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Abstract
Some algorithms are described for the numerical evaluation of Hadamard finite part integrals of type
£1 [f®)/(x — t)*1v*#dx, |t| < 1, where v™* is a Jacobi weight. Convergence results and some numerical examples are

given.
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1. Introduction

Several boundary problems of applied mathematics are formulated as singular integral equa-
tions involving integrals, called hypersingular, since their kernels have a singularity of order greater
than the dimension of the integrals.

Let fPeLlipi, 0<A<l, [t|<], 0<peN, ie. |fP(x;)—fP(x,)] < €|x; — x,|% x4,
x,e[—1,1], € > 0. The Hadamard finite part integral is defined by

N 1)
BA0=1 s
PRy
. f(x)—kgo k!()(x—t)" b fo (! dx
=j_1 (x — )P+ dx+k§o k! S (x—pprie
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where the first integral of the right-hand side is a generalized Riemann integral and

1 dx 1 drtk ot dx
=Pt (g — ) der R x =t

Then we can set

Y S _1d? [t f(x)
Hp(f’t)—f_l( )p+1dx_p!dtp 11X —t

The analytical properties of the Hadamard finite part integrals and their occurrences can be found
in [9, 16].
In the following we set

dx.

Ho(f; 1) = H(£ 1) = lim S 4

£20 Jix—t]z2e X —t

We want to approximate the weighted Hadamard integral H,(fv**), that is

i =f L8 e
f fx) f(( x) - {) (06 =1 e g 1 % <f(t) J[ v:ﬂ_(i) dx>, M
where v#(x) = (1 — x)*(1 + x)%, &, B > — 1, is a Jacobi weight. Setting
F(f: t)—f LT pnr() ax, ®)
H;(fv™*, t) can be rewritten in this way:
Heto =P+ 3 (0] S ax) ®

We notice that if o, § > 0 and we assume ' € TD, where

= {fe C([—- 1,1:|)|L1 u lo(f,u)du < oo},

and

w(f, ) = l Sup' S [f(x1) = f(x2)l, x1,x2e[—1,1], 6 =20
denotes the modulus of continuity of the function f, then the range of F(f) is [ — 1, 1]. The range of
F(fYyisalso[ —1,1],if —1 <a, f <0, and we assume f' € LipA, max{—a, — f} <A < 1.
The numerical methods usually proposed in literature to evaluate H,( fo*#, t) are based on the
polynomial approximation (global or local) of the functions f and f”. Instead in the numerical
methods proposed in this paper we approximate the function F’( f') by polynomials and/or splines.
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Since the analytical expression of —f—l_ L v8(x)/(x — t)dx is known [11] and some numerical
methods to approximate the second term of the right-hand side of (3) can be constructed, we are
interested in approximating F(f)'. To this end we construct some polynomial approximations
(local or global) of the function F( f) first, then we use the derivative of the above polynomials to
approximate F(f)'. Computing an approximation of F( f)’ in this way, the evaluation of f'(¢) is not
required.

The paper is divided in six sections. In Sections 2, 3 and 4 we state the above mentioned methods
and give some error estimates, while Section 5 contains their proofs. Finally, in Section 6 we give
some numerical examples. For each of one we compare the errors due to our algorithms from
among them, and with other methods.

2. First algorithm

In the following we denote by {p,(v*f)}=_, the sequence of the orthonormal Jacobi poly-
nomials with positive leading coefficient, i.e.

1
j pM(va'ﬂ’ x)pn(va'ﬁ’ x)va,p’ x) dx = 5"1,'1,
-1

Pm(©®®, X) = 7,,(v*#)x™ + terms of lower degree, 7,,(v*f) > 0. 4)

In [18] Paget derives a formula to approximate F(f;t)’, for t € (— 1,1), based on the ordinary
Gaussian rule, i.e.

f(x AR AU R UL )

TR

F(f1y = 3 2% +en(f 1)

= Fy(ft) + en(f 1),

where {x%#4}%- are the zeros of the Jacobi polynomial py(v*#) and {1%%}- are the Christoffel
numbers defined as

