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Abstract—When investing in cyber security resources, informa-
tion security managers have to follow effective decision-making
strategies. We refer to this as the cyber security investment chal-
lenge. In this paper, we consider three possible decision-support
methodologies for security managers to tackle this challenge. We
consider methods based on game theory, combinatorial optimisa-
tion and a hybrid of the two. Our modelling starts by building a
framework where we can investigate the effectiveness of a cyber
security control regarding the protection of different assets seen
as targets in presence of commodity threats. In terms of game
theory we consider a 2-person control game between the security
manager who has to choose among different implementation
levels of a cyber security control, and a commodity attacker
who chooses among different targets to attack. The pure game
theoretical methodology consists of a large game including all
controls and all threats. In the hybrid methodology the game
solutions of individual control-games along with their direct costs
(e.g. financial) are combined with a knapsack algorithm to derive
an optimal investment strategy. The combinatorial optimisation
technique consists of a multi-objective multiple choice knapsack
based strategy. We compare these approaches on a case study that
was built on SANS top critical controls. The main achievements of
this work is to highlight the weaknesses and strengths of different
investment methodologies for cyber security, the benefit of their
interaction, and the impact that indirect costs have on cyber
security investment.

I. INTRODUCTION

One of the biggest issues facing organisations today is
how they are able to defend themselves from potential cyber
attacks. The range and scope of these unknown attacks create
the need for organisations to prioritise the manner in which
they defend themselves. With this each organisation needs to
consider the threats that they are most at risk from and act
in such a way so as to reduce the vulnerability across as
many relevant vulnerabilities as possible. This is a particularly
difficult task that many Chief Information Security Officers
(CISOs) are not confident in achieving, with only 24% of
CISOs considering themselves very confident of preventing
attacks according to Deloitte and NASICO [1]. In this report
86% of CISOs were concerned that the biggest issue facing
their ability to successfully defend their systems was down to
a “lack of sufficient funding”.

It is this perceived lack of sufficient funding that this
work wishes to address. From our work with Small-Medium
Enterprises (SMEs), we have identified that they are heavily
restricted with the available funding for cyber security, gen-

erally working with a fixed budget with little to no additional
funding being made available for cyber security purposes. It
is generally perceived that this budget is insufficient for them
to cover all of the vulnerabilities that their system may have.
In this way organisations have to make trade-offs with regard
to how they defend their systems.

When an organisation is making the decisions regarding
the defence of their network, they generally have to consider
two critical factors, the cost of implementing a particular
defence and the impact that defence has on the business.
The first of these has been discussed, stating that a company
can only implement defences that are within their limited
budget, considered the Direct Cost of the defence. However we
question whether the apparently most optimal defence based
solely on direct costs is the correct choice for an organisation.
The reason behind this lies with the second criteria, such that
the manner in which a defence is implemented will likely have
some effect on either the operation of the system or the users
of the system. These effects may cause a reduction in the speed
that tasks can be performed by users or by a weakening of the
defence caused by users circumventing the controls in order
to more easily perform their required tasks. We consider that
these factors create additional indirect costs for implementing
a given defence. These two factors are at the core or our work
into the decision support of how to use the limited financial
budget available to best protect against cyber attacks.

A. Contributions

This work proposes a two stage model designed to aid secu-
rity managers with decisions regarding the optimal allocation
of a cyber security budget. And it provides a detailed analysis
of the model that was first proposed by Panaousis et al. [2].

We analyse the two stages of the model by first presenting
an overview of the environment from which we define the
problem of cyber security investment, identifying a unique
manner for reasoning about the targets that a potential at-
tacker has, and the defences associated with those targets.
This is done by considering the physical location of a data
asset, which needs to be protected, as well as the degree to
which a particular defence, herein referred to as a control, is
implemented.

We use the above environment to formulate control-games,
which analyse how well each given control performs at
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different degrees of implementation (i.e. levels). We compute
the Nash Equilibrium condition in control-games, and we
motivate the trade-offs required with the indirect costs. The
Nash Equilibrium of a control-game dictates the most efficient
manner, in which, a control should be implemented.

The solution to each control-game alone is insufficient in
dictating the optimal allocation of an organisation’s cyber
security budget. So to identify the best way to allocate a
budget, we formalise the problem as a multi-objective multiple
choice Knapsack problem, as proposed in [3].

We motivate the use of this methodology by comparing
the two-stage model to two alternative methods. Firstly, we
model the scenario as an one shot game that aims to optimise
the defense including direct costs, and secondly a Knapsack
problem that considers only pure strategies for each control
level including indirect costs. In both cases we highlight
where our proposed method is able to outperform alternative
methods.

B. Outline

Section III-A introduces targets i.e. vulnerability and the
associated potential loss, controls, effectiveness of controls
on the potential loss as well as indirect costs associated to
implement controls at different levels. In Section III-B those
notions are used to build a game model, and sections III-C to
III-H develop a basic analysis of these games. Sections III-I
to III-K present a toy 2x2 game example with a single control
with two implementation levels and two targets. This aims to
provide a feel for these games and what elements determine
the equilibria.

In Section IV we discuss general games where the defender
has available a single control and the attacker can choose a
set of vulnerabilities: we provide an interpretation of mixed
strategies for these games and explain how these game solu-
tions can be used with a Knapsack algorithm. Section IV-A
illustrates why a single game comprising all possible controls
doesn’t provide good security guarantees and so is not a
suitable investment methodology. Section IV-B introduces the
particular Knapsack we think is relevant for this work, that
is 0-1 Multiple Choice, Multi-Objective Knapsack. The items
relevant to this Knapsack are game solutions: this constitutes
the hybrid methodology presented in section IV-C.

In Section V we develop a case study based on the SANS
top critical controls. We illustrate a mapping from the SANS
controls’ descriptions into our framework and based on this
mapping we run a simulation to calculate the security effec-
tiveness of the two Knapsack methodologies. The simulation
shows that the hybrid solution is more flexible and provides
higher security guarantee.

II. RELATED WORK

The work of Anderson [4] considers the traps that defenders
may fall into in finding bugs and protecting their systems,
where it only needs to be a single unseen vulnerability that ex-
poses the whole of a network. The approach taken in this work
is to model attackers using commodity attacks against SMEs,

where the attacker is using commonly available attack vectors
against known defendable vulnerabilities. While this doesn’t
negate the possibility of zero-day vulnerabilities, it removes
the expectation that it is in the best interest of either player
to invest heavily in order to either find a new vulnerability or
be able to protect against these unknown vulnerabilities. In his
work, Anderson considers that the management of information
security is a more difficult problem than initially considered
as there are often deeper issues, such as politics, that need to
be addressed.

Important to the modelling is the concept that the defenders
have to attempt to defend everywhere. This is due to the fact
that attackers can strike anywhere they wish. We can highlight
this observation by assuming that the defence provided by an
optimal budget allocations can only be considered as strong as
the defence of the weakest target. This is because the weakest
target is at most risk from an attacker who can potentially
attack anywhere. Our approach is quite different to Anderson’s
as we focus on developing cyber security decision support
tools to assist security managers on how to spend a cyber
security budget in terms of different controls acquisition and
implementation.

