An interactive evolutionary multiobjective optimization method based on the WASF-GA algorithm

Mariano Luque1Kaisa Miettinen2Ana Belén Ruiz1Rubén Saborido1

¹Dept. of Applied Economics (Mathematics), Universidad de Málaga (Spain)

²Department of Mathematical Information Technology University of Jyväskylä (Finland)

20th Conference of the International Federation of Operational Research Societies

MQ P

Mariano Luque - mluque@uma.es Interactive WASF-GA

Introduction

WASF-GA Interactive WASF-GA Conclusions The End

Multiple Criteria Decision Making (MCDM) Evolutionary Multiobjective Optimization (EMO)

• □ ▶ • • □ ▶ • □ ▶ •

MQ P

Solving a Multiobjective Optimization (MOP) problem

Two points of view:

- ✓ Multiple Criteria Decision Making (MCDM): helping the decision maker (DM) to find his/her most preferred solution.
- ✓ Evolutionary Multiobjective Optimization (EMO): generating a set of well-distributed Pareto optimal solutions approximating the whole (unknown) Pareto front.

Introduction Main ideas

The Weighting Achievement Scalarizing Function Genetic Algorithm (WASF-GA)

For a multiobjective optimization problem:

 $\begin{array}{ll} \text{minimize} & \{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_k(\mathbf{x})\}\\ \text{subject to} & \mathbf{x} \in S. \end{array}$

the DM gives a reference point $\mathbf{q} = (q_1, \ldots, q_k)$.

Where are the probably most interesting nondominated solutions for this q?

 \implies Region of interest of the Pareto front from \mathbf{q} .

How can we generate these nondominated solutions?

 \implies WASF-GA is based on:

- An achievement scalarizing function (ASF).
- The classification of the individuals into several fronts at each generation.

MQ P

Ruiz, A.B., Saborido, R., Luque, M. (2014). A Preference-based Evolutionary Algorithm for Multiobjective Optimization: The Weighting Achievement Scalarizing Function Genetic Algorithm, Journal of Global Optimization, in press.

Introduction Main ideas

The Weighting Achievement Scalarizing Function Genetic Algorithm (WASF-GA)

For a multiobjective optimization problem:

minimize $\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_k(\mathbf{x})\}\$ subject to $\mathbf{x} \in S.$

the DM gives a reference point $\mathbf{q} = (q_1, \ldots, q_k)$.

Where are the probably most interesting nondominated solutions for this \mathbf{q} ?

 \Longrightarrow Region of interest of the Pareto front from $\mathbf{q}.$

How can we generate these nondominated solutions?

 \implies WASF-GA is based on:

- An achievement scalarizing function (ASF).
- The classification of the individuals into several fronts at each generation.

Ruiz, A.B., Saborido, R., Luque, M. (2014). A Preference-based Evolutionary Algorithm for Multiobjective Optimization: The Weighting Achievement Scalarizing Function Genetic Algorithm, Journal of Global Optimization, in press.

MQ P

Introduction Main ideas

The Weighting Achievement Scalarizing Function Genetic Algorithm (WASF-GA)

For a multiobjective optimization problem:

minimize $\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_k(\mathbf{x})\}\$ subject to $\mathbf{x} \in S.$

the DM gives a reference point $\mathbf{q} = (q_1, \ldots, q_k)$.

Where are the probably most interesting nondominated solutions for this \mathbf{q} ?

 \Longrightarrow Region of interest of the Pareto front from $\mathbf{q}.$

How can we generate these nondominated solutions?

 \implies WASF-GA is based on:

- An achievement scalarizing function (ASF).
- The classification of the individuals into several fronts at each generation.

SQA

Ruiz, A.B., Saborido, R., Luque, M. (2014). A Preference-based Evolutionary Algorithm for Multiobjective Optimization: The Weighting Achievement Scalarizing Function Genetic Algorithm, Journal of Global Optimization, in press.

Introduction Main ideas

Wierzbicki's achievement scalarizing function

General Formulation

$$s(\mathbf{q}, \mathbf{f}(\mathbf{x}), \mu) = \max_{i=1,\dots,k} \{ \mu_i(f_i(\mathbf{x}) - q_i) \} + \rho \sum_{i=1}^k (f_i(\mathbf{x}) - q_i),$$

where $\mu = (\mu_1, \ldots, \mu_k)$ is a vector of positive weights $(\mu_i \in (0, 1)$ for every $i = 1, \ldots, k$) and $\rho > 0$ is the so-called augmentation coefficient.

Introduction Main ideas

Wierzbicki's achievement scalarizing function

Any Pareto optimal solution in the Region of interest from q can be obtained by minimizing $s(\mathbf{q}, \mathbf{f}(\mathbf{x}), \mu)$ over S and varying μ in the weight vector space $(0, 1) \times \dots^{k} \times (0, 1)$.