N-1 -1

A58 = [ Y pi™f, x“,{,'f;()j| , k=1,...,N.
j=0

In general, the sequence {Fy(f) }nen does not converge to F(f) whenever f* is only a Holder

continuous function (see [4]). Moreover, for a fixed N € N, severe numerical cancellation happens

in Fy(f;t), whenever ¢ is very close to one of the quadrature nodes x%%. To overcome these

problems we propose an algorithm that makes use of some ideas contained in [2]. To be more

precise in the aforesaid paper the authors are interested in approximating Cauchy principal value
integrals H( fv**) by

%Aa,;f(x /0

Nk

v*#(x)
X —1

-&—f(t)jzl1 dx.
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They prove that there exists a subsequence {Fy (f;t)},en uniformly convergent to F(f;t)
in any closed subset [a, b] < (—1,1), for fe TD. For this procedure the problem of numerical
cancellation is avoided, nevertheless they do not give a method to construct the numerical
algorithm to approximate H(v*?f). In order, to introduce the new algorithm, we need the
following

Lemma 2.1. Let x5, k=1,...,m and x%% . j=1,...,m+1 be the zeros of p,(v*’) and
Pm+1(v*?) respectively. Assume x%%, x%4 | .e[a,b] = (—1,1). Then
€

min |x%% — x*f | >—
ik ' m,k m+1,]| m’

where € is a positive constant independent of m, but ¢ depends on a and b.

We remark that the previous lemma is substantially equivalent to the Lemma 3.1 in [2], but in
Section 5 we give a different proof.

Now we are able to give the algorithm.

Let t € [a, b] = (—1,1) be fixed. Because of the density of the zeros of orthogonal polynomials,
there exists N large enough, such that a finite number of zeros of py(v*#)py +1(v™f) belongs to
[a, b]. Since ¢ € [a, b], two cases are possible: either t € [x54, x%4 | ;. Jorre[x38, ,, x§4] for
somede{l,...,N}.

In the first case, if x3% —t > x%%, ,,, —t, we choose the quadrature rule

’ ’ N xa’ﬂ —f(y—-1'(t xa'ﬂ—t

F(f, t) ~ FN(f’ t) = Z i;,,,[if( N,k f(azﬂ f (2)( N,k )’
k=1 (x¥%— 1)

otherwise we choose the quadrature rule F(f;t) =~ Fy+.(f; ).

Notice that, from Lemma 2.1, the denominators of the chosen quadrature rule, are greater than
%/N? and, define the “amplification factor” by

Ky(t) = i ——iﬁ—— te(a,b]
N k=1 X‘i‘v',‘i—t)z’ T

then Ky(t) ~ O(N), as all numerical methods for this problem in literature. The second case is
treated in a similar way. The computational cost of this algorithm is comparable with the cost of
the ordinary gaussian rule.

About the convergence we recall the following result [3, Theorem 3.17:

Theorem 22. Let fe C** V([ —1,1]), k = 1. Then for any fixed te[a,b] = (—1,1) setting
ex(fit)=F(f;t) — Fy(f;t) or ex(f;t) = F(f,t) — Fy+1(f;t) according to the position of t, we
have

lOgN (k+1).l
Nk w(f ,N > (5)

where € is a positive constant independent of f and N.

lex(fi )| <€
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3. Second algorithm

As we have seen, to approximate F(f;t) by the previous algorithm, we need to evaluate the
derivative of the function fin t. Now we propose an algorithm not requiring the computation of
S

The underlying idea is to approximate the function F(f) by some “local” Lagrange polynomials
&, +1(F(f)). More precisely, for any fixed t € [a, b] = (—1,1), thereexists ke {1, ..., N — 1} such
that t € [x54, x%5. 1]

Now we introduce the points ¢,

a, f a, B 1
XNgk+j v XNk+j+v1 r r+1
Livpi21 = . ) =, j= —[‘2'], ,l: 5 :l, (6)

and we compute

FN(ft)—Zl“ﬂM, j=0,..,r2 )

aﬂ_t

Then we construct the Lagrange polynomial interpolating Fy(f) in the points {t;}}-o, i.e.

Lo P50 = L0y 0,

and we approximate F(f;t)’ by Z,+1(Fx(f); t).