Our work has been partially influenced by a recent contribu-
tion within the field of physical security [5], where the authors
address the problem of finding an optimal defensive coverage.
The latter is defined as the one maximising the worst-case
payoff over the targets in the potential attack set. One of the
main ideas of this work we adopt here is that the more we
defend the less rewards the attacker receives.

Alpcan [6] (p. 134) discusses the importance of studying the
quantitative aspects of risk assessment with regard to cyber se-
curity in order to better inform decisions makers. This kind of
approach is taken in this work where we provide an analytical
method for deciding the level of risk introduced by different
vulnerabilities, and the impact that different security controls
have in mitigating these risks. By studying the incentives
for risk management, Alpcan [7] develops a game-theoretic
approach that optimises the investment in security across
different autonomous divisions of an organisation, where each
of the divisions is seen as a greedy entity. Furthermore,
Alpcan et al. examine in [8] security risk dependencies in
organisations, and they propose a framework which ranks the
risks by considering the different complex interactions. This
rank is dictated by an equilibrium that is derived by a Risk-
Rank algorithm.

Saad et al. [9] model cooperation among autonomous parts
of an organisation that have dependent security assets, and vul-
nerabilities for reducing overall security risks, as a cooperative
game. In [10] Bommannavar et al. capture risk management
in a quantitative framework which aids decision makers upon
allocation of security resources. The authors use a dynamic
zero-sum game to model the interactions between attacking
and defending players. A Markov model, in which states
represent probabilistic risk regions and transitions, has been
defined. The authors use Q-learning to cope with scenarios
when players are not aware of the different Markov model
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parameters.
Fielder et. al. [11] investigate how to optimally allocate the

time for security tasks for system administrators. This work
identifies how to allocate the limited amount of time, which
a system administrator has, to work on the different security
related tasks for an organisation’s data assets.

One of the initial works studying the way to model in-
vestment in cyber security is published by Gordon and Loeb
[12]. The authors consider the optimum level of investment
given different levels of information security level. The authors
propose a model in which for any given vulnerability there
are different levels of information security that can be imple-
mented, where a higher level of information security will cause
the expected loss to that particular vulnerability to drop. This
is modelled as a function of the security level’s responsiveness
to an increasing vulnerability in reducing loss. In our model,
here, we consider a single value for a vulnerability, and then
for each control there are a number of levels of implementa-
tion, which represent the information security levels proposed
by Gordon and Loeb. The main message of this work is that
to maximise the expected benefit from information security
investment, an organisation should spend only a small fraction
of the expected loss due to a security breach.

The work published in [13] examines the weakest target
game which refers to the case where an attacker is always
able to compromise the system target with the lowest level
of defence, and not to cause any damage to the rest of the
targets. The game-theoretic analysis, which the authors have
undertaken, shows that the game leads to a conflict between
pure economic interests and common social norms. While the
former are concerned with the minimisation of cost for security
investments, the latter imply that higher security levels are
preferable. Cavusoglu et. al. [14] compare a decision theory
based approach to game-theoretic approaches for investment in
cyber security. Their work compares a decision theory model
to both simultaneous and sequential games. The results show
that the expected payoff from a sequential game is better than
that of the decision theoretic method, however, a simultaneous
game is not always better.

Recent work on cyber security spending has been published
by Smeraldi and Malacaria [3]. The authors identify the
optimum manner in which investments can be made in a cyber
security scenario given that the budget allocation problem
is most fittingly represented as a multi-objective Knapsack
problem. Cremonini and Nizovtsev, in [15], have developed
an analytical model of the attacker’s behaviour by using cost-
benefit analysis, and therefore considering rewards and costs of
achieving different actions. One issue that we factor into this
work is that security comes at a cost that is greater than that of
the price of implementing a policy. Al-Humaigani and Dunn
proposed a model of Return on Security Investment (ROSI)
[16], where the authors define the return on investment of
an attack as a function of eleven factors, which comprise of
direct costs for implementing a security tool, indirect costs
of having that security tool in place, as well as the cost to
the company should there be a breach (i.e. damage). Wang

et al. note that game-theoretic approaches to cyber security
suffer from the fact that “the rationality of hackers is hard to
be captured by a model, because they may be motivated by
different value systems” [17]. While the authors do not argue
on the rationality of the attacker, but the idea that imposing
on them a similar set of values as a defender is not adequate.
Previous work we have conducted in this area notes that the
reward for the attacker is in line with the loss of the defender
by the way of an affine transformation [11]. This was done
to represent the loss of value that an attacker gets from the
data that has been stolen, when compared to the value to the
defender.

Demetz and Bachlechner [18] provide a survey of models
that have been proposed for the study of economic viability
of tools for security policy and configuration. The authors
identify a series of requirements that a security investment tool
should contain. We compare our approach to the conditions set
out by Denetz and Bachlechner’s:
• Financial Measures - The optimisation method looks to

take into consideration the financial constraints of the
organisation and identifies what should be purchased
given the range of possible budgets. An organisation is
then able to select an appropriate set of controls given
their financial constraints and threat tolerance levels.

• Non-Financial Measures - One of the key features of a
multi-level model of a control implementation is that,
it is possible to clearly identify non-financial measures
such as System Performance or Staff Morale that will
be impacted as a result of implementing certain controls
or extending the reach that some controls have (such as
surveillance).

• Support One-Time Costs and Benefits - One of the direct
costs is Capital Costs, where the capital costs for an
organisation incurred for implementing the control.

• Support Running Costs and Benefits - As with the One-
Time costs, the model supports the inclusion of running
costs into these direct costs as well, primarily as labour
costs. Additionally any non-financial costs incurred in
the actual implementation are represented in the indirect
costs.

• Does not explicitly consider Attacks - The game-theoretic
model that is presented here is defined in such a way that
it allows for the representation of a control that is capable
of mitigating any number of attacks. However, this goal
focuses on policy and configuration that will not only
protect against attacks, but will also work with security
breaches that are not related to the attacks.

• Consider the Network Effects of Investments - Within the
scope of the model considered, there is no direct consid-
eration of the additional benefits to other organisations
from the implementation of a given security policy given
by our model.

While the work we provide covers many of the aspects
designated to be an effective security tool, it notably lacks
the aspects that relate to non-attack related issues of security
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such as unintentional loss or network benefits.

III. MODEL DEFINITION

In this section we use game theory to model the interactions
between two players; Defender and Attacker. Defender is the
cyber security manager in an SME, and her overall objective
is to defend the organisation’s assets from cyber theft, mitigate
any potential business disruption, and maintain the organisa-
tion’s reputation.

On the other hand, Attacker is a cyber hacker who tries to
subvert the system to her own end, by launching commodity
cyber-attacks against the organisation Defender is working
for. Commodity cyber-attacks are based on capabilities and
techniques that are available on the internet, where the attack
tool can be purchased therefore the adversaries do not develop
the attack themselves, and they can only configure the tool for
their own use.