Unachievable reference point

(日) (同) (三) (三)

Introduction Main ideas

Classification of the individuals into several fronts

Let W be a set of N_μ vectors of weights as evenly distributed as possible in $(0,1)\times\ldots^{k)}\times(0,1)$:

 $W = \{\mu^j = (\mu_1^j, \dots, \mu_k^j), \mu_i^j \in (0, 1) \text{ for every } i = 1, \dots, k, j = 1, \dots, N_\mu\}$

- Problems with 2 objectives \Rightarrow Generating N_{μ} evenly distributed weight vectors is easy.
- Problems with k ≥ 3 objectives ⇒ We will generate a sample of N_μ weight vectors which represent (0, 1) × . . .^k) × (0, 1) as evenly as possible.

The classification of the individuals into the different fronts is done according to the values that every individual takes on the ASF for the N_{μ} weight vectors in W.

(日) (同) (三) (

Introduction Main ideas

Classification of the individuals into several fronts

Let W be a set of N_μ vectors of weights as evenly distributed as possible in $(0,1)\times\ldots^{k)}\times(0,1)$:

 $W = \{\mu^j = (\mu_1^j, \dots, \mu_k^j), \mu_i^j \in (0, 1) \text{ for every } i = 1, \dots, k, j = 1, \dots, N_\mu\}$

- Problems with 2 objectives \Rightarrow Generating N_{μ} evenly distributed weight vectors is easy.
- Problems with $k \ge 3$ objectives \Rightarrow We will generate a sample of N_{μ} weight vectors which represent $(0, 1) \times \ldots^{k} \times (0, 1)$ as evenly as possible.

The classification of the individuals into the different fronts is done according to the values that every individual takes on the ASF for the N_{μ} weight vectors in W.

・ロト ・同ト ・ヨト ・ヨ

Introduction Main ideas

Classification of the individuals into several fronts

Let W be a set of N_μ vectors of weights as evenly distributed as possible in $(0,1)\times\ldots^{k)}\times(0,1)$:

 $W = \{\mu^j = (\mu_1^j, \dots, \mu_k^j), \mu_i^j \in (0, 1) \text{ for every } i = 1, \dots, k, j = 1, \dots, N_\mu\}$

- Problems with 2 objectives \Rightarrow Generating N_{μ} evenly distributed weight vectors is easy.
- Problems with $k \ge 3$ objectives \Rightarrow We will generate a sample of N_{μ} weight vectors which represent $(0, 1) \times \ldots^{k} \times (0, 1)$ as evenly as possible.

The classification of the individuals into the different fronts is done according to the values that every individual takes on the ASF for the N_{μ} weight vectors in W.

(日) (同) (三) (

Introduction Main ideas

Properties

- At each generation, solutions with the best values of the ASF in the N_{μ} weight vectors and with \mathbf{q} as reference point are emphasized.
- Each front is formed by N_{μ} solutions $(N_{\mu} \leq N)$
- Nondominated solutions are preferred over dominated ones:

If x dominates $\bar{\mathbf{x}} \Rightarrow s(\mathbf{q}, \mathbf{f}(\mathbf{x}), \mu) < s(\mathbf{q}, \mathbf{f}(\bar{\mathbf{x}}), \mu)$, for every weight vector $\mu \Rightarrow \mathbf{x}$ belongs to a lower level front than $\bar{\mathbf{x}}$.

• Output: N_{μ} solutions (first front of the last generation), which approximate the region of interest from ${\bf q}.$

(日) (同) (三) (

Introduction Main ideas

Properties

- At each generation, solutions with the best values of the ASF in the N_{μ} weight vectors and with \mathbf{q} as reference point are emphasized.
- Each front is formed by N_{μ} solutions $(N_{\mu} \leq N)$.
- Nondominated solutions are preferred over dominated ones:

If x dominates $\bar{\mathbf{x}} \Rightarrow s(\mathbf{q}, \mathbf{f}(\mathbf{x}), \mu) < s(\mathbf{q}, \mathbf{f}(\bar{\mathbf{x}}), \mu)$, for every weight vector $\mu \Rightarrow \mathbf{x}$ belongs to a lower level front than $\bar{\mathbf{x}}$.

• Output: N_{μ} solutions (first front of the last generation), which approximate the region of interest from ${\bf q}.$

(日) (同) (三) (

Introduction Main ideas

Properties

- At each generation, solutions with the best values of the ASF in the N_{μ} weight vectors and with \mathbf{q} as reference point are emphasized.
- Each front is formed by N_{μ} solutions $(N_{\mu} \leq N)$.
- Nondominated solutions are preferred over dominated ones:

If x dominates $\bar{\mathbf{x}} \Rightarrow s(\mathbf{q}, \mathbf{f}(\mathbf{x}), \mu) < s(\mathbf{q}, \mathbf{f}(\bar{\mathbf{x}}), \mu)$, for every weight vector $\mu \Rightarrow \mathbf{x}$ belongs to a lower level front than $\bar{\mathbf{x}}$.

