
Computers and Mathematics with Applications 53 (2007) 1527–1537
www.elsevier.com/locate/camwa

On the optimality of nonlinear fractional disjunctive
programming problems

E.E. Ammar

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Received 27 September 2005; received in revised form 19 May 2006; accepted 28 June 2006

Abstract

This paper is concerned with the study of necessary and sufficient optimality conditions for convex–concave fractional
disjunctive programming problems for which the decision set is the union of a family of convex sets. The Lagrangian function
for such problems is defined and the Kuhn–Tucker saddle and stationary points are characterized. In addition, some important
theorems related to the Kuhn–Tucker problem for saddle and stationary points are established. Moreover, a general dual problem
is formulated, and weak, strong and converse duality theorems are proved. Throughout the presented paper illustrative examples
are given to clarify and implement the developed theory.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fractional programming [5,12,13,17] models have been a subject of wide interest since they provide a universal
apparatus for a wide class of models in corporate planning, agricultural planning, public policy decision making,
financial analysis of a firm, marine transportation, health care, educational planning, and bank balance sheet
management. However, as is obvious, just considering one criterion at a time usually does not apply to real life
problems because almost always two or more objectives are associated with a problem. Generally some of the
objectives conflict with each other; therefore, one cannot optimize all objectives simultaneously. Nondifferentiable
fractional programming problems play a very important role in formulating the set of most preferred solutions and a
decision maker can select the optimal solution.

Disjunctive programs were introduced by Balas [1,2]. Later, Balas in [3] characterized the convex hull of feasible
points for a disjunctive program, a class of problems which subsumes pure and mixed integer programs and many
other nonconvex programming problems. Grossmann [9] proposed a convex nonlinear relaxation of the nonlinear
convex generalized disjunctive programming problem that relies on the convex hull of each of the disjunctions that
is obtained by variable desegregation and reformulation of the inequalities. Some topics of optimization disjunctive
constraints functions were introduced in [16] by Sherali. Ceria in [4] studied the problem of finding the minimum of
a convex function on closure of the convex hull of the union of those sets.
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The duality problem of disjunctive linear fractional programming is studied by Patkar in [15]. Helbig [10,11]
develops the optimality and duality theory for families of linear programs with an emphasis on disjunctive linear
optimization by proposing a ‘vector’ optimization problem as a dual problem. The concept of a disjunctive Lagrangian
function is introduced and sufficient conditions for optimality are formulated in terms of their saddle points by
Eremin [7]. A duality theory for disjunctive linear programming problems of a special kind was suggested by
Gonçalves in [8]. Yang in [18] introduced two dual models for a generalized fractional programming problem.
Optimality conditions and the duality of non-differentiable multiobjective programming problems were considered
in [6,14] and for nondifferentiable nonlinear fractional programming problems considered by Liu in [13]. In this paper,
the Lagranian function for this kind of problem will be defined and the Kuhn–Tucker saddle point is characterized.
Also the Kuhn–Tucker saddle stationary point is established. A general dual problem is formulated and duality
theorems (weak, strongly and converse) are proved.

Let I be an arbitrary (possibly infinite) nonempty index set. For i ∈ I , let gi
r : Rn

−→ R be a vector map whose
components are nonlinear convex functions, gi

r (x) ≤ 0, 1 ≤ r ≤ m. Assume that f i , hi
: Rn

→ R are convex and
concave functions, respectively, and hi (x) > 0 for each i ∈ I . Consider for each i ∈ I , the convex–concave fractional
program problem

DFP(i) : min
f i (x)

hi (x)
Subject to x ∈ Zi , i ∈ I,

where Zi = {x ∈ Rn
: gi

r (x) ≤ 0}.
Assume that Zi 6= ∅. Denote

Mi = inf
{

f i (x)

hi (x)
: x ∈ Zi

}
∪ {−∞, ∞} is the optimal value of DFP(i)

and let

Pi =

{
x ∈ Zi :

f i (x)

hi (x)
= Mi

}
be the set of optimal solutions of DFP(i).