First, we present the cyber security model and environment
of the game, and introduce the two players. The model of
environment and game presented here were initially proposed
in [2]. We then describe the sets of their pure strategies and
the payoffs associated with each of them. We also discuss how
mixed strategies are represented in this game, and we provide
the expected payoffs of Defender and Attacker given any pair
of mixed strategies. Fig. 1 illustrates our environment.

A. Environment

In our model, Defender work as a cyber security manager
in an SME with an available cyber security budget B, and
she wants to invest in implementing cyber security controls
to protect the organisation’s data assets against commodity
attacks.

Each control can be implemented at a different level. Note
that the higher the level the greater the degree to which
the control is implemented. After its implementation, each
control brings some security benefits to the system, but it is
also associated with indirect and direct costs. The challenge
Defender has to address is how to decide upon implementation
of the different cyber security controls against commodity
attacks, given a limited budget B, and other preferences the
organisation has in terms of risks and indirect costs. In the
following we discuss the different components of the model,
and we define appropriate terminology and notations, which
are consistent throughout this article.

1) Asset Depth: We define the depth of a data asset as the
location of this asset within the organisation’s structure fol-
lowing the rule: the higher the depth is, the more confidential
data the asset holds. In other words, a depth determines the
importance of the data asset that the organisation loses if a
commodity attack (herein referred to as attack) is successful.
In this paper, we specify that data assets that located at the
same are depth, worth the same value to Defender’s firm.

2) Cyber Security Targets: We denote the set of cyber
security targets within an organisation by T := {ti}, the set of
vulnerabilities threatened by commodity attacks by V := {vz},

and the set of depths by D := {dx}. A cyber security target
is defined as a (vulnerability, depth) pair; formally

ti := (vz, dx). (1)

And it abstracts any data asset, located at dx, that an attack
threatens to compromise by exploiting vz . We specify that
data assets located at the same depth and having the same
vulnerabilities are abstracted by the same target.

Each target is associated with an impact value which ex-
presses the level of damage incurred to Defender’s organisa-
tion when Attacker succeeds in their attack against that target.
The different impact factors can be data loss, business disrup-
tion, and reputation damage. Each impact factor depends on
the depth dx that the attack targets.

Furthermore, there is a threat value for each target. This can
account, for instance, for the frequency of attacks launched
against that target. Each software weakness (we use the terms
weakness and vulnerability interchangeably) has some factors
that can determine an overall score.

Let I : T → Z+ be the random variable which takes targets
ti to the impact value that the compromise of ti will have
to the organisation, and let T : T → Z+, be the random
variable which takes target ti ∈ T to its threat value. Given
Definition (1) note that I(ti) depends on the depth dx, and
T (ti) depends on the vulnerability vz .

3) Cyber Security Controls: A cyber security control is the
defensive mechanism that Defender can be put in place to
alleviate the risk from one or more attacks by reducing the
probability of these attacks successfully exploiting vulnerabil-
ities.

Defender chooses to implement a control at a certain level
for their organisation. We define the set of implementation
levels of a control as L := {lj}. The higher the level the
greater the degree to which the control is implemented.

Note that we abuse notation by setting lj = l, ti = t, vz = v,
and dx = d.

An implementation level l has a degree of vulnerability
mitigation on each target. This is determined by the efficacy,
in terms of cyber defence, of l on this target. For a pair (l, t),
which represents the level of implementation of a particular
control, we define the random variable E : L × T → [0, 1),
which takes a pair of (l,t) to the efficacy value of l on t. Here,
we have postulated that E(l, t) 6= 1 due to the existence of
0-day vulnerabilities that Attacker has the potential to exploit.
Assume Defender implements a control at l that has efficacy
E(l, t) on t.

We define the cyber security loss random variable

S(l, t) = I(t)T (t) [1− E(l, t)].

This is the expected damage (e.g. losing some data asset)
that Defender suffers when t is attacked and a control has
implemented at level l.

While the implementation of a cyber security control
strengthens the defence of Defender’s organisation, it is as-
sociated with two types of costs namely; indirect and direct.
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Fig. 1: Illustration of our environment [2].

Examples of indirect cost are System Performance Cost,
Morale Cost, and Re-Training Cost.

For a level l we express its indirect cost by the random
variable C : L → Z+. From the above we can derive the
overall loss of Defender’s organisation. This is equivalent to
the sum of the security damages inflicted by Attacker and
the indirect cost for implementing a control at a certain level.
Formally, when Defender implements a control at some level
i then the expected loss of their organisation is derived by∑

t

S(l, t)− C(l).

The implementation of a control, at some level, has a direct
cost which refers to the budget the organisation must spend
to this implementation. For instance, we can split such direct
cost into two categories, the Capital Cost and Labour Cost.
We express the direct cost of an implementation level l by the
random variable Γ: L → Z+ that takes implementation levels
to the monetary cost of the control implementation.

B. Game Characterization

In this article we formulate a two-player non-cooperative
static game. The players in our game are Defender (she rep-
resents any cyber security decision-maker) and Attacker (she
represents any cyber hacker who uses commodity attacks).
Defender defends their organisation’s data assets by minimis-
ing expected cyber security losses with respect to the indirect
costs, while the attacker Attacker aims at benefiting from
compromising Defender’s organisation data assets.

The Defender is choosing how to implement a cyber security
control (i.e. at which level) and Attacker decides which target
to attack to exploit its vulnerability at a certain depth. Since
we consider a simultaneous game Attacker does not know the
control implementation strategy and Defender does not know
the attack strategy. We refer to our games as control games
because the basis of our formulation is that Defender has one
control at her disposal.

In this article we formulate a zero-sum game. This repre-
sents scenarios where Attacker aims at causing the maximum
possible damage to Defender. We believe that if we consider
a non-zero sum game then a specific threat model must be
defined as well. Such a model could consider, for instance,
some cost for Attacker when undertaking an attack. However
cost in terms of cyber attacks is tightly coupled with the profile
of the attacker. A consideration of a specific threat model
would also have some influence on the way Attacker sees the
different targets as she is after specific goals based on her mo-
tivation (i.e, cyber crime, hacktivism, cyber espionage). In this
case, different Attacker profiles could have been investigated.
In our work here, we have not investigated such profiles and
our work is limited to a generic assumption that Attacker is
taking advantage of commodity attacks that she can purchase
from online sources. In other word, we have assumed a set
of attack methods that Attacker can choose from but we have
not postulated anything about their motivations.

C. Pure-Strategy Sets

For a given cyber security control, Defender can choose
to implement the control at level l ∈ L and therefore her
pure strategy set coincides with L. The Attacker selects
a vulnerability to exploit at a certain depth. Formally, At-
tacker chooses t = 〈v, d〉 ∈ T . Thus the pure strategy set
of Attacker coincides with T .