We observe that the choice of r depends on the smoothness of the function f. For instance, if
fe C®([—1,1]), k = 1, then we choose r = k — 1. In any case, the error due to the approximation
of F(f;t) by the derivative of the Lagrange polynomial on r + 1 knots must be comparable with
the error committed when approximating F(f) by the Gaussian rule. Therefore, we suggest to
apply this technique when r«N. In this case, the computational cost of this algorithm is
comparable with the previous one, since it requires only N + r + 1 evaluation of f, 2(r + 1)N
additions and 2(r + 1) N multiplications to compute the interpolating polynomial and r?/2 opera-
tions to evaluate its derivative in .

We have chosen as interpolation knots the points ¢, j = 0, ..., r. Nevertheless, other choices of
knots are possible, provided that they are sufficiently far from the quadrature nodes {x‘;;ﬁ‘} v-qto
avoid numerical cancellation.

Setting @1°°(f) to be the approximation error of F(f) by the second algorithm, that is

Pr(fit) = F(f;t) — Lrsa(Fa(f)t),

then the following theorem holds:

! [a] denotes the integer part of a € R.

2 Notice that Fy(f) is well defined in (— 1,1), since fe C", r > 1. Whenever t=x%* » for some j e {1, ..., N}, then (7)

becomes: Fy(f, x4%) = YN, .., ﬁf(x:ukp) f(t,)+f( 5,

N.k J
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Theorem 3.1. Let fe C" ([—1,1]), r =2, |t| < 1 — €N "2, with € a fixed positive constant. Then

9 0] < o ((FH)?, An(0) + en( s 1) ®
where
An(t) = —IN:‘t‘ + Nli ,

and €, is a positive constant dependent only on r, and ey(f) is the error of Gaussian rule (7).

Remark. The error estimate of the previous theorem is a function of F( f). It is possible to prove,
using some inverse theorems of the Polynomial Approximation Theory (see [10]), that, if
fPeLip 44, 0 < 1 <1, then (F(f))"” e Lip (4 — ¢), € > 0. Then the following inequality holds:

W((F()?, 4x(0) < ]—V‘i .

Then, assuming f e C"**([ —~1,1]), 0 < A < 1, and taking into account (see [2]) that

log N
en(f) < (gJ_V’T’“

(8) becomes

'3
|Dr°(f; 1) < NTITiE

4. Third algorithm

Unlike the previous algorithm, we now propose a numerical method of global type.

In the following we assume —1 < a, f < 1, since if &, § > 1, we consider (1 — x)*~¥(1 + x)#~1®
as the weight function, and f(x)(1 — x)®(1 + x)!¥! as the density function.

At first we suppose — 1 < a, § < 0. In this case we choose

A
as interpolation knots and compute Fp+1(f; x%5#*1), k=0, ..., m + 1. Then we construct the
Lagrange polynomial %, ,(F,.+1(f)) and approximate F(f) by ZLm+2(Fn+1(f)), that is

F(f)Y = L+ 2(Fner(f)) )
Now we suppose 0 < «, f < 1. In this case we choose

I R E = o
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as interpolation knots and compute F.(f; x% A1), k=0, ...,m + 2. Then we construct the
Lagrange polynomial %, 3(F.(f)) and, as in the previous case, we set

F(f) = Lm+3(Fulf)). (10)

For the other possible choice of a and  we can use the same technique, and, for the details, we refer
to [15]. The considered procedures use the method of additional knots [14] and are based on some
results about the interlacing property of the zeros of orthogonal polynomials [7, 8].

We need some further notation. Let I1, be the class of polynomials of degree at most n. We set

£ = Imﬂxl |f (),
and for any g € C9([ —1,1]) we denote by
E,(g) = min g — P|

Pell,

the best uniform approximation error by algebraic polynomials of degree at most n.
Now we state some results about the convergence of the third method. At first we consider
0 < a, f < 1. Then, recalling (10), we get

Prni3(f) = F(f) — Lm+3(Fu(f))- (11)

Theorem 4.1. Let v*# a, B > 0 and assume f' € TD. Then

1 ®m+3(f) < €log’mEp.2(f),
where € is a positive constant independent of f and m.

Whenever the parameter «, § of v*# are not positive, as we have previously observed, for the
existence of F(f) we need f' € Lip4, and max( — a, — ff) < 4 < 1. Nevertheless, to ensure the
convergence of the above method, more restrictive assumptions on the function f are required.

Then, recalling (9), we set

Pps2(f) = F(f) — Lmi2(Fns1(f)). (12)

Theorem 4.2. Let v**, a, § < 0 and assume f**V e Lip A, with k > 0, and max{ — 2o, — 28} < A < 1,
then
log?m
1@ms2(N)] <€,

where € is a positive constant independent of f and m.