• Output: N_{μ} solutions (first front of the last generation), which approximate the region of interest from ${\bf q}.$

(日) (同) (三) (三)

Introduction Main ideas

Properties

- At each generation, solutions with the best values of the ASF in the N_{μ} weight vectors and with \mathbf{q} as reference point are emphasized.
- Each front is formed by N_{μ} solutions $(N_{\mu} \leq N)$.
- Nondominated solutions are preferred over dominated ones:

If x dominates $\bar{\mathbf{x}} \Rightarrow s(\mathbf{q}, \mathbf{f}(\mathbf{x}), \mu) < s(\mathbf{q}, \mathbf{f}(\bar{\mathbf{x}}), \mu)$, for every weight vector $\mu \Rightarrow \mathbf{x}$ belongs to a lower level front than $\bar{\mathbf{x}}$.

• Output: N_{μ} solutions (first front of the last generation), which approximate the region of interest from \mathbf{q} .

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SQA

Motivation Main ideas Computational implementation

・ロト ・ 同ト ・ ヨト ・

SQ P

- An interactive method can very useful to solve a multiobjective optimization problem.
- There are many interactive MCDM methods but however only few interactive EMO algorithms in the literature.
- Many multiobjective optimization problems cannot solve by means of MCDM techniques.
- An interactive method based on EMO algorithms is able to solve many kinds of multiobjective optimization problems.
- The WASF-GA's features allow us to build an interactive method in an easy way.

Motivation Main ideas Computational implementation

< ロ > < 同 > < 回 > < 回 >

SQ P

- An interactive method can very useful to solve a multiobjective optimization problem.
- There are many interactive MCDM methods but however only few interactive EMO algorithms in the literature.
- Many multiobjective optimization problems cannot solve by means of MCDM techniques.
- An interactive method based on EMO algorithms is able to solve many kinds of multiobjective optimization problems.
- The WASF-GA's features allow us to build an interactive method in an easy way.

Motivation Main ideas Computational implementation

< ロ > < 同 > < 回 > < 回 >

SQ P

- An interactive method can very useful to solve a multiobjective optimization problem.
- There are many interactive MCDM methods but however only few interactive EMO algorithms in the literature.
- Many multiobjective optimization problems cannot solve by means of MCDM techniques.
- An interactive method based on EMO algorithms is able to solve many kinds of multiobjective optimization problems.
- The WASF-GA's features allow us to build an interactive method in an easy way.

Motivation Main ideas Computational implementation

イロト イポト イヨト イヨト

SQ P

- An interactive method can very useful to solve a multiobjective optimization problem.
- There are many interactive MCDM methods but however only few interactive EMO algorithms in the literature.
- Many multiobjective optimization problems cannot solve by means of MCDM techniques.
- An interactive method based on EMO algorithms is able to solve many kinds of multiobjective optimization problems.
- The WASF-GA's features allow us to build an interactive method in an easy way.

Motivation Main ideas Computational implementation

イロト イポト イヨト イヨト

э

SQA

- An interactive method can very useful to solve a multiobjective optimization problem.
- There are many interactive MCDM methods but however only few interactive EMO algorithms in the literature.
- Many multiobjective optimization problems cannot solve by means of MCDM techniques.
- An interactive method based on EMO algorithms is able to solve many kinds of multiobjective optimization problems.
- The WASF-GA's features allow us to build an interactive method in an easy way.

Motivation Main ideas Computational implementation

(日) (同) (三) (

SQ P

Main ideas

• It is based on the WASF-GA algorithm.

- Given a reference point q, the DM decides how many solutions (N_S) wants to obtain and to see for these reference values. For default, N_S can be equal to 2k.
- $\bullet~N_S$ weight vectors are generated, which are dispersed between them and evenly distributed as much as possible.
- $\bullet~N_S$ nondominated solutions are generated in the region of interest by the WASF-GA algorithm.
- At each iteration, Interactive WASF-GA can be very fast since that only few weight vectors are considered (N_S).
- The final population of one iteration is used as initial population in the following one.

Motivation Main ideas Computational implementation

(日) (同) (三) (

SQ P

- It is based on the WASF-GA algorithm.
- Given a reference point **q**, the DM decides how many solutions (N_S) wants to obtain and to see for these reference values. For default, N_S can be equal to 2k.
- $\bullet~N_S$ weight vectors are generated, which are dispersed between them and evenly distributed as much as possible.
- $\bullet~N_S$ nondominated solutions are generated in the region of interest by the WASF-GA algorithm.
- At each iteration, Interactive WASF-GA can be very fast since that only few weight vectors are considered (N_S).
- The final population of one iteration is used as initial population in the following one.