The disjunctive fractional programming problem is formulated as:

DFP inf
i∈I

inf
x∈Z

f i (x)

hi (x)

where Z = ∪i∈I Zi is the feasible solution set of problem DFP. Denote M = infi∈I Mi is the optimal value of DFP.
Let

P =

{
x ∈ Z : ∃i ∈ I (x), inf

i

f i (x)

hi (x)
= M

}
, the set of optimal solutions of DFP,

where

I (x) = {i ∈ I ′
: x ∈ Z},

I ′
= {i ∈ I : Zi 6= ∅}.

The disjunctive objective functions may be taken in the form: q i (x, d i ) = f i (x) − d i hi (x) where d i
≥ 0 for i ∈ I ′

are auxiliary parameters. Also the DFP(i) can be reformulated as:

DFPd inf
i∈I

inf
x∈Z

(q i (x, d i ) = f i (x) − d i hi (x)).

For i ∈ I ′ the Lagrangian function Fi of DFP(i) is defined by

Fi (x, λi ) = q i (x, d i ) +

m∑
r=1

λi
r gi

r (x), 1 ≤ r ≤ m, i ∈ I ′
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where λi
r ∈ Rm, i ∈ I ′ are the Lagrangian multipliers. Then the Lagrangian function of DFPd is defined as

=(x, λ) = inf
i∈I ′

Fi (x, λi ) = inf
i∈I ′

{
q i (x, d i ) +

m∑
r=1

λi
r gi

r (x)

}
,

where x ∈ Rn, λi
∈ Rm λ = (λ1, λ2, . . . , λi , λi+1, . . .), and hi (x) > 0 for i ∈ I ′.

2. Kuhn–Tucker saddle point problem

In the following we will consider I ′
= {1, 2, . . . , s} ⊂ I .

Definition 2.1. For all x ≥ 0 and λ ≥ 0 a point (x◦, λ◦) in Rn+sm , with x◦
≥ 0 and λ◦

≥ 0 is called a saddle point of
=(x, λ) iff

=(x◦, λ) ≤ =(x◦, λ◦) ≤ =(x, λ◦). (1)

Theorem 2.1 (Kuhn–Tucker Sufficient Optimality Criteria). If for d◦i
≥ 0 the point (x◦, λ◦) is a saddle point of

=(x, λ) and the functions q i (x, d i ) and λi
r gi

r (x) are convex and bounded. Then x◦ is optimal solution for the problem
DFPd .

Proof. Let (x◦, λ◦) be a saddle point of =(x, λ). Then for all λ ≥ 0 in Rsm and all x ∈ Z ,

=(x◦, λ) ≤ =(x◦, λ◦) ≤ =(x, λ◦)

i.e.,

inf
i

Fi (x◦, λi ) ≤ inf
i

Fi (x◦, λ◦i ) ≤ inf
i

Fi (x, λ◦i )

inf
i

{
q i (x◦, d◦i ) +

m∑
r=1

λi
r gi

r (x◦)

}
≤ inf

i

{
q i (x◦, d◦i ) +

m∑
r=1

λ◦i
r gi

r (x◦)

}
≤ inf

i

{
q i (x, d◦i ) +

m∑
r=1

λ◦i
r gi

r (x)

}
.

