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Abstract

In the last decade, Unmanned Aerial Vehicle (UAV) production and interest is
observing a continuous growth that appears not to decline. Meanwhile, thanks
to the increase in the use of personal mobile devices and their onboard sensors,
which is becoming more and more widespread, a new data collection technique,
named crowd sensing, has emerged.

Unfortunately, security remains a relevant issue, chiefly the integrity, i.e. the
assurance that the information reported is trustworthy and accurate, still remains
unsolved. The information the participant declares could be inaccurate or even
counterfeit, due to flaws or fraud. Current literature shows no efficient solutions
to the security problem, hence the arising need to point in this direction.

The idea of this thesis came from the merging of the aforementioned mobile tech-
nologies. The aim is to fill the security gap in the crowd sensing process through
UAVs employment, to prove trustworthiness and accuracy of sensorial data.

The project presumes UAVs expedition in swarms where the data is originated,
the authenticity of which could be promptly and directly verified thanks to the
onboard sensors and, possibly, through interaction with other close sensors.

Through the deployment of a simulator, written in the NetLogo language, it has
been possible to reproduce a crowd sensing system and investigate the trustwor-
thiness gap.

We proposed and compared two different decision criteria to reveal attacks, named
Dictatorship and Majority, both based on distance evaluation through radio fre-
quency communication with the participant. In Dictatorship, it is sufficient that
one UAV detects an inconsistency to warn an attack. In Majority, the half plus
one of UAVs must detect an inconsistency in order to warn an attack. With re-
gard to that, Dictatorship criterion showed certainly a better performance than
Majority one.
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We further focused on participants’ waiting time reduction acting on the algo-
rithms to schedule swarms missions. A First Come First Served (FCFS)-like
routine and an Insertion heuristic have been deployed. Since there are no statisti-
cal differences between the two for the tests we performed, the former scheduling
algorithm is preferable due to its deterministic nature.

Keywords: Secure location verification, UAV, crowd sensing
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles (UAVs)

The word UAV, more commonly drone, refers to an aircraft with no pilot on
board that can be remotely controlled either by a human pilot by means of a
radio controller or by a system at the ground control station, otherwise it can
autonomously navigate preplanned flight missions.

The UAVs manufacturing is a worldwide blossoming phenomenon started in
the recent past and, to date, still gaining increasing interest along with conspicuous
funding. A 2015 market survey lead by Teal Group[1] states that this branch will
produce, on the whole, $93 billion over the next ten years. Such valuation takes
into account military, civil and commercial areas. Big tech companies like Google,
Facebook and Amazon feel the need to be part of the business and hence they
have already started to invest in this sector. Market analysts also expect UAV
employment in civil and commercial environments will represent an ever-growing
share of the market.

UAVs differ broadly in size and capacity. Their design and the onboard sensors
they can be furnished with, can be adapted accordingly to the specific field they
are supposed to be used. For instance, the most used UAV by United States Armed
Forces, the RQ-11B Raven R©[2] is employed in reconnaissance and surveillance mis-
sions, so it comes with a high resolution, day/night camera and a thermal imager
as main features, which are more generally called payload. It is also equipped with
a high capacity battery to have an endurance up to 90 minutes. This UAV is a
fixed-wing aircraft (Fig. 1.1(b)), even though most of the people consider a drone
as a quadcopter (Fig. 1.1(a)). This is because consumer drones, like AR.Drone by
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Parrot, and SOLO by 3D Robotics, are becoming everyday devices, mostly em-
ployed for aerial filming and photography, and more and more used by hobbists.
This kind of aircrafts is less performing than the one used for military purposes.

(a) 3D Robotics SOLO. (b) AeroVironment RQ-11B Raven R©.

Figure 1.1: Two examples of UAV airframes. A quadcopter and a fixed-wing aircraft.

Payload usually includes only a camera and the battery capacity guarantees no
more than 20 minutes of flight endurance.

1.2 Crowd Sensing

Nowadays, the use of personal mobile devices, coupled with the many onboard
sensors that they are equipped with (e.g. accelerometer, microphone, magnetome-
ter, etc.), is observing a sharp increase. This development has lead to the rise of
a new data collection technique, named crowd sensing.

This can be classified accordingly to type of phenomenon measured or to the
the participant’s involvement in such a process[3].