Remark. If fis a smooth function, the condition f** 1 e Lip 4 of the Theorem 3, can be relaxed for
k > 3. In this case, if fe C** V([ — 1,1]), the following estimate holds:

log?m
|9 2(N)| <6 By (F4F1), k23

with € a positive constant independent of f and m.
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5. The proofs

Proof of Lemma 2.1. Let Q2m+1(x) pmﬂ(v“'ﬂ; x)pm(v*#; x). Since the zeros x%4, k =1,
interlace with the zeros x%%, ., k=1, ...,m+ 1, then Q% 1 (x%%, ) >0, and Q%+ 1(xm,k) < 0,
and

0<Q2m+1(xm+1 kr1) — Qam+1(xy, k)—(xm+1 k+1 ::,I;c)QIZIm+1(ék), a'ﬂ <ék<xm£1 k+10

and consequently

S— Q5w 1(50)

xm£1k+1 —X Q2m+1(xm+1 k+1)
Since (see [17])

|pm+1(U“‘ﬂ, x)| < (gv-(a/2)—(1/4).-(ﬂ/2)—(1/4)(x), |x| <1- Cm—z,

by the Bernstein inequality, we get
|Qm+1(X)] < GmiZp™ == G120 8= 012)x),
Furthermore, taking into account
Ym+1(0%?) 1
Tm(0*F) A% +1 k+10m(0%? mf-l,k+1)

where 7,,(v*#) is the leading coefficient of p,,(v*#), and bemg
1

~ -1

?

a,f. s L
Pm+1(v B’x;£1,k+1) =

, +(1/2),p+(1/2)
j‘fn-{l,k)rl * g (xm+1 k+1h
we get
1 —a—(3/2),—ﬂ—(3/2)(€ )
U Vo BRTNCY)
k

a,p a, .
X+ 1,k+1 — Xm, m+1,k+1
Since

Laxph i ~126,

It follows

1 —x?
a B B o Tmtlktl
Xmt1,k+1 — Xk = m .

Since X4 1,k+1 € [@,b] = (— 1,1),wehave 1 — x2,; ;41 = min,cp 5 (1 — a1 — b?) = ¢, and the
lemma easily follows. [

Proof of Theorem 3.1. We denote by J; , = [t,, t,], Where ¢, and ¢, are the points defined in (6).

Then
/1= x?

N . xeék,,.

[0k, rl € (Xk+per+1)/21+1 — Xk—oy2y)) ~ (r + 1)
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We get
1@ (f; )] = |F(f;t) — Losr(Fn(f); 1)
SIF(f;t) = Lot F(N 0| + 1L l(F(f) — Fa(f); 1)
=f+F,.
For any polynomial p € P,, we have:
F1=|F(f;t) =p'() = &L, +1(F(f) — p; 1)l
SIF(f;t) =P + 1 & (F(N) — B 1)
Using the Markov—Bernstein inequality, we obtain
I SCNEFES) =Y lla, + 1 s (F(f) = D,
SEIFS) =DV s, + 21 Lrrslls NEFS) = D),

where || g5, = SUDPxes,,|g(x)| and | Z,+]s,, is the Lebesgue constant. Since we use a local
interpolant on r + 1 knots, r fixed, then r?|| %, +,| = O(1). Then

L1 < NES) =0V Moy, + €NES) = plla..

where ¥ depends only on r. In particular, using the polynomial p € P, of [20, Th. 3. 19] we have

~

IEG) o, < 55 O(FU, dx(0)

IF() = pla, < 7 O(FU N, 4r(0)

Then

%, ’
F1S 1 @ ((F(f)?, An(t)).
Furthermore, making use of the Markov—Bernstein inequality, we obtain
F2 < NF(f) = Fa(Dlls,, =ex(f). O

We need the following

Lemma 5.1 (Gopengauz [13]). Iffe C([ — 1,1]), r = 0, then for each ne N there exists a poly-
nomial q, of degree at most n = 4(r + 1) such that

R0 — 22 (x)] SEIn~'/1 = X1 o(f5n~1 /1 - x?),

uniformly for 0 < k<r, —1<x<1.
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Proof of Theorem 4.1. Let g,,. 3 be the polynomial of Lemma 5.1 related to the function f. Setting
Tm+3 =f— dm+3, since Py 3(f) =0, Vfe Il 5, we get by (11)