(2)

Thus

inf
i

q i (x◦, d◦i ) + inf
i

m∑
r=1

λi
r gi

r (x◦) ≤ inf
i

q i (x◦, d◦i ) + inf
i

m∑
r=1

λ◦i
r gi

r (x◦), (3)

i.e.,

inf
i

m∑
r=1

λi
r gi

r (x◦) ≤ inf
i

m∑
r=1

λ◦i
r gi

r (x◦) ≤

m∑
r=1

λ◦i
r gi

r (x◦) ∀i. (4)

Since for each i follows infi gi
r (x◦) ≤ gi

r (x◦) ∀i , and

m∑
r=1

λi
r inf

i
gi

r (x◦) ≤

m∑
r=1

λi
r gi

r (x◦) ∀i,

then

inf
i

m∑
r=1

λi
r inf

i
gi

r (x◦) ≤ inf
i

m∑
r=1

λi
r gi

r (x◦) ∀i. (5)

Let gk
r (x◦) = infi gi

r (x◦) and λs
r gk

r (x◦) = infi λi
r gk

r (x◦), then from (4) and (5), we get

m∑
r=1

λs
r gk

r (x◦) ≤

m∑
r=1

λ◦i
r gi

r (x◦) ∀i. (6)
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Thus
m∑

r=1

λs
r gk

r (x◦) ≤

m∑
r=1

λ◦k
r gk

r (x◦),

m∑
r=1

(λs
r − λ◦k

r )gk
r (x◦) ≤ 0. (7)

Let λs
j = λ◦k

j , λs
h = λ◦k

h + 1, j = 1, 2, . . . , h, h + 1, . . . , m. From (7) we get gk
h(x◦) ≤ 0 and for each

h = 1, 2, . . . , m, we get x◦
∈ Z k or x◦

∈ Z , i.e., x◦ is a feasible point of DFPd , and λ◦i
≥ 0, then

inf
i∈I

m∑
r=1

λ◦i
r gi

r (x◦) ≤ 0. (8)

By setting λi
r = 0 in the first inequality (2), we get

inf
i∈I

m∑
r=1

λ◦i
r gi

r (x◦) ≥ 0. (9)

Thus

inf
i∈I

m∑
r=1

λ◦i
r gi

r (x◦) = 0, (10)

substituting from (10) in the second inequality of (2), then

inf
i∈I

q i (x◦, d◦i ) ≤ inf
i∈I

q i (x, d◦i ) + inf
i∈I

λ◦i
r gi

r (x) ∀x ∈ Z .

Then

inf
i∈I

q i (x◦, d◦i ) ≤ inf
i∈I

q i (x, d◦i ) ∀x ∈ Z

i.e. x◦ is a minimal solution of DFPd . �

Assumption 2.1. For q i (x, d i ), i ∈ I ′ are convex functions on Conv Z and Conv Z be a convex hull of Z = ∪i∈I Zi ,
we assume that infi∈I ′ q i (x, d i ) is a convex function on Conv Z.

To state Kuhn–Tucker saddle point necessary theorem for problem DFPd , we need the following propostion.

Proposition 2.1. Under the Assumption 2.1, if the system

inf
i∈I ′

{q i (x, d i◦) − q i (x◦, d i◦)} < 0,

gi
r (x) ≤ 0 for at least one i ∈ I ′

}
has no solution x ∈ Conv Z ,

then there exist λi
∈ R, λ◦i

∈ Rm, (λ◦, λ◦i ) ≥ 0 such that

λ◦ inf
i∈I ′

{q i (x, d i◦) − q(x◦, d i◦)} +

m∑
r=1

λ◦i
r gi

r (x) ≥ 0 for all x ∈ Conv Z .

Proof. Since Z is convex and q i (x, d◦i ), gi
r (x)i ∈ I ′ are convex on Conv Z , then from Assumption 2.1, we get

infi∈I ′{q i (x, d◦i ) − q i (x◦, d◦i )} is convex. Since the system

inf
i∈I ′

{q i (x, d◦i ) − q i (x◦, d◦i )} < 0,

gi
r (x) ≤ 0 for at least one i ∈ I

}
has no solution on Conv Z .
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Then there exist λ◦
∈ R, λ◦i

∈ Rm, (λ◦, λ◦i ) ≥ 0 such that

λ◦ inf
i∈I ′

{q i (x, d◦i ) − q i (x◦, d◦i )} +

m∑
r=1

λ◦i
r gi

r (x) ≥ 0, for all x ∈ Conv Z , i ∈ I ′. �

Definition 2.2 (Constraint Qualification CQ). For each i ∈ I ′, we say gi
r (x) satisfy Constraint Qualification CQ iff

there exists a feasible point x ∈ Z such that gi
r (x) < 0, for 1 ≤ r ≤ m.