D. Payoffs

Given that the pure strategy sets of the players are L and
T then Defender has m pure strategies and Attacker has n,
correspondingly. We denote by G := 〈A,E〉 an m × n bi-
matrix cyber security game where Defender (i.e. row player)
has a payoff matrix A ∈ Rm×n and the payoff matrix of
Attacker (i.e. the column player) is denoted by E ∈ Rm×n.

Defender chooses as one of her pure strategies one of the
rows of the payoff bi-matrix 〈A,E〉 := [(alt, elt)]l,t. For any
pair of strategies (l, t), Defender and Attacker have payoff
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TABLE I: Notation.

T set of cyber security targets L set of implementation levels

V set of vulnerabilities D set of depths

T (t) threat value of target t I(t) impact of a successful attack
against target t

S(l, t) security loss when target t is
compromised

E(l, t) effectiveness of l on t

θj probability tj to be attacked φj probability lj to be selected

C(l) indirect cost of l Γ(l) total direct cost of l

values equivalent to alt and elt, given by

alt := S(l, t)− C(l)

elt := −S(l, t) + C(l).

Tables II and III are the player’s payoff matrices.

TABLE II: Defender’s payoff matrix.

t t′

l S(l, t)− C(l) S(l, t′)− C(l)

l′ S(l′, t)− C(l′) S(l′, t′)− C(l′)

TABLE III: Attacker’s payoff matrix.

t t′

l −S(l, t) + C(l) −S(l, t′) + C(l)

l′ −S(l′, t) + C(l′) −S(l′, t′) + C(l′)

E. Representation of Mixed Strategies

A player’s mixed strategy is a distribution over the set of
their pure strategies. The representation of Defender’s mixed
strategy space is a finite probability distribution over the set of
the different control implementation levels {l1, . . . , lm}. For
Attacker, the representation of their mixed strategy space is a
probability distribution over the different targets {t1, . . . , tn}.

In this paper we are interested in how different control
implementation levels are combined in a proportional manner
to give an implementation plan for this control. We call this
a cyber security plan. This allows us to examine advanced
ways of mitigating vulnerabilities. A cyber security plan is a
probability distribution over different cyber security processes.
When investing in cyber security we will be looking into
the direct cost of each cyber security plan which is derived
as a combination of the different costs of the cyber security
processes that comprise this plan.

1) Defender’s Mixed Strategies: We define Defender’s
mixed strategy as the probability distribution Φ =
[φ1, . . . , φm]. This expresses a cyber security plan, where φj
is the probability of implementing the control at lj . A cyber
security plan can be realised as advice to Defender on how
to implement a cyber security control by combining different
implementation levels. Although this assumption complicates
our analysis at the same time it allows us to reason about
equilibria of the control game therefore providing a more
effective strategy for Defender. We claim that our model is

flexible thus allowing Defender to interpret mixed strategies
in different ways to satisfy their requirements.

2) Attacker’s Mixed Strategies: A mixed strategy of At-
tacker is defined as a probability distribution over the set
{v1, . . . , vν} × {d1, . . . , d∆}. In a simpler form, the mixed
strategy of Attacker is a probability distribution over the
different targets and it is denoted by Θ = [θ1, . . . , θn], where
θi is the probability of the adversary attacking ti.

3) Payoffs for Mixed Strategies: When both players choose
a pure strategy randomly according to the probability dis-
tributions determined by Φ and Θ, the expected payoffs to
Defender and Attacker are

JD(Φ,Θ) :=

n∑
i=1

m∑
j=1

φj aij θi

JA(Φ,Θ) :=

n∑
i=1

m∑
j=1

φj eij θi.

F. Best Responses Analysis
For the remainder of this section, we analyse a specific con-

trol game. We assume that for a specific target t, Defender has
only two possible levels at her disposal namely l, and l′ (e.g.
performing penetration testing rarely during a year or often),
to implement a control. We define

∆S(t) := S(l′, t)− S(l, t)

∆C := C(l′)− C(l)

∆S(t) is the reduction in damage when l′ is chosen, and ∆C
is the extra indirect cost of l′ over l.

Lemma 1: When the reduction in damage achieved by l′

over l is higher than the extra indirect cost that l′ introduces,
Defender chooses l′.

Proof: If the reduction in damage achieved by l′ over l is
higher than the extra indirect cost that l′ then ∆S(t) > ∆C.
This can be broken down as, S(l′, t)−S(l, t) > C(l′)−C(l)⇔
S(l′, t)− C(l′) > S(l, t)− C(l)⇔ al′t > alt. Therefore, the
Defender is incentivised to pick l′ as it has a higher utility.

Lemma 2: If S(l, t) > S(l, t′) then Attacker attacks target
t.

Proof: For a specific control implementation l and two
targets t, t′, Attacker’s best response can be found by com-
paring elt, elt′ . If elt > elt′ ⇔ S(l, t) − C(l) > S(l, t′) −
C(l) ⇔ S(l, t) > S(l, t′), Attacker prefers to attack target t.
Specifically we define this property as:

∆S(l) := S(l, t′)− S(l, t)

6



Therefore, if S(l, t) > S(l, t′) ⇔ S(l, t′) − S(l, t) < 0 ⇔
∆S(l) < 0, Attacker chooses t.

G. Saddle Points

Since we are investigating a two-person zero-sum game with
finite number of actions for both players, and according to
Nash [19] it admits at least a Nash Equilibrium (NE) in mixed
strategies. Saddle-points correspond to Nash equilibria as
discussed in [20]. The following result, from [21], establishes
the existence of a saddle (equilibrium) solution in the games
we examine and summarises their properties.

The investigated cybersecurity game admits a saddle point
in mixed strategies, (Φ∗,Θ∗), with the property

Φ∗ = arg max
Φ

min
Θ

JU (Φ,Θ)

Θ∗ = arg max
Θ

min
Φ
JA(Φ,Θ).

Corollary 1: Regardless of the Attacker’s strategy, the Nash
Defender guarantees a minimum performance, that is an upper
limit of expected damage.

Proof: The minimax theorem [22] states that for zero
sum games NE, maxmin and minimax solutions coincide.
Therefore Φ∗ = arg minΦ maxΘ JA(Φ,Θ).

H. Non-zero Sum Games

Note here that, since in this work we consider zero sum
games, two criticisms are possible:

Remark 1: The gain of the Attacker is not, in general, equal
to the loss of the defender.

Remark 2: The Attacker’s payoff is not related to the
defender indirect costs.

We address both Remarks by noticing that a significant
class of realistic cybersecurity games can be mathematically
reduced to zero sums games. Remark 1 is addressed by the
following lemma.

Lemma 3: The equilibrium (Φ∗,Θ∗) in our zero sum cy-
bersecurity game G remains the same in the negative affine
transformation of this game in which the Attacker’s gain does
not equal the Defender’s loss.

Proof: We claim that a model of the Attacker where
his payoffs are a negative affine transformation of the De-
fender loss is a reasonable model. For example by selling
stolen data on the black market for only one tenth of the data’s
value.