@ +3(f) ] = | Pms3(f — gm+3) | SENFnlf) — Lt sEn( NN + [ FEms3) | + | Fnlrm+3)' Il
By [4, Lemmas 8 and 9, p. 146] we have

| F (e sY I, Fnltms5) || < G0 (f'; %)hag m. (13

Moreover, making use of [14, Theorem 3.1, p. 40] forh=gq=i=1,r =5 =1 we get
| Zm+3(Fmlrms3)) — Frms3) | < €| Fulrms) llogm,

and taking into account (13) we have

| @m+3 ()l < € <f’; —}%) log?m.

Now let pk ., denote the best uniform approximation polynomial of f* and P,, .3 denote a poly-
nomial such that P,,. 3 = p¥,. Then we have

1
| @m+3() = | Pm+3(f — Pms3)| < € (f' _P:+2;;> log? m

SIS — pm+zllog’m = GE,.(f')log?m,
and the theorem follows. []
Proof of Theorem 4.2. To prove the theorem, we start from (12). Let g,,+, be the polynomial of

Lemma 5.1 related to the function £ Setting 7,2 =f — Gm+2, since @(Pp12) =0, VP26 45,
by (12) we get

1Pmr2(N) = 1Pt 2(f = G )| S ENF s 1(f) = Loms2(Fmnr 1 (f)) |
+ NF@m+2) | + [ Fus 1 (rms2) |- (14)

At first we estimate || F'(r,,+ ). In the case k = 0 the estimate can be found in [4, Lemma 9, p. 146].
Assume k > 1.
We have for [t < 1

|F'(rm+ 25 t)
t—(1+0)/m t+(1—1t)/m 1 o - —_—
s(g{j +J' +j }lrm+2(x) Tm+2() = Fme2(D)(x t)lv“"’(x)dx
t t

2
-1 —(1+8)/m +(1-1)/m (x—1

i= By (t) + B,(t) + Bs(2), (15)
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and
t—(1+t)/m|r (x) t—(1+t)/m va,ﬂ(x)
EAGESA mr 2 v B(x)dx + |r t ———dx
e d [T g g preston [T
t—(1+t)/m va,ﬁ X
# 1) | ( )dx}
-1 |x — ¢
= Il + 12 + 13.
Applying Lemma 5.1,
(g t—(1+t)y/m U(l+k+1)/2+a,(l+k+1)/2+ﬁ x
L) € 7771 3 0 4
m -1 (x—1
1 —t k+A+1)2+a pt—(1+t)/m 1 + x (A+k+1)/2+8
g(g( )k+}.+1 J ( ) 2 dx
m -1 (x—1)
B (g(l _ t)(k+j.+ 1)/2+az(1 + t)(l+k+1)/2+ﬂ—1 1-(1/m) u(k+1+l)/2+ﬂ du
- mk+/l+1 o (1 _u)2

(k+Ai+1)2+a,(k+Ai—1)/2+8
v t
< (t)

mk+/1

since by the assumptionson kand 4, k+ A —~1+2>0,k+ 1+ 1+ 2a > 0, we have

€
Il(t)<W.

To estimate I, we use Lemma 5.1 again and by similar developments used for I, we get

L)< —F.
2(0) <

Applying Lemma 5.1 and taking into account [5, Lemma 3.3, p. 453], it follows that

logm
13(t) < %W

Combining (16)—(18), we have

logm
Bl(t)sfgr—n;ﬁ.

By analogous developments one proves

logm
B;(t) < %W .

Now we estimate B,(t):

t+(1—-t)/m r/ _r/ t r//

X —t m

B,(t) < %J

t—(1+t)/m

85

(16)

17)

(19)

(20)
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Then by Lemma 5.1 we have

By(1) < 5. 1)

Combining (19)—(21), we have

logm

[Frm+2) | <€ PR (22)
By similar developments we can prove
, logm
| Fs1rm2)' | < 62257 23)

Moreover, making use of [14, Theorem 3.1, p. 40]forh=i=1,r=s=1,9=k + 1 we get
[ L ms2(Fm+1(tm+2)) — Fns1(tm+2) | < €l Fus 1(tm+2) [ logm,
Combining the last inequality with (23) we get

log2 m

"gm+2(Fm+1(rm+2)) m+1(rm+2) ” mk+;_ . (24)
Taking into account (22), (23), (14), and (24), we have
log*m
| @me2(f)] < ——%— O

6. Numerical results

In this section we state some numerical results obtained using the described numerical methods
for evaluating some Hadamard integrals. We show that the computed errors agree with the
theoretical error estimates.