Theorem 2.2 (Kuhn–Tucker Necessary Optimality Criteria). If the Assumption 2.1 are satisfied, gi
r (x), i ∈ I ′ satisfy

the constraint qualification and for d◦
≥ 0, x◦ is an optimal solution of the problem DFPd , then there exists λ◦

≥ 0
such that (x◦, µ◦) is a saddle point of =(x, λ).

Proof. Since x◦ is a minimal solution of (x◦, λ◦)DFPd , then the system

inf
i∈I ′

q i (x, d◦i ) − inf
i∈I ′

q i (x◦, d◦i ) < 0,

gi
r (x) ≤ 0 for at least one i ∈ I ′

= {1, 2, . . . , s}

}
has no solution x ∈ Conv Z , which implies that the system

inf
i∈I ′

{q i (x, d◦i ) − q i (x◦, d◦i )} < 0,

gi
r (x) ≤ 0 for at least one i ∈ I ′

}

has no solution x ∈ Conv Z . So, from Proposition 2.1, there exists µ◦
∈ R, µ◦i

∈ Rsm , (µ◦, µ◦i ) ≥ 0, (µ◦, µ◦i ) 6= 0
such that:

µ◦ inf
i∈I ′

{q i (x, d◦i ) − q i (x◦, d◦i )} +

m∑
r=1

µ◦i
r gi

r (x) ≥ 0, ∀x ∈ Conv Z , i ∈ I ′. (11)

Then for x = x◦ and i ∈ I ′, we get
∑m

r=1 µ◦i
r gi

r (x◦) ≥ 0, but
∑m

r=1 µ◦i
r gi

r (x◦) ≤ 0, i ∈ I ′. Thus for each i ∈ I ′

the inequality (11) will take the form:

µ◦ inf
i∈I ′

{q i (x, d◦i ) − q i (x◦, d◦i )} +

m∑
r=1

µ◦i
r gi

r (x) ≥ 0, ∀x ∈ Conv Z ,

q i (x, d◦i ) +

m∑
r=1

λ◦i
r gi

r (x) ≥ q i (x◦, d◦i ) +

m∑
r=1

λ◦i
r gi

r (x◦) (12)

where λ◦i
r =

µ◦i
r

µ◦ .
The inequality (12) implies

inf
i∈I ′

{
q i (x, d◦i ) +

m∑
r=1

λ◦i
r gi

r (x)

}
≥ inf

i∈I ′

{
q i (x◦, d◦i ) +

m∑
r=1

λ◦i
r gi

r (x◦)

}
, (13)

i.e., =(x◦, λ◦) ≤ =(x, λ◦), λ◦
= (λ◦1

r , . . . , λ◦s
r ).

Since
∑m

r=1 µ◦i
r gi

r (x◦) = 0 and for µi
r ≥ 0 we have

∑m
r=1 µi

r gi
r (x◦) ≤ 0, and

m∑
r=1

µi
r gi

r (x◦) ≤

m∑
r=1

µ◦i
r gi

r (x◦), i ∈ I ′

by adding µ◦q i (x◦, d◦i ) to both sides, we get

µ◦q i (x◦, d i◦) +

m∑
r=1

µi
r gi

r (x◦) ≤ µ◦q i (x◦, d i◦) +

m∑
r=1

µ◦i
r gi

r (x◦), i ∈ I ′.
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If µ◦
= 0, then from the inequality (11), we get

