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ABSTRACT 

The need for a more effective oily wastewater treatment is necessary to 

minimize oil and grease content in the wastewater and produce maximum amount of 

treated water that is suitable to be discharged into open water course. Even though 

degradation of oily wastewater was found to be promising through photocatalysis 

process, excellent performance can be achieved through the combination of 

photocatalysis with membrane separation process. In this study, zirconium dioxide 

(ZrO2) was combined with titanium dioxide (TiO2) to improve the specific surface area 

of TiO2. The TiO2-ZrO2 hybrid photocatalysts were then embedded in the outer layer 

of the polyvinylidene fluoride (PVDF) dual layer hollow fiber (DLHF) membrane to 

produce a photocatalytic membrane for oily wastewater treatment. In the first stage of 

the study, the coupling of ZrO2 content from 1 to 20% into TiO2 was designed to 

enhance the oily wastewater adsorption capacity and the photodegradation 

performance. The 1% TiO2-ZrO2 hybrid photocatalysts synthesized in this study 

revealed a higher (second highest) specific surface area of 136.7 m2/g in comparison 

to single TiO2 (39.9 m2/g). This characteristic is desired as it can boost the 

photocatalytic activity. The hybrid photocatalysts also displayed reduced optical band 

gap energy which is desirable as it allows better absorption of photons to excite the 

electrons into the valence band. The second stage of the study involved fabrication of 

PVDF DLHF membrane embedded with 1 wt.% of TiO2-ZrO2 hybrid photocatalysts 

in the outer layer of the membrane (DL-ZT1). The fabricated membrane was optimized 

in terms of air gap from 5 cm to 50 cm. The membrane spun at lower air gap of 5 cm 

showed the formation of long finger-like structure around 65.0 ± 3.3 µm in length on 

the outer layer of the membrane due to the immediate phase inversion on the outer side 

of the fiber. Cross-sectional image of the membrane showed that the membrane is free 

from delamination which indicated mutual diffusion of polymer during co-extrusion. 

The membrane displayed lowest contact angle of 71.70° ± 2.58°. The low contact angle 

was attributed to the low air gap of 5 cm that promoted the growing of microvoids on 

the outer layer. Under crossflow filtration condition, the membrane also demonstrated 

highest water and oily wastewater permeation flux as well as oil rejection percentage 

of 85.4% without UV light irradiation. In the third stage of the study, the membrane 

was optimized in terms of photocatalysts loading from 0 to 1 wt.% in the outer layer 

dope composition. The photocatalytic activity of the membrane was investigated using 

the submerged membrane photoreactor (sMPR) at oily wastewater concentration of 

1000 and 10,000 ppm. At 1000 ppm concentration, DL-ZT1 was found to have initial 

oily wastewater permeation flux of 97.71 L/m2.h without UV light irradiation and the 

flux increased to 321.62 L/m2.h under UV light irradiation. As a result, DL-ZT1 

recorded total organic carbon (TOC) degradation of 91.8%. Despite showing reduced 

TOC degradation at higher oily wastewater concentration of 10,000 ppm, DL-ZT1 

recorded oil rejection percentage of 96%. DL-ZT1 exhibited a great potential of 

photocatalytic membrane for oily wastewater treatment. In comparison to single layer 

hollow fiber membranes, the DLHF membranes has better performance due to the 

embedded nanomaterials localized on the outer layer and which made possible 

reduction in membrane fouling. 
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ABSTRAK 

Keperluan rawatan air sisa berminyak yang efektif adalah penting bagi 

mengurangkan kandungan minyak dan gris di dalam air sisa dan menghasilkan air terawat 

dalam jumlah yang maksimum dan sesuai untuk dilepaskan ke sumber air terbuka. 

Walaupun proses foto-pemangkinan telah menunjukkan kebolehan untuk mendegradasi 

air sisa berminyak, akan tetapi prestasi yang lebih baik boleh dicapai dengan 

menggabungkan proses foto-mangkin dengan proses pemisahan menggunakan membran. 