In the following we denote by N the number of knots of the Gaussian rule Fy(f; t) used in the
second and third algorithm. For the first algorithm we have considered Fy(f) or Fy+i(f)
according to the position of the singularity t. Furthermore, we have considered the “local”
Lagrange polynomial with degree equal to 3.

Among the proposed algorithms, the first appears the most efficient, although, in many cases, the
last two algorithms are also very fast.

In Tables 1-14 the columns denoted by @, @,, @3, contain the errors due to the first, the second
and the third algorithm, respectively. Moreover, for some examples, to compare the behaviour of
the proposed numerical methods with other algorithms, we give in the columns denoted by @4, Ps,
the errors obtained by making use of the product type rules described in [1] and [9], respectively.

For the third algorithm, in the examples, we choose, as interpolation knots,

{xy2 1, gu{x 1} if v*F(x) =1,

{xy#i2yo{x 1} ifv*(x)=
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Example 1.

1 ex
3£_1 G-

f(x) = e, v*f = 1.

In this case, the theoretical error for the first and third method geometrically goes to zero. For the
second method the theoretical error is O(N ~3).
In Table 1 we give the absolute errors for various values of ¢ obtained by the three algorithms.
As we can see, the global Lagrange interpolation works very well in this case, since the function
fis an analytical function.

The following two examples can be found, for instance, in [1].

Example 2.

1 x4/ 3
e )

f(x) = x*3, v@f = 1.

The order of theoretical error for the three algorithms is O(1/N'/3).
These results (Table 2—-4) are compared with those obtained using the product rule described in

[1].

Example 3.
1 (1 _ x2)5/2
— —d
3C-1 -t O

S =1 -x22 pf=1.

The order of the theoretical error for the proposed method is O(1/N3). The results are given in
Tables 5-7.

We can see that, in the last two examples, the errors of the considered algorithms are of the same
order, although the second algorithm does not evaluate f’ in the points ¢ and requires less
computational cost of the product rule.

Table 1

N=10

t ¢1 ¢2 ¢3

0.1 1.22x 10714 2.64x10°3 2.39x%x10712
0.2 1.77x 10713 349x10°° 2.00x 10712
0.3 3.55%x10°13 183x10°% 949 x 10713
0.5 5.55x10713 3.09% 1073 7.31 x 10713
0.8 1.04 x 10~ 14 241x1073 333x1071'2

0.99 217 x 10714 8.89 x 10~8 5.88x 10712
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Table 2
N=10
t ‘pl ¢2 ¢3 ¢5
0.01 496x 107! 432x1072 741 %1071 1.69x 1071
0.1 3.50x 1072 1.15x 1072 5.11x10"1 408x107!
0.25 2.52x1072 417 x 1072 2.14%x1072 1.15x 107!
0.5 9.54x 1073 1.35x 1072 5.65x1072 2.70x 1072
0.8 418x1073 5.80x 1073 246x107! 1.23x 1072
0.9 336x1073 464x1073 9.06x 1072 897x1073
0.99 2.81x1073 3.85x1073 3.05x 1071 894x1073
Table 3
N =100
t @, o, o, @
0 9.05x 107! 721 x10°1! 1.13x107° 9.05x 107!
0.01 1.59 x 1072 1.40x 107! 241x107! 1.95x 107!
0.1 1.39x 1073 248 x 1073 7.07x1072 1.78x 1073
0.25 2.35x1074 394x1074 202x1077 4.84x 1074
0.5 593x1073 9.55%x10°% 496 x 1073 9.32x1073
0.8 2.32x1073 3.76 x 103 1.89x 1073 1.32x10°°
09 1.83x107° 297x1073 8.78x1073 1.01x10°3
0.99 1.51x 1075 245%10°°% 1.40x 1072 450x10°°