∑m
r=1 µ◦i

r gi
r (x) ≥ 0, i ∈ I ′, x ∈ Conv Z , which contradicts the

Constraint Qualification (CQ) condition. Then µ◦ > 0 and hence

q i (x◦, d◦i ) +

m∑
r=1

µi
r

µ◦
gi

r (x◦) ≤ q i (x◦, d i◦) +

m∑
r=1

µ◦i
r

µ◦
gi

r (x◦), i ∈ I ′

and

inf
i∈I ′

{
q i (x◦, d i◦) +

m∑
r=1

λi
r gi

r (x◦)

}
≤ inf

i∈I ′

{
q i (x◦, d i◦) +

m∑
r=1

λ◦i
r gi

r (x◦)

}
. (14)

From (13) and (14) we get

inf
i∈I ′

{
q i (x◦, d i◦) +

m∑
r=1

λi
r gi

r (x◦)

}
≤ inf

i∈I ′

{
q i (x◦, d i◦) +

m∑
r=1

λ◦i
r gi

r (x◦)

}

≤ inf
i∈I

{
q i (x, d i◦) +

m∑
r=1

λ◦i
r gi

r (x)

}
i.e.

=(x◦, λ) ≤ =(x◦, λ◦) ≤ =(x, λ◦). �

3. Kuhn–Tucker stationary-point problem

Definition 3.1 (Kuhn–Tuker Stationary Point for Problem DFPd ). Find x◦
∈ Z , d◦

≥ 0 and λ◦
∈ Rsm if they exist,

such that

=x (x◦, λ◦) ≥ 0, x◦
=x (x◦, λ◦) = 0 (15)

=λ(x◦, λ◦) ≤ 0, λ◦
=λ(x◦, λ◦) = 0. (16)

or equivalently

∇ inf
i∈I ′

q i (x◦, d i◦) +

m∑
r=1

λ◦i
r ∇ gi

r (x◦) = 0, d i◦
≥ 0, i ∈ I ′ (17)

gi
r (x◦) ≤ 0, i ∈ I ′ (18)
m∑

r=1

λ◦i
r gi

r (x◦) = 0, i ∈ I ′, λ◦
≥ 0. (19)

Theorem 3.1. Let q i (x, d i ), gi
r (x), i ∈ I ′, r = 1, 2, . . . , m be differentiable convex on conv Z. If q i (x, d i ) and

λi
r gi

r (x) are bounded functions for each x ∈ Conv Z and gi
r (x), i ∈ I ′ satisfy the Constraint Qualification condition

CQ. Then for d◦i
≥ 0, i ∈ I ′, x◦ is a optimal solution of DFPd , iff there exists λ◦

∈ Rsm , λ◦
≥ 0 such that (15) and

(16) are satisfied.

Proof. Since x◦ is an optimal solution of problem DFPd , then from Theorem 2.2, there exists λ◦
∈ Rsm, λ◦

≥ 0, such
that (x◦, λ◦) is a saddle point of =(x, λ), i.e.,

=(x◦, λ) ≤ =(x◦, λ◦) ≤ =(x, λ◦).

Suppose there is a negative component of =x (x◦, λ◦), say ∂=(x◦, λ◦)/∂xk , then there exists a vector x ≥ 0 with
components xs = x◦

s , s 6= k and xk > x◦

k such that =(x, λ◦) < =(x◦, λ◦), which is a contradiction, since (x◦, λ◦) is a
saddle point of =(x, λ), and hence =x (x◦, λ◦) ≥ 0.

Since x◦
≥ 0, all of the summands x◦

k =xk (x◦, λ◦) in the inner product x◦
=x (x◦, λ◦) ≥ 0. Now, if there there exists

k such that x◦

k =xk (x◦, λ◦) > 0 and x◦

k > 0, there would also exist a vector x with components xs = x◦
s , s 6= k and
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0 ≤ xk ≤ x◦

k such that =(x, λ◦) < =(x◦, λ◦) contradicts the claim that the saddle point of =(x, λ) at (x◦, λ◦). Thus it
implies that x◦

=x (x◦, λ◦) = 0. Since =(x◦, λ) is affine linear in λ, then

=(x◦, λ) = =(x◦, λ◦) + (λ − λ◦)=λ(x◦, λ◦) for λ ≥ 0.