Dalam kajian ini, zirkonium dioksida (ZrO2) telah digabung dengan titanium dioksida 

(TiO2) untuk meningkatkan luas permukaan tertentu TiO2. Foto mangkin hibrid TiO2-ZrO2 

kemudiannya dimasukkan ke dalam lapisan luar gentian geronggang dwi-lapisan (DLHF) 

polivinilidena florida (PVDF) untuk menghasilkan membran foto-pemangkin bagi 

merawat air sisa berminyak. Pada peringkat pertama kajian, penambahan kandungan ZrO2 

sebanyak 1 sehingga 20% ke dalam TiO2 telah dibentuk bagi meningkatkan keupayaan 

penjerapan air sisa berminyak dan prestasi fotodegradasi. Didapati bahawa foto mangkin 

hibrid TiO2-ZrO2 yang disintesis dengan 1% mempunyai luas permukaan tertentu yang 

lebih tinggi (kedua tertinggi) sebanyak 136.7 m2/g berbanding TiO2 tunggal (39.9 m2/g). 

Ciri ini sangat diperlukan kerana ia dapat menggalakkan aktiviti foto-mangkin. Foto 

mangkin hibrid juga menunjukkan penurunan jurang jalur optikal yang akan 

meningkatkan penyerapan foton bagi melonjakkan elektron ke jalur valensi. Peringkat 

kedua kajian merangkumi pembuatan membran PVDF DLHF yang digabung dengan foto 

mangkin hibrid TiO2-ZrO2 sebanyak 1 wt.% pada lapisan luar membran dwi-lapisan (DL-

ZT1). Pembuatan membran telah dioptimumkan dari segi kesan ruang udara daripada 5 

cm sehingga 50 cm. Membran yang dipintal pada ruang udara terendah iaitu 5 cm 

menunjukkan pembentukan struktur jejari yang panjang sekitar 65.0 ± 3.3 µm pada lapisan 

luar membran yang disebabkan oleh penyongsangan fasa secara serta merta pada bahagian 

luar gentian. Imej keratan rentas membran menunjukkan bahawa membran adalah bebas 

daripada delaminasi yang menandakan gabungan polimer yang baik berlaku sewaktu 

penyemperitan bersama. Membran juga menunjukkan sudut kontak terkecil iaitu 71.70° ± 

2.58°. Sudut kontak yang kecil ini disebabkan oleh kesan ruang udara terendah iaitu 5 cm 

yang menggalakkan tumbesaran liang mikro pada lapisan luar. Menerusi penurasan aliran 

silang, membran yang terhasil berjaya mencatatkan ketelapan fluks tertinggi bagi kedua-

dua air dan juga air sisa berminyak selain menunjukkan peratusan minyak tersingkir 

sebanyak 85.4% tanpa penyinaran sinar UV. Pada peringkat ketiga kajian, membran 

dioptimumkan dari segi bebanan foto mangkin daripada 0 sehingga 1 wt.% di dalam 

komposisi larutan lapisan luar. Aktiviti foto-mangkin oleh membran yang dikaji 

menggunakan reaktor foto-mangkin membran tenggelam (sMPR) dengan air sisa 

berminyak pada kepekatan 1000 dan 10,000 ppm.  Pada kepekatan 1000 ppm, DL-ZT1 

mencatatkan ketelapan fluks air sisa berminyak sebanyak 97.71 L/m2.h tanpa penyinaran 

sinar UV dan fluks meningkat kepada 321.62 L/m2.h di bawah penyinaran sinar UV. 

