

[12] model can eliminate misclassification due to cyclical

motion in the background (such as moving foliage), but

not sporadic movements. Elgammal [2] thresholds against

adjacent pixel distributions, to eliminate small movements.

However, a more structural approach is warranted. Harville

[4] proposes a general framework in which high-level deci-

sions feedback to background subtraction. Cristani [1] suc-

cessfully integrates a pixel model with a particle filter track-

ing system to implement high-level modulation of low-level

processing.

Our approach is to dispense with a per-pixel background

model. Instead we model homogenous regions of scene pix-

els using a 5-dimensional mixture of Gaussians in colour

and space. Each regional distribution is classified as either

foreground or background, and each pixel is assigned to one

region. Thus each pixel is classified as foreground or back-

ground according to the classification of the distribution to

which it is assigned.

We process each new frame by probabilistically assign-

ing each pixel to a distribution. We then re-estimate each

distribution’s parameters from the statistics of its assigned

pixels. The result is that if a distribution represents a region
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of pixels which moves or changes over time, then the pa-

rameters of the distribution are updated to reflect this, and

the distribution automatically tracks the region through the

scene. If changes in the scene are not well represented by

a the model then we add new distributions, which we clas-

sify as foreground. The background and foreground dis-

tributions are initialised and developed automatically, and

require no off-line or supervised pre-processing.

Using this scheme we are able to directly integrate pixel-

level segmentation and classification with a dynamic struc-

tural representation of the scene. We are currently using this

as the basis for developing a visual surveillance system for

monitoring individuals in interior environments.

2. Related Work

Statistical region modelling without background subtraction

has been used by some researchers in computer vision and

video indexing. McKenna [10] developed a tracker in which

the colour distribution of a known object is represented as a

mixture of 2-dimensional Gaussians. This system does not

explicitly model spatial features of objects or regions, and

requires the off-line learning of the object model.

Gaussian mixture models have been used in the field of

image indexing as a method of extracting salient features

from a scene. Greenspan [3] indexes video sequences by

adding time to the pixel feature vector. This requires that

the video sequence is split into sub-sequences, and a model

built for each. A second processing pass uses the model to

segment objects in each frame. Though effective, this ap-

proach is unsuitable for real-time surveillance applications.

Work by Pece [11] in tracking objects in monochromatic

video bears conceptual similarity to ours. Pece models the

scene image as a mixture of components in space and grey-

scale intensity. The likelihood of each pixel is calculated for

each cluster, and used to weight the pixel’s contribution to

the parameter re-estimation. However, the cluster densities

are only modelled as Gaussian for the spatial distribution of

foreground objects.

3. Our Approach

We represent regions of the scene using a mixture of

Gaussian components in 5-dimensional space. The first two

dimensions are x and y image coordinates, the remaining

three are YUV colour values. A pixel value is represented

in this feature space by a vector X = [x, y, Y, U, V ]T . Each

component of the mixture is represented by a distribution

function of the form:

p(X|θi) = ωi

1
√

(2π)d|Σi|
e−

1

2
(X−µi)

T
Σ

−1

i
(X−µi) (1)

Where the distribution parameters θi = {ωi, µi,Σi} are

the weight ωi, mean µi, and covariance matrix Σi of the ith

component. The dimensionality, d, is 5. For a mixture of k

components, the following condition holds:

k
∑

i=1

ωi = 1 (2)

Given a set of model parameters of this form, an ob-

served pixel value may be classified by assigning it to the

component with the maximum posterior probability, Cmap.

Using the log likelihood of the pixel value:

Cmap = argmaxi {log(p(X|θi)} (3)

We relax the model slightly by assuming that the spa-

tial and colour distributions of each component are inde-

pendent and uncorrelated. We may therefore re-express the

distribution function in equation (1) as the product of a 2-

dimensional spatial Gaussian and a 3-dimensional colour

Gaussian, with parameter sets θs
i = {ωs

i , µ
s
i ,Σ

s
i} and

θc
i = {ωc

i , µ
c
i ,Σ

c
i}. Correspondingly, each pixel value is

expressed by the spatial vectors X
s = [x, y]T , and colour

vector X
c = [Y,U, V ]T . Hence, equation (3) becomes:

Cmap = argmaxi {log(p(Xs|θs
i ) + log(p(Xc|θc

i )} (4)

We use each component of our model to represent a ho-

mogenous region of the scene: that is, a set of pixels with

similar spatial and colour characteristics. Our premise is

that such a region is generated by a single corresponding

process, such as part of an object. Components are used

to represent both foreground and background regions. We

define a background region as one which corresponds to a

static or marginally varying process. This could be an object

or part of an object which is perceived as static or displaying

inconsequential movement. A foreground region is one in

which the process is not static: the corresponding object ex-

hibits significant movement or change over time. Each com-

ponent is explicitly classified as either foreground or back-

ground. Background components are constructed in an ini-

tialisation phase, and foreground components are detected

during frame processing. All components are updated dur-

ing frame processing, to reflect changes in the scene.