Since a point (x◦, λ◦) in Rn+sm , with x◦
≥ 0 and λ◦

≥ 0 is a saddle point of =(x, λ), we have

=(x◦, λ) ≤ =(x◦, λ◦)

i.e.

(λ − λ◦)=λ(x◦, λ◦) ≤ 0 for each λ ∈ Rm .

Thus for certain λ such that (λ − λ◦) > 0, we have =λ(x◦, λ◦) ≤ 0, and for other λ, (λ − λ◦) < 0 implies
=λ(x◦, λ◦) ≥ 0

Then

=λ(x◦, λ◦) = 0, hence λ◦
=λ(x◦, λ◦) = 0.

Conversely, let for d i◦
≥ 0, i ∈ I ′(x◦, λ◦) be a solution of (15), x◦

∈ Z , λ◦
∈ Rsm .

From the convexity and differentiability of infi q i (x◦, d◦) for d i◦
≥ 0, i ∈ I ′ and Assumption 2.1, we have

inf
i

q i (x, d◦i ) − inf
i

q i (x◦, d◦i ) ≥ ∇ inf
i

q i (x◦, d◦i )(x − x◦)

= −

m∑
r=1

λ◦i
r ∇gi

r (x◦)(x − x◦)

(
since ∇ inf

i
q i (x◦) = −

m∑
r=1

λ◦i
r ∇ gi

r (x◦)

)

≥

m∑
r=1

λ◦i
r (gi

r (x◦) − gi
r (x))

(by convexity and differentiability of gi
r (x◦) and (17), and λ◦i

r ≥ 0)

= −

m∑
r=1

λ◦i
r gi

r (x)

(
since

m∑
r=1

λ◦i
r ∇ gi

r (x◦) = 0

)
≥ 0 (since λ◦

≥ 0 and gi
r (x) ≤ 0).

Hence

inf
i

q i (x, d◦i ) ≥ inf
i

q i (x◦, d◦i ) for any x ∈ Z and d i◦
≥ 0, i ∈ I ′.

Then x◦ is an optimal solution of problem DFPd . �

We consider the following example for a DFP problem with two disjunction functions.

Example 3.1. Consider the problem

min
i∈I

min
x∈Z

(
f 1(x)

h1(x)
,

f 2(x)

h2(x)

)
,

where Z = ∪i∈I Zi , Zi = {x ∈ R2
: gi

r (x) ≤ 0},

f 1(x)

h1(x)
=

2x1 − x2

x1 + x2
,

f 2(x)

h2(x)
=

x1 − 3x2

2x1 − x2
, g1

1(x) = x1 + x2 − 1 ≤ 0, x1, x2 ≥ 0,

g2
1(x) = −x1 + 2x2 − 6 ≤ 0, g2

2(x) = x1 + x2 − 5 ≤ 0, g2
3 = x1 + x2 − 1 ≥ 0, x1, x2 ≥ 0,

i.e.,

Z1 = {x ∈ R2/x1 + x2 − 1 ≤ 0, x1, x2 ≥ 0},

Z2 = {x ∈ R2/ − x1 + 2x2 − 6 ≤ 0, x1 + x2 − 5 ≤ 0, − x1 − x2 + 1 ≤ 0, x1, x2 ≥ 0}.
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Fig. 1.