Akibatnya, DL-ZT1 merekodkan pendegradasian jumlah karbon organik (TOC) sebanyak 

91.8%. Di sebalik penurunan pendegradasian TOC pada kepekatan air sisa tinggi 10,000 

ppm, DL-ZT1 mencatatkan peratusan minyak tersingkir sebanyak 96%. DL-ZT1 

mempamerkan potensi yang sangat besar sebagai membran foto-pemangkin bagi tujuan 

rawatan air sisa berminyak. Prestasi membran DLHF didapati lebih baik berbanding 

membran gentian geronggang satu lapisan kerana bahan nano yang digabung berpusat 

pada permukaan luar membran dan dapat mengurangkan kotoran pada membran. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Oily wastewater is characterized as an extremely complex substance, usually 

consisting of high concentrations of dispersed oil, grease, suspended particles (Sun et 

al., 2017), fats, hydrocarbons, and parts of petroleum such as diesel oil, gasoline, and 

kerosene (Jamaly, Giwa and Hasan, 2015). Nowadays, oily wastewaters are produced 

by many industries such as petrochemical complexes, oil refineries, oil distribution 

companies, food producers, machining factories, metal manufacturers, leather, and 

textiles industries (Yu, Han and He, 2017). In the oil and gas industry, oily wastewater 

is known as produced water; a by-product produced during the extraction of oil and 

natural gas. Oily wastewater that has been discharged without proper treatment can 

influence groundwater, saltwater, or drinking water. The percolation of contaminants 

in the produced water could dissolve into the water resources underneath the earth. 

Hence, the understanding of the various methods used to treat oily wastewater is 

needed to lessen the undesirable effects of oily wastewaters (Jamaly, Giwa and Hasan, 

2015). 

According to the 2011 estimation on oil and gas production quantity in 

Malaysia (Hock Lee, 2013), the crude oil production at 603,400 barrels/day added to 

the production of oily wastewaters that constitute of deadly matters for instance 

phenols, petroleum hydrocarbons, and polyaromatic hydrocarbons. In addition, the 

high values of oil and grease content as well as chemical and biochemical oxygen 

demand that present in the oily wastewaters does not comply with the standards set by 

the regulatory bodies of many countries (Alade et al., 2011). For instance, the 

acceptable conditions for the discharge of industrial effluent set by the Department of 

Environment Malaysia under Standard A and B of Environment Quality (Industrial 

Effluent) Regulations 2009 only allow the industrial effluent with oil and grease 
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content not exceeding 1 and 10 ppm, respectively. During oil exploration and 

extraction processes, oily wastewater concentration around 4000 to 6000 ppm of oil 

and grease was produced. Meanwhile, oily wastewater concentrations in the ranges of 

100 to 5000 ppm were produced by the metal processing industries comprising of 

grinding oils, cutting oils, lubrication fluids, and coolant oils in the form of soluble 

and emulsified oil (Putatunda et al., 2019). 

Oily wastewater treatment using various methods which include 

electrochemical, floatation, coagulation, adsorption, and membrane filtration have 

been reported (Yu, Han and He, 2017). However, the particle size of oil droplets, which 

is less than 10 µm in most cases, has limited the role of conventional treatment such 

as floatation and coagulation methods in treating oily wastewater (Jamshidi Gohari et 

al., 2014). Besides the high operating cost (Putatunda et al., 2019), floatation and 

coagulation were reported to be less effective since these methods can only remove 

dispersed oil and floating oil with oil droplet size in the range of 20 to 150 μm 

(Nascimbén Santos et al., 2020). Therefore, a technology that can overcome these 

drawbacks is required. Most researchers agree that a single method might not be able 

to achieve the industrial effluent standard (Jamaly, Giwa and Hasan, 2015). This is due 

to the method might not be able to accommodate a high volume of effluent as well as 

the complex nature of the oily wastewater itself. 