Motivation Main ideas Computational implementation

(日) (同) (三) (

SQ P

- It is based on the WASF-GA algorithm.
- Given a reference point **q**, the DM decides how many solutions (N_S) wants to obtain and to see for these reference values. For default, N_S can be equal to 2k.
- $\bullet~N_S$ weight vectors are generated, which are dispersed between them and evenly distributed as much as possible.
- $\bullet~N_S$ nondominated solutions are generated in the region of interest by the WASF-GA algorithm.
- At each iteration, Interactive WASF-GA can be very fast since that only few weight vectors are considered (N_S).
- The final population of one iteration is used as initial population in the following one.

Motivation Main ideas Computational implementation

(日) (同) (三) (

SQ P

- It is based on the WASF-GA algorithm.
- Given a reference point **q**, the DM decides how many solutions (N_S) wants to obtain and to see for these reference values. For default, N_S can be equal to 2k.
- $\bullet~N_S$ weight vectors are generated, which are dispersed between them and evenly distributed as much as possible.
- $\bullet~N_S$ nondominated solutions are generated in the region of interest by the WASF-GA algorithm.
- At each iteration, Interactive WASF-GA can be very fast since that only few weight vectors are considered (N_S).
- The final population of one iteration is used as initial population in the following one.

Motivation Main ideas Computational implementation

(日) (同) (三) (

SQ P

- It is based on the WASF-GA algorithm.
- Given a reference point **q**, the DM decides how many solutions (N_S) wants to obtain and to see for these reference values. For default, N_S can be equal to 2k.
- N_S weight vectors are generated, which are dispersed between them and evenly distributed as much as possible.
- $\bullet~N_S$ nondominated solutions are generated in the region of interest by the WASF-GA algorithm.
- At each iteration, Interactive WASF-GA can be very fast since that only few weight vectors are considered (N_S).
- The final population of one iteration is used as initial population in the following one.

Motivation Main ideas Computational implementation

(日) (同) (三) (

. ⊒ →

SQ P

- It is based on the WASF-GA algorithm.
- Given a reference point **q**, the DM decides how many solutions (N_S) wants to obtain and to see for these reference values. For default, N_S can be equal to 2k.
- N_S weight vectors are generated, which are dispersed between them and evenly distributed as much as possible.
- $\bullet~N_S$ nondominated solutions are generated in the region of interest by the WASF-GA algorithm.
- At each iteration, Interactive WASF-GA can be very fast since that only few weight vectors are considered (N_S).
- The final population of one iteration is used as initial population in the following one.

Motivation Main ideas Computational implementation

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Conclusions

• A new interactive EMO algorithm is proposed here.

- It is based on the WASF-GA algorithm.
- Given some reference levels by the DM, several nondominated solutions are generated in a region of interest.
- A number of weight vectors equals to the number of solutions to be shown to the DM must be considered.
- The final population of an iteration can be used as initial population in the following one.

- A new interactive EMO algorithm is proposed here.
- It is based on the WASF-GA algorithm.
- Given some reference levels by the DM, several nondominated solutions are generated in a region of interest.
- A number of weight vectors equals to the number of solutions to be shown to the DM must be considered.
- The final population of an iteration can be used as initial population in the following one.

Conclusions

- A new interactive EMO algorithm is proposed here.
- It is based on the WASF-GA algorithm.
- Given some reference levels by the DM, several nondominated solutions are generated in a region of interest.
- A number of weight vectors equals to the number of solutions to be shown to the DM must be considered.
- The final population of an iteration can be used as initial population in the following one.

Conclusions

- A new interactive EMO algorithm is proposed here.
- It is based on the WASF-GA algorithm.
- Given some reference levels by the DM, several nondominated solutions are generated in a region of interest.
- A number of weight vectors equals to the number of solutions to be shown to the DM must be considered.

SQ P

• The final population of an iteration can be used as initial population in the following one.

Conclusions

- A new interactive EMO algorithm is proposed here.
- It is based on the WASF-GA algorithm.
- Given some reference levels by the DM, several nondominated solutions are generated in a region of interest.
- A number of weight vectors equals to the number of solutions to be shown to the DM must be considered.

SQ P

• The final population of an iteration can be used as initial population in the following one.

Conclusions

- A new interactive EMO algorithm is proposed here.
- It is based on the WASF-GA algorithm.
- Given some reference levels by the DM, several nondominated solutions are generated in a region of interest.
- A number of weight vectors equals to the number of solutions to be shown to the DM must be considered.

MQ P

• The final population of an iteration can be used as initial population in the following one.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Mariano Luque - mluque@uma.es Interactive WASF-GA

イロト イポト イヨト イヨト

э

990