On the basis of the former criterion, we can discriminate three sub-categories
of crowd sensing: environmental, infrastructure, and social. Environmental crowd
sensing is used for monitoring environmental conditions and promptly detect ab-
normal or unwanted changes that may occur[4]. Infrastructure crowd sensing
commonly regards data collection from urban and extra-urban areas to control
roads traffic and maintenance[5]. Social crowd sensing embrace all aspects of
social life, such as the most popular places or the most attended events, allow-
ing individuals to anonymously share information through direct declarations or
through the sensors on their portable devices.

The other criterion of classification focuses on the participant, who can ac-
tively collaborate, communicating sensed data to a server, whenever he decides to
(participatory crowd sensing). Otherwise participants can be indirectly involved
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in the automatic dispatch of data that are acquired by sensors on their devices
when a specific event occurs (opportunistic crowd sensing).

The flexibility related to this mechanism leads to the design of highly versatile
platforms that are able to replace the typical sensing infrastructures, facilitating
the launch of new applications.

1.3 The SCIADRO Project

SCIADRO stands for SCIAme di DROni (swarm of drones is the english transla-
tion), a project funded by Regione Toscana in 2016 and proposed by the company
Ingegneria dei Sistemi (I.d.S.). The duration estimation of this work is two years
and it presumes the engineerization of a system composed by commercial UAVs
swarms and a participatory crowd sensing platform. The objective is to give to a
community of participants the opportunity of immediatly reporting catastrophic
events, due to natural disasters (such as earthquakes) or fraudulent episodes (e.g.
arsons). A swarm of UAVs that receives such a report, is entrusted to head to
the participant’s location and there, thanks to their onboard sensors, to confirm
the extent of the event proving report’s accuracy (intended as position and data
truthfulness) and ultimately participant’s trustworthiness.

To develop this system, many challenging aspects have to be analyzed and
solved. Therefore it is necessary the employment and the collaboration of many
research groups, which currently belong to Centro Nazionale di Ricerca (CNR) of
Pisa, to department of Information Engineering of Pisa, and to I.d.S.. Researches
are focusing on the deployment of a data exchange protocol, both among UAVs
belonging to the same swarm, and between these UAVs and the ground control
station, on image processing and obstacles avoidance algorithms in respect of
UAVs, on the creation of a crowd sensing framework, and on the investigation of
its security-related problems.

1.4 Aims and Objectives

This thesis investigates security-related issues concerning the SCIADRO project.
Specifically, in a crowd sensing system, these problems refer to a lack of a suitable
mechanism able to guarantee that the information the participant communicates
is accurate and trustworthy. Indeed, it is not unusual that a malicious partici-
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pant succeeds in falsifying a sensor measurement or the GPS position where that
measurement is declared to have been registered. Likewise, sensor malfunctions
are plausible, but a traditional crowd sensing system is not able to identify them.
Differently, the proposed system is inclined in tracking down and becoming aware
of both these cases.
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Chapter 2

System and Adversary Model

System is organized as follows: UAVs are grouped into swarms, each one waiting
for a request at the assigned base, or depot, within an urban area. Participants
walk on the roads and, reached a junction, they randomly choose the next one
to follow, if there exists at least another road, otherwise (cul-de-sac) they travel
backwards. They hold a constant speed and whenever they sense an event they
report it and wait there for a swarm to come. Hence, a selected swarm goes in
the proximity of the place where the report originated (waypoint), with the aim of
proving data authenticity and participant’s position. Participants can act either
honestly, and therefore they correctly report ongoing events, or maliciously, that
means they report a counterfeit position and a non existent event. On the other
hand, events are supposed to spawn at random places and random times, and
they are characterized by an arbitrary duration and a certain extension, beyond
which participants cannot sense them. UAVs are battery-powered and they can
travel and serve participants until their battery level reaches a safety threshold
beyond which the way back to their depot is mandatory. Once there, the entire
swarm must wait until all its UAVs have their batteries fully charged before being
allowed to leave again the depot for a new mission.

2.1 Position Verification Method

The project entails that UAVs move toward the point where the report is gen-
erated, with the aim of promptly and directly proving its authenticity thanks to
their onboard sensors. By means of radio frequency communications, GPS posi-
tion from where the participant stands, and from which the report has been sent,
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can be proved[6]. UAVs are trusted devices and their evaluations are known to
be reliable, therefore a UAV single unit or a swarm can be headed to the specific
point of interest where the untrustworthy participant has declared the event took
place, with the aim of verifying both the position and the event itself. UAVs will
arrange themselves randomly around the participant, in a way their positions are
not predictable by the participant, with whom each one will communicate with.
In our model, we considered a maximum communication range of 250m. After
the execution of an authentication protocol, each drone will check if participant’s
declared position is consistent with the one it independently computes by means
of Received Signal Strength Indicator (RSSI).

Although each swarm can be considered as a single entity, it is composed of a
number of UAVs that act as individual units. For this reason, it arises the need of
a unitary criterion to decide if the declared position is false or not, in the chance
UAVs do not provide a unanimous opinion. A possible approach to deal with
this issue is to blindly trust any UAV that affirms to be under attack, in a way
a single individual can decide the fate of the swarm’s opinion. Since there is a
kind of similarity to the well-known authoritarianism form of government, from
now on, we will refer to this criterion as Dictatorship. Another common approach,
antithetical to the above mentioned one, could be to let the majority of the UAVs
decides the final verdict. Thus, at least half plus one the number of drones, should
endorse the attack to determine it as swarm’s opinion. Henceforward, we will call
this last Majority.

2.2 Swarms Coordination

A swarm spends time moving from the depot or from a waypoint to another
waypoint, or from a waypoint back to the depot. Therefore pending participants
have to wait for UAVs for a certain amount of time. Assuming the presence of
more than one swarm in the system, the determination of the one to dispatch
to a participant is crucial to determine his waiting time. Hence, we could try
to reduce the average waiting time, and serve participants on the basis of the
actual position of the swarms along with the evaluation of their capabilities. In
this regard, a Vehicle Routing Problem (VRP) algorithm, introduced by Solomon
et al.[7] and called Insertion heuristic, seems to be a good compromise between
the algorithm complexity and the waiting time reduction, tailored for this kind of
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systems. It will be compared to a FCFS-like algorithm to understand which one
performs better in our case of study.

2.3 Adversary Model

In our model a specific participant can act both honestly and maliciously during
a simulation. Each participant who senses an event, always reports it correctly
and, obviously, he is admitted to report the same event just once. He will act
fairly until the communication with the UAVs ends.

The same participant, at a certain time instant, can decide to become an ad-
versary falsifying his position during the report. He dishonestly claims he stands
50m far from his real position, in any direction. The swarm will move toward his
declared position and will try to confirm it by means of the position verification
method mentioned in Section 2.1. The probability a participant becomes an ad-
versary follows an exponential random variable which will determine the instant
it happens.



8

Chapter 3

Evaluation Method

3.1 NetLogo Simulator

In order to study security-related problems affecting the SCIADRO project, and
especially the secure location verification method, a simulator has been developed
by means of NetLogo. This programming language has been chosen due to its
agent-based approach, highly suitable for our purpose. NetLogo offers the oppor-
tunity to create and program agents, or turtles, able to produce specific actions;
since we needed different turtles with different behaviors, we created five kinds of
customized turtles, called in this language breeds. Drones, participants, swarms,
events, and vertices have peculiar attributes identifying their roles, e.g. drones
are characterized by a flying speed and a battery level, while participants have a
walking speed and a positive waiting time (if they are expecting to be reached by
a swarm), and so on and so forth. A map 5×5 km sized, and representing the Ital-
ian city of Massa, has been loaded thanks to an extension called GIS (Geographic
Information System) in order to let participants walk on the roads, which are
defined by a graph through the use of vertices breed. They represent junctions
among the roads and own, as customized parameter, a list of other neighbour
vertices they are linked to.

During the simulations, pending participants are coloured in blue in case they
have reported a real event and their right location, whereas they become red if they
have reported a counterfeit position. Otherwise, when they are just walking on
the roads in absence of an event to report, they are represented in black (Fig. 3.1).
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(a) Graphical Interface. Pending malicious participants are in red, while honest
in blu. All the others, which are not pending, are coloured in black. Events
are represented with a red burst and circles giving the idea of their perceived
extension.

(b) A detailed view.

Figure 3.1: A frame of the graphical interface during a simulation.
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In Figure 3.1 is reported NetLogo interface during a simulation where drones,
participants, and events are depicted. The other two breeds are hidden: a swarm is
just a concept (with attributes, though) and there is no need to point out vertices
even if they are essential to build the road map.

Figure 3.2 shows another part of the interface where the user can configure
the system, acting on sliders, choosers, inputs, and switches. Then setup routine
have to be called to let desired configuration take place. After that, go routine is
invoked and loops till the stop condition, in our case the number of measurements
to be done, is not met. Right column, coloured in beige, cannot be directly edited
by the user, instead it refers to computed parameters that are determined during
the ongoing run.

Figure 3.2: Part of graphical interface.
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Interface elements are divided into groups. Drones parameters include five
sliders, so the user can choose UAVs speed (drones-speed), the number of UAVs
in each swarm (number-of-drones), the maximum possible distance at which a
UAV can stand from the participant’s declared position (called communication-
range), the amount of swarms (number-of-swarms), and another technical parame-
ter we will introduce later (std-dev). Participants parameters include their walking
speed (participant-speed), the quantity of participants in a simulation (number-
of-participants), the measure in which a participant will falsify his position in a
circumference of radius equal to falsification-range, and avg-malicious-time. The
last is given as parameter λ of an exponentially distributed random variable in
order to have, on the average, one malicious participant every avg-malicious-time.
The breed events is characterized by a size (event-extention), by an average time of
appearance (avg-event-time), and by an average time of persistence (avg-duration-
time). These last two are modeled in the same way in which avg-malicious-time
is designed. Among the Simulation parameters, we should cite desired-fpp that is
important for the secure location verification dynamics. It refers to the ratio of
false positive we intend to tolerate.

3.2 Implemented Algorithms

3.2.1 Attack identification and false negative probability
estimation

We want to find out the false negative ratio using Dictatorship and Majority cri-
teria imposing the false positive ratio. Thresholds beyond which a UAVs declares
to be under attack, will vary accordingly with the number of drones in a swarm
and the criterion adopted.

Threshold computation for Dictatorship and Majority criteria

Since a simulator has been created, the distance evaluation (ranging) error, com-
mitted by radio frequency device onboard of UAVs, has been simulated as well.
Such error has been modeled as a random variable with a Gaussian distribution
with standard deviation σ = 5m. On this basis, it has been possible to compute
an appropriate threshold, establishing an a priori false positive ratio. Assume now
a scenario in which all participants are honest.
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We now consider the two principles introduced in Section 2.1, called Majority
and Dictatorship. Compute the threshold for the latter is straightforward. Recall
that in Dictatorship, if at least one UAV believes to be under attack, the swarm
will claim to be under attack. A UAV states it if the difference between computed
distance from its position and the one declared by the participant (dGP S), and
the distance computed by the mean of radio frequency communication (dRF ) is
greater than the decided threshold.

|dGP S − dRF | > threshold (3.1)

Assuming dGP S a unbiased estimate, threshold is computed accordingly to the
error a UAV can commit during dRF estimation. Using Dictatorship criterion, a
swarm claims not to be under attack (event attack) if and only if each UAV judges
itself not to be under attack (event d-attack).

P (attack) = P (d-attack)n (3.2)

where n is the number of UAVs. Recalling we are assuming a honest scenario,
summing the preset false positive probability (fpp) to the probability to state
not to be under attack (P (attack)) we obtain 1 as stated by the normalization
condition, therefore:

P (attack) = 1− fpp (3.3)

Imposing fpp, the probability a UAV will assert not to be under attack
(P (d-attack)) is obtained as follows:

P (d-attack) = n
√
P (attack) (3.4)

We can now compute the fpp related to the single UAV (d-fpp) as

d-fpp = 1− P (d-attack) (3.5)

This one corresponds to a portion of the area under the Probability Density
Function (PDF) of the Gaussian distribution that identifies ranging error com-
mitted by the single UAV. Computing the inverse function we can obtain the
threshold value to achieve the desired fpp value.
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Computing threshold for Majority criterion required the creation of an ex-
tension for NetLogo[8]. The probability a swarm considers itself under attack is
composed of a subset of outcomes: any subgroup of bn

2 c + 1 of UAVs, and so on
for any group until n. We refer to the following equation related to a binomial
distribution:

P (X ≥ k) =
n∑

k=maj

(
n

k

)
· pk · (1− p)n−k (3.6)

Where p ∈ [0, 1], n ∈ N represents the number of independent experiments,
and maj is the lower bound in the probability evaluation. Specifically, for the
Majority criterion, maj is the number of votes claiming an attack to reach the
majority (in our case bn

2 c+ 1), and so the Equation 3.6 can be expressed as:

P (attack) =
n∑

k=bn
2 c+1

(
n

k

)
· P (d-attack)k · (1− P (d-attack))n−k (3.7)

The extension includes a method that takes as inputs binomial distribution
parameters, such as n (number of drones), maj, and the false positive probability
we desire; the output it returns, corresponds to the fpp related to the single UAV
(d-fpp). Recalling that ranging error is distributed as a Gaussian random variable,
we proceed in the computation of threshold value as in the previous case.

3.3 Average Waiting Time reduction

An important aspect we shall take into account is the time between a participant
request and the UAVs measurements for that participant. In general, such time
interval is called average waiting time and it is desirable to be as short as possible.

In literature, VRP is a branch of problems in operations research that derives
from the Traveling Salesman Problem (TSP) and that examines this aspect. It
refers to a fleet of vehicles, in our study the swarms, which moves from a depot and
have to visit a given number of customers before coming back to the depot[9]. We
do not consider time constraints but obvious restrictions are imposed by UAVs’
battery capacity. The challenge is to minimize the total route cost and therefore
the paths covered by the set of vehicles complying with our constraints. Since
participants can report events at any time, our optimization problem becomes
dynamic and so the scheduling algorithm needs to recompute and optimize routes
on these happenings[10]. The FCFS-like algorithm consists in a decision based on
the distance a swarm should cover to visit the participant, who just requested the
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service, from the last participant already scheduled but not visited if the swarm
is performing a mission. A slightly different case occurs when a swarm is moving
toward the depot; in this circumstance, distance is the one that is between swarm
actual position and new participant’s position. Clearly, loads constraints have to
be satisfied, so every single UAV belonging to the swarm needs to verify its own
battery restrictions for the swarm to be eligible. If a swarm is waiting at the depot,
and the batteries of all its UAVs are fully charged, such a swarm is eligible as well
and its cost for the new request coincides with the distance from the participant to
the depot. Finally, a suitable swarm with the lowest cost is chosen and the request
queued to its service list like in FCFS algorithm. So far, a method to decrease just
the total distance traveled by swarms has been taken into account. If we want to
reduce the participants’ waiting time, we could let a swarm serve a new incoming
request next to its position and then proceed with its mission, if this change in
direction respects total route cost minimization and obeys system constraints.
This is exactly Insertion heuristic goal; during the scheduling phase, each swarm
takes its own service list, which includes participants positions already scheduled
but not visited, and computes costs of insertion for the incoming request. At each
iteration, it is located between a pair of items in the service list and the swarm
route cost for that configuration is computed afterwards. Finally, the minimum
cost is taken and compared to the costs estimated by the other eligible swarms.
Again, the minimum cost is chosen and the request assigned to the relative swarm.
This algorithm’s first objective is still the minimization of the total route costs
but, obliquely, it tries to reduce participants’ average waiting time. Statistical
analysis has been performed on these methods and will be discussed further.



3.3. Average Waiting Time reduction 15

repeat
select a swarm from the pool;
if swarm is eligible then

compute and store cost for the swarm;
end
remove the swarm from the pool;

until the pool is not empty;
select the swarm with the lowest cost;
update swarm service list and total cost properly;

Figure 3.3: Scheduler pseudocode.

Figure 3.3 shows pseudocode for the scheduler; compute and store cost for
the swarm is the part where the two algorithms differ. Figs. 3.4, 3.5 contain
pseudocode both for the FCFS-like algorithm and Insertion heuristic. Service list
is an ordered list of agents; it is sorted according to service order, so there are
participant agents and the last element is the depot. d(i, i + 1) stands for the
spatial distance between the ith and the (i + 1)th element of the list. Sum of
distances is a variable that contains partial costs during the iteration and finally
represents total route cost after the inclusion of the new participant.
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make a copy of the service list;
insert unrouted participant to the list before the last entry;
if swarm is going to the depot then

insert swarm current position to the list as the first entry;
end
foreach element i < service list length do

compute d(i, i+ 1);
update sum of distances;

end
if battery constraints are still respected then

compute net cost for the inclusion;
return net cost;

else
return an error of scheduling not feasible;

end

Figure 3.4: Part of the FCFS-like routine pseudocode.

In Insertion heuristic minimum sum of distances is the minimum among all
sum of distances. Battery constraints have been estimated taking general civil
UAVs data sheets ; by means of such specs we were able to find out the maximum
distance a UAV can travel before a certain battery level, used as safety threshold
(5% in this study). Clearly, a schedule is feasible for a swarm only if every UAV
can afford the new potential mission. Since a swarm is a set of UAVs located at
different coordinates, swarm current position is considered to be the one of the
farthest UAV from the subsequent element of the list. In the same way, every
time the distance between two consecutive participants is computed, we examine
the worst case, i.e. the most distant position a UAV could get after running the
method to chose a random position, within communication range limit, around
the participant. Whenever the swarm finishes to deal with a participant, these
new coordinates are computed by each UAV starting from participant’s declared
position, so there is not any a priori knowledge about this and we always need to
suppose a worst case reasoning.
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make a copy of the service list;
for j ← 1 to service list length− 1 do

insert unrouted participant after jth element of the list;
insert swarm current position as first element of the list;
foreach element i < service list length do

compute d(i, i+ 1);
update sum of distances;

end
if sum of distances < minimum sum of distances then

update minimum sum of distances;
end

end
if battery constraints are still respected then

compute net cost for the inclusion;
return net cost;

else
return an error of scheduling not feasible;

end

Figure 3.5: Part of the Insertion routine pseudocode.
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Chapter 4

Tests and Results

4.1 Majority and Dictatorship comparison with
regard to false negative probability

An essential ambition of this study is to maximize the chances of detecting an
attack to increase system trustworthiness.

In order to do that, evaluation and minimization of false negative probability
were crucial points. Taking advantage of the algorithms explained in Chapter 3,
simulation campaigns have been performed; the goal was to establish which be-
haves better between Majority and Dictatorship criteria.

NetLogo offers the opportunity to run parallel simulations to speed up data
collection. We gathered 32 repetitions for each scenario, changing Random Num-
ber Generators (RNGs) seeds every repetition, in order to have sufficient data sets
to work with. For each different scenario, we used a Gaussian random variable to
make statistical inference because the number of independent samples was large
enough. Consequently we computed sample means and 95% confidence intervals
after truncation points evaluation. Data manipulation has been carried out using
Matlab, importing csv output files provided by NetLogo.

Simulations have been run changing the number of UAVs composing the swarm
and therefore threshold (see Section 3.2.1) is the only parameter influenced either
by swarm dimension (size) and used criterion. Table 4.1 shows threshold values
(in metres) for our scenarios.

While thresholds for Dictatorship mode ascend monotonically when increas-
ing the number of UAVs, these ones for Majority tests decrease wavering. Such
behaviour is clearly observable in Figure 4.1 and it is ascribable to binomial distri-
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Criterion Number of UAVs
3 4 5 6 7 8 9 10

Majority 9.4446 7.3628 8.0905 6.812 7.3369 6.4335 6.8455 6.1548
Dictatorship 14.6708 15.111 15.4452 15.7138 15.9379 16.1298 16.2975 16.4463

Table 4.1: Threshold values (in metres) computed with fpp = 0.01.

bution discrete nature. Let n be the number of UAVs belonging to a swarm. By
definition, more than half the votes is needed to reach the majority. If n is an even
number, swarms of n + 1 and n UAVs will require the same number of votes to
achieve the majority condition. As consequence, binomial extension will compute
different d-fpp and hence thresholds values, resulting in a higher value for the
odd number when using (3.1). As n grows larger, the difference between n and
n + 2 grows smaller.On the other end, referring to Dictatorship, there is a direct
proportionality between thresholds and n. We can simply explain this result with
an example: imagine we are dealing with a honest participant and the swarm is
composed by 3 UAVs; if at least one of them gets a measurement wrong, that
participant is flagged as an attacker. Imagine now we have a 100 UAVs swarm, all
UAVs needs to remain within the threshold when making their evaluation to reach
the right verdict. Straightforwardly, it is essential to increase threshold value in
order to achieve the same false positive probability of the previous case.

Figure 4.1 shows the false negative probability varying the number of UAVs
composing a swarm both for Dictatorship and Majority criteria. The former rule
performs clearly better than Majority one starting from the very minimum number
of UAVs. This is another metric we would like to keep as low as possible since
UAVs are a cost to the system.
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Figure 4.1: Comparison of Majority and Dictatorship criteria in terms of false negative
probability (%) for different numbers of UAVs in a swarm.

The cause of this behaviour is clear after observing the arrangement of the
drones around the participant in cases where Majority rule was deceived by the
attacker while Dictatorship revealed indeed the attack. As shown in Figure 4.2,
d1 is the only one that perceives the attack; the other UAVs are unfortunately
disposed in a way such that the distance between them and the attacker is ap-
proximately the same as the one between UAVs and his false declared position.
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Figure 4.2: A configuration in which Majority criterion does not reveal the attack.

In such circumstances, attacker succeeds in cheating the system. This is not
true with Dictatorship criterion where, as a consequence of a higher threshold
value, is less likely for a UAV to detect an attack, nevertheless if there is at least
one drone declaring an attack, the rule establishes that one as the whole swarm
judgement.

4.2 Scheduling algorithms evaluation

A number of simulation campaigns have been executed in order to understand
which scheduling algorithm achieves better results in terms of participants’ average
waiting time among all the served requests. Another connected metric we have
taken into account is the average number of not served participants. Let us recall
that a participant is not served when no swarms are eligible at the time a request
occurs; that is either a swarm is recharging batteries at its depot, or it is flying
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but battery is not enough to handle the new request. Concerning these tests, we
decided to change the number of swarms in each scenario, and to compare the two
adopted techniques. We started from 1 swarm and then we increased that number
up to a maximum of 4, so we had four different scenarios for every algorithm.
Furthermore, we decided to test the system under different load conditions with
regard to the events rate, and so varying avg-event-time parameter. Table 4.2
shows and names these cases.

Load avg-event-time (s)
Light 18000

Moderate 9000
Heavy 4500

Table 4.2: Simulations scenarios names and parameters.

When a participant has been served, its waiting time is stored in an output file.
During the last step of the simulation, number of not served participants is saved
as well. Again, we manipulated data using Matlab and plotted sample means
for these two quantities together with 95% confidence intervals for both schedul-
ing algorithms. Simulations have been run in a honest scenario, so no attacks
were possible and therefore the entire run length was governed by trustworthy
event reports. This means load conditions are affected only by the parameter in
Table 4.2 and by another one that is related to events persistence, which in our
case has been considered as a constant (avg-duration-time = 18000 s). Another
way to diversify the load could have been obtained by acting on the number of
participants, but we decided to keep it unvaried in these simulation campaigns,
where number-of-participants was equal to 20.

In Figure 4.3 are plotted results for the first set of simulations. In a lightly
loaded context, we cannot infer any statistical consideration because confidence
intervals in both the graphs are overlapped for all the scenarios.

This is because, with such a load, requests are sporadic and swarms serve few
participants during every mission. Particularly, in this scenario all the pending
participants are close to the ongoing event, which is usually unique due to the
low frequency they appear in the simulation, and their duration. Indeed, an
event manifests every 1/18000 seconds, and the period it lasts is an average of
18000 seconds (recall that avg-event-time and avg-duration-time are both modelled
by exponential random variables). Figure 4.4 shows how, with Insertion heuristic,
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a UAV travels less distance then the one it would cover with the other algorithm
proposed. Nevertheless, considering what we just evidenced, the average waiting
time is not lowered enough to assert that an algorithm performs better than the
other.

However, in Fig. 4.3 we can notice a ratio about 0.5 using a single swarm.
It is unacceptable to miss one request over two done. This value will grow up
more and more increasing the load, so we can exclude the possibility one swarm
is sufficient to guarantee a tolerable service in such a system. Even two swarms
miss a huge amount of requests, specifically more than one out of every four for
both the algorithms, though a consistent decrease of the average waiting time
is noticeable and is around 20 s. Either the average waiting time and the not
served ratio get a more evident shrink using 3 and 4 swarms. In particular, the
average waiting time is lowered more than the 25% with regard to the case with
1 swarm. Additionally, the not served participants ratio assumes passable values
(lower than 0.05).

In the second set of simulations (moderate load) the number of participants and
the event duration have been left unchanged, but the event rate has been doubled.
Graphic results connected with the two metrics we are taking into account are
observable in Fig. 4.5. It is easy to see in Fig. 4.5(b) that all the ratios regarding
the not served participants increased with respect to the previous case, and all
the arguments we exposed for that still remain valid. These simulation results
are useless since they do not further augment our knowledge with regard to which
scheduling algorithm employs a lower average time to serve the requests. However,
all the sample mean values related to Insertion heuristic are lower than the other
ones, so we decided to increase system’s load again to understand if we can draw
a conclusion about the algorithms.

For our last set of simulations, avg-event-time is four times lower than the
original one, with events happening on average every 4500 s. Due to this heavy
load condition, average waiting times for both the algorithms are higher and
participants generally have to wait up to 10 s more than the moderated load
configuration. Here for the first time, we can affirm that Insertion heuristic works
better than the other algorithm considering the single swarm scenario.

For every load condition, we noticed that the results of average waiting times
related to a single swarm performing evaluations remains almost unchanged. This
behaviour is reasonable due to battery constrains which generally affect swarms.
On the other hand, differences among increasing event frequencies are detectable
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in the not served ratio, where the number of not served participants raises with
the loads for every the number of swarms employed, even for the case of a single
swarm. The explanation for this trend lies on the higher number of events which
lead to an higher number of requesting participants.

To better understand the chain of events which develops within our system
with a growing complexity, we must draw attention to the nature of the FCFS-
like algorithm. The fact that we named it -like derives from a compromise we
made to reach the best possible results in serving the higher number of pending
participants along with system costs optimization. Hence, our algorithm is not
a pure-FCFS, instead when a participant reports an event he is assigned to the
swarm for which his evaluation costs less. Therefore a participant who reports
an event subsequent to other participants already pending for a swarm to come,
could be served before them if he is assigned to a different swarm. The algorithm
presumes the FCFS method is limited within each swarm, where there is a well-
established order to be followed. Thus, we can affirm there is a certain similarity
with the Insertion heuristic in its behaviour, but also in the results obtained for
the scenarios we tested.
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Figure 4.3: Graphical results for light load simulations with both the scheduling algo-
rithms, varying the number of swarms. In the graphs are shown average values and
95% confidence intervals.
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Figure 4.4: A case in which Insertion performs better than the FCFS-like routine.
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Figure 4.5: Graphical results for moderate load simulations with both the scheduling
algorithms, varying the number of swarms. In the graphs are shown average values and
95% confidence intervals.
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Figure 4.6: Graphical results for heavy load simulations with both the scheduling al-
gorithms, varying the number of swarms. In the graphs are shown average values and
95% confidence intervals.
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Chapter 5

Conclusions

The key goal of this research was the merging of two technologies, UAV and
crowd sensing, and the investigation of security-related problems affecting the
latter, through the employment of UAVs swarms. Specifically, we focused on the
participant position verification.

In a simulated environment that recreates an urban area, we inserted drones
and participants reproducing their movements, speeds, and other peculiar fea-
tures. We introduced two criteria for the attack identification, called Dictatorship
and Majority, and after statistical tests imposing the false positive probability
equal to 0.01, we can affirm that Dictatorship performs better than Majority,
whatever is the number of UAVs composing a swarm. Moreover, the former cri-
terion showed an average false negative percentage lower than the 1% even with
the employment of the minimum number of UAVs per swarm, that was 3. From
this investigation, we can affirm that swarms composed by 3 UAVs and using the
Dictatorship rule are adequate to reveal more than the 99% of attacks. In addi-
tion, the lower the number of UAVs within a swarm, the more effective the costs
optimization.

The following question we analyzed, regarded the shortening of participants’
average waiting time. Two scheduling algorithms, an FCFS-like routine and an
Insertion heuristic, were developed and compared to find out which one performs
better. We tested them under increasing load conditions to determine which
algorithm achieves preferable results, but they did not show statistically significant
differences even with the highest load, although not realistic since catastrophic
events are unlikely to happen every hour and a half.
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Hence, we can affirm that our system does not significantly benefit from
scheduling algorithm choice. Actually, we should prefer the FCFS-like algorithm
because it is deterministic. Using Insertion heuristic, neither we can assert, nor
communicate to the participant the amount of time to wait for the swarm arrival
since other participants can be scheduled and can overtake him in the service list.
On the other side, in the alternative algorithm, each swarm never changes its ser-
vice list order, so a participant can be notified with an estimation of its waiting
time and this would be, indeed, a remarkable feature.
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