The remaining significant data structure in our system is

the “support map”, which stores the current component as-

signment for each pixel. During frame processing we use

equation (4) to assign each new pixel to one of the current

components. If the colour value of the pixel changes sig-

nificantly it may be assigned to a new component. When

this happens, the support map entry for the pixel is changed

correspondingly.
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3.1. Building the Background

The background components are constructed from the first

frame of the sequence. Expectation Maximisation (EM) is

an established algorithm for estimating a maximum like-

lihood set of parameters for a Gaussian mixture, given a

model order and data set. Greenspan [3] uses this technique

to build parameters for short video sections, and utilises the

Minimum Description Length criteria to estimate an appro-

priate model order. Although this technique is effective and

well principled, we face some problems in using it for a

real-time surveillance system. Firstly, EM is computation-

ally expensive. We wish to employ a method which ini-

tialises quickly to build the background model, and which

is fast enough to develop the model on a per-frame basis.

EM methods are unsuitable in this respect. Secondly, we

need to be able to adapt the model order dynamically. If

we consider that the model order is related to the number

of underlying processes, then, as objects enter and leave the

scene, the model order needs to be re-estimated.

The technique of splitting and merging components has

been shown to be effective for controlling convergence of

the EM algorithm [13]. It has also been used by McKenna

[10] and by Pece [11] as a technique for dynamically adapt-

ing model order. We use the iterative splitting and merg-

ing of components as the basis for building an initial back-

ground model, and subsequently for developing foreground

components during frame processing. We find that this

method is computationally manageable, and, by minimis-

ing the variance of the model components, generates a suit-

able representation of the scene regions. We build the back-

ground model using the following steps:

1 We initialise the mixture with a single component es-

timated from the statistics of the entire image, and set

each support map entry to this component.

2 We iteratively select the components with the highest

spatial and colour variances, and split each into two

new components.

3 Pairs of similar components are merged.

4 Components which are significantly spatially dis-

connected (possibly representing different objects or

processes) are split.

We now describe these steps in more detail. Starting with

an initial component generated by step 1, we split it into a

set of components by iteratively applying step 2, as follows.

We calculate the principle eigenvalue, λs
i and correspond-

ing eigenvector, Λs
i for each component’s spatial covariance

matrix. We select the component Csp = argmaxi {λ
s
i}. If

its eigenvalue λs
sp > T s

sp, where T s
sp is a predefined thresh-

old, then we split component Csp. We create a new compo-

nent and re-assign to it those pixels which satisfy:

(Xs − µs
sp) · Λ

s
sp > 0 (5)

This amounts to placing a separating plane through the

spatial mean, perpendicular to Λ
s
sp. The parameters of both

components are then re-estimated from the statistics of their

respective assigned pixel values as follows:

ωs
i =

ni

N
(6)

µs
i =

1

ni

ni
∑

j=1

X
s
ij (7)

Z
s
i = µs

i
T

µs
i (8)

Σ
s
i =

∑ni

j=1 X
s
ij

T
X

s
ij

ni

− Z
s
i (9)

Where X
s
ij is the spatial component of the jth pixel as-

signed to the ith component; ni is the number of pixels

assigned to the component; and N is the total number of

pixels in the image. The value of µs
i used in equation (8) is

the new value calculated using equation (7). We then apply

the same selection and splitting procedure in colour space,

using a corresponding threshold T c
sp, to split the component

with the highest colour variance. We repeat this process,

alternating between spatial and colour distributions, until

reaching a maximum number of components, or until the

largest eigenvalues fall below their thresholds.

We now merge similar components. If Ms
i (X

s) is the

spatial Mahalanobis distance of X
s from µs

i , and Mc
i (X

c)
is the colour Mahalanobis distance of X

c from µc
i , then a

pair of components is considered suitable for merging if the

following holds:

Ms
1(µ

s
2) < T s

mg ∧ Ms
2(µ

s
1) < T s

mg ∧

Mc
1(µ

c
2) < T c

mg ∧ Mc
2(µ

c
1) < T c

mg (10)

Where T s
mg and T c

mg are predefined thresholds. We con-

sider each pair of components, and merge the qualifying

pair with the lowest value of max(Mc
1(µ

c
2), Mc

2(µ
c
1)).