A negative affine transformation of the Defender’s A matrix
is defined as ωA+ψ, where ω is a negative scalar, and ψ is a
constant matrix of the same dimension as A. Therefore, in ad-
dition to the cybersecurity game G = (A,−A), we intuitively
define the negative affinity of this game as G− = (A, ωA+ψ).

Suppose Φ∗,Θ∗ are the equilibrium strategies in G. First, it
is easy to see that Φ∗ is the Defender’s equilibrium strategy in
both G and G− due to the Defender’s game matrix remaining
the same. Formally, ΦAΘ∗ ≤ Φ∗AΘ∗. Similarly, we prove
that Θ∗ is Attacker’s equilibrium strategy in both games.
We have that Φ∗ (−A) Θ ≤ Φ∗ (−A) Θ∗ ⇒ Φ∗AΘ ≥

Φ∗AΘ∗ ⇒ Φ∗ (ωA+ ψ)Θ ≤ Φ∗ (ωA+ ψ)Θ∗. This means
that equilibria are the same in both G,G−.

Lemma 4: A game Ĝ where the Defender’s indirect cost C
is a positive affine transformation of the direct cost S, has the
same maxmin solution with G.

Proof: According to the Lemma we have that in Ĝ
Defender’s payoff is given by

S − (κS − µ) = S (1− κ)− µ,

where κ, µ are positive scalars. Assume that at the equilibrium
of Ĝ Defender’s best response is Φ∗. Then we have

Φ
[
S (1− κ)− µ

]
Θ∗ ≤ Φ∗

[
S (1− κ)− µ

]
Θ∗

⇒ Φ (S − κS − µ) Θ∗ ≤ Φ∗ (S − κS − µ) Θ∗

⇒ Φ (S − µ) Θ∗ ≤ Φ∗ (S − µ) Θ∗

µ=C
=⇒ Φ (S − C) Θ∗ ≤ Φ∗ (S − C) Θ∗ ⇒ ΦAΘ∗ ≤ Φ∗AΘ∗.

Therefore G, Ĝ have the same equilibria, and from Corol-
lary 1 these are also maxmin solutions.

I. A Small Game Example

To illustrate the game approach let’s consider a toy example
consisting of a 2-level, and 2-target control games, where
Defender and Attacker make their decisions simultaneously,
or, equivalently, independently of each other. The information
sets associated with the the control game, investigated in
this section, depicted in Fig. 2; a dashed curve encircling
the Attacker nodes has been drawn. This indicates that At-
tacker cannot distinguish between these two points. In other
words, Attacker has to arrive at a decision without knowing
what Defender has actually chosen.

Fig. 2: Game tree for the control game with 2 implementation
levels and two targets.

Due to the game being zero-sum, we have kept only the
payoffs of Defender at the game tree. We also defined the
mixed strategy of Defender as the probability distribution
[φ, 1 − φ], where φ is the probability of implementing the
control at level l. Attacker’s mixed strategy is denoted by
[θ, 1−θ], where Attacker chooses to attack t with probability θ.
Table IV summarizes all possible best responses of the control
game for the different conditions discussed in this section.
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TABLE IV: Nash equilibria for the different conditions.

∆S(t′) > ∆C ∆S(t′) < ∆C

∆S(t) > ∆C
∆S(l′) > 0 (l′, t) ∆S(l′) < 0 (φl′, (1− θ)t)

∆S(l′) < 0 (l′, t′) ∆S(l) > 0 ((1− φ)l, θt′)

∆S(t) < ∆C
∆S(l) < 0 ((1− φ)l′, (1− θ)t′) ∆S(l) > 0 (l, t)

∆S(l′) > 0 (φl, θt) ∆S(l) < 0 (l, t′)

J. Player Mixed Strategies

In a two target, two level control sub-game, it is possible
to define the probabilities that each player plays a particular
mixed strategy.

Lemma 5: The Nash equilibrium for a control sub-game for
the Defender’s, given by φ∗ ∈ [0, 1] is:

φ∗ =
∆S(l′)

∆S(l′)−∆S(l)

Proof:
The Defender wants to make the Attacker indifferent to

which target they should attack.
This is given by equalising the expected payoff of the

Attacker, thus

A(t) = φ∗ elt + (1− φ∗) el′t
A(t′) = φ∗ elt′ + (1− φ∗) el′t′

giving

φ∗ elt + (1− φ∗) el′t = φ∗ elt′ + (1− φ∗) el′t′ . (2)

We can substitute terms such that Eq. (2) can be written in
terms of elt, hence

el′t = elt −∆S(t) + ∆C

elt′ = elt −∆S(l)

el′t′ = elt −∆S(t) + ∆C −∆S(l′)

By substituting the equations above into Eq. (2) we get

φ∗ elt + (1− φ∗) (elt −∆S(t) + ∆C) = φ∗ (elt −∆S(l))

+ (1− φ∗)(elt −∆S(t) + ∆C −∆S(l′)). (3)

Eq. (3) can be expanded and reduced to

∆S(l′) = φ∗(∆S(l′)−∆S(l)).

This then gives

φ∗ =
∆S(l′)

∆S(l′)−∆S(l)

Lemma 6: The Nash strategy of the Attacker in a control
sub-game, is given by

θ∗ =
∆S(t)−∆C + ∆S(l′)−∆S(l)

∆S(l′)−∆S(l)

Proof: At the equilibrium, the Attacker wants to make the
Defender indifferent to which target they should attack. This
is given by equalising the expected payoff of the Defender:

D(l) = θ∗ alt + (1− θ∗) alt′
D(l′) = θ∗ al′t + (1− θ∗) al′t′ .

Therefore

θ∗ alt + (1− θ∗) alt′ = θ∗ al′t + (1− θ∗) al′t′ . (4)

We can substitute terms such that Eq. (4) can be written in
terms of alt, and therefore

al′t = alt + ∆S(t)−∆C

alt′ = alt + ∆S(l)

al′t′ = alt + ∆S(t)−∆C + ∆S(l′)

By substituting the equations above into Eq. (4) we get:

θ∗ alt + (1− θ∗) (alt + ∆S(l)) =

θ∗(alt + ∆S(t)−∆C) + (1− θ∗) (alt +

∆S(t)−∆C + ∆S(l′)).

The above equation can be expanded and reduced to:

alt + ∆S(l)− θ∗∆S(l) = alt + ∆S(t)−∆C +

∆S(l′)− θ∗∆S(l′).

This then gives

θ∗ =
∆S(t)−∆C + ∆S(l′)−∆S(l)

∆S(l′)−∆S(l)
.

K. Numerical Illustration

We see that Defender’s strategy is derived only from ∆S(l)
and ∆S(l′). This is since Defender wants to make the At-
tacker indifferent to the target they want to attack at the
equilibrium. In this way the aspects of ∆S(t) and ∆C are
not represented as they do not impact Attacker.