Membrane technology has emerged as an eminent technology in oily 

wastewater treatment due to its high separation efficiency (Saini, Sinha and Dash, 

2019), high effluent quality (Cebeci and Gökçek, 2018), and no chemical additive is 

needed to break the emulsion. Microfiltration (MF), ultrafiltration (UF), nanofiltration 

(NF), and pervaporation (PV) membranes are frequently employed to remove oil-

water emulsion (Ahmad, Guria and Mandal, 2018) owing to the high efficacy of the 

membranes in the removal of oil droplets (Ong, Lau, Goh and Ismail, 2014). However, 

the high fouling propensity resulted from oil adsorption and deposition on the surface 

of these polymeric membranes has hindered the membrane filtration performance 

(Lay, Wang and Chew, 2021) hence limited their long-term usage (Jamshidi Gohari et 

al., 2014). Many researchers devoted their research to investigate ways to boost the 

antifouling properties of polymeric membranes like polyvinylidene fluoride (PVDF), 
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polysulfone (PSf), polyehersulfone (PES), and cellulose acetate (CA). Modification of 

polymer membrane surface through various strategies have been accomplished to 

tailor the surface hydrophilicity, charge, and roughness of the membrane to mitigate 

the effects of fouling. The incorporation of nanomaterials such as hydrophilic titanium 

dioxide or titania (TiO2) (Ong, Lau, Goh, Ng and Ismail, 2014; Mishra et al., 2014; 

Moghadam et al., 2015), hydrophilic aluminum oxide (Al2O3) (Yan et al., 2009), 

lithium chloride (LiCl)/TiO2 (Yuliwati and Ismail, 2011), hydrous manganese (HMO) 

(Jamshidi Gohari et al., 2014), hydrous aluminum oxide (HAO) (Jamshidi Gohari et 

al., 2015), graphene oxide (GO) (Tang et al., 2015), and silicon oxide (SiO2)-g-

poly(ethylene glycol) methacrylate (PEGMA) (Saini, Sinha and Dash, 2019) into both 

flat sheet (FS) and hollow fiber (HF) UF membranes to treat oily wastewater has 

endowed the membrane surface with improved hydrophilicity and good antifouling 

properties. Ong et al. (2013) observed the deterioration of antifouling property of 

PVDF-TiO2 composite HF membrane when it was tested at a high concentration of 

oily solution of 1000 ppm, however the composite membrane was still promising to 

treat discharged containing oily solution from industries without having to suffer 

severe flux decline since the concentration of oil that originates from industrial effluent 

normally falls in the range of 100 to 450 ppm.  

TiO2 is one of the most studied nanomaterials for membrane modifications 

(Imran Ali et al., 2018). TiO2 is not only known for its availability, notable physical 

and chemical properties, but also for its antifouling potential (Razmjou et al., 2012) as 

well as its photocatalytic effect (Humayun et al., 2018). The properties of TiO2 can be 

further enhanced through metal-ion doping to improve the hydrophilicity of the 

nanomaterials (Hosseini, Sadeghi and Khazaei, 2018). Most of the polymeric HF 

membranes embedded with nanomaterials belong to mixed matrix nanocomposite 

membranes or single layer hollow fiber (SLHF) membranes whereby the inorganic 

nanomaterials are randomly distributed throughout the polymer matrix (Rezaei et al., 

2014; Koutahzadeh, Esfahani and Arce, 2016). The incorporation of inorganic 

nanomaterials such as metal oxides like TiO2 resulted in remarkable separation 

performance but still facing problems related to aging and fouling (Davey, Leak and 

Patterson, 2016). Lately, dual layer hollow fiber (DLHF) membranes have attracted 

great interest due to their potential to improve water permeation flux, reduce material 

cost through the usage of less costly material as the substrate, and improve antifouling 
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performance through the addition of nanomaterials (Shi, Xue, Gao and Zhou, 2016). 

The presence of embedded TiO2 nanomaterials in the PVDF outer layer of the DLHF 

membrane promoted the formation of microporous structure which allowed uniform 

nanomaterials dispersion (Dzinun et al., 2016). 

1.2 Problem Statement 

TiO2 is the most conventionally used photocatalyst in the photodegradation of 

organic contaminants in water and air due to its excellent oxidative properties and high 

photocatalytic activity. Based on the literature review, TiO2-based heterojunction 

photocatalysts demonstrate desirable characteristics in organic pollutant degradation 

due to the highly reactive hydroxyl (•OH) radical generated. However, TiO2 suffers 

from the recombination of a large amount of the photo-activated electrons and holes. 