Table 4

N =400

t ®, o, @

0 5.71x 107! 456x107! 571x1071

0.01 431x1073 9.41x1073 1.26 x 1072

0.1 5.88x1073 948 x 1073 9.79x 1073

0.25 944 x10°° 1.57x107° 1.20x10°5

0.8 923x1077 1.52x10°° 1.02x 1076

0.5 236x10"° 3.88x107¢ 2.70x 1076

0.9 1.20x 107¢ 1.20x10°¢ 8.11x1077

0.99 993 x1077 993 x 1077 7.12x 1077

Example 4. The following example can be found in [18]:

3(_1 T+ -1 T

()

1

1

1
(x4

v*F(x) =

dx,

1 —x

(26)
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Table §
N=10
t @, @, ®, @
0.0 1.62x10°¢ 820x 103 9.10x 1073 146 x10°¢
0.10 1.63x 1076 136x 1074 1.36 x 1074 294x1073
0.25 - 1.85%x10°¢ 1.52x 1073 291 %1074 7.65%x1073
0.50 3.56x 1073 299 x10°3 497 %1074 203x1074
0.80 1.45x1073 5.29x1073 3.00x 1073 9.74 x 1074
0.99 1.66 x 10™¢ 1.38x 1073 1.32x 1072 1.07x 1072
Table 6
N =100
t @1 ¢2 <p3 ¢5
0.0 1.63x10°7 1.73x1077 499x 1073 1.66 x 10713
0.10 1.62x 1077 7.10x10~7 479 %1073 1.61 x 10712
0.25 1.24 x1077 1.84x10°° 3.79%x10°3 3.87x 10712
0.50 8.03x10°8 212x10°¢ 330x10°3 203x10°1!
0.80 143x107¢ 1.20 x10°¢ 831x10°6 1.11 x 10710
0.99 1.57x10°7 7.46 x 106 233x10°° 5.80x 1078

Table 7

N =400

t @, o, o

0.0 1.63x1077 1.63x 1077 3.64x 10714

0.10 1.62x1077 1.72x 1077 8.30x 10~ 14

0.25 1.24x1077 9.34x 1078 994 x 10714

0.50 8.03x10°8 6.12x10°8 211 x 10713

0.80 3.78 x 1078 2.20%x10°7 1.06 x 10714

0.99 1.57x1077 1.64x 1078 2.73x 10712

We observe that the function f has poles at + yi, with residuals F i/2y. If y — 0, the residuals
tend to oco. Consequently, the evaluation of the integral (26) presents serious problems for small
values of y [21].

For this example, we have chosen {xy?/'2}u{+ 1} as interpolation knots for the global
Lagrange polynomial.

In the Tables 8-10 we report the absolute errors computed by the proposed algorithms, with
y=5and y =0.1.

As we can see, all the methods work for y = 5. Nevertheless, for y = 0.1 we must consider
N sufficiently large to obtain a good approximation of (26) in all cases.
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Example 5.

Table 8
N=10,y=5
t P, ?, D, P,
0.0 2.25%x 10717 1.17x107° 2.39x 10712 227x1071°
0.10 1.77x 10716 2.10x10°° 200x 10712 1.25x 107 1°
0.30 7.80 x 10717 1.77x10°° 949x 10713 1.94x1071°
0.50 1.19x 1071 243x10°8 731x10713 247 x1071°
0.80 1.77x 10716 1.00x 108 3.33x10°12 1.36 x 107 1°
0.99 205x10713 395x10712 5.88x10712 597x1071°
Table 9
N =100,y =0.1
t ¢1 ¢2 (p4 ¢5
0.00 1.33x107°3 443x10°! 2.90 1.33x 1073
0.10 323x10713 1.04x 1072 1.13 145x107!
0.30 1.06 x 10°¢ 321 x107¢ 200x 1071 1.82x1072
0.50 472%x1077 8.05x 1074 7.79 x 1072 493 %1073
0.80 1.62x 1077 424 x1073 6.68 x1073 1.82x1073
0.99 1.07x 1077 1.56x 1077 1.23x107! 415x1073
Table 10
N =400,y =0.1
0.00 227 x 1071 1.83x1073 1.58 x 1071 1.12x 10710
0.10 7.09%x 10713 1.74 x 1072 2.75%x 1012 6.06 x 101!
0.30 2.84 x 10712 848 x10° 4.69x 10710 1.61x 101!
0.50 440x10°13 1.32x1073 2.84x 101! 6.55x 10712
0.80 2.84x 1014 284x1077 1.89x10°° 341x 10712
0.99 3.90x 10713 240x10°° 988 x107° 1.19x 107!
1
dx