In Fig. 3 we see the results with the inclusion of the pure
strategy solutions. When ∆S(l) = ∆S(l′) the solution is
undefined, such that Defender has no incentive to play one
defence over the other, as there is no φ that will influence the
outcome of the game. Additionally, we see that when ∆S(l)
does not equal ∆S(l′) and both ∆S(l) ≤ 0 and ∆S(l′) ≤ 0
or ∆S(l) ≥ 0 and ∆S(l′) ≥ 0 then we have a collapse onto a
single dominant strategy. The single strategy, represented here
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Fig. 3: Defender’s Strategy Space

by φ∗ = 0 or φ∗ = 1, is defined depending on which solution
would make the attacker the most indifferent to which target
they wish to attack.

When (∆S(l) > 0) ∧ (∆S(l′) < 0) or (∆S(l) <
0) ∧ (∆S(l′) > 0), then we have the conditions for a mixed
strategy. This is because there is no pure strategy that is
dominant, and therefore the defender aims to make the attacker
as indifferent as possible.

IV. CYBER SECURITY INVESTMENT

Thus far the analysis performed has considered a single-
control, two-targets, two-levels game. Our plan for cyber
investment is to solve a set of control sub-games with n
targets and up to m control levels for each control. Given
these game solutions we will then use a Knapsack algorithm
to provide the general investment solution. The control-game
solutions provide us with information regarding the way in
which each security control is best implemented, so as to
maximise the benefit of the control with regard to both the
Attacker’s strategy, and the indirect costs of the organisation.

It is easy to see that, in control sub-games, the games
look only at the vulnerabilities that are directly relevant to
the control being implemented. The cyber security investment
problem expands to represent all of an organisation’s vulnera-
bilities and selecting the best cyber security controls based on
the outcomes of the control-games.

With regard to an implementation of cyber security pro-
cesses based on the sub-game solutions, it is important to un-
derstand what a control game solution represents in the process
of making those decisions. In particular this is about what a
mixed strategy means in terms of control implementation.

We motivate the concept of a mixed strategy as a method
for trying to define where in the system it is most effective
to implement the control. Based on our interpretation of the
structure of a network, this will generally involve protecting
devices at the highest level with the strictest controls where
possible, then assigning lower levels of controls to devices and
users that operate at depths with less sensitive data.

This is performed by creating a logical ordering of the most
important devices, based on the perceived risk of the device
or the user. While there may be a logical ordering across an
organisation for all controls, it often might make more sense
to order users and devices specifically for each control based
on vulnerability.

Example 1: To illustrate this we take for example a se-
curity control entitled Vulnerability Scanning and Automated
Patching, and we assume 5 different implementation levels i.e.
{0, 1, 2, 3, 4} where level 4 corresponds to real-time scanning
while level 2 to regular scanning. We say that a mixed strategy
[0, 0, 0.7, 0, 0.3] determines a cyber security plan that dictates
the following:
• 0.3 7→ real-time scanning for the 30% of the most

important devices
• 0.7 7→ regular scanning for the remaining 70% of devices

This mixed strategy can be realised more as an advice to
a security manager on how to undertake different control
implementations rather than a rigorous set of instructions
related only to a time factor. We claim that our model is
flexible thus allowing the defender to interpret mixed strategies
in different ways to satisfy their requirements.

A. Full Game Representation

A Full Game representation considers the method of solving
the investment problem by creating a strategic game containing
the set of feasible choices available to both players. Defender’s
pure strategies are comprised of an implementation level for
each of the controls, and Attacker’s pure strategies consist
of each target in the set of all possible targets. One of
the considerations that needs to be made is with regards
to the budget. A pure game-theoretic solution for the cyber
investment problem would require modelling n targets, m
control levels and c controls. A naive choice would be to
consider c × m × n games. However it is not clear how to
force these game solutions to satisfy budget constraints. A
game model satisfying budget constraints could be built using
the idea of “schedules” [23], i.e. a pure strategy is a tuple of
c×m bits where each bit represents the implementation of a
control at a particular level, 1 stands for implemented and 0
for not implemented. The budget requirement can be easily
imposed on such tuples, for example by only considering
tuples whose costs do not exceed the budget. The problem with
this proposal is that, in principle, there could be an exponential
number of pure strategies, in the order of 2(c×m). Also it
would be non-trivial to choose appropriate payoffs for such
tuples. In this case, we restrict the combination of controls in
the payoff matrix to only those that can be purchased based
on the maximum amount of budget.

B. Pure Knapsack Representation

A Pure Knapsack representation considers the method of
solving the investment problem given that Defender only
considers the implementation of “whole” controls. We have
chosen a 0-1 Multiple Choice, Multi-Objective Knapsack.

The choice of this type of Knapsack is motivated as follows:
“0-1” because each level of implementation of a control is
implemented or not implemented, “Multiple Choice” because
only one solution for each control (the optimal one) ought
to be chosen and “Multi-Objective” because each target rep-
resents an optimisation objective. More precisely we define
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in this case as Q a control implementation, where Qjl is the
implementation for control j at level l.

We define a solution to the Knapsack problem as

Ψ = {Q1l1 . . . Qclc}, li ∈ L.

A solution Ψ takes exactly one level for each control as a
policy for implementation, where notice for each control there
exists a solution Qj0, which dictates that control j should not
be used.

To represent the cyber security investment problem, we
need to expand the definitions for both expected damage
(S) and effectiveness (E) to incorporate multiple controls.
So we expand S such that S(Ψ, t), which is the expected
damage on target t given the implementation of the levels
associated with Ψ. Likewise, we expand the definition of the
effectiveness of the implemented solution on a given target as
E(Ψ, t). Additionally, we consider Γ(Qjl) as the direct cost of
implementing Qjl, and the maximum of all Γs cannot exceed
the available cyber security budget B. Then we solve

max
Ψ

min
ti

{1−
c∑
j=1

m∑
l=0

E(Qjl, ti)zjl}S(Ψ, ti)− Cj(l)

s.t.
c∑
j=1

m∑
l=0

Γ(Qjl) zjl ≤ B

m∑
l=0

zjl = 1, zjl ∈ {0, 1}, ∀j = 1, . . . , c

where zjl is the probability of implementing control j at level
l, and B is the available cyber security budget.

C. Hybrid Method

The Hybrid approach avoids the problems of the Full
Game method by considering the particular game solutions for
each control as part of an overall combinatorial optimisation
problem which we also solve using a 0-1 Multiple Choice,
Multi-Objective Knapsack.

In this case we define as Q a sub-game solution, where Qjl
is the sub-game solution for control j implemented at level l.

We represent the 0-1 Multiple Choice, Multi-Objective
Knapsack Problem as:

max
Ψ

min
ti

{1−
c∑
j=1

m∑
l=0

E(Qjl, ti)zjl}S(Ψ, ti)

s.t.
c∑
j=1

m∑
l=0

Γ(Qjl) zjl ≤ B

m∑
l=0

zjl = 1, zjl ∈ {0, 1}, ∀j = 1, . . . , c

Notice that in the above formula, we do not have the factor
of indirect cost (Cj(l)), this is because indirect cost is taken
into consideration in the control sub games.