Coupling TiO2 photocatalysts with other metal oxides can help resolve the electron-

hole recombination issue faced by TiO2. Metal oxide such as zirconium dioxide or 

zirconia (ZrO2) offers attractive characteristics like high thermal stability and able to 

delay phase transformation in TiO2, which makes ZrO2 appropriate to be coupled with 

TiO2. Coupling lower content of ZrO2 into TiO2 can enhance the TiO2 properties 

through the production of TiO2-ZrO2 hybrid photocatalysts with high specific surface 

area and boost the photocatalytic activity. Lower photodegradation activity was 

reported when coupling higher content of ZrO2 into TiO2. TiO2-ZrO2 was investigated 

for the oxidation of ethylene (Fu et al., 1996) as well as degradation of 4-chlorophenol 

(Neppolian et al., 2007), phenol (Kambur, Pozan and Boz, 2012), azo-dye (Pirzada et 

al., 2015), nitrogen oxide (NOx) (Kim et al., 2010) and rhodamine B (RhB) (Li et al., 

2015). So far, no research has been reported on the usage of TiO2-ZrO2 for the 

degradation of oily wastewater. There were some contradictory findings on the optimal 

ratio of TiO2 to ZrO2 in their hybrid, due to the different preparation methods used 

which led to the non-consistent of the small ZrO2 content reported (Wang, Patel and 

Liang, 2018). Therefore, it is necessary to investigate the optimal ratio of TiO2 to ZrO2 

based on the application explored in this study. The amount of ZrO2 in the hybrid can 

significant influence the physicochemical of the resultant TiO2-ZrO2 hybrid 

photocatalysts, which in turn affect the photocatalytic activity. 
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SLHF membrane is the most widely used HF membrane configuration. 

However, the emerging of DLHF membranes that offers the usage of a high-

performance material or functional material as the outer layer and a relatively cheap 

material as the inner layer has attracted interest from many researchers to study it (Zhu 

et al., 2014). Meanwhile, the addition of nanomaterials in the outer dope solution can 

improve the transport properties in the outer layer of the DLHF membranes (Amaral 

et al., 2016). Since the membrane structures affects the separation performance of a 

membrane (Han, Wan and Chung, 2018), the alteration of spinning parameters such as 

dope flow rate, air gap, coagulation bath temperature, type of bore fluid and 

coagulation media will affect the membrane structures. Based on literature review, the 

influence of air gap on membrane morphology and permeation were sometimes found 

conflicting between membranes with different formulation (Ahmad and Mohd Shafie, 

2017). This makes air gap an important factor as the parameter influences the thickness 

of the outer skin layer and the membrane pore size (Wang et al., 2018) during the 

fabrication stage. Although extensive research on the effect of air gap on morphology 

and structure of HF membranes has been carried out, limited efforts have been made 

to study the effect of air gap in DLHF membranes. The influence of air gap in SLHF 

and DLHF membranes could result in different outcomes. Therefore, the 

nanocomposite membranes produced in this study were optimized in terms of their air 

gap. Air gap has significant influence on the structure and morphology of the PVDF 

DLHF membranes, especially the outer layer.  

The distribution of the nanomaterials is difficult to be controlled as the 

nanomaterials were randomly distributed within the polymer matrix of an SLHF 

membranes (Davey, Leak and Patterson, 2016). The modification is seen as a wastage 

since the nanomaterials are not evenly distributed at the outer surface of the 

nanocomposite membranes. On the other hand, DLHF membranes has better 

performance over SLHF membranes due to the embedded nanomaterials were 

localized on the outer layer and was able to combat the fouling problem better than 

before. The microporous structure formed in the DLHF membranes helps in the 

uniform dispersion of the nanomaterials. Based on literature review, immobilizing 