This procedure is repeated until no qualifying pairs remain.

We next seek to identify components which represent

spatially disconnected regions, and split them to represent

those regions separately. We order the components in de-

scending value of λs
i , and step through the list. For each,

we use a connected components algorithm to determine if it

represents two or more disconnected regions of the support

map: if so, we split the largest region away from the rest as

a new component. For reasons of efficiency we implement

this at a reduced resolution. We repeat this until no discon-

nected components are found, or for a maximum number

of iterations. Finally, when this process is complete, com-

ponents which have a zero or very small weight are culled

from the model.
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3.2. Frame Processing

Once the background model has been built we are ready

to start processing new frames. For each new frame the

following operations are applied:

1 The current model is used assign the pixels in the new

frame, and rebuild the support map.

2 Existing background and foreground components are

updated from the support map.

3 New foreground components are detected and created.

4 Foreground components are merged and culled.

The current mixture of components is used to assign each

pixel in the new frame using equation (4). Many systems,

such as [12], use a predictive filter to estimate the change

in position of objects between frames. Instead, we em-

ploy Elgammal’s observation [2] that foreground objects,

though moving, will have moved only a relatively short

distance between one frame and the next. Thus we use

only the previous frame’s observed model to assign pixels:

each pixel is assigned to Cmap, and its corresponding sup-

port map entry set to reflect this. During frame process-

ing a minimum likelihood threshold Tmap is applied: if

log(p(X|θCmap)) < Tmap, the pixel is set as unassigned.

The parameters of the existing background and fore-

ground components are now re-estimated. For foreground

components, equations of the form (6) to (9) are used to re-

build its spatial and colour distributions from its assigned

pixels. For background components we adapt the parame-

ters more slowly. For each component i we start by calculat-

ing a set of parameter values θ(i,sm) from the support map,

in the same way as for foreground components. However,

we do not substitute these new values directly. Given the

existing parameters θ(i,t−1), we calculate the new set θ(i,t)

using an adaptive learning rate:

θ(i,t) = αiθ(i,sm) + (1 − αi)θ(i,t−1) (11)

The learning rate αi is calculated for each component for

each frame as:

αi =
ω(i,sm)

ω(i,t−1)
, αi ∈ [0, 1] (12)

Where ω(i,sm) and ω(i,t−1) are the weights from θ(i,sm)

and θ(i,t−1) respectively. Constraining the adaptation in this

way ensures that if a background component is occluded it

does not adapt too quickly to represent only the visible part.

It also helps to prevent the background from over adapting

to misclassified foreground pixels. It is necessary to renor-

malise the component weights at this point, to enforce the

condition in equation (2).

Next we use the support map to detect new foreground

regions. The map is divided into a grid of resolution 16×16
pixels, and the number of unassigned pixels counted for

each location. Locations exceeding a threshold density are

considered to correspond to new foreground regions. A sin-

gle foreground component is built from the unassigned pix-

els in all such grid locations, using equations of the form

(6) to (9) to build the spatial and colour distributions. This

new component is then split using the same splitting method

used to build the background.

Regardless of whether any new components have been

added this frame, we test all foreground components for

possible merging. First, we restrict the spatial and colour

variances of each component to pre-defined maximum val-

ues. This helps prevent over adaptation to misclassified

background pixels. We then merge similar components us-

ing the same pair-wise method as was used for the back-

ground model. Finally, we conclude frame processing by

culling any foreground components which have a zero or

very low weight.

3.3. Modifications to Frame Processing

We have made some modifications to the algorithm in or-

der to improve performance. Firstly we encounter a prob-

lem using equation (4) during frame updates: the spatial

variance Σ
s
i for large background components is typically

very high. This frequently results in pixels being assigned

to regions from which they are significantly disconnected.

In particular, this hampers detection of new foreground re-

gions. To resolve this we apply the additional restriction

that a pixel may only be assigned to a background compo-

nent if its spatial likelihood exceeds a predefined threshold

T s
lik:

log(p(Xs|θs
i )) > T s

lik (13)

We also make a performance optimisation to the assign-

ment of pixels during frame processing. If a pixel is cur-

rently assigned to an existing component, its colour value

remains relatively unchanged, and its likelihood given the

same assignment is greater than Tmap then we leave its as-

signment unchanged. This significantly reduces processing

time. A pixel value is defined as unchanged if each element

of its YUV colour value is within a threshold deviation from

the value first used to assign it.