j(l x| x|

—1(>€—t)2\/1—x2 ’

f(x) = x|x|,

v*#(x) =
(x) T
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Table 11
N=10
t P, b, [ P,
0.0 7.31x10°17 3.83x10718 1.34x 10713 3.36x10° 14
0.1 298 x 1072 422%1072 230x 1071 147x107!
0.3 543x1073 5.57x1073 580x1072 1.57x107!
0.5 1.68 x 1073 8.78x 1074 1.39x 1072 8.72x1072
0.8 490x 1074 463x107* 206x 1072 244x107!
09 3.54x 1074 2.79x 1074 1.09x 1074 1.54x 1072
0.99 271 x1074 2.15x 107 1.11x1072 2,03 %1072
Table 12
N =100
t P, P, [ P,
0.0 291x10713 431x1014 1.05x1071° 3.19x 10712
0.1 2.58x10°° 833x107° 1.58x10°3 552x1073
0.3 1.04x10°¢ 3.18x 107 141 x1074 1.70x 1073
0.5 226 x 1077 6.84 x 1077 432x10°°% 1.04x 1073
0.8 6.08 x10~8 3.56x 1078 198 x 1073 1.25x1074
09 3.89x10°8 436x10°8 6.56x1077 1.90x 1073
0.99 3.21x10°8 3.19x10°8 226x1076 3.36x1073

Table 13

N =400

t P, P, P,

0.0 1.17x 10713 1.59x10°13 9.13x 107!

0.1 1.10x 1077 6.27x1077 3.55x1074

03 410x10°° 431x10°8 142x1074

0.5 8.87x10°1° 142x1078 649 %1073

0.8 2.16x 10710 8.85x1071° 1.64 x107%

0.9 1.70 x 10710 281 %107 1! 6.37x10°3

0.99 1.31 x10°1° 1.53x 10" ¢ 245%x 1073

The interpolation knots, for the global Lagrange interpolation, are the same as of the previous
example. The results are given in Tables 11-13.

We observe that the behaviour of the @, and @, are similar, since f" € Lip 1. Furthermore, the
theoretical convergence of the third method is not assured, although it numerically converges.

Remarks. All the algorithms make use of zeros and Christoffel contants with respect to Jacobi
polynomials and they can be computed efficiently (see [12]). The methods introduced above can be
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Table 14

N=17

t o, ®, @, o, o5

0.01 1.52x107°¢ 835%x1077 996 x10°3 69x107¢ 6.93x10°¢
0.05 7.64 %1076 6.78 x107°¢ 2.88x 1074 25%1073 347x1073
0.1 1.54 x 1073 142x103 3.64x 1074 54x10"6 396x1073
0.2 3.17x1073 2.53%x10°° 144 x1073 74%x1073 816x1073
03 502x1073 428 x10°° 3.07x1073 1.6x1074 233x107%
04 7.25x 1073 6.74x 1073 6.85x 1074 23x104 336x1074
0.5 1.01x 1074 765%x1073 436x1073 2.7x1074 2.82x1074
0.6 142x1074 1.30x 10™4 8.46x1073 29x1074 7.11x 1074
0.7 207x 1074 2.19x107% 9.32x1073 6.6x10°*4 1.02x 1073
0.8 3.33x 1074 321 %1074 1.21x 1072 9.0x1074 1.07x1073
09 6.94x 104 9.16 x 1074 290x 1072 31x1073 385%x1073
095 1.16 x 1073 1.01 x 1073 3.78x10°2 57x1073 5.46x1073
0.99 481x1073 2.86x1073 1.20x 107! 34x1072 3.59x1072

used to approximate weakly singular integrals of the type
1
JX) s
f_l X — tl”v (x)dx, O0<u<]l.

Furthermore, by the same techniques we can approximate Cauchy principal value integrals, and
with little change, also H,( fv*#), for p > 1. For the case of Cauchy principal value integrals, we give
an example.

Example 6.
1 /1 _ X2
~——dx,
-1 (x—1)

f=J1-x% v*F=1

The results are given in Table 14.
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