In addition, we consider a tie-break condition in which
if multiple solutions are viable, in terms of maximising the
minimum, according to the above function we will select the

solution with the lowest cost. This ensures that an organisation
is not advised to spend more on security controls than would
produce the same net effect.

V. CASE STUDY: SANS CRITICAL SECURITY CONTROLS,
CWE TOP SOFTWARE VULNERABILITIES

To compare the Full Game, Hybrid and Pure Knapsack
methods of decision support, we have developed a sample case
study similar to one expected in a real environment.

In this work, we are interested in comparing two aspects
of the solutions generated by the different methods. The
first is the optimality of the solutions, and the other is their
complexity. To this end, we consider the optimality of the
solution to be the expected damage of the implemented set
of controls at the weakest level, for a given budget.

The complexity of the solution provides a pivotal role in
decision support with cyber security, where overly complex
solutions are potentially difficult to implement and follow. This
is relevant with mixed strategy equilibria.

A. Modelling SANS Critical Controls and CWE Top Software
Vulnerabilities

Our case study is created using a mapping from the SANS
Critical Security Controls [24] combined with the CWE Top
25 Software Vulnerabilities[25]. In this mapping, we define
a control as a collection of any of the associated processes
defined by a single critical security control in the SANS top 20.
Additionally, we consider a vulnerability as any of the software
vulnerabilities that are defined in the CWE Top 25. Using data
associated with these two sources we are able to build the core
components of a case study to test our methodology.

From the SANS Critical Security controls, we define a level
of Implementation for a given control as a single action point
listed for the control. For each control, the control levels are
considered in order, based on their position in the list. In some
cases where there is significant overlap between control levels,
levels can be combined. This is aimed at reducing the number
of strategies and computational complexity of the problem.

Using the classifications provided by the CWE Top 25
Software vulnerabilities we are able to categorise the different
classes of vulnerabilities that each of the controls is able
to mitigate. CWE proposes three categories Insecure Inter-
actions Between Components, Risky Resource Management
and Porous Defences. A given vulnerability falls into one of
the three categories and we consider that any control may
cover the vulnerabilities associated with one or more of the
categories.

To calculate part of the risk, we consider the threat value to
be directly associated with each of the vulnerabilities. CWE
defines a score out of 100 for a number of vulnerabilities,
with those scoring highest published in their top 25. The
damage values associated with each of the weaknesses have
been scaled to fit within the range of the other values gathered
for this case study.

The efficiency of a control level is considered to be a
reduction in the effectiveness of a given control based on
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the idea that a control should be effective at stopping an
attack. In reality an Attacker may be able to circumvent
these controls. We consider that their ability to do so is
linked to the availability and ease with which information
about vulnerabilities can be discovered. Then, we directly link
this ability to the attack factors provided by CWE. To do
this, we apply a weighted percentage of the values for the
four key factors that CWE defines regarding a vulnerability
capped according to the level. The four attack factors that
CWE defines for a given vulnerability are Prevalence, Attack
Frequency, Ease of Detection and Attacker Awareness.

CWE provides an expected cost value to repair the vulnera-
bility for each weakness. For this mapping, we consider each
cost separately for each vulnerability. More specifically, the
direct cost of a control is given as the sum of all the costs
for the vulnerabilities that it covers. This direct cost value is
considered to be the cost of implementation at the highest level
for the control. The direct costs for lower levels are scaled
uniformly based on the number of levels the control has.

The mapping provided is able to cover the technical aspects
of the controls and vulnerabilities, however, there are certain
aspects unique to each organisation . We consider that both the
impact of a successful attack and the indirect costs incurred
need to be defined based on priorities and requirements of
the organisation. The impact of a successful attack is given
by not only the data loss to the organisation, but also by the
loss of reputation, as well as other costs associated with a
breach. The indirect costs are considered to be the importance
that the organisation places on the day to day performance of
the system, as well as the ability and willingness of staff to
comply with any additional security policies.

B. Values

The case study presented in this work considers a network
separated into three different depths, consistent with Fig. 1,
where Defender has seven different controls available to
protect the network from twelve different vulnerabilities. For
this example, we consider the levels available to Defender to
consist of the quick win processes provided by SANS. The
seven controls are shown in Table V and the twelve vulnera-
bilities are shown in Table VI. Based on the controls used, the
budget at which all controls become available at the highest
level equals 82.

C. Optimality Comparison

In comparing the damage at the weakest target provided
by the Full Game, Hybrid Method to the Knapsack Rep-
resentation, we can see in Fig. 4 that, in general, the Full
Game Representation will provide a better defence to the
weakest target for low budget levels. However, once the budget
becomes larger, we see that the Hybrid Method is able to reach
a level of coverage that will minimise the damage at each
target, whereas neither the Full Game Representation nor the
pure Knapsack Representation fully cover the weakest target,
even with the maximum budget. This is owing to the impact
that the indirect cost has on the decision-making process.

Where the Hybrid Method includes the impact of direct cost
in the decisions, regarding the optimality of the deployment
of the control at each level
• the pure Knapsack includes the indirect cost, as a whole,

in the outcome of the optimisation, and
• the Full Game applies the indirect cost to each strategy

in the payoff matrix.

Fig. 4: Case Study Results with Normally Expected Indirect
Costs

We can also see that the impact of the indirect cost causes
the Full Game Representation to become inefficient compared
to the Hybrid and Knapsack, before reaching the maximum
defence. This occurs in Fig. 4 within the budget range of 27 -
32.

Fig. 4 shows that with low indirect costs, the outcome of the
control sub-games allow for the availability of better strategies
with lower budgets than the Knapsack-only representation.
This is due to the Hybrid Method being able to use a
combination of packages that has a lower direct cost, but it
provides the required coverage to the weakest target. Where a
similar coverage of the weakest target is only available to the
Knapsack when the pure strategies are made available.

It has also been seen that with higher indirect costs both the
Full Game and pure Knapsack Representation will offer in-
creasingly poor results when compared to the Hybrid Method.
This is due to the point at which the cost of implementing
controls outweighing the benefit being reached at a lower
budget.

In Fig. 5, we see that when there are no indirect costs,
the Hybrid Method and Knapsack Representation-only method
have exactly the same output. This is due to the outcome
of each control sub-game providing a pure strategy at the
highest level of implementation, which would result in the
Knapsack solver having identical strategies with regard to the
optimisation.

With regard to the indirect cost, if there is no indirect cost to
implementing the control then there is no trade-off to a higher
defence. This means that providing that an appropriate budget
is available, then the best defence will be purchased by all
methods, as seen in Fig. 5. Most importantly, this means that
the Full Game Representation provides solutions that are often
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TABLE V: Case Study Controls.