4. Experiments

We have tested our system on 4 short sequences, each com-

prising 150-200 frames, and recorded using a DV cam-

corder in 720×576 PAL format. Each sequence shows a

single human figure engaged in some routine activity, such

as walking to a chair and sitting down. One sequence

was filmed in an exterior environment, and the others are
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interior. Figure 1 shows an example frame from one of

the sequences, together with representations of the back-

ground and foreground components, and a binary mask of

the foreground pixels. The component representations were

constructed by setting each pixel to µc of the component

Cs
map = argmaxi {log(p(Xs|θs

i )}. Figure 2 shows some

similar example frames from two of the other sequences.

(a) (b)

(c) (d)

Figure 1: A frame from an image Sequence. (a) Captured

image. (b) Background components. (c) Foreground com-

ponents. (d) Foreground pixels in the support map.

The representation shown in figure 1 is typical in that

we can infer a correspondence between foreground compo-

nents and body parts of the subject. We intend to develop

our system to use the foreground regions as the basis for a

human body tracking system. We therefore evaluated how

effectively the foreground components in our system repre-

sent and track major body parts.

In all sequences, the major body parts were represented

and tracked successfully. In some cases the segmentation

failed where part of the foreground coincided with, or was

immediately adjacent to, a background region of similar

colour. Small body parts, such as hands or feet, were fre-

quently not represented by a corresponding component, or

were not tracked between frames due to sudden large dis-

placements.

The system proved robust to camera movement. Dur-

ing one of the sequences the camera was unintentionally

moved, resulting in a global image translation. The sys-

tem continued to operate without noticeable corresponding

misclassifications. However, we also noted that the slowed

adaptation of the background sometimes results in the in-

troduction of spurious foreground components where there

is a significant lighting change.

Each sequence was processed using an Intel Pentium 4

Figure 2: Example frames from two other sequences.

(2.8GHz) PC system, and the executable code was devel-

oped in C++. Each sequence took approximately 10 sec-

onds to initialise. Frame processing time ranged between

0.94 and 2.70 seconds.

We quantify our results in the following tables, which

were constructed as follows. For each sequence we identi-

fied the major body parts. We inspected the representation

in each frame, in an arrangement similar to figure 1. For

each body part we categorised the estimated proportion (of

its pixels) assigned to a corresponding foreground compo-

nent as either more than 0.75, 0.75-0.5, less than 0.5, or 0. A

classification of 0 corresponds to a failure to represent the

body part in that frame. For the whole sequence we then

calculated the proportion of frames in which each body part

was represented by each category. The sequence tables are

ordered from easiest to hardest in terms of perceived diffi-

culty of segmentation. The lower arms are classified sepa-

rately in the last two sequences, as the subject was wearing

short sleeves.

Results for Sequence 1

>0.75 >0.50 <0.50 0.00

Head & Face 0.95 0.05 0 0

Torso & Arms 0.92 0.08 0 0

Legs & Feet 0.73 0.19 0.08 0

Results for Sequence 2

>0.75 >0.50 <0.50 0.00

Head & Face 0.07 0.24 0.57 0.12

Torso & Arms 0.89 0.11 0 0

Legs & Feet 1.00 0 0 0
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Results for Sequence 3

>0.75 >0.50 <0.50 0.00

Head & Face 0.27 0.04 0.60 0.09

Torso & Arms 0.52 0.43 0.05 0

Lower Arms 0.24 0.07 0.45 0.24

Legs & Feet 0.50 0.46 0.02 0.02

Results for Sequence 4

>0.75 >0.50 <0.50 0.00

Head & Face 0.28 0.37 0.13 0.22

Torso & Arms 0.52 0.43 0.05 0

Lower Arms 0.69 0.21 0.10 0

Legs & Feet 0.06 0.02 0.24 0.68

5. Conclusions and Further Work

We have presented a novel algorithm which tracks objects

by modelling global scene structure, and shown that it is ef-

fective. The execution speed of our algorithm is not quite

suitable for real-time processing, but we consider that since

we have not yet attempted low-level performance optimisa-

tion, and that our platform is relatively modest, it is feasible

to develop a version which runs in real-time. This will be

one objective for further development work.

We are currently developing an indoor surveillance sys-

tem based on our work. To achieve this we need to improve

the on-line adaptation of the model, so that we can identify

spurious foreground components and re-classifying them as

background. We intend to do this by clustering associated

foreground regions to build models of complete objects. We

also wish to investigate using the features of foreground

components to implement a human body tracking system.
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