It is clear that the optimal solution for DFP(1) is (x1, x2) = (0, 1) and the corresponding optimal value is
d1

= −1, Also the optimal solution of DFP(2) is (x1, x2) = ( 4
3 , 11

3 ) and the optimal value is d2
= −

29
3 . So,

M = mini Mi = min{−1, − 29
3 } = −

29
3 is the minimal value of DFP. Since Z1 6= ∅, Z2 6= ∅. Then IP = {1, 2},

I (x) = {(1, 2) ∈ IP : x ∈ Z} and (CQ) is valid. The set of solutions of DFP: P = {x ∈ Z : ∃i = 2 ∈ I (x), q2(x) =
−29

3 }. See the above Fig. 1. It is clear that the point (x◦, λ◦) = ((5, 0), (λ◦1
1 , λ◦2

1 , λ◦2
2 , λ◦2

3 )) is not a saddle point of
=(x, λ) since the Lagrangian function =(x◦, λ◦) is

=(x◦, λ◦) = inf
(

2 + 4λ◦1
1 , 0.5 − 11λ◦2

1 − 4λ◦2
3

)
.

If 2 + 4λ◦1
1 ≤ 0.5 − 11λ◦2

1 − 4λ◦2
3 , then 4λ◦1

1 + 11λ◦2
1 + 4λ◦2

3 ≤ −1.5, which implies that at least one of λ◦1
1 , λ◦2

1 , λ◦2
3

is negative,which contradicts its positivity. So

0.5 − 11λ◦2
1 − 4λ◦2

3 = inf(2 + 4λ◦1
1 , 0.5 − 11λ◦2

1 − 4λ◦2
3 )

and

0.5 − 11λ◦2
1 − 4λ◦2

3 ≥ inf(2 + 4λ1
1, 0.5 − 11λ2

1 − 4λ2
3) ∀λ1

1, λ
2
1, λ

2
3.

i.e., for λ2
1 = λ2

3 = 0, 0.5 − 11λ◦2
1 − 4λ◦2

3 > 0.5, which implies at least one of λ◦2
1 and λ◦2

3 is negative, which is a
contradiction.

4. Duality using Mond–Weir type

According to optimality Theorems 2.1 and 2.2, we formulate the Mond–Weir type dual (M–WDFD) of the
disjunctive fractional problem (DFPd) as follows:

(M–WDFD) Max(u,µ)∈B

(
F(u) = sup

i∈I

(
f i (u)

hi (u)

))
, (20)

where B denotes the set of (u, µ) ∈ Rn
× Rm

+ satisfying the following conditions:

sup
i∈I

∇u

{(
f i (u)

hi (u)

)
+

m∑
j=1

µi
j g

i
j (u)

}
= 0, (21)

m∑
j=1

µi
j g

i
j (u) = 0, µi

j ≥ 0, i ∈ I, j = 1, . . . , m, (22)
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f i (u)

hi (u)

)
≥ 0, i ∈ I. (23)

Theorem 4.1 (Weak Duality). Let x be feasible for (DFPd), and (u, µ) be feasible for (M–WDFD). If for all
feasible (u, µ), the functions (

f i (u)

hi (u)
) are pseudoconvex and

∑m
j=1 µi

j g
i
j (u) are quasiconvex for each i ∈ I , then

inf(DFPd) ≥ sup(M–WDFD).

Proof. Assume that

f i (x)

hi (x)
<

f i (u)

hi (u)
∀i ∈ I (24)

and, by the pseudoconvexity of (
f i (u)

hi (u)
), (24) implies

(x − u)t
∇u

(
f i (u)

hi (u)

)
< 0. (25)

Hence

sup
i∈I

(
(x − u)t

∇u

(
f i (u)

hi (u)

))
< 0. (26)

From Eq. (21) and inequality (26), it follows that

sup
i∈I

{
(x − u)t

∇u

m∑
j=1

µi
j g

i
j (u)

}
> 0. (27)

By (20), inequality (27) implies that

sup
i∈I

m∑
j=1

µi
j g

i
j (x) > sup

i∈I

m∑
j=1

µi
j g

i
j (u) ≥ 0.

Then
∑m

j=1 µi
j g

i
j (x) > 0, contradicting the assumption that x is feasible with respect to (DFPd). �

Theorem 4.2 (Strong Duality). If x◦ is an optimal solution of (DFPd) and CQ is satisfied. Then there is a feasible
(u◦, µ◦) ∈ B for (M–WDFD) and the corresponding value of Inf(DFPd) = sup(M–WDFD).