Control Levels
Inventory of Authorised and Unauthorised Devices (1) 3
Inventory of Authorised and Unauthorised Software (2) 3

Secure Configuration for Hardware and Software on Devices (3) 5
Continuous Vulnerability Assessment and Remediation (4) 4

Malware Defences (5) 6
Application Software Security (6) 2

Controlled Use of Administrative Privileges (12) 6

TABLE VI: Case Study Vulnerabilities.

vz : Vulnerability
(CWE-code) PR AF ED AA Vulnerability PR AF ED AA

v1: SQLi (89) 2 3 3 3
v7: Missing
encryption (311) 2 2 3 2

v2: OS command
injection (78) 1 3 3 3

v8: Unrestricted
upload (434) 1 2 2 3

v3: Buffer
overflow (120) 2 3 3 3

v9: Unnecessary
privileges (250) 1 2 2 2

v4: XSS (79) 2 3 3 3 v10: CSRF (352) 2 3 2 3
v5: Missing
authentication
(306)

1 2 2 3 v11: Path
traversal (22) 3 3 3 1

v6: Missing
authorization
(862)

2 3 2 2 v12: Unchecked
code (494) 1 1 2 3

Fig. 5: Case Study Results with No Indirect Costs

more optimal, but at least no worse than those generated by the
other methods. This is because the Full Game Representation
has no drawbacks to the implementation of the best controls
in the most optimal configuration, which is still a restriction
on the two methods that implement the 0-1 restriction of the
Knapsack.

D. Complexity Comparison

To identify how complex a solution is, we need to consider
the composition of solutions to assess how complex the
solutions are and if they advice could be reasonably followed
by an individual on behalf of an organisation.

If we take for example a budget of 18, the solution provided
by the Full Game Representation, comprises of a mixed
strategy consisting of 4 packages. If we consider the three
major strategies in Table VII, then we can see that they all
suggest the use of control 5 at level 2. Additionally, we see

that at a minimum, control 6 should be implemented at level 1,
with an increase to level 2 for 23% of the time. This suggests
always having software versions supported by vendors, but
only implementing web application firewalls on the top 23%
of the system.

We can also see that the solution suggests using control
2 and control 7 with 41.3% and 76.8% respectively. Both
of these controls determine restricting access, either through
application whitelisting or a reduction in non-essential admin
rights and activities. Control implementations can be consid-
ered in one of two ways, either the percentage relates to the
number of devices that feature this control or the severity with
which the control is implemented. In the case of application
whitelisting an implementation level of 41.3% would allow a
greater degree of software availability to users than a higher
percentage.

Control 3 suggests using level 2 35.5% of the time, with
level 1 not being suggested individually. This relates to using
both secure configurations for each operating system and
implementing automated patching tools. The easiest way to
interpret this solution is to state that the top 35.5% of devices
utilise both levels of this control, while all other devices don’t.

While in this case the mixed strategies provided by the
Full Game Representation do not represent vastly different
strategies, the addition of more controls and vulnerabilities
will increase the complexity of the solution space.

Additionally for a budget of 18, we found that the Hybrid
Method suggests using the solution [0, 1, 1, 0, 4, 0, 1], while
the pure Knapsack solution suggests [0, 0, 2, 0, 2, 1, 0]. In this
example the package suggested by the Hybrid Method is
viable as a solution for Knapsack, as none of the sub-game
solutions differ from the highest level pure strategy that would

12



TABLE VII: Full Game Solution for a Budget of 18.

Package Probability
[0, 0, 0, 0, 2, 2, 0] 0.23
[0, 0, 2, 0, 2, 1, 1] 0.355
[0, 1, 0, 0, 2, 1, 1] 0.413
[0, 1, 1, 0, 0, 1, 1] 0.001

be available to the Defender. This further highlights that the
indirect costs are pivotal in demonstrating the optimality of
these results.

With a budget of 29, we see that both the Hybrid and the
Pure Knapsack select the package [0, 1, 1, 0, 2, 2, 1]. While the
Full Game Representation is able to use this package, it selects
it with probability p = 0.001. This again shows the importance
that indirect costs can have on the optimality of the solution,
given that while feasible, the game-theoretic method considers
it too costly to implement.

If we consider the case when the budget is 48, the Hybrid
Method provides the solution [0, 2, 5, 0, 4, 2, 2], where for
control 3 (Secure Configuration for Hardware and Software on
Devices) the outcome is to use a mixed strategy. The mixed
strategy suggests using level 4 with p = 0.609 and level 5
with p = 0.391. At level 4 we consider the following of
strict configuration management for creating secure images of
each OS, and level 5 is concerned with the storage of these
images. In this case we can consider that at all times the secure
image is used, but the secure storage of master images is only
considered for approximately 40% of the time.

The pure Knapsack has solutions that can be followed
intuitively as they only ever consider a single level of imple-
mentation. We can also see that the Hybrid Method often uses
pure strategies as in many cases the outcomes of the control
sub-games lead to a single strategy at many levels. However,
we find that there is an additional level of complexity in the
comprehension of the strategies that are produced by the Full
Game. Such complexity can potentially lead to strategies that
can not easily be followed by a user to gain the most from
the solution. In these cases, there is a risk that the solutions
are not followed correctly and with security. This could lead
to a potentially weaker defence over a seemingly weaker, but
more easily interpreted solution.

VI. CONCLUSIONS

In this paper we have presented an analysis of a hybrid
game-theoretic and optimisation approach to the allocation
of an organisation’s cyber security budget. For this purpose,
we have compared three different approaches to allocating
this budget. We found that when there are no indirect costs
to consider or the indirect costs have a minimal impact
compared to the benefit, then the Full Game Representation
gave solutions better than or equal to those of the other two
methods. However, when an increase in security is matched by
the indirect costs, then the Full Game Representation, is not
able to overcome the addition of the indirect costs in favour
of a stronger defence, in a similar way to the Pure Knapsack

Representation. The Hybrid Method, however, considers the
indirect costs as part of each control game and therefore
considers the optimality of each control first, and that an
optimal solution is the best valid combination of the optimised
controls.

In terms of understanding the solutions, we have found that
with a relatively small case study the results can be interpreted
in a relatively simple manner. However, we are concerned that
for a larger case study the Full Game Representation would
create solutions that are too complex to be interpreted in an
accurate manner so that they could result in a weaker defence.

This work also highlights the impact, which the indirect
costs have on the problem of cyber security budget allocation.
Considering the downside that the implementation of a control
may have on the organisation is important, since it can better
capture the decision-making process required for investment.
The results presented in this paper demonstrate how those
indirect costs are able to influence the optimal decision in
cyber security budget allocation.

We aim to use the work presented in this paper to inform
models of attacks against a system. These games model the
interactions between an attacker and defender at the Point
of Attack, and during an ongoing attack. To do this we will
consider multi-stage games which represent the stages of an
attack and recovery in a system. The techniques presented in
this paper should allow for the development of tools for better
allocation of resources to help prevent successful attacks made
against a system.

In addition, we aim to work with security practitioners in
order to create a more detailed case study, and to highlight the
operation of this method in a realistic setting. The objective of
this is to better understand the parameters that organisations
have, and how these can best be applied within our framework.
The result of this analysis will lead to the development of a
dedicated tool for cyber security budget allocation.
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