nanomaterials in the outer layer of DLHF membranes through the production of 

nanocomposite DLHF membranes can reduce the hydrophobicity of the polymer 

membrane while the photocatalytic effect of the nanomaterials from the semiconductor 
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nanomaterials type or photocatalysts can assist in the chemical reaction through the 

reaction of the produced reactive substance with the pollutant to form a less toxic 

compound. Immobilizing a high load of nanomaterials in the polymer matrix was 

reported to improve the membrane properties. However, agglomeration of 

nanomaterials, as well as leaching of nanomaterials at high loading could raise 

hazardous health risks to the end-user of the treated water (Mahmoudi et al., 2019). 

Immobilizing a small load of nanomaterials such as TiO2-ZrO2 hybrid photocatalysts 

in the outer layer of the DLHF membranes could provide a solution to those issues. 

Even though the incorporation of nanomaterials into the membranes was reported to 

enhance the membrane’s performance but the optimal loading depends on the 

properties of the nanomaterials and the membrane composition (Wen et al., 2019). 

Therefore, the PVDF DLHF membranes were optimized in terms of the TiO2-ZrO2 

hybrid photocatalysts loading prior to the photocatalytic testing using a submerged 

photoreactor under UV light irradiation for oily wastewater treatment. Varying the 

TiO2-ZrO2 hybrid photocatalysts loading into the outer layer of the DLHF membranes 

will influence the rate of oily wastewater degradation. The main difference between 

this study with other studies that uses the same TiO2-ZrO2 hybrid photocatalyst is that 

this study embedded the photocatalysts on the membrane outer surface of a PVDF 

DLHF membrane rather than suspending the photocatalysts in the oily wastewater and 

so far, has not been investigated yet. Despite the great research works conducted, only 

a few efforts have been made to develop a technique that is capable to treat oily 

wastewater without secondary treatment. The nanocomposite membrane can preserve 

a close interaction between the oily wastewater and the photocatalysts while 

simplifying the photocatalysts recovery process. The photocatalytic nanocomposite 

membrane fabricated in this study was expected to enhance photocatalytic properties 

by suppressing the electron-hole pairs recombination and minimize membrane fouling 

through the degradation of foulants. This study also provides in-depth information on 

the performance of DLHF and SLHF membranes embedded with the same hybrid 

photocatalysts that would affect the photodegradation of oily wastewater. 
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1.3 Research Objectives 

The objectives of the research are as follows: 

1. To investigate the effects of ZrO2 and TiO2 contents in TiO2-ZrO2 hybrid 

photocatalysts on the photodegradation of oily wastewater. 

2. To assess the effect of air gaps on the structures and properties of PVDF/TiO2-

ZrO2 DLHF photocatalytic nanocomposite membranes applied for oily 

wastewater treatment. 

3. To evaluate the effect of TiO2-ZrO2 hybrid photocatalysts loading on the oily 

wastewater photodegradation performance using a submerged photoreactor 

under UV light irradiation and to compare the performances of DLHF and 

SLHF membranes prepared and tested under the same experimental conditions.  

1.4 Research Scope 

The above-mentioned research objectives are accomplished through the 

subsequent scopes of studies that have been finalized as follows: 

(a) Synthesizing TiO2-ZrO2 hybrid nanomaterials with various ZrO2 content (1, 5, 

10, 15, and 20%) in TiO2 via sol-gel method. The TiO2-ZrO2 hybrid 

photocatalysts with various ZrO2 content (20, 50, and 80%) were initially 

prepared and the produced nanomaterials were analyzed using XRD and UV-

Vis to determine the inclination of the ZrO2 content. The preliminary results 

from XRD and UV-Vis were found to incline towards the lower ZrO2 content 

in TiO2. The findings were used to reduce the design decision and the ZrO2 

content coupled with TiO2 in this study was limited to 20% and below.  
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(b) Determining the TiO2-ZrO2 hybrid nanomaterials properties such as crystallite 

sizes and crystal phase using X-ray diffractometer (XRD), specific surface 

area, pore volume, pore radius, and pore size distribution using Brunauer-

Emmett-Teller (BET), particle size using transmission electron microscopy 

(TEM), surface morphology using field emission scanning electron 

microscopy (FESEM), reflectance spectra and optical band gap energy (Eg) 

using ultraviolet-visible (UV-Vis) spectroscopy, phase composition using 

Fourier transform infrared (FTIR) spectroscopy, chemical composition using 

X-ray photoelectron spectroscopy (XPS), electron-hole pairs transition using 

photoluminescene (PL) spectrometer as well as particle size distribution and 

zeta potential by using dynamic light scattering (DLS). 

(c) Conducting adsorption and photocatalytic test using suspended TiO2-ZrO2 

hybrid photocatalysts of different ZrO2 content in oily wastewater at 100 ppm 

for 7 h (2 h to calculate the adsorption capacity (Qe) of pollutant adsorbed on 

adsorbate under dark condition and 5 h to determine the total organic carbon 

(TOC) degradation under UV light irradiation). 

(d) Identifying the active species produced by the hybrid photocatalysts during 

adsorption-photodegradation of oily wastewater at 100 ppm through the radical 

scavenging experiment for 7 h. 

(e) Fabricating DLHF nanocomposite membranes using dry-jet wet phase 

inversion technique at different air gaps ranged from 5 to 50 cm. The 

membranes spun from the optimal air gap were embedded with different 

loading capacities of TiO2-ZrO2 hybrid photocatalyst ranging from 0 to 1 wt.%. 

The photocatalysts loading and air gap were manipulated while the outer and 

outer and inner dope flow rate, bore fluid flow rate and spinneret geometry 

used were kept constant to narrow down the scope of the study. The highest 

photocatalysts loading used to spin the DLHF membranes was fixed at 1 wt.% 

due to the limitation of the spinneret used which consist of small hole (die-gap) 

size for the outer dope solution.  



 

9 

(f) Characterizing the DLHF membranes using scanning electron microscopy 

(SEM) for morphological analysis, energy dispersive X-ray (EDX) for the 

analysis of nanomaterials dispersion on the membrane outer layer, atomic force 

microscopic (AFM) for surface roughness analysis, universal attenuated total 

reflectance (UATR) for molecular structure analysis, contact angle 

measurement for membrane hydrophilicity analysis and porosity test for 

membrane porosity analysis.  

(g) Measuring the water permeation flux, the oily wastewater permeation flux, the 

oil rejection efficiency, and the antifouling properties of the prepared 

membranes for oily wastewater at 1000 and 10,000 ppm. Synthetic cutting oil 

was used in the preparation of oily wastewater. The filtration and rejection tests 

were determined for the ideal case only.  

(h) Constructing submerged membrane photocatalytic reactor (sMPR) with the 

dimension of 10 cm (width) x 25 cm (length) x 40 cm (height) equipped with 

a U-shape DLHF membrane module positioned at the base of sMPR, air 

compressor, air diffuser, air flow meter, permeate collection tank, peristaltic 

pump, and UV light.  

(i) Measuring the water permeation flux before and after photocatalysis (1 h 

before and 1 h after), the filtration performance (oily wastewater permeation 

flux without UV light) for 4 h and the oily wastewater permeation flux under 

UV light irradiation in sMPR for a reaction time of 9 h (5 h of retention time 

and 4 h of photodegradation), the oily wastewater degradation and oil rejection 

percentage for oily wastewater at 1000 and 10,000 ppm. 

(j) Determining the performance of DLHF and SLHF membranes that were 

embedded with the optimized content of TiO2-ZrO2 hybrid photocatalyst for 

the photodegradation of oily wastewater. The water and oily wastewater 

permeation flux at 1000 and 10,000 ppm were also determined. The 

membranes were characterized in terms of its elemental composition, 

morphology, porosity, hydrophilicity, and roughness.  
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