Proof. Since x◦ is an optimal solution of (DFPd) and gi
j (x) satisfies the CQ. Then there are µ◦

= µi
j ≥ 0, i ∈

I, j = 1, . . . , m such that the Kuhn–Tucker conditions (20)–(23) are satisfied. It follows that (u◦, µ◦) is feasible for
(M–WDFD). Hence

inf
i∈I

f i (x◦)

hi (x◦)
= supi∈I

f i (u◦)

hi (u◦)
. �

Theorem 4.3 (Converse Duality). Let x◦ be an optimal solution of (DFPd) and CQ is satisfied. If (u∗, µ∗) is an
optimal solution of (M–WDFD) and (

f i (u)

hi (u)
) is strictly pseudoconvex at u∗, then u∗

= x◦ is an optimal solution of
(DFPd).

Proof. Let x◦ be an optimal solution of (DFPd), and assume CQ is satisfied. Assume that x◦
6= u∗. Then there is an

optimal solution (u∗, µ∗) of (M–WDFD). Then

inf
i∈I

(
f i (x◦)

hi (x◦)

)
= sup

i∈I

(
f i (u∗)

hi (u∗)

)
. (28)

Because o(u◦, µ◦) is feasible with respect to (M–WDFD), it follows that:
m∑

j=1

µ∗i
j gi

j (x◦) ≤

m∑
j=1

µ∗i
j gi

j (u
∗).
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The quasiconvexity of
∑m

j=1 µ∗i
j gi

j (x) implies that

sup
i∈I

(x◦
− u∗)

m∑
j=1

∇uµ∗i
j gi

j (u
∗) ≤ 0. (29)

From (28) and (29) it follows that

sup
i∈I

(x◦
− u∗)∇u

(
f i (u∗)

hi (u∗)

)
≥ 0. (30)

From (30) and the strict pseudoconvexity of (
f i (u)

hi (u)
) at u∗, it follows that

inf
i∈I

∇x

(
f i (x◦)

hi (x◦)

)
> sup

i∈I
∇u

(
f i (u∗)

hi (u∗)

)
.

This contradicts (28). Hence x◦
= u∗ is an optimal solution of (DFPd). �

Example 4.2. Consider the disjunctive fractional problem:

C P2(i) min
i

min
x∈Z

(
x2

1 − x2

x1 + x2
,

x1 + x2
2

x1 − x2

)
where Z is as in Example 3.1.

Then the optimal solution for DFP2(1) is (x1, x2) = (0, 1), and the corresponding optimal value is d1
= −1. Also

the optimal solution for DFP2(2) is (x1, x2) = ( 4
3 , 11

3 ), and the corresponding optimal value is d2
= −

133
7 . So

M = min
i

Mi = min
(

−1, −
133

7

)
= −

133
7

is the minimum value of DPP2. Since Z1 6= φ, Z2 6= φ. Then IP = {1, 2}, I (x) = {(1, 2) ∈ IP : x ∈ Z} and (CQ) is
valid. The set of solutions of DPP2 is

P =

{
x ∈ Z : ∃i = 2 ∈ I (x), min

x∈Z2

x1 + x2
2

x1 − x2
= −

133
7

}
.

5. Conclusion

This paper has addressed the solution of disjunctive programming problems, which corresponds to continuous
optimization problems that involve disjunctions with convex–concave nonlinear fractional objective functions. We
used Dinkelbach‘s global approach for finding the maximum of this problem. We first described the Kuhn–Tucker
saddle point of disjunctive nonlinear fractional programming problems by using the decision set that is the union of
a family of convex sets. Also, we discussed necessary and sufficient optimality conditions for disjunctive nonlinear
fractional programming problems. For this class of problems, we studied the dual problem; we proposed and proved
weak, strong and converse duality